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Properties of generalized derangement graphs

Hannah Jackson, Kathryn Nyman and Les Reid
(Communicated by Ann Trenk)

A permutation on n elements is called a k-derangement (k < n) if no k-element
subset is mapped to itself. One can form the k-derangement graph on the set of
all permutations on 7 elements by connecting two permutations o and 7 if 67!
is a k-derangement. We characterize when such a graph is connected or Eulerian.
For n an odd prime power, we determine the independence, clique and chromatic
numbers of the 2-derangement graph.

1. Introduction

Permutations which leave no element fixed, known as derangements, were first
considered in [de Montmort 1708] and have been extensively studied since. A
derangement graph is a graph whose vertices are the elements of the symmetric
group S, and whose edges connect two permutations that differ by a derangement.
Derangement graphs have been shown to be connected (for n > 3) and Hamiltonian,
and their independence number, clique number, and chromatic number have been
calculated [Renteln 2007].

Here we consider the generalization of derangements known as k-derangements,
which are those permutations in S, that do not fix any k-element subset of the
set being permuted. A k-derangement graph is defined in an analogous manner
to a derangement graph. We examine some of the graph-theoretical properties of
k-derangement graphs.

2. Preliminaries

Let S, be the group of permutations on the set {1, 2, ..., n}. A permutation o € S,
maps any k-element subsetof {1, ..., n} to a k-element subset of {1, ..., n}; in the
usual notation,

o({ai,...,ax}) ={o(ar),...,o(ar)}.

If{a,...,a} ={o(ay),...,o(ar)} (as sets, that is, without regard to order), we
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say that o fixes the unordered k-tuple {ay, ..., ar}. (“Unordered k-tuple” is another
name for a k-element set.)

If o does not map any of the (Z) possible unordered k-tuples to itself, we say that
o is a k-derangement. For example, with n = 4, the cyclic permutation o = (1234)
is a 2-derangement, because (taking k = 2) we have

(1234) ({1, 2}) = {(1234)(1), (1234)(2)} = {2, 3},
(1234)({1, 3}) = {(1234)(1), (1234)(3)} = {2, 4},
(1234)({1, 4}) = {(1234)(1), (1234) (D)} = {2, 1} = {1, 2},
(1234)({2, 3}) = {(1234)(2), (1234)(3)} = {3, 4},
(1234)({2, 4}) = {(1234)(2), (123) (D)} = {3, 1} = {1, 3},
(1234)({3, 4}) = {(1234)(3), (1234)(4)} = {4, 1} = {1, 4}.

This extends the ordinary notion of a derangement, defined as a permutation o € S,
such that o (x) #x forall x € {1, ..., n}.

The set of k-derangements in S, is denoted by %y ,,, and its cardinality |9y ,| —
the number of k-derangements in S, —is denoted by D (n). As we have seen,
(1234) is in %, 4. Specifically,

Dr4 = {(1234), (1243), (1324), (1342), (1423), (1432), (123)(4), (124)(3),
(132)(4), (134)(2), (142)(3), (143)(2), 234 (1), (243)(D)},

and thus D,(4) = 14. The sequence D,(n) appears as A137482 in the On-Line
Encyclopedia of Integer Sequences; see [Henshaw 2008]. The number D;(n) is
also simply called the derangement number.

The cycle structure of a permutation o, denoted by C,, is the multiset of the
lengths of the cycles in its cycle decomposition (e.g., C(12)3)45) = {2, 2, 1}). Note
that the cycle structure of o € S, is a partition of n. Given a partition r of n, let P,
be the set of all permutations in S,, whose cycle structure is . For example (as usual,
excluding singletons in our notation) Py 1,1y = {(12), (13), (14), (23), (24), 34)}.

We first note that if the cycle structure of a permutation o contains a multiset
which partitions k, then o is not a k-derangement. For example, (12)(34) is a
3-derangement in Sy, but (12)(3)(4) is not, because it fixes the set {1, 2, 3}, for
example. And we see that {2, 1} C C(12)3)@4) = {2, 1, 1} is a partition of 3. Thus
we observe that the cycle structure of a permutation determines whether or not it is
a k-derangement, and we have the following.

Proposition 1. A permutation o € S, is a k-derangement if and only if the cycle
decomposition of o does not contain a set of cycles whose lengths partition k.

Proof. If {q,r, ..., s} is a partition of k, and (a; - --ay)(by---by)---(c1 -+ - ;) are
cyclesof o, then, forx ={ay, ..., a4, b1, ..., b, c1, ..., ¢}, 0(x)=x. Conversely,
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Figure 1. The 2-derangement graph on 6 vertices, 1" 3.

if o has no set of cycles whose lengths partition k, then, given any k-element subset
x of {1, ..., n}, there is a cycle in o which contains at least one element in x and
contains some element not in x. Hence o sends an element in x to an element not
in x and so o (x) # x. O

Let CDy ,, be the set of cycle structures corresponding to k-derangements in S;
for example, CD, 4 = {{4}, {3, 1}}. Since a cycle structure C, is in CDy , if and
only if it is in CD,_¢ ,, we have Dy ,, = Dk -

Let G be a group, and let S be a subset of G that is closed under taking inverses.
The Cayley graph T'(G, S) is the graph whose vertices are the elements of G
such that an edge connects two vertices u, v € G if su = v for some s € §. A
k-derangement graph is a Cayley graph defined by I'y , := I'(S,, Dk.»). (Note
that 9y, is symmetric, as the inverse of a k-derangement is a k-derangement, and
thus satisfies the requirements for a Cayley graph.) It is worth noting that I'y , is,
by construction, Dy (n)-regular, and that, since Dy , = D—i),ns Lkn = Un—i) n-
Figure 1 illustrates the 2-derangement graph on 6 vertices, ' 3.

It is possible to consider k-derangements in S, for any positive k and n. However,
if k = n, there will be no k-derangements in S,, since every partition in S, will
have a cycle structure such that the cycle lengths partition k. As such, I' ,, will be
the empty (edgeless) graph on n vertices. If k > n, then every permutation in S,
is a k-derangement vacuously, and thus I'x , will be the complete graph on |S;,|
vertices. As neither of these cases is particularly interesting, henceforth we will
only consider k-derangements where k < n.

3. Properties of derangement graphs

Figure 1 shows that I'; 3 is not a connected graph, and, since I'; 3 =1I"1 3, we see
that I'y 3 is disconnected for all k < n. But this is an exception rather than the rule,
as the following theorem demonstrates.
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Theorem 2. Forn > 3 and k < n, Iy, is connected.

Proof. Every permutation in S, can be written as the product of adjacent transposi-
tions (h (h+1)). These, in turn, can be expressed as products of two k-derangements,
so long as n > 3, as we will demonstrate. As a result, for n > 3, the elements of
Y.n generate S,, which means that every vertex of 'y, can be reached by a path
from the identity.

We show that the permutation (1 2) can be written as the product of two k-
derangements and then note that, since it is the form and not the individual labels
that are important, any adjacent transposition can be written as the product of two
k-derangements. We consider two cases: k =1 and k > 2.

Case I: Ifk=1,then (12)=(12 --- n)>-(n (n—1) --- 1)>(12). We claim that
(12 ---n)?and (n (n—1) --- 1)?(12) are each 1-derangements in S, for all n > 3.
If niseven, then (12 --- n)>=(13 --- n—=3) (n—1))(24 --- (n—2) n), which
is a 1-derangement in S, for all n. Additionally,

n(n—1) -~ D212)=1n (n=2) (n—4) --- 2 (n—1) 1=3) --- 3),

which is also a 1-derangement in S, for any n.
On the other hand, if n is odd, then

A2 n)?=13 - (n=2)n24 --- (n=3) (n—1)),
which is a 1-derangement in S, for all n. And

(n(n—=1) --- D2(12) = (1—=2) (n—4) --- 31 (n—1) (n=3) --- 42)(12)
=nm=-2) (=4 ---3)Qn-1) n=3) --- 4,

which is a 1-derangement in S, so long as n > 3. (If n =3, (312)(12) = (13)(2),
which is not a 1-derangement.)

Thus, for n > 3, we have shown that (1 2) can be written as the product of two
1-derangements, and, by extension, every adjacent transposition can be written as
the product of two 1-derangements.

Case 2: Fork>2,(12)=(12---n)"'(134 --- n). Weknow (12 --- n)"lisa
k-derangement for all k since the inverse of a k-derangement is a k-derangement.
And, by the cycle structure, we see that (134 --- n) =134 --- n)(2) is a k-
derangement for all k, except k =1 and k = (n—1) (however, since I'1 , = I",—1) n,
Case 1 addresses (n—1)-derangements as well as 1-derangements).

So we have shown that, for £ > 2, (1 2) can be written as the product of two
k-derangements, and again, by extension, we can write any adjacent transposition
as the product of two k-derangements. Thus every vertex is connected by a path to
the identity, and I'y , is connected. O
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It is worth noting that Theorem 2 holds for n = 2 as well. Since we are only
interested in k-derangements in S, such that k < n, when n = 2, k must equal 1,
and so I'y 5 is the connected graph on two vertices.

Next, we give a characterization in terms of n and k for when a derangement
graph is Eulerian. We will require the following result.

Lemma 3. Ifa cycle structure includes a cycle of length greater than 2, then there
are an even number of permutations with that cycle structure.

Proof. Consider P,, the set of permutations with a given cycle structure, r. We can
pair each o € P, with its inverse 0 ~! € P,, and, so long as 0 # o ~! for any o € P,,
| P.| will be even. Suppose there exists a o € P, such that 0 =o', Then 62 = e,
and so the order of ¢ is at most 2. The order of a permutation is the least common
multiple of the orders of the elements of its cycle structure, so o must not include a

cycle of length greater than 2. This is a contradiction; thus | P.| is even. (]

Theorem 4. For n > 3 and k < n, 'y, is Eulerian if and only if k is even or k
and n are both odd.

Proof. A graph is Eulerian if and only if it is connected and each vertex has an
even degree. In light of Theorem 2 and the previously noted fact that I'y , is Dy (n)-
regular, in order to ascertain if I'y , is Eulerian, we must determine whether Dy (n)
is even or odd.

If k is even, we claim that Di(n) is the sum of even numbers. Any cycle
structure composed entirely of 2- or 1-cycles will partition an even k, and thus
any permutation which is in %y , for an even k will contain a cycle of length 3 or
greater in its cycle decomposition. Now, %y , = P, OP,ZL'J e OP,m (disjoint union)
such that no r; partitions k, and, by Lemma 3, |P,,| is even for all i € {1, ..., m}.
Thus, when k is even, Dy (n) is even.

If k and n are both odd, again we see that every permutation in %y, will contain
a cycle of length 3 or greater in its cycle decomposition, since an odd k can be
partitioned by a set of cycles of lengths 1 or 2 if there is at least one 1-cycle.
Furthermore, since n is odd, there are no permutations whose cycle structure is
composed only of length-2 cycles. Thus, Dy (n) is even.

Finally, we show that, if k is odd and #n is even, then I'y , is not Eulerian. In
this case, Pp >, 2y is in CDy ,. By choosing pairs of elements for the cycles and
dividing by the number of ways to order the cycles, we see that the number of
permutations in Ppp > . 2y is given by

B(3) -0 _ ne=-DH@-2)--- A1)
(3)! 25 G-1) ODO

_n—DH(@-2)---3)Ad) _ =
T am=2)---(6)@Q2) (n=D(n=3)---S)B)(D).
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Since n is even, the product (n—1)(n—3)---(5)(3)(1) is odd. Every other
k-derangement in S, will contain a cycle with length greater than 2, since any
combination of 1-cycles or 1- and 2-cycles will partition k. So Dy (n) is the sum of
one odd number and even numbers, and so is odd. |

4. Chromatic, independence and clique numbers for k = 2
and n an odd prime power

For the majority of this section, we will think of permutations in terms of the result
of their application to the ordering {1, 2, 3, ..., n}. Thus, {2, 3, 1, 4, 5} represents
the permutation which has moved 2 to the first position, 3 to the second, 1 to the
third, and left 4 and 5 fixed; that is, the permutation (132)(4)(5) in cycle notation,
or the inverse of the permutation (;gﬁg) in two line notation.

We note that in order for vu~' (or, equivalently, v~'u) to be a k-derangement,
it is necessary and sufficient that no unordered k-tuple of elements be sent to the
same unordered k-tuple of positions by both u and v. For example, the permu-
tations u = {2,3,1,4,5} and v = {4, 1, 3, 5, 2} both send the pair {1, 3} to the
second and third positions. Thus (vu=1({2,3}) = {2, 3}, and so vu~! is not a
2-derangement and there is no edge between u and v in the 2-derangement graph.
More formally, suppose u and v both send the k-tuple M’ = {a}, a), ..., a;} to
positions M = {ay, as, ..., a;}. Then, (vu=")(M) = v(M’') = M. Thus, vu~! is
not a k-derangement.

On the other hand, if # and v send no k-tuple to the same positions we claim vu ™
is a k-derangement. Consider an arbitrary k-tuple, M = {a;, as, ..., ax}, and
suppose u maps the k-tuple M’ = {a/, a), ..., a;} to the positions given in M. Then
(vu~") (M) = v(M’) # M since v cannot send the k-tuple M’ to the same positions
as u does. Thus, vu~! is a k-derangement.

In Theorem 6, we find the clique number of the 2-derangement graph, w(I"2,),
for n an odd prime power, by constructing a clique of maximal size. Before
establishing this clique number, we note an upper bound on the clique number of a
general k-derangement graph.

1

Lemma 5. Fork <n, w(I'y,) < (Z)

Proof. The clique number of the k-derangement graph, w(I'; ,), cannot be greater
than (}), since there are only (}) subsets of size k and hence at most (7 different
unordered k-tuples of positions for an arbitrary k-tuple of elements to be sent under
a permutation. ([l

Theorem 6. If n is an odd prime power, then w(I'2 ) = (;)

Proof. We will explicitly construct a clique with (;) elements. Let n = p”, with p
a prime greater than 2, and let F,» denote the field with p" elements. Rather than
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letting S, acton {1, ..., n}, we will let it act on [, and construct I'; , accordingly.
Let v = (x1, ..., x,) be an ordered n-tuple whose entries are the elements of [, in
some order. Given any function ¢ : [,r — F,r, we define ¢ (v) = (¢ (x1), ..., ¢ (xn)).
Partition the nonzero elements of [,- by pairing each element with its (additive)
inverse, and let T be a set obtained by choosing exactly one element from each
pair, giving |T| = (p" —1)/2.

Define f;o(x) = sx +a, and consider the set X = {f;o(v) | s € T and a € T, }.
Since s # 0, fs.o 1s a bijection and f; o (v) is a permutation of the elements of [F,r.
We claim that X is a clique in I, ,. Suppose not; that is, suppose there are s, € T
and a, B € Fyr, (s, ) # (2, B), such that f ,(v) is not a 2-derangement of f; g(v).
In that case there exist x, y € F,r, x # y, such that either f;,(x) = f; g(x) and
fs.a(Y) = fr.p(y) or fio(x) = fi8(y) and fs4(y) = f;,p(x). In the first case,
subtracting the two equations and rewriting yields (s —7)(x — y) = 0. If s = ¢, then
o = f3, giving a contradiction. If s # ¢, then x = y and again we have a contradiction.
In the second case, subtracting and rewriting yields (s +¢)(x — y) = 0 and, since
s+t #0fors,teT,x =y and this also give a contradiction. Thus, X is a clique
of size p"(p" —1)/2=(5). O

The next example illustrates the construction when n = 7.

Example 7. We build a clique of size (;) in the derangement graph I'; 7 consisting
of % blocks, each of which contains 7 permutations. We letv=(1, 2, 3,4,5,6,7)
(writing 7 instead of 0) and take T = {1, 4, 5}. Then

frow)=(1,2,3,4,5,6,7), faov)=(4,1,52,63,7),
J500)=(5,3,1,6,4,2,7).

Increasing o from O cyclically permutes the 7-tuples. Block 1 consists of the ar-
rangements { f1 o (v) | @ € F7}, that is, the arrangement (1, 2, 3,4, 5, 6, 7) and the re-
maining 6 rotations of this arrangement (e.g., (2, 3,4,5,6,7,1), (3,4,5,6,7, 1, 2),
etc.). Block 2 consists of the arrangement fs o(v) along with all of its rotations.
Finally, block 3 consists of fs5¢(v) and its rotations. To see that these permutations
form a clique, consider, for example, the pair {1, 2}. These elements are one position
apart in block 1, two positions apart in block 2 and three positions apart in block 3
(counting the shortest distance between them either forwards or backwards). So
the pair {1, 2} cannot occupy the same positions in two permutations which appear
in different blocks. Furthermore, within a block, the rotations insure that the pair
never occupies the same positions.

Remark 8. Cliques achieving the upper bound of Lemma 5 are known as sharply
k-homogeneous sets of permutations. A corollary in [Nomura 1985] shows that,
for 2k < n, the existence of such a k-homogeneous set implies n +1 =0 mod «.
Thus Theorem 6 cannot be extended to even n, and we have the following.
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Corollary 9. Forn evenandn >4, o(I'2,) < (3).

A computer search confirms that w(I'24) =5 < (g)

Next we turn to the independence number «(I'x ,) and the chromatic num-
ber x (I'x,) of the k-derangement graph. We will require the following lemma
which has been adapted from Frankl and Deza’s lemma [1977] and applied to
k-tuples of elements.

Lemma 10. Fork <n, a(I'y )0 (T ,) <nl

Proof. Let ? be a set of permutations in S,, every pair of which has at least one
unordered k-tuple of elements in the same unordered k-tuple of positions. That
is, for any u, v € P, there exists a set M = {ay, ..., ax} € {1,...,n} such that
(v~'u)(M) = M. Note that ? is an independent set in the k-derangement graph. Let
9 be a set of permutations in S, such that each pair of permutations has no k-tuple of
elements in the same positions; that is, 2 is a clique in the k-derangement graph. We
claim that products of the form P Q with P € % and Q € 9 give distinct permutations
of n. Suppose, for the sake of contradiction, that Py Q| = P>, Q> for Py, P, € % and
01, 0> € 9 with P; # P; and Q # Q». This implies that ;"' P, = 0, 0;". Now,
since Py and P, are in P, there is a k-tuple of elements M = {ay, ..., a;} such that
(Pl_le)(M) = M. However, this implies (Q QZ_I)(M) = M. But we know that
the permutations in 2 agree on no k-tuples, and so we must have Q1 = Q> and,
hence, P; = P;. Finally, since each product gives a unique permutation of n, there
can be no more than n! such products. ([

Theorem 11. Fork <n, a(Tx,) > k!(n —k)! and x (Ti.n) < (}).

Proof. Consider H, the set of all permutations in S, that send {1, 2, ..., k} to itself
(and hence {k+1, ..., n} to itself). It is clear that H is a subgroup of S, isomorphic
to Sy x S,— and that |H| = k!(n — k)!. Since the unordered k-tuple {1, 2, ..., k}
is fixed, none of these are k-derangements of each other, so H is an independent
set and a(I'x ) > kl(n —k)!.

The cosets of H partition S,,, and each forms an independent set, since 71, 7, €0 H
implies that 7~ 7 e Hisnota k-derangement and hence the vertices associated
to 71 and 1, are not connected by an edge. Giving each of the #lk), = (Z) cosets

a different color results in a valid coloring of T, s0 x (T.n) < (})- O

Corollary 12. For n an odd prime power, a(I'2 ) =2(n —2)! and x(I'2.,) = (Z)

Proof. By Lemma 10 and Theorem 6, we have (g) -a(T'y,,) < n!. Thus

2(n—2)!
n!

a(Ty ) <n!- =2(n—-2)!

and Theorem 11 gives the reverse inequality. For any graph G, x (G) > w(G), so,
by Theorem 6, x (I"2,,) > () and again Theorem 11 gives the reverse inequality. [J
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5. Further questions

In the last section, we showed that the clique number of the 2-derangement graph
is equal to (;) when n is an odd prime power and strictly less than that if n is even
(and at least 4). The clique construction of Theorem 6 fails to work when 7 is odd
and not a prime power since there is no field of that cardinality. We believe that
in this case the clique number is strictly smaller than (g) For arbitrary k, we have
some faint hope that the bounds given in Theorem 11 for «(I'x ;) and x (I'x ) are
actually equalities, but the situation for w(I'k ,) remains unclear.

In another direction, the numerical evidence is overwhelming that the derange-
ment graphs are Hamiltonian. We hope to explore these and other questions in
future work.
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