Abstract

Freestanding graphene membranes were functionalized with SnO2 nanoparticles. A detailed procedure providing uniform coverage and chemical synthesis is presented. Elemental composition was determined using scanning electron microscopy combined with energy dispersive x-ray analysis. A technique called electrostatic-manipulation scanning tunneling microscopy was used to probe the electromechanical properties of functionalized freestanding graphene samples. We found ten times larger movement perpendicular to the plane compared to pristine freestanding graphene and propose a nanoparticle encapsulation model.

Department(s)

Physics, Astronomy, and Materials Science

Document Type

Article

DOI

https://doi.org/10.1063/1.4745780

Rights Information

This article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This article appeared in AIP Advances and may be found at https://doi.org/10.1063/1.4745780

Keywords

energy dispersive X-ray spectroscopy, transition metal oxides, graphene, chemical elements, nanotubes, scanning tunneling microscopy, scanning electron microscopy, chemical synthesis, electrostatics, nanoparticles

Publication Date

2012

Recommended Citation

Dong, L., J. Hansen, P. Xu, M. L. Ackerman, S. D. Barber, J. K. Schoelz, D. Qi, and P. M. Thibado. "Electromechanical properties of freestanding graphene functionalized with tin oxide (SnO2) nanoparticles." Applied Physics Letters 101, no. 6 (2012).

Journal Title

Applied Physics Letters

Share

COinS