With the advent of nanobiotechnology, there will be an increase in the interaction between engineered nanomaterials and biomolecules. Nanoconjugates with cells, organelles, and intracellular structures containing DNA, RNA, and proteins establish sequences of nano-bio boundaries that depend on several intricate complex biophysicochemical reactions. Given the complexity of these interactions, and their import in governing life at the molecular level, it is extremely important to begin to understand such nanoparticle-biomaterial association. Here we report a unique method of probing the kinematics between an energy biomolecule, adenosine triphosphate (ATP), and hydrothermally synthesized ZnO nanostructures using micro Raman spectroscopy, X-ray diffraction, and electron microscopy experiments. For the first time we have shown by Raman spectroscopy analysis that the ZnO nanostructures interact strongly with the nitrogen (N7) atom in the adenine ring of the ATP biomolecule. Raman spectroscopy also confirms the importance of nucleotide base NH2 group hydrogen bonding with water molecules and phosphate group ionization and their pH dependence. Calculation of molecular bond force constants from Raman spectroscopy reinforces our experimental data. These data present convincing evidence of pH-dependent interactions between ATP and zinc oxide nanomaterials. Significantly, Raman spectroscopy is able to probe such difficult to study and subtle nano-bio interactions and may be applied to elegantly elucidate the nano-bio interface more generally. © 2014 American Chemical Society.


Biomedical Sciences
Chemistry and Biochemistry
Physics, Astronomy, and Materials Science

Document Type




Rights Information

© 2014 American Chemical Society. This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

Publication Date


Journal Title

Journal of Physical Chemistry C