Title

New approaches to virtual environment surgery

Abstract

This research focused on two main problems: 1) low cost, high fidelity stereoscopic imaging of complex tissues and organs; and 2) virtual cutting of tissue. A further objective was to develop these images and virtual tissue cutting methods for use in a telemedicine project that would connect remote sites using the Next Generation Internet. For goal one we used a CT scan of a human heart, a desktop PC with an OpenGL graphics accelerator card, and LCD stereoscopic glasses. Use of multiresolution meshes ranging from ∼1,000,000 to 20,000 polygons speeded interactive rendering rates enormously while retaining general topography of the dataset. For goal two, we used a CT scan of an infant skull with premature closure of the right coronal suture, a Silicon Graphics Onyx workstation, a Fakespace Immersive WorkBench and CrystalEyes LCD glasses. The high fidelity mesh of the skull was reduced from one million to 50,000 polygons. The cut path was automatically calculated as the shortest distance along the mesh between a small number of hand selected vertices. The region outlined by the cut path was then separated from the skull and translated/rotated to assume a new position. The results indicate that widespread high fidelity imaging in virtual environment is possible using ordinary PC capabilities if appropriate mesh reduction methods are employed. The software cutting tool is applicable to heart and other organs for surgery planning, for training surgeons in a virtual environment, and for telemedicine purposes.

Document Type

Conference Proceeding

DOI

https://doi.org/10.3233/978-1-60750-906-6-297

Publication Date

1-1-1999

Journal Title

Studies in Health Technology and Informatics

Share

COinS