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Heterogeneous Distribution of Weedy
Paspalum Species and Edaphic
Variables in Turfgrass
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Lubbock, TX 79409

Michael G. Burton and Fred H. Yelverton
Department of Crop Science, North Carolina State University, Raleigh, NC
27695-7620
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Abstract. Dallisgrass (Paspalum dilatatum Poir.) and bahiagrass (Paspalum notatum
Fluegge) are two of the most troublesome weed species in managed turfgrass. These
rhizomatous, perennial grass species affect appearance, texture, and playability of turf in
home lawns, golf courses, and athletic fields. The severity and prevalence of these
problem species as well as the difficulty of achieving control with herbicide management
alone invite the examination of their realized niches for clues to improved management
tactics. The distribution of these species was evaluated in both fairways and roughs of
three holes on each of two golf courses in North Carolina. Golf courses were selected
based on the presence of both weed species. Individual plants were mapped using a high-
precision global positioning system unit. This unit was also used to delineate between the
rough and fairway height of cut as well as obtain elevation characteristics of each hole.
Soil moisture and soil compaction estimates were obtained by sampling on a 9-m grid.
Environmental characteristics used for x2 analysis consisted of mowing height, soil
compaction, soil moisture, and elevation. Data were subjected to x2 analysis to determine
if the existing distribution of Paspalum spp. differed from an expected random
distribution across all environmental factors. Bahiagrass growth and distribution was
more affected by mowing height than dallisgrass. Bahiagrass was predominantly
distributed in the rough, whereas dallisgrass occurred at both mowing heights. Similar
responses were observed for both species with regard to soil compaction. Higher plant
density for both species was observed in moderately compacted soil (40 to 60 N�m–2).
Bahiagrass distribution was unaffected by soil moisture. Dallisgrass density was lower in
areas with low volumetric soil water content (less than 27%). Although different from an
expected uniform distribution on all six holes, the elevation with the highest Paspalum
spp. density varied across holes. Results suggest that it may be possible to disadvantage
Paspalum spp. in competitive interactions with desirable species through the alteration of
landscape attributes. Substrate selection during construction, aeration, and mowing
height may help create a landscape that discourages Paspalum spp. infestation.

The perception of weed management
changed from a systems approach to a reli-
ance on chemical weed control soon after the
introduction of herbicides (Mortensen et al.,
2000). However, the onset of the ‘‘herbicide
era’’ has yet to yield the eradication of a
single weed species, whereas several new
troublesome weed species have increased in

number (Altieri, 1991). Growing public con-
cern and increasing occurrence of herbicide
resistance have fueled the interest of several
countries to propose herbicide use reduc-
tions. Knowledge of the interaction between
weeds, their management, and the environ-
ment they exist in would better equip us for
their control than overreliance on chemical
control options (Mortensen et al., 1998a,
2000).

The development of integrated weed
management strategies for managed ecosys-
tems centers around habitat delineation of
weed species (Cardina et al., 1997). The
manipulation of environmental factors to
improve crop growth conditions may be
feasible through the correct identification of
optimal environmental factors for weed
growth and those unsuitable for desired crop
growth while further reducing the amount of
herbicide inputs (Johnson et al., 1997; Mor-
tensen et al., 1998b). This is especially true

for perennial weeds in natural ecosystems or
reduced tillage systems, where plowing and
cultivation are not management options.

Landscape attributes and weed species
presence are spatially variable (Cardina
et al., 1997; Johnson et al., 1995, 1996;
Marshall, 1988; Thornton et al., 1990). In
contrast, weed control tactics are often
selected and implemented based on average
field conditions. Investigating the spatial
association of weed populations with edaphic
and topographic features has the potential to
benefit growers by reducing both input costs
and the unneeded application of control
tactics.

The introduction of new equipment and
computer software used in georeferencing
and managing data has made the study of
spatial distribution of weeds with respect to
their environment much easier (Dieleman
and Mortensen, 1999; Prather and Callihan,
1993). A global positioning system (GPS)
can be a valuable instrument for monitoring
the spread and establishment of perennial
weeds over time and may provide researchers
with information about the effect of current
management practices on specific perennial
weeds (Webster and Cardina, 1997).

Several studies have examined the impact
of cultural practices on the environment and
the subsequent impact that the environment
has on weed species distribution. Medlin
et al. (2001) determined that sicklepod
[Senna obtusifolia (L.) Irwin and Barnaby]
infestation in agricultural fields was best
predicted by organic matter content, phos-
phorus, potassium, and magnesium concen-
trations in the soil. Correlations between the
presence of several broadleaf weeds with
increased soil organic matter and lower
topography were observed by Burton et al.
(2004, 2005) and Dieleman et al. (2000).
Andreasen et al. (1991) correlated increasing
common lambsquarter (Chenopodium album
L.) populations with decreasing soil phos-
phorous and increasing common chickweed
[Stellaria media (L.) Vill.] with increasing
soil potassium.

To date, little information exists on the
spatial dynamics of perennial turfgrass weeds.
McElroy et al. (2005) correlated the presence
of green kyllinga (Kyllinga brevifolia Rottb.)
and false-green kyllinga (Kyllinga gracillima
L.) on golf course fairways with increasing
volumetric soil water content. Snaydon (1962)
correlated increased white clover (Trifolium
repens L.) density present in Festuca spp.–
Agrostis spp. grass swards with soil pH,
calcium, and phosphorus.

In North Carolina, dallisgrass (Paspalum
dilatatum Poir.) and bahiagrass (Paspalum
notatum Fluegge) are two of the most prev-
alent and difficult to control weed species in
turf. They are both rhizomatous, perennial
grass species that readily invade golf course
fairways and roughs. Few postemergence
herbicide options exist for the effective,
economical control of these weeds (Henry
et al., 2007a; Hubbard et al., 2006; Ricker
et al., 2005). These species are widely dis-
tributed throughout the state and anecdote
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suggests both tolerate droughty, sandy soils
and moist, clayey soils. However, no known
studies have examined the distribution of
these species with respect to soil/environ-
mental conditions or landscape features in
managed turfgrass environments. Therefore,
the objective of our research is to characterize
the spatial distribution of naturally occurring
populations of dallisgrass and bahiagrass and
examine possible associations with mowing
height, soil penetration resistance, volumet-
ric soil water content, and elevation.

Materials and Methods

Ecological surveys were conducted on
three golf course holes (rough and fairway)
in the fall of 2004 at Hidden Valley Golf
Club, Willow Springs, NC, and 2005 at
Riverwood Golf Club, Clayton, NC. Golf
courses were selected based on the presence
of naturally occurring populations of dallis-
grass and bahiagrass. Golf courses were
considered experimental runs, whereas holes
were considered replications within each run.
The fairways and roughs of both golf courses
arecomprisedofhybridbermudagrass [Cynodon
transvaalensis Burtt-Davy · C. dactylon (L.)
Pers., cv. Tifway 419] mowed to a height of
1.3 and 6.4 cm, respectively, and at a fre-
quency of twice and once weekly, respec-
tively. Fairways and roughs were supplied
with supplemental irrigation on a need basis
to promote vigorous and healthy turf. Chem-
ical control of Paspalum spp. on either golf
course was ineffective and consisted of spot-
treatment applications of glyphosate during
the fall or multiple applications of monoso-
dium methanearsonate throughout the grow-
ing season. The soil types present at Hidden
Valley G. C. and Riverwood G. C. were
predominantly a Wagram loamy sand
(loamy, kaolinitic, thermic Arenic Kandiu-
dults) and a Norfolk loamy sand (fine-loamy,
kaolinitic, thermic Typic Kandiudults),
respectively.

A real-time kinematic CMT Z33 Dual-
Frequency GPS (CMT Inc., Corvallis, OR)
unit was used to delineate mowing height
(fairway versus rough), georeference Paspa-
lum spp., and obtain elevation characteristics
(meters above sea level) of each golf course
hole. A differentially corrected Trimble
AgGPS 132 (Trimble, Sunnyvale, CA) unit
in combination with Farm Site Mate 7.13
software was used to superimpose a 9-m grid
over each fairway and rough to sample for
volumetric soil water content (soil moisture)
and penetration resistance (soil compaction).
The antenna was mounted just above the
sensor to obtain submeter accuracy. Volu-
metric soil water content samples were
recorded 3 d after an irrigation or rainfall
event and were measured with a TH2O
Theta Probe (Delta-T Devices, Ltd., Cam-
bridge, U.K.) [measures percent volumetric
soil water content in the top 10 cm of the soil
profile (±1%)] calibrated by soil specific
gravimetric calibration. Soil penetration
resistance samples were recorded 3 d after
an irrigation or rainfall event and were

measured with a Lang penetrometer (Lang
Penetrometer Inc., Gulf Shores, AL) (esti-
mates penetration resistance to a maximum
depth of 12 cm in the soil profile). The Lang
penetrometer was calibrated before use by
testing it on soil columns of known pen-
etration resistance. Two samples of each
measurement were obtained at every refer-
ence location to ensure consistent instrument
readings.

Categorical ranges were created for each
landscape characteristic using Jenk’s Natural
Breaks Method with ArcMap 8.1 software
(ESRI, Redlands, CA). Data from the 9-m
grid sampling were interpolated using the
Kriging method to create raster maps of each
landscape characteristic for each golf course
hole. A spherical semivariogram model with
a variable radius type set to 12 was performed
by the Kriging method. Kriging uses prior
knowledge about the spatial distribution of a
variable to predict values of said variable at
unobserved points and turning the data into a
raster map (Fig. 1). The number of each
Paspalum spp. was determined in every
categorical range of each landscape charac-
teristic.

Data were subjected to c2 analysis. c2

analysis is calculated by finding the differ-
ence between each observed and expected
frequency for each possible outcome, squar-

ing them, dividing each by the expected
frequency and taking the sum of the results:

c2 =
Xn

i=1

ðOi � EiÞ2

Ei

where:

Oi = an observed frequency; and
Ei = an expected frequency.

c2 analysis was used to test for goodness
of fit to an expected, random distribution with
respect to each landscape characteristic for
each Paspalum spp. for each golf course hole
(Table 1). A test of goodness of fit establishes
whether an observed frequency distribution
differs from an expected, random distribu-
tion. c2 analysis was used to test the associ-
ations between categorical data at P < 0.05.
Preferred environments (categorical ranges)
were reported for each species whose dis-
tribution differed from the expected distri-
bution with respect to each landscape
characteristic tested.

Results and Discussion

Mowing height. Spatial distribution of
both Paspalum spp. on all six golf course
holes was affected by mowing height (P #

Fig. 1. Distribution of dallisgrass and bahiagrass on hole 14, Hidden Valley Golf Course, Willow Springs,
NC, with respect to (A) mowing height; (B) soil compaction (N�m–2); (C) soil moisture (%VWC); and
(D) elevation (mas).
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0.001) (Table 2). Large patches of bahiagrass
plants were observed in the rough of all holes,
whereas few plants were recorded in the
fairway. Henry et al. (2007b) observed that
bahiagrass lateral spread and rhizome pro-
duction was reduced 44% to 62% and 70% to
73%, respectively, when mowed at 1.3 cm
when compared with a nonmowed control.
Lateral spread and rhizome production
reductions were only 21% to 27% and 24%
to 33%, respectively, when bahiagrass was
mowed at 7.6 cm. Reductions in bahiagrass
lateral spread and rhizome production in
response to low mowing may be attributed
to its morphology. Bahiagrass plants produce
shallow, often-exposed rhizomes at the soil
surface (McCarty et al., 2008). The increased
frequency associated with close mowing and
subsequent wear common to golf course
fairways may cause extensive damage to
bahiagrass rhizomes. The erect architecture
of bahiagrass leaves and low shoot density
create an open turf (Turgeon, 2008), making
it very susceptible to competition from other
turf and weed species. Therefore, when
mowed at a low height of cut, reductions in
lateral spread and rhizome production com-
bined with competition from close mowing-
tolerant species like hybrid bermudagrass
may create a habitat unsuitable for bahiagrass
growth.

Dallisgrass plants were predominantly
found in the rough, but several plants were
also observed in the fairway. Plants in the
fairway were typically smaller in diameter
than those observed in the rough (visual
assessment, data not shown). Henry et al.

(2007b) reported reductions in dallisgrass
lateral spread of 38% to 47% when compared
with a nonmowed control regardless of mow-
ing height (7.6, 5.2, or 1.3 cm). Reductions in
dallisgrass rhizome production were 30% to
49%, 30%, and 37% to 57% when mowed at
7.6, 5.2, and 1.3 cm, respectively. Similar
reductions in dallisgrass lateral spread and
rhizome production in response to all mow-
ing heights may be attributed to its morphol-
ogy. Dallisgrass plants produce rhizomes
deep beneath the soil surface. The protection
of the soil may reduce potential damage
resulting from low and frequent mowing
and wear. Although dallisgrass plants were
tolerant to close mowing, its bunch-type
growth habit and direct competition with
bermudagrass may make it difficult to spread
throughout the fairway.

Soil compaction. Soil compaction was
identified as a factor apparently affecting
spatial distribution of both Paspalum spp.
on all six golf course holes (P # 0.001)
(Table 2). Bahiagrass and dallisgrass were
observed predominantly in areas with pene-
tration resistance readings of 45 to 64 N�m–2.
This range of soil compaction is considered
moderate and areas of this magnitude consis-
tently had dense, healthy bermudagrass
cover.

Plant stress caused by soil compaction is
often considered an indirect stress. Heavy
and frequent traffic can alter the structure of
the soil in a way that influences the aeration
and moisture characteristics of the soil pro-
file. Soil compaction can cause several phys-
iological and morphological responses in

plants, including reduced shoot and root
growth, reduced nutrient and water uptake,
and reduced tolerance to heat and drought
stress (Turgeon, 2008).

Valoras et al. (1966) observed a reduction
in top growth of common bermudagrass of
0.83 g dry weight to 0.40 g when grown in
compacted soil conditions. Thurman and
Pokorny (1969) also observed reductions in
shoot growth of bermudagrass subjected to
compaction. Letey et al. (1966) observed a
reduction in root length of plants subjected to
compaction when compared with plants
grown in noncompacted soils. Although ber-
mudagrass morphology is negatively affected
by soil compaction, the dense, aggressive
growth habit of bermudagrass may enable it
to tolerate compaction better than dallisgrass
and bahiagrass. Carrow et al. (2001) observed
higher turf coverage for Cynodon spp. sub-
jected to soil compaction and turfgrass wear
than seashore paspalum (Paspalum vagina-
tum Sw.), a turf-type grass in the same genus
as dallisgrass and bahiagrass.

Soil moisture. Soil moisture was identi-
fied as a factor affecting spatial distribution
of bahiagrass on one hole (P < 0.05) and not
on the other five (Table 2). The small bahia-
grass sampling size (73) associated with the
one hole may have affected the resulting c2

analysis. Van Wychen et al. (2004) observed
wild oat (Avena fatua L.) growth and seed
production regardless of field-scale heteroge-
neity of soil water use with or without
competition from spring wheat (Triticum
aestivum L.). Henry et al. (2006) suggested
a possible correlation between bahiagrass
success and low soil moisture content. Bahia-
grass shoot and rhizome growth was greatest
under droughtier soil conditions when grown
on sandy loam soil regardless of whether
grown in monoculture or in competition with
hybrid bermudagrass (P < 0.0001). Survival
of bahiagrass was unaffected by soil moisture
regardless of soil type or whether grown in
monoculture or in competition with hybrid
bermudagrass (P < 0.0001).

The morphology of bahiagrass may pro-
vide insight into its ability to tolerate a wide
range of soil moisture levels. Bahiagrass
produces an extensive amount of adventi-
tious roots that extend deep within the soil
profile (Turgeon, 2008). A deep root system
may allow bahiagrass to access soil moisture
resources that would be difficult for other
species to acquire. As previously mentioned,
bahiagrass produces an abundance of shal-
low, often-exposed rhizomes at the soil sur-
face (McCarty et al., 2008). The extension of
rhizomes above the soil surface may allow
for gas exchange in the presence of saturated
soil conditions. Hybrid bermudagrass sur-
vival was greatly reduced in droughtier soil
conditions regardless of soil type (Henry
et al., 2006). Huang et al. (1997) reported a
reduction in root growth of common bermu-
dagrass [Cynodon dactylon (L.) Pers.] when
the upper 20- and 40-cm layers of the soil
profile were dried. Root dry weight of com-
mon bermudagrass only partially recovered
to control levels after rewatering. Reductions

Table 2. c2 analysis of dallisgrass and bahiagrass spatial distribution with respect to landscape factors on
six golf course holes in North Carolina.

Variable
Range of Nz

across holes
Total N across

holes df P value
Apparent optimal

environment

-------------------------------------------------------- Bahiagrass--------------------------------------------------------
Mowing height (73–224) 928 1 All # 0.001 Rough
Soil compaction (73–224) 928 4 All # 0.001 45 to 64 N�m–2

Soil moisture (73–224) 928 4 P # 0.05, 5 NS
y Unaffected

Elevation (73–224) 928 4 All # 0.001 Volatilex

-------------------------------------------------------- Dallisgrass--------------------------------------------------------
Mowing height (278–1043) 2,481 1 All # 0.001 Rough
Soil compaction (278–1043) 2,481 4 All # 0.001 45 to 64 N�m–2

Soil moisture (278–1043) 2,481 4 All # 0.001 %VWC >27%w

Elevation (278–1043) 2,481 4 All # 0.001 Volatile
zN is number of observations.
ySoil moisture was significant at the P # 0.05 level on one hole and nonsignificant (NS) on the other five
holes.
xAlthough c2 analysis indicated distributions that were significantly different from expected distributions
in all cases, the pattern of distribution across elevation differed among holes and was not predictable.
w%VWC = percent volumetric water content.

Table 1. c2 analysis of dallisgrass frequency with respect to soil compaction for hole 14, Hidden Valley
Golf Course, Willow Springs, NC.

Soil compaction (N�m–2)z

Dallisgrass 35.6–44.8y 44.9–54.2 54.3–63.5 63.6–72.8 72.9–82.1
---------------------------------------------------------- Present ----------------------------------------------------------
Observed 25 70 145 43 0
Expected 56.6 56.6 56.6 56.6 56.6
---------------------------------------------------------- Absent ----------------------------------------------------------
Observed 258 213 138 240 283
Expected 226.4 226.4 226.4 226.4 226.4
zN�m–2 = Newtons per meter squared.
yRanges were determined using Jenk’s Natural Breaks Method.
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in root growth and recovery during and after
drought conditions may make bermudagrass
less competitive with bahiagrass.

Dallisgrass spatial distribution was
affected by soil moisture level on all six golf
course holes (P # 0.001) (Table 2). Dallis-
grass was predominantly observed in areas
that had percent volumetric water content
greater than 27%. McElroy et al. (2005)
reported that both green and false-green
kyllinga were correlated with volumetric
water levels greater than field capacity at five
golf course locations. Henry et al. (2006)
suggested a possible correlation between
dallisgrass success in competition with hy-
brid bermudagrass and high soil moisture
content. Maximum rhizome and shoot pro-
duction was observed on more saturated soils
regardless of soil type. Dallisgrass survival
was reduced in droughtier soils. Rubio et al.
(1995) and Rubio and Lavado (1999)
observed a slight promotion of growth in P.
dilatatum plants when exposed to flooding,
whereas Loreti and Oesterheld (1996) only
observed an increase in biomass accumula-
tion in one of three biotypes in their research.
Loreti and Oesterheld (1996) observed that
drought reduced yield equally across three P.
dilatatum biotypes.

The tolerance of dallisgrass to high soil
moisture may be described by its growth
characteristics and anatomical changes in
response to flooding. Leaf extension rates
and tiller height were also higher in flooded
P. dilatatum plants (Insausti et al., 2001;
Loreti and Oesterheld, 1996; Rubio et al.,
1995). Increasing plant height is a flooding
response that allows avoidance of leaf sub-
mergence (Laan and Blom, 1990; Oesterheld
and McNaughton, 1991; Van der Sman et al.,
1993). P. dilatatum was observed to produce
aerotropic and adventitious roots that grow
upward to oxygenated areas (Rubio et al.,
1995), thus supplying oxygen to the roots
(Glinski and Stepniewski, 1985; Kozlowski,
1984). Several researchers also observed
an increase in root aerenchyma tissue of P.
dilatatum in response to flooding (Loreti and
Oesterheld, 1996; Rubio et al., 1995; Vasellati
et al., 2001). Increased aerenchyma tissue is a
common adaptive response of plants to soil
anoxia (Jackson and Armstrong, 1999; Jackson
and Drew, 1984; Justin and Armstrong,
1987). Scifres and Mutz (1975) reported that
longtom (Paspalum lividum Torr.) initially
stabilized areas as free-standing water with-
drew followed by common bermudagrass
after extended fresh water inundation for
several years in a coastal rangeland. The
presence of common bermudagrass immedi-
ately after the removal of free-standing water
may confirm its ability to tolerate saturated
soil environments. Therefore, in the presence
of saturated soil conditions, dallisgrass and
hybrid bermudagrass may be competitive
with one another.

Elevation. Although different from an
expected uniform distribution on all six
holes, the elevation with the highest Paspa-
lum spp. density varied across holes. Van
Wychen et al. (2004) reported that elevation

correlated with existing wild oat patches in
individual fields but was not consistent with
wild oat patches in all three fields. Elevation
leads to edaphic heterogeneity along eleva-
tion gradients by influencing spatial pattern-
ing of edaphic variables (Beckett and
Webster, 1971; Brubaker et al., 1993; Day
et al., 1987; Miller et al., 1988). McElroy
et al. (2005) hypothesized that the influence
of elevation on edaphic variables led to a lack
of significant correlations. The effect of
elevation on edaphic variables was signifi-
cant at all site locations, but results varied
across sites.

c2 analysis is limited by its inability to
examine interactions between edaphic varia-
bles on species distribution. Therefore, ig-
noring relationships among elevation, soil
moisture, soil compaction, and mowing
height may have complicated attempts to
associate edaphic variables with the presence
of dallisgrass and bahiagrass. However,
results suggest that high mowing height is a
major contributor to dallisgrass and bahia-
grass proliferation and is probably related to
decreased turfgrass competitiveness. There-
fore, the most conceivable integrated weed
management strategy for dallisgrass and
bahiagrass would be to decrease the mowing
height in the rough to discourage Paspalum
spp. growth and encourage the competitive-
ness of bermudagrass. More frequent mow-
ing in the rough may also reduce seedhead
production and further improve long-term
management of these weeds. High soil mois-
ture may also lead to increased infestation of
Paspalum spp. and is probably related to
decreased turfgrass growth. Thus, the most
plausible management strategy for dallis-
grass and bahiagrass would be to maintain
adequate soil moisture but avoid overirriga-
tion. Installation of subsurface drainage may
reduce standing water in frequently inun-
dated areas and further improve long-term
control of these weeds. Low soil moisture
may lead to increased infestation of bahia-
grass and is probably related to decreased
turfgrass growth or plant death. Maintaining
adequate soil moisture, wetting agent appli-
cation, and amending the soil to increase
waterholding capacity may aid in the control
of bahiagrass in situations of low soil mois-
ture.

Weed spatial distribution and habitat suit-
ability will differ for other species. However,
researchers should proceed with caution
when extrapolating correlative results
between soil properties and weed distribu-
tions, especially for weeds with a wide geo-
graphic distribution. The effects of fecundity,
seed dispersal, management, and habitat need
to be considered when predicting weed pop-
ulation distributions across turfgrass environ-
ments. More importantly, the potential
influence of edaphic conditions on weed
management along elevation gradients
should be among the concerns of golf course
designers; such forethought could pre-empt
potential edaphic heterogeneity (such as poor
drainage) and aid in the reduction of habitats
favorable to weed invasion.
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