Curie Depth Analysis of the Salton Sea Region, Southern California

Kevin Mickus, Missouri State University
Musa Hussein

Abstract

Aeromagnetic data were analyzed to determine the bottom of magnetic bodies that might be related to the Curie point depth (CPD) by 2D spectral and 3D inversion methods within the Salton Trough and the surrounding region in southern California. The bottom of the magnetic bodies for 55 × 55 km windows varied in depth between 11 and 23 km in depth using 2D spectral methods. Since the 55 × 55 km square window may include both shallow and deep source, a 3D inversion method was used to provide better resolution of the bottom of the magnetic bodies. The 3D models indicate the depth to the bottom of the magnetic bodies varied between 5 and 23 km. Even though both methods produced similar results, the 3D inversion method produced higher resolution of the CPD depths. The shallowest depths (5"“8 km) occur along and west of the Brawley Seismic Zone and the southwestern portion of the Imperial Valley. The source of these shallow CPD values may be related to geothermal systems including hydrothermal circulation and/or partially molten material. Additionally, shallow CPD depths (7"“12 km) were found in a northwest-trending zone in the center of the Salton Trough. These depths coincide with previous seismic analyses that indicated a lower crustal low velocity region which is believed to be caused by partially molten material. Lower velocity zones in several regions may be related to fracturing and/or hydrothermal fluids. If the majority of these shallow depths are related to temperature, they are likely associated with the CPD, and the partially molten material extends over a wider zone than previously known. Greater depths within the Salton Trough coincide with the base of basaltic material and/or regions of intense metamorphism intruded by mafic material in the middle/lower crust.