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RESEARCH Open Access

Calcitonin Gene-Related Peptide Promotes
Cellular Changes in Trigeminal Neurons and Glia
Implicated in Peripheral and Central Sensitization
Ryan J Cady, Joseph R Glenn, Kael M Smith and Paul L Durham*

Abstract

Background: Calcitonin gene-related peptide (CGRP), a neuropeptide released from trigeminal nerves, is implicated
in the underlying pathology of temporomandibular joint disorder (TMD). Elevated levels of CGRP in the joint
capsule correlate with inflammation and pain. CGRP mediates neurogenic inflammation in peripheral tissues by
increasing blood flow, recruiting immune cells, and activating sensory neurons. The goal of this study was to
investigate the capability of CGRP to promote peripheral and central sensitization in a model of TMD.

Results: Temporal changes in protein expression in trigeminal ganglia and spinal trigeminal nucleus were
determined by immunohistochemistry following injection of CGRP in the temporomandibular joint (TMJ) capsule of
male Sprague-Dawley rats. CGRP stimulated expression of the active forms of the MAP kinases p38 and ERK, and
PKA in trigeminal ganglia at 2 and 24 hours. CGRP also caused a sustained increase in the expression of c-Fos
neurons in the spinal trigeminal nucleus. In contrast, levels of P2X3 in spinal neurons were only significantly
elevated at 2 hours in response to CGRP. In addition, CGRP stimulated expression of GFAP in astrocytes and OX-42
in microglia at 2 and 24 hours post injection.

Conclusions: Our results demonstrate that an elevated level of CGRP in the joint, which is associated with TMD,
stimulate neuronal and glial expression of proteins implicated in the development of peripheral and central
sensitization. Based on our findings, we propose that inhibition of CGRP-mediated activation of trigeminal neurons
and glial cells with selective non-peptide CGRP receptor antagonists would be beneficial in the treatment of TMD.

Background
Peripheral and central sensitization are implicated in the
pathology of temporomandibular joint disorder (TMD),
which is a musculoskeletal condition characterized by
pain and discomfort of the masticatory system including
the temporomandibular joint (TMJ) and associated mus-
cles [1,2]. TMD is a prevalent disorder with as much as
70% of the population having at least one TMD symp-
tom and 3-7% of the population seeking treatment for
the disorder [3,4]. Activation of trigeminal ganglia neu-
rons, which provide sensory innervation to the joint and
muscles of mastication, is implicated in TMD pathology
by providing a nociceptive pathway [5]. In response to
inflammatory or noxious stimuli, trigeminal ganglia neu-
rons release neuropeptides and other molecules that

initiate and maintain neurogenic inflammation in the
peripheral tissue that facilitate peripheral sensitization of
trigeminal nociceptors [6]. In addition, excitation of tri-
geminal ganglion neurons leads to activation of second
order neurons and glia that promotes central sensitiza-
tion, hyperalgesia, and allodynia [7]. Thus, the trigem-
inal system provides a nociceptive conduit between
peripheral inflammation in the joint or muscles and
activation of central pain pathways in TMD.
The 37 amino acid neuropeptide calcitonin gene-

related peptide (CGRP), which is synthesized and
released from trigeminal ganglia neurons, is proposed to
play a central role in the underlying pathology of TMD
[8,9]. CGRP-containing trigeminal nerve fibers are pre-
sent in the synovial membrane, articular disk, perios-
teum, and joint capsule of the TMJ [10,11]. Importantly,
elevated CGRP levels in TMJ synovial fluid are indica-
tive of mobility impairment and pain associated with
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arthritis [12] and inflammation [13]. CGRP is thought to
contribute to TMD pathology by promoting neurogenic
inflammation within the capsule via its ability to regu-
late blood flow, recruit and activate immune cells [14],
and sensitize and activate trigeminal nociceptors [15]. In
this way, transient increases in CGRP levels would pro-
mote inflammation and pain within the joint, while
chronically elevated levels would lead to destruction of
the TMJ capsule. The pathophysiological effects of
CGRP are likely to involve development of peripheral
and central sensitization, which are characteristic of
TMD pathology.
There is accumulating evidence that supports a central

role of CGRP in the initiation and maintenance of per-
ipheral and central sensitization [16-18] via stimulation
of neuronal and glial activity within trigeminal ganglia
and spinal trigeminal nucleus. The cellular effects of
CGRP are mediated via activation of the CGRP receptor,
which is expressed by neurons [19] and glia [20] in tri-
geminal ganglia, and second order neurons and astro-
cytes in the spinal cord and brainstem nuclei [19,21].
Importantly, the potent peptide CGRP receptor antago-
nist, CGRP8-37 has been shown to effectively inhibit
vasodilation and neurogenic inflammation in animal
models [22,23], and decrease pain thresholds for several
days [24]. In addition, the role of CGRP in the develop-
ment of nociceptive behaviors in response to peripheral
inflammatory events has been confirmed in studies of
CGRP knockout mice [25]. However, the cellular
mechanisms by which CGRP promotes peripheral
inflammation and nociception are not well understood.
Thus, the goal of our study was to investigate changes
in trigeminal ganglia and spinal trigeminal nucleus neu-
rons and glia implicated in the development of periph-
eral and central sensitization in response to elevated
levels of CGRP, as reported during TMJ pathology. Spe-
cifically, changes in the expression of the signaling
molecules PKA, active ERK and p-38, and the purinergic
ion channel P2X3 have all been reported to play impor-
tant roles in joint inflammation and pain [26-29].

Results
CGRP increases neuronal expression of MAP Kinases P-
p38 and P-ERK in Trigeminal Ganglia
Elevated levels of the phosphorylated active forms of the
MAP kinases p38 and ERK are associated with develop-
ment of peripheral sensitization [30]. To determine
whether the expression of P-p38 and P-ERK in the tri-
geminal ganglia would be increased in response to bilat-
eral TMJ injections of 1 μM CGRP, ganglia were
isolated 2 hours and 24 hours post injection and P-p38
and P-ERK staining levels were compared to untreated
animals. Changes in P-p38 expression were determined
by performing cells counts of positively expressing

neurons in the V3 region of the ganglia, which contains
cell bodies of neurons that innervate the TMJ capsule.
Data are expressed as a percentage of the total number
of neurons as identified by the fluorescent nuclear dye
DAPI. As seen in Figure 1, 24.30% ± 0.06 of neurons
expressed P-p38 under basal unstimulated conditions.
However, at the 2 hour time point, the number of neu-
rons with positive P-p38 staining was significantly
increased (57.69% ± 0.06, P < 0.01). Similarly the num-
ber of neurons staining positive for P-p38 at 24 hours
was significantly increased (81.94% ± 0.04, P < 0.01)
compared to both the control and 2 hour CGRP stimu-
lation. These data provide evidence that CGRP activa-
tion of trigeminal neurons leads to a prolonged
stimulatory effect on neuronal levels of P-p38.
Similar to the P-p38 results, CGRP injection into

the TMJ capsule increased expression of P-ERK in
neurons. While staining was barely detectable in con-
trol ganglia, the expression of the P-ERK, as measured
as a change in relative staining intensity, was
increased primarily in neurons 2 hours after CGRP
injection (Figure 2). However, CGRP was found to
greatly stimulate P-ERK expression in both neurons
and satellite glial cells within the V3 region of the
ganglion at 24 hours. The increase in staining inten-
sity (1.55 ± 0.11, P < 0.01) observed at the 2 hour
time point post CGRP injection was significantly
greater than control levels (1.00 ± 0.10), while CGRP
levels at 24 hours were significantly higher (3.04 ±
0.11, P < 0.01) than the control and 2 hour values.
Thus, elevated levels of CGRP in the joint capsule sti-
mulate a small increase in the neuronal expression P-
ERK at 2 hours but induce a much greater response
in neurons and glia after 24 hours.

CGRP increases neuronal expression of c-Fos in the spinal
trigeminal nucleus
Expression of c-Fos, a member of the early immediate
family of transcription factors, was used to study the
activation level of second order sensory neurons within
the spinal medullary horn. Initially, tissues from the
upper spinal cord containing the trigeminal nucleus cau-
dalis (Vc/C1-2 region of the spinal cord 4-5 mm poster-
ior to the obex) in unstimulated animals were stained
with DAPI to identify the nuclei of neurons and glia
(Figure 3A). Tissues containing the trigeminal nucleus
caudalis were then stained with antibodies directed
against c-Fos and costained with DAPI. As seen in Fig-
ure 3B-C, the number and relative intensity of neuronal
c-Fos immunoreactive cells was significantly greater at

2 hours (1.69 ± 0.07, P < 0.05) and 24 hours (1.48 ±
0.08, P < 0.05) post CGRP injection when compared to
levels in untreated control animals (1.00 ± 0.05). Thus,
elevated levels of CGRP in the TMJ capsule lead to
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activation of second order neurons within the spinal tri-
geminal nucleus.

PKA and P2X3 expression in spinal trigeminal nucleus are
elevated in response to CGRP
The effect of peripheral CGRP on expression of the pro-
inflammatory signaling protein PKA and purinergic
receptor P2X3, whose expression correlates with noci-
ceptive transmission, was investigated. As seen in Figure
4, low level expression of PKA (1.00 ± 0.10) was
detected in tissues sections from the upper spinal cord
containing the trigeminal nucleus caudalis. In contrast,
the relative staining intensity for PKA was significantly
increased in neurons and glia over control levels in tis-
sues 2 hours (2.01 ± 0.05, P < 0.05) and 24 hours (1.85
± 0.08, P < 0.05) post CGRP injection.
Similar to the findings with PKA, CGRP significantly

stimulated neuronal P2X3 expression in the spinal tri-
geminal nucleus. While minimal P2X3 immunostaining

was observed in control tissues (1.00 ± 0.12), the relative
level of staining was greatly increased at 2 hours (2.53 ±
0.11, P < 0.05). However at 24 hours, P2X3 expression
had returned to control levels (1.15 ± 0.08) (Figure 5).
To confirm expression of P2X3 in neurons, some tissues
were costained with antibodies directed against NeuN,
which is a protein expressed in the nucleus of spinal
cord neurons. Most of the NeuN positive neuronal cells
in the outer lamina also expressed P2X3 (data not
shown). Based on our findings, CGRP injection in the
TMJ capsule leads to sustained increases in the levels of
PKA in spinal trigeminal nucleus neurons and glia, and
a transient elevation in P2X3.

CGRP stimulates expression of OX-42 in microglia and
GFAP in astrocytes
The effect of CGRP on microglial activation was investi-
gated using OX-42 antibodies. As seen in Figure 6, low
level expression of OX-42 (1.00 ± 0.10) was detected in

P-p38 
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CON 24 h 

P-p38 P-p38 

2 h 
Merged 

2 h 

Merged 

CON 24 h 
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Figure 1 Increased number of trigeminal ganglia neurons expressing P-p38 in response to CGRP injection into the TMJ capsule.
Sections of the posterolateral portion of the ganglion (V3) were obtained from untreated animals (CON), and animals receiving bilateral
injections of CGRP after 2 and 24 hours. (A) Images of neuron-satellite glial regions stained for P-p38 are shown in the top panels. Magnification
bar = 50 μm. The bottom panels are the same sections co-stained for P-p38 and DAPI. (B) The number of P-p38 positive cells ± SEM for each
condition is reported (n = 3 independent experiments) #P < 0.01 when compared to control levels, while † P < 0.01 when compared to CGRP
stimulated levels at 2 hours.
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tissue sections from the upper spinal cord containing
the trigeminal nucleus caudalis. In contrast, the relative
staining intensity for OX-42 was significantly increased
in tissues 2 hours (2.02 ± 0.04, P < 0.05) and 24 hours
(1.54 ± 0.06, P < 0.05) post CGRP injection.
Changes in expression of the cytoskeletal protein

GFAP were used to determine the activity level of astro-
cytes in the medullary horn. As shown in Figure 7, con-
trol animals express a relatively low level of GFAP
immunostaining (1.00 ± 0.13), while animals injected
with CGRP exhibited a marked increase in GFAP immu-
noreactivity after 2 hours (3.90 ± 0.07, P < 0.001) that
was maintained at 24 hours (3.51 ± 0.11, P < 0.001).
Taken together, CGRP causes prolonged spinal trigem-
inal microglia and astrocyte activation.

Discussion
In our study, we found that injection of CGRP into the
TMJ capsule resulted in increased expression of proteins

implicated in the development and maintenance of per-
ipheral and central sensitization and nociception. The
rationale for this study was based on reports that
CGRP-containing trigeminal nerve fibers are present in
the synovial membrane, articular disk, periosteum, and
joint capsule of the TMJ [10,11] and high concentra-
tions of CGRP in TMJ synovial fluid are indicative of
mobility impairment and pain associated with arthritis
[12] and inflammation [13]. The concentration of CGRP
(1 μM) used in our study is similar to levels reported in
TMJ exudates collected during inflammatory conditions
[31,32]. Our finding that elevated levels of CGRP in the
TMJ capsule can stimulate trigeminal neurons is in
agreement with the proposed role of CGRP in TMD by
promoting local inflammation as well as pain transmis-
sion from peripheral tissues to the CNS [33]. Towards
this end, we found that CGRP stimulation of trigeminal
neurons increased neuronal expression of P-p38 and P-
ERK at 2 and 24 hours and increased P-ERK staining
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CON 2 h 24 h 

Merged Merged Merged 

__ __ 

CON 2 h  24 h 

P-ERK Relative 
Intensity 

1.00 ±  
0.10 

1.55 ± 
0.11# 

3.04 ± 
0.08#† 

Figure 2 CGRP stimulates increased P-ERK expression in trigeminal ganglia neurons and satellite glia. Sections of the posterolateral
portion of the ganglion (V3) were obtained from untreated animals (CON), or animals injected with CGRP in each TMJ capsule. (A) Images of
neuron-satellite glial regions stained for P-ERK are shown in the top panels. Magnification bar = 50 μm. The bottom panels are the same
sections co-stained for P-ERK and DAPI. (B) The average fold change ± SEM of P-ERK staining intensity from control values, whose mean was
made equal to one, is reported (n = 3 independent experiments) # P < 0.01 when compared to control levels, while † P < 0.01 when compared
to CGRP stimulated levels at 2 hours.
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intensity in satellite glial cells in trigeminal ganglia at 24
hours. Both p-38 and ERK are members of the MAP
kinase family of signal transduction enzymes activated
in response to inflammatory stimuli, and are known to

play an important role in the development of peripheral
sensitization [28,34,35]. The MAP kinases are reported
to mediate sensitization of primary and second order
nociceptive neurons by increasing neuronal ion channel

A  A 
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A 

c-Fos 

c-Fos Merged 

Merged 
2 h 

B c-Fos 

24 h 

c-Fos 

CON 2 h 
Merged Merged 

24 h 2 h CON 

Merged 

CON 2 h  24 h 

c-Fos Relative 
Intensity 

1.00 ±  
0.05 

1.69 ± 
0.07* 

1.48 ± 
0.08* 

C 

Figure 3 Peripheral injection of CGRP induces a sustained increase in expression of neuronal c-Fos in spinal trigeminal nucleus. (A) An
image (40×) of a section of spinal cord 4 mm from the obex stained with the nuclear dye DAPI is shown. The white box represents the area
encompassing the spinomedullary junction (Vc/C1-C2) transition zone. (B) Sections of spinal cord within the Vc/C1-2 region of the spinal
trigeminal nucleus were obtained from control animals (CON), animals 2 hours post CGRP injections, or animals 24 hours post CGRP injection.
Images of spinal cord tissues stained for c-Fos are shown in the top panels. Magnification bar = 50 μm. The same sections costained for c-Fos
and DAPI are displayed in the bottom panels. (C) The average fold change ± SEM of c-Fos staining intensity from control values is reported (n =
3 independent experiments). * P < 0.05 when compared to control values.
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expression and activity, and expression of membrane
receptors associated with nociception [28,36]. In addi-
tion, p38 and ERK are known to stimulate synthesis and
secretion of cytokines from glial cells that promote and
maintain a hyperexcitable state of neurons [6,28,37].
Further evidence of the importance of MAP kinases in
the induction of peripheral sensitization and persistent
pain was provided by results from studies in which
blocking MAP kinase activity with specific inhibitors
suppressed nociceptive responses and sensitization
[28,38,39].
Results from our study provide evidence that elevated

TMJ levels of CGRP can promote cellular events asso-
ciated with the development of central sensitization. For
example, we found that c-Fos expression in second
order neurons within the spinal trigeminal nucleus was
increased at 2 hours, and remained significantly elevated
at 24 hours in response to bilateral injections of CGRP.
In addition, upregulation of OX-42, a biomarker indica-
tive of microglial activation [40], was observed at 2 and

24 hours after CGRP injection. CGRP also induced a
large increase in expression of GFAP at 2 hours that
remained at a similar elevated level at 24 hours. GFAP
is an intermediate cytoskeleton filament protein selec-
tively localized to mature astrocytes and, thus, serves as
a biomarker of astrocyte activation [41]. Based on our
findings, we propose that CGRP facilitates development
of TMD by promoting an enhanced state of astrocyte
and microglia activity, which is characteristic of central
sensitization, persistent pain states, and nociceptive
behaviors [6,42].
We also found that levels of PKA and P2X3 were ele-

vated in response to CGRP injection into the TMJ cap-
sule. However, while CGRP caused a more sustained
increase in PKA expression in spinal neurons and glia,
elevated levels of CGRP in the capsule resulted in a
transient increase in neuronal expression of P2X3. Acti-
vation of intracellular signaling pathways involving PKA
are known to play a key role in the induction and main-
tenance of central sensitization and persistent pain by

A 

B 

PKA A PKA PKA 

24 h 2 h CON 

2 h CON 24 h 
Merged Merged Merged 

CON 2 h  24 h 

PKA Relative 
Intensity 

1.00 ±  
0.10 

2.01 ±  
0.05* 

1.85 ±  
0.08* 

Figure 4 PKA levels are elevated in the spinal trigeminal nucleus in response to CGRP. Spinal cord sections were obtained from control
animals (CON), animals 2 hours post CGRP injections, or animals 24 hours post CGRP injection. (A) Images of spinal cord tissues stained for PKA
are shown in the top panels. Magnification bar = 50 μm. The same sections costained for PKA and DAPI are displayed in the bottom panels. (B)
The average fold change ± SEM of PKA staining intensity from control values is reported (n = 3). * P < 0.05 when compared to control values.
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phosphorylation of glutamate receptors and ion chan-
nels [43-45], and increasing expression of pro-inflamma-
tory and pro-nociceptive genes. Furthermore, blocking
PKA signaling results in reduction of inflammation-
induced hyperalgesic behaviors [46,47]. Findings from
our study provide evidence that neuronal levels of the
purinergic receptor P2X3 were also significantly elevated
at 2 hours after a single CGRP injection. Notably, the
inflammatory and nociceptive effects of ATP are known
to involve activation of P2X receptors, which are upre-
gulated in sensitized nociceptive neurons [48-50]. In
particular, activation of heteromeric P2X2/3 or homo-
meric P2X3 receptors, which are abundantly expressed
by trigeminal ganglion neurons [51] is reported to med-
iate acute and chronic pain in response to inflammation
or nerve injury [49,52-55]. Based on data from prior stu-
dies, we propose that elevated peripheral levels of CGRP
increase membrane expression and sensitization of P2X3

receptors on second order neurons. Taken together, our

findings demonstrate that elevated levels of CGRP, as
reported in TMD, promote cellular changes in spinal
trigeminal neurons and glia that temporally correlate
with initiating and promoting central sensitization.

Conclusions
In this study, we provide evidence that elevated levels of
CGRP leads to cellular changes in proteins implicated in
the development and maintenance of peripheral and
central sensitization. Although not directly demon-
strated in our study, we speculate that CGRP stimula-
tion of MAP kinases, PKA, and P2X3 would also lead to
increased nociceptive responses to thermal, mechanical,
and chemical stimuli. Interestingly, data from recent
phase II clinical studies provide evidence that a non-
peptide CGRP receptor antagonist was effective as an
abortive therapy for migraine [56], a disease that
involves activation of trigeminal neurons, elevated levels
of CGRP, and peripheral and central sensitization. Thus,
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Merged 
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Merged 
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Merged 

P2X3 

24 h 2 h 
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P2X3 Relative 
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2.53 ±  
0.11* 

1.15 ±  
0.08 

B 

Figure 5 CGRP causes a transient increase in P2X3 expression in the spinal trigeminal nucleus at 2 and 24 hours. Sections of spinal cord
were obtained from control animals (CON), animals 2 hours post CGRP injections or animals 24 hours post CGRP injection. (A) Images of spinal
cord tissues stained for P2X3 are shown in the top panels. Magnification bar = 50 μm. The same sections costained for P2X3 and DAPI are
displayed in the bottom panels. (B) The average fold change ± SEM of P2X3 staining intensity from control values is reported (n = 3). * P < 0.05
when compared to control values.
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based on our findings as well as others, we postulate
that blocking the cellular effects of CGRP with the use
of non-peptide antagonists would be beneficial in the
treatment of TMD.

Methods
Animals
All animal studies were approved by the Institutional
Animal Care and Use Committee at Missouri State Uni-
versity and were conducted in compliance with all estab-
lished guidelines in the Animal Welfare Act and National
Institutes of Health. Adult male Sprague-Dawley rats
(200-250 grams; Charles River Laboratories, Wilmington,
MA) were housed in structurally sound, clean plastic
cages on a 12 hour light/dark cycle with unrestricted
access to food and water. A concerted effort was made to
reduce the suffering and number of animals used in this
study. In addition, food and water consumption, weight,
and grooming behaviors were recorded daily to monitor
the overall health of the animals.

CGRP injection as a model of TMJ inflammation
Rats were anesthetized by inhalation of 3.0% isoflurane
(VetEquip, Pleasanton, CA). For the CGRP studies, rat
CGRP (American Peptide, Sunnyvale, CA) was injected
into each TMJ capsule (25 μl per injection; 1 μM in
sterile water), while some animals were left untreated
and served as controls. Rats were sacrificed by CO2

asphyxiation either 2 hours or 24 hours post injection.

Tissue isolation and preparation
Trigeminal ganglia and spinal cord from the spinome-
dullary junction (Vc/C1-2) transition zone containing
the trigeminal nucleus caudalis were removed from all
rats following CO2 asphyxiation. Tissues were placed in
a solution of 4% paraformaldehyde overnight followed
by incubation in 15% sucrose in water at 4°C for 1 hour
and then 30% sucrose overnight at 4°C. Trigeminal
ganglia and spinal cord tissues were mounted with OCT
Compound (Sakura Finetek, Torrance, CA) such that
the ventral surface of the tissue was in contact with the
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Figure 6 Elevated expression of OX-42 in microglia. Sections of spinal cord were obtained from control animals (CON), animals 2 hours post
CGRP injections, or animals 24 hours post CGRP injection. (A) Images of spinal cord tissues stained for OX-42 are shown in the top panels.
Magnification bar = 50 μm. The same sections costained for OX-42 and DAPI are shown in the bottom panels. (B) The average fold change ±
SEM of OX-42 staining intensity from control values is reported (n = 3). * P < 0.05 when compared to control values.
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slide, quickly frozen, and stored at -20°C. Fourteen-
micron longitudinal sections of the entire trigeminal
ganglion tissue were serially prepared using a cryostat
(Microm HM 525, Thermo Scientific, Waltham, MA)
set at -20°C. Spinal cord tissue containing spinal trigem-
inal nucleus was sectioned transversely at a distance of
4-5 mm posterior to the obex in 20 μm tissue sections
using a cryostat set at -18°C. All sections were mounted
on Superfrost Plus microscope slides (Fischer Scientific,
Pittsburg, PA). Each slide used for immunohistochemis-
try contained at least one section from each experimen-
tal condition.

Immunohistochemistry
Slides containing trigeminal ganglia or spinal cord tissue
were permeabilized with 0.1% Triton X-100 plus 5%
donkey serum in PBS for 20 minutes. Trigeminal ganglia
sections were incubated overnight at 4°C with a P-p38
rabbit monoclonal antibody (1:200 in 5% donkey serum/
PBS; Cell Signaling, Beverly, MA) or a P-ERK rabbit

polyclonal antibody (1:200; Bioworld, St. Louis Park,
MN). Spinal cord sections were incubated for 3 hours at
room temperature with a mouse GFAP monoclonal
antibody (1:500; Dako, Glostrup Denmark), mouse PKA
polyclonal antibodies (1:100; BD Biosciences, San Jose,
CA), rabbit c-Fos polyclonal antibodies (1:200; Abcam,
Inc., Cambridge, MA), rabbit P2X3 polyclonal antibodies
(1:1000; ThermoScientific, Rockford, IL), mouse NeuN
monoclonal antibody (1:1000; Millipore), or a mouse
OX-42 monoclonal antibody (1:200; Abcam). All sec-
tions were incubated for 1 hour at room temperature
with either Alexa Fluor 594 donkey anti-mouse (PKA,
GFAP, OX-42, NeuN) or rabbit (P-p38, P-ERK, c-Fos,
P2X3; Invitrogen, Carlsbad, CA) diluted 1:500 in PBS, to
detect immunofluorescent proteins by UV-fluorescence
microscopy. Sections were costained with the nuclear
dye 4’6-diamidino-2-phenylindole (DAPI; Vector
Laboratories, Burlingame, CA,) and mounted in Vecta-
shield (H 1200; Vector Laboratories). Images were col-
lected from both trigeminal ganglia and both sides of
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Figure 7 CGRP induces a prolonged increase in expression of GFAP in astrocytes. Spinal cord sections were obtained from control animals
(CON), animals 2 hours post CGRP injections, or animals 24 hours post CGRP injection. (A) Images of spinal cord tissues stained for GFAP are
shown in the top panels. Magnification bar = 50 μm. The same sections costained for GFAP and DAPI are displayed in the bottom panels. (B)
The average fold change ± SEM of GFAP staining intensity from control values is reported (n = 3). # P < 0.01 when compared to control values.
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spinal cord tissues at 400 × magnification using an
Olympus DP70 camera mounted on an Olympus BX41
fluorescent microscope (Olympus, Center Valley, PA) or
a Zeiss Axiocam mRm camera mounted on a Zeiss Ima-
ger Z1 fluorescent microscope equipped with an
ApoTome.

Measurement of cell counts and staining intensity
Images containing the mandibular branch (V3) of the
middle portion of the trigeminal ganglion or regions of
spinal cord tissue containing the trigeminal nucleus
caudalis were used for analysis. Three images were
taken from 3 independent experiments, resulting in 9
images for all cell count or intensity measurements,
which were performed by two researchers blinded to
the experimental conditions. To determine changes in
expression of P-p38 in ganglia, the number of P-p38
positive neurons under each experimental condition
were counted and expressed as a ratio of the total num-
ber of neurons identified by DAPI staining in each field.
To quantify the staining intensity of P-ERK in the tri-
geminal ganglia, the mean gray intensity of 3 circular
regions from areas containing a single neuron and asso-
ciated surrounding satellite glial cells were measured
and the mean gray intensity from an area containing
only Schwann cells and fiber tracts was subtracted as
background. To evaluate the expression of proteins in
the trigeminal nucleus caudalis, images consisting of
consecutive non-overlapping regions, containing cells
from lamina I-IV were analyzed for each experimental
condition. The staining intensity in spinal cord tissue
was determined by measuring the mean gray intensity
from 3 regions of staining in the trigeminal nucleus
caudalis and subtracting the intensity from areas con-
taining only background staining. The relative staining
intensity measurements were determined using Image J
software (Ver 1.43, Wayne Rasband, National Institutes
of Health, Bethesda, MD) and based on our previously
published protocols [26,57,58]. The fold change in stain-
ing intensity was defined as the mean change in relative
intensity in the experimental condition when compared
to mean levels of the unstimulated control tissue, which
was set equal to one. Statistical analysis was performed
using the non-parametric Mann-Whitney U test. Results
were considered significant when P < 0.05. All statistical
tests were performed using SPSS (Version 16, IBM, Chi-
cago, IL).
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