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Abstract: Mathematical models of Zika virus dynamics are relatively new, and they mostly focus on either
vector andhorizontal, or vector and vertical transmission only. In thiswork,we�rst revisit a recentmodel that
considers vector and vertical transmission, and we provide an alternative proof on the global stability of the
disease-free equilibriumpoint. Then, a newand generalmodel is presentedwhich includes vector, horizontal
and vertical transmission. For this new model, existence of both a disease-free and an endemic equilibrium
is studied. Using matrix and graph-theoretic methods, appropriate Lyapunov functions are constructed and
results on the global stability properties of both equilibria are established.
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MSC: 37N25, 92D25

1 Introduction

Zika virus ismainly transmitted to humans throughbites of infected femalemosquitoes from theAedes genus.
Infected humans can pass this disease to other humans via horizontal (sexual activity) or vertical (mother–
child) transmission. In addition, infected humans can also pass the disease to susceptible mosquitoes, when
bitten. In general, the stage of the infection determines the type and the intensity of the transmission: during
the incubation period, infected humans can infect both susceptible mosquitoes and humans; after this ex-
posed period, symptomatic humans aremore contagious tomosquitoes, and at the convalescence stage, they
can no longer infect mosquitoes, but they can still spread the infection to humans through sexual activity.
Some studies suggest a correlation between Zika virus infection and congenital anomalies such as micro-
cephaly and Guillain-Barre syndrome. Data available for these studies mostly come from the outbreaks in
Micronesia (2007), Polynesia (2013), and Brazil (2015). We refer the reader to [1, 4, 8, 10, 13, 14, 20] and the
references therein for a detailed biological and epidemiological description of the Zika virus.

Various types of disease epidemics have been extensively studied mathematically (e.g. [6, 11, 12, 16, 18, 19] ).
Mathematical modeling of these diseases has helped understand the dynamics of the disease, the conditions
under which an outbreak can occur, and how the disease would spread. However, mathematical models on
the dynamics of Zika virus are relatively new, and most of them study vector (mosquito-human and human-
mosquito) and horizontal transmission only [2, 10, 14, 17]. Evidence of Zika virus vertical (congenital and
perinatal) transmission has been reported by the Center for Disease Control (CDC). Further possible evidence
of vertical transmission has only recently been reported (e.g. [3, 5, 13, 20]). A recent work [1], considered a
mathematical model for vector and vertical Zika transmission, but did not include horizontal transmission;
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the authors also studied the development of microcephaly in newborns, and identi�ed the most important
parameters that in�uence the spread of the disease.

In this work, we extend and generalize previous research on mathematical models for Zika virus dynamics
by proposing a model that includes vector, horizontal and vertical transmission simultaneously. While for
most models on Zika virus (e.g. [1, 10, 17]), an endemic equilibrium does not exist, the dynamical system in
this new model has both a disease-free and an endemic equilibrium, and we provide rigorous proofs on the
global stability properties of both equilibrium points.

We start by revisiting the model presented in [1], and provide an alternative proof on the global stability of
the disease-free equilibrium, under fewer restrictions. We then propose a new and more general model that
includes vector, horizontal and vertical transmission. Using matrix and graph-theoretic methods from [19],
we provide results on the global stability properties of both equilibria. To the best of our knowledge, this is
the �rst model of Zika virus dynamics that includes the three types of transmission.

2 Vector and Vertical Transmission

2.1 The Original Model

We start by studying themodel presented by Agusto et al. [1], which includes vector and vertical transmission
only. Human population is divided into newborns, denoted with a B subscript, and everyone else (referred
to as adults), denoted with aW subscript. An individual with microcephaly is denoted with an M subscript.
Table 1 describes in detail the variables and parameters under study. The model proposed in [1] is given by:

S′B = πB − qAπBAW − qIπB IW − qRπBRW−λB(IV , NB)SB − (α + µB)SB
E′B = λB(IV , NB)SB − (α + σB + µB)EB
A′B = qAπBAW + (1 − p)σBEB − (α + γB + µB)AB
I′B = qIπB IW + pσBEB − (α + γB + µB)IB
I′BM = rqRπBRW − (α + µB)IBM
R′B = (1 − r)qRπBRW + γBAB + γB IB − (α + µB)RB
S′W = αSB − λW (IV , NW )SW − µWSW
E′W = λW (IV , NW )SW − (σW + µW )EW
A′W = (1 − p)σWEW − (γW + µW )AW
I′W = pσWEW − (γW + µW )IW
I′WM = αIBM − µW IWM
R′W = αRB + γWAW + γW IW − µWRW
S′V = πV − λV (AB , IB , AW , IW , NB , NW )SV − µvSV
E′V = λV (AB , IB , AW , IW , NB , NW )SV − (µV + σV )EV
I′V = σVEV − µV IV ,

(2.1)

where λW (IV , NW ) = βWbV IV
NW , λB(IV , NB) = ηβBbV IV

NB ,

λV (AB , IB , AW , IW , NB , NW ) = βVbV
(
IW+ρWAW+η(IB+ρBAB)

NW+ηNB

)
, and (′) denotes derivative with respect to t. We

always assume t ≥ 0.

The total populations are given by:

NB = SB + EB + AB + IB + IBM + RB
NW = SW + EW + AW + IW + IWM + RW
NV = SV + EV + IV ,

and NH = NB +NW . All variables are non-negative, and all parameters are strictly positive (except for ρB , ρW ,
which are taken to be non-negative).
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Table 1: Adapted from Table 1 in [1].

Variable Description
SB, SW Susceptible newborns and adults
EB, EW Exposed newborns and adults
AB, AW Asymptomatic newborns and adults
IB, IW Symptomatic newborns and adults without microcephaly
IBM, IWM Newborns and adults with microcephaly
RB, RW Recovered newborns and adults
SV , EV , IV Susceptible, exposed and infected female mosquitoes
Parameter Description
πB Birth rate
p Fraction of newborns and adults who are infectious
1 − p Remaining fraction of adults and newborns who are asymptomatic
α Maturation rate
r, qA , qI , qR Fractions of newborns with microcephaly, or vertically infected
1 − r Remaining fraction of newborns who are recovered
βB , βW Transmission probability per contact of newborns and adults
η, ρB, ρW Modi�cation parameters
σB , σW Progression rate of exposed newborns and adults
γB , γW Recovery rate of newborns and adults
µB , µW Natural death rate of newborns and adults
πV Recruitment rate of mosquitoes
βV Transmission probability per contact of susceptible mosquitoes
bV Mosquito biting rate
σV Progression rate of exposed mosquitoes
µV Natural death rate of mosquitoes

The terms qAπBAW , qIπB IW , qRπBRW in model (2.1) represent the vertical (mother - child) transmission, the
functions λB and λW represent vector transmission frommosquitoes to newborns and adults respectively, and
the function λV represents vector transmission from humans tomosquitoes. According to this model, asymp-
tomatic and symptomatic mothers can give birth to asymptomatic or symptomatic babies respectively, while
recoveredmothers can give birth to babieswho either havemicrocephaly or are recovered. On the other hand,
humans exposed to the disease through vector transmission progress to either asymptomatic or symptomatic
stages. It is also assumed that Zika virus generates lifelong immunity but individuals withmicrocephaly have
a short lifespan. An SEI-type model is assumed for mosquitoes. For a more detailed interpretation of this
model, see [1].

For model (2.1), one can readily show that the feasible region is

Γ1 = ΓH × ΓV ⊆ R12
+ ×R3

+,

where

ΓH = { (SB , EB , AB , IB , IBM , RB , SW , EW , AW , IW , IWM , RW ) ∈ R12
+ : NH ≤

πB
µH

+ NH(0) },

and ΓV = { (SV , EV , IV ) ∈ R3
+ : NV ≤

πV
µV

+ NV (0) },

with µH = min {µB , µW}. Γ1 is compact and invariant with respect to (2.1).
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Remark 1. Note that the sets ΓH and ΓV here are di�erent than the ones given in [1].

System (2.1) has only one equilibrium point, which corresponds to the disease-free state. This disease-free
equilibrium (DFE), denoted as E0 = (S0B , E0B , A0B , I0B , I0BM , R0B , S0W , E0W , A0W , I0W , I0WM , R0W , S0V , E0V , I0V ) is given
by:

E0 =
(

πB
α + µB

, 0, 0, 0, 0, 0, απB
µW (α + µB)

, 0, 0, 0, 0, 0, πVµV
, 0, 0

)
. (2.2)

No endemic equilibrium point exists for this system.

2.2 Global Asymptotic Stability Analysis of the DFE

To analyze the global asymptotic stability of the DFE, we consider system (2.1) in compartmental form [19,
21], by splitting the variables into two compartments: a disease compartment x ∈ R10 and a nondisease
compartment y ∈ R5 :

x = [ EB , AB , IB , IBM , EW , AW , IW , IWM , EV , IV ]T , and

y = [ SB , RB , SW , RW , SV ].T

The entries in vectors F(x, y) and V(x, y) ∈ R10 below, represent rate of new infections and transition terms
respectively in the i-th disease compartment:

F =



ηβBbV IV
NB SB
0
0

rqRπBRW
βWbV IV
NW SW
0
0
0
U
0



, V =



(α + σB + µB)EB
(α + γB + µB)AB − qAπBAW − (1 − p)σBEB

(α + γB + µB)IB − qIπB IW − pσBEB
(α + µB)IBM
(σW + µW )EW

(γW + µW )AW − (1 − p)σWEW
(γW + µW )IW − pσWEW

µW IWM − αIBM
(µV + σV )EV
µV IV − σVEV


,

where U = βVbV ( IW+ρWAW+η(IB+ρBAB)NW+ηNB )SV .
Note that the assumptions in [19]: Fi(0, y) = 0,Vi(0, y) = 0,Fi(x, y) ≥ 0,Vi(x, y) ≤ 0 when xi = 0, and∑10

i=1 Vi(x, y) ≥ 0 for i = 1, ..., 10 hold. We also de�ne:

F =
[
∂Fi
∂xj

(0, y0)
]
, and V =

[
∂Vi
∂xj

(0, y0)
]
, (2.3)
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where y0 = ( πB
α+µB , 0,

απB
µW (α+µB) , 0,

πV
µV ). This gives

F =



0 0 0 0 0 0 0 0 0 ηβBbV
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 βWbV
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 ηβVbVρBS0V
S0W+ηS

0
B

ηβVbV S0V
S0W+ηS

0
B

0 0 ρWβVbV S0V
S0W+ηS

0
B

βVbV S0V
S0W+ηS

0
B

0 0 0
0 0 0 0 0 0 0 0 0 0



,

V =



k1 0 0 0 0 0 0 0 0 0
−(1 − p)σB k2 0 0 0 −qAπB 0 0 0 0
−pσB 0 k2 0 0 0 −qIπB 0 0 0
0 0 0 k3 0 0 0 0 0 0
0 0 0 0 k4 0 0 0 0 0
0 0 0 0 −(1 − p)σW k5 0 0 0 0
0 0 0 0 −pσW 0 k5 0 0 0
0 0 0 −α 0 0 0 µW 0 0
0 0 0 0 0 0 0 0 k6 0
0 0 0 0 0 0 0 0 −σV µV



,

where k1 = α + σB + µB , k2 = α + γB + µB , k3 = α + µB , k4 = σW + µW , k5 = γW + µW , k6 = µV + σV . The next
generation matrix (NGM) [19, 21] is:

FV−1 =



0 0 0 0 0 0 0 0 A B
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 C D
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
E G H 0 I J K 0 0 0
0 0 0 0 0 0 0 0 0 0


, (2.4)
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with
A = σVηβBbV

(µV + σV )µV
, B = ηβBbVµV

, C = σVβWbV
(µV + σV )µV

, D = βWbVµV
,

E = σBηβVbVS0V [(1 − p)ρB + p]
(α + σB + µB)(α + γB + µB)(S0W + ηS0B)

,

G = ηρBβVbVS0V
(α + γB + µB)(S0W + ηS0B)

, H = ηβVbVS0V
(α + γB + µB)(S0W + ηS0B)

,

I = σWβVbVS0V [(1 − p)ρW + p]
(σW + µW )(γW + µW )(S0W + ηS0B)

+

πBσWηβVbVS0V [qIp + qA(1 − p)ρB]
(σW + µW )(γW + µW )(α + µB + γB)(S0W + ηS0B)

,

J = βVbVS0V
(γW + µW )(S0W + ηS0B)

[
ρW + qAπBηρB

(α + γB + µB)

]
,

K = βVbVS0V
(γW + µW )(S0W + ηS0B)

[
1 + qIπBη

(α + γB + µB)

]
.

The basic reproduction number R0, de�ned as the expected number of secondary cases produced by an in-
fected individual in a completely susceptible population [7, 21], is the spectral radius ρ of the NGM:

R0 = ρ(FV−1) =
√
AE + CI, (2.5)

where A, C, E, and I are de�ned as above. R0 in (2.5) is actually an eigenvalue of the matrix FV−1, computed
directly using the characteristic equation of (2.4).

Remark 2. The basic reproduction number in (2.5) can be written as

R0 =
√

RV (RB +RW) (2.6)

with RV = βVbVσV S0V
k6µV , RB = η2βBbvσB [(1−p)ρB+p]

k1k2(S0W+ηS
0
B)

, and

RW = βWbvσW
k2k4k5(S0W+ηS

0
B)
[
(1 − p)(k2ρW + ηρBqAπB) + p(k2 + ηqIπB)

]
.

See [1] for biological interpretations of RV ,RB and RW.

In the theorem below, we make the assumption SV ≤ S0V , which is biologically reasonable.

Theorem 1. If R0 ≤ 1, then the disease-free equilibrium point E0 (2.2) is globally asymptotically stable (GAS)
in Γ1.

Proof. Following the matrix-theoretic method in [19], we set

f (x, y) := (F − V)x − F(x, y) + V(x, y),

which gives

f (x, y) =



ηβBbV IV (NB−SBNB )
0
0

−rqRπBRW
βWbV IV (NW−SWNW )

0
0
0

βVbV (IW + ρWAW + η(IB + ρBAB))(
S0V

S0W+ηS
0
B
− SV
NW+ηNB )

0



.
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Note that we are not able to use Theorem 2.1 in [19] directly, as the condition f (x, y) ≥ 0 fails (only on the
fourth entry). However, a Lyapunov function in the form proposed by the authors can still be constructed.
Indeed, de�ne the function

Q = ωTV−1x,

where ω is a left eigenvector of the matrix V−1F corresponding to the eigenvalue R0. We are not able to use
Theorem 2.2 in [19] either, as the matrix V−1F is not irreducible. However, one can compute a nonnegative
left eigenvector ω of V−1F, corresponding to R0. In fact, the eigenvector has the form

ωT = [ 0 a b 0 0 c d 0 0 e ],

where a, b, c, d, and e are positive values. One can readily verify that V−1 is nonnegative, and hence Q(x) ≥ 0.
Also observe that Q(x) = 0 at the DFE. We then have

Q′ = ωTV−1x′ = ωTV−1(F − V)x − ωTV−1f (x, y) = (R0 − 1)ωTx − ωTV−1f (x, y).

Even though the condition f (x, y) ≥ 0 is not satis�ed, one can verify that the product ωTV−1f (x, y) is non-
negative. Thus, the condition R0 ≤ 1 implies Q′ = (R0 − 1)ωTx − ωTV−1f (x, y) ≤ 0. Therefore, Q is in fact a
Lyapunov function in Γ1.
To prove global stability, �rst considerR0 < 1, and let S = {z ∈ R15

+ : Q′ = 0}. When Q′ = 0, wemust have that
(R0 −1)ωTx = ωTV−1f (x, y). SinceR0 < 1, we have (R0 −1)ωTx non-positive but ωTV−1f (x, y) non-negative.
Thus, (R0 − 1)ωTx = 0, and hence wTx = 0. This implies that AB = IB = AW = IW = IV = 0, and we get
S = {z ∈ R15

+ : AB = IB = AW = IW = IV = 0}. On this set S, we are left with the following system:

S′B = πB − qRπBRW − (α + µB)SB
E′B = −(α + σB + µB)EB
I′BM = rqRπBRW − (α + µB)IBM
R′B = (1 − r)qRπBRW − (α + µB)RB
S′W = αSB − µWSW
E′W = −(σW + µW )EW
I′WM = αIBM(t) − µW IWM
R′W = αRB(t) − µWRW
S′V = πV − µvSV
E′V = −(µV + σV )EV .

(2.7)

Note that ωTx = 0 does not imply x = 0 (which would lead to the disease-free system as in the proof of
Theorem2.2 in [19] ), becausew is not strictly positive. However, one can show that system (2.7) has the unique
equilibrium point - see notation in (2.2):

( S0B , E0B , I0BM , R0B , S0W , E0W , I0WM , R0W , S0V , E0V ),

and that this point is GAS for this system. On this set S, we also have

AB = A0B , IB = I0B , AW = A0W , IW = I0W , IV = I0V .

Thus, when R0 < 1, the largest and only invariant set where Q′ = 0 is the DFE.
Now let R0 = 1. Then, from Q′ = 0 we get ωTV−1f (x, y) = 0. One can show that this implies SB = NB and
SW = NW , and therefore EB = AB = IB = IBM = RB = 0, and EW = AW = IW = IWM = RW = 0. Thus, on this
new set S̃ where Q′ = 0, we are left with the system

S′B = πB − ηβBbv Iv − (α + µB)SB
S′W = αSB − βWbv IV − µWSW
S′V = πV − µvSV
E′V = −(µV + σV )EV
I′V = σVEV − µV IV .

(2.8)
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System (2.8) has the unique equilibrium point: ( S0B , S0W , S0V , E0V , I0V ) - with notation as given in (2.2) - which
is GAS for this system. On this set S̃, we also have EB = E0B , AB = A0B , IB = I0B , IBM = I0BM , RB = R0B, and
EW = E0W , AW = A0B , IW = I0W , IWM = I0WM , RW = R0W .
Thus, whenR0 = 1, the largest and only invariant set where Q′ = 0 is also the DFE. Using LaSalle’s invariance
principle, one concludes that the DFE is GAS in Γ1, when R0 ≤ 1.

Remark 3. A di�erent proof of Theorem 1 is presented in [1], considering a di�erent feasible set Γ1.

3 Vector, Vertical and Horizontal Transmission

3.1 A General Model

Themodel proposed by Agusto et al.[1] and studied in Section 2 of this paper, considers vector (vector-human
and human-vector) and vertical (mother-child) Zika virus transmission only. On the other hand, most other
models (e. g. [2, 10, 17]) consider only vector and horizontal (human sexual) transmission. In this section, we
propose amodel that includes vector, vertical and horizontal transmission of Zika virus simultaneously, thus
bringing together two di�erent approaches tomathematical models of Zika virus dynamics.We show that the
system in this general model has both a disease-free and an endemic equilibrium point, we study conditions
under which such endemic equilibrium exists, and we provide results on global stability for both equilibria.

Figure 1: Adapted from Figure 1 in [1]. Blue nodes represent non-infectious compartments, while red nodes represent infectious
ones. Dot-dashed arrows represent humans and mosquitoes entering the population. Black solid arrows show the progression
of the disease through the system. Dotted and dashed lines show the direction of transmission. The dot-dot-dashed arrow
shows the maturation of humans with microcephaly. The red arrows represent humans and mosquitoes leaving the population.

We consider the following model:
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S′B = µH(NB−SB) −
(
qEEW + qAAW + qI IW

NW

)
SB − λB(EV , IV , NB)SB

E′B = λB(EV , IV , NB)SB +
(
qEEW + qAAW + qI IW

NW

)
SB − (σB + µH)EB

A′B = (1 − c − d)σBEB − (γB + µH)AB
I′B = cσBEB − (γB + µH)IB
I′BM = dσBEB − (α + µH)IBM
R′B = γBAB + γB IB − µHRB
S′W = µH(NW − SW ) − χ

(
κEW + ψAW + IW

NW

)
SW − λW (EV , IV , NW )SW

E′W = λW (EV , IV , NW )SW + χ
(
κEW + ψAW + IW

NW

)
SW − (σW + µH)EW

A′W = (1 − p)σWEW − (γW + µH)AW
I′W = pσWEW − (γW + µH)IW
I′WM = αIBM − µH IWM
R′W = γWAW + γW IW − µHRW
S′V =

(
ΨV−

(ΨV − µV )NV
KV

)
NV− λV (EB , IB , EW , IW , NB , NW )SV− µVSV

E′V = λV (EB , IB , EW , IW , NB , NW )SV − (µV + σV )EV
I′V = σVEV − µV IV ,

(3.1)

where λB(EV , IV , NB) = ηβBbV (IV+θEV )
NB , λW (EV , IV , NW ) = βWbV (IV+θEV )

NW ,

and λV (EB , IB , EW , IW , NB , NW ) = βVbV (ϕEW+ηϕEB+IW+ηIBNW+ηNB ).

The total human population NH = NB + NW is constant, the parameters c and d represent fractions of new-
borns who are infectious or have microcephaly respectively, and the maturation rate α of individuals with
microcephaly is considered to be very small. Following the notation and terminology in [2, 10, 16], µH is the
human birth and death rate, or baseline mortality of humans; the parameter χ represents the horizontal (i.e.
sexual) transmission rate; κ, ψ and θ represent transmission probabilities; ΨV is the natural birth rate, and
KV is the carrying capacity of mosquitoes. All other parameters are as in Table 1. See [1, 10] for appropriate
values of these parameters.

In this model, we assume babies in the womb or newly born can get the disease (�rst in the exposed stage)
from exposed, asymptomatic and symptomatic mothers, but recovered mothers do not transmit the disease,
and we assume that exposed babies progress to either asymptomatic, symptomatic or microcephalic stages.
An SEI-type model is still assumed for mosquitoes, but a more general recruitment rate is used, based on a
model originally proposed in [16], and considered in [2].

One can show that the feasible region for (3.1) is Γ2 = ΓH × ΓV ⊂ R12
+ ×R3

+, where

ΓH = {(SB , EB , AB , IB , IBM , RB , SW , EW , AW , IW , IWM , RW ) ∈ R12
+ : NH ≤ NH(0)},

and ΓV = {(SV , EV , IV ) ∈ R3
+ : NV ≤ KV}.

The set Γ2 is compact. To show that for initial nonnegative data, all variables stay nonnegative, write system
(3.1) as z′i = Fi(z), with i = 1, . . . , 15. If zi = 0, then clearly Fi(z) ≥ 0, and hence Γ2 is (positively) invariant.

System (3.1) has one disease-free equilibrium point (DFE), still denoted as E0 =
(S0B , E0B , A0B , I0B , I0BM , R0B , S0W , E0W , A0W , I0W , I0WM , R0W , S0V , E0V , I0V ), which is given by:

E0 = (NB , 0, 0, 0, 0, 0, NW , 0, 0, 0, 0, 0, KV , 0, 0 ) . (3.2)

The system also has an endemic equilibrium point, which will be discussed in Section 3.3.
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3.2 Global Asymptotic Stability Analysis of the DFE

Using again the matrix-theoretic approach in [19], we split the variables into a disease compartment x and a
nondisease compartment y:

x = [ EB , IB , EW , AW , IW , EV , IV ]T , and

y = [ SB , AB , IBM , RB , SW , IWM , RW , SV ]T .

Note that while the splitting of variables in Section 2.2 was made to match the work in [1], here we take a
di�erent approach: humans with microcephaly are considered to be in the nondisease compartment y, as
they can no longer transmit the virus, and asymptomatic humans are considered in the disease compartment
only if they are adults, as they can still contribute to the disease through vertical or horizontal transmission
[1, 4, 5, 9, 13].

Following the notation from Section 2.2, we then let

F =



U1
0
U2
0
0
U3
0


, and V =



(σB + µH)EB
(γB + µH)IB − cσBEB

(σW + µH)EW
(γW + µH)AW − (1 − p)σWEW

(γW + µH)IW − pσWEW
(µV + σV )EV
µV IV − σVEV


,

where U1 = λB(EV , IV , NB)SB +
(
qEEW + qAAW + qI IW

NW

)
SB,

U2 = λW (EV , IV , NW )SW + χ
(
κEW + IW + ψAW

NW

)
SW , and

U3 = λV (EB , IB , EW , IW , NB , NW )SV . Using (2.3) as before, we get the NGM:

FV−1 =



0 0 A B C D E
0 0 0 0 0 0 0
0 0 P G H I J
0 0 0 0 0 0 0
0 0 0 0 0 0 0
K L M 0 N 0 0
0 0 0 0 0 0 0


, (3.3)
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where
A = qES0B

(σW + µH)S0W
+ σW (qA(1 − p) + qIp)S0B
(σW + µH)(γW + µH)S0W

,

B = qAS0B
(γW + µH)S0W

, C = qIS0B
(γW + µH)S0W

,

D = θηβBbV
(σV + µV )

+ σVηβBbV
µV (σV + µV )

, E = ηβBbV
µV

,

P = χκ
(σW + µH)

+ χσW (p + ψ(1 − p))
(σW + µH)(γW + µH)

,

G = χψ
(γW + µH)

, H = χ
(γW + µH)

,

I = θβWbV
(σV + µV )

+ σVβWbV
µV (σV + µV )

, J = βWbV
µV

,

K = ηϕβVbVKV
(σB + µH)(S0W + ηS0B)

+ cσBηβVbVKV
(σB + µH)(γB + µH)(S0W + ηS0B)

,

L = ηβVbVKV
(γB + µH)(S0W + ηS0B)

,

M = ϕβVbVKV
(σW + µH)(S0W + ηS0B)

+ σWpβVbVKV
(σW + µH)(γW + µH)(S0W + ηS0B)

,

N = βVbVKV
(γW + µH)(S0W + ηS0B)

.

Unlike the original model (2.1), for this general model, the matrix V−1F is irreducible. Indeed,

V−1F =



0 0 A1 A2 A3 A4 A5
0 0 A6 A7 A8 A9 A10
0 0 A11 A12 A13 A14 A15
0 0 A16 A17 A18 A19 A20
0 0 A21 A22 A23 A24 A25

A26 A27 A28 0 A29 0 0
A30 A31 A32 0 A33 0 0


,

where eachAij entry denotes a positive value. This property of irreducibility guarantees that R0 is a positive
eigenvalue of V−1F (and of FV−1), and that there exists a positive left eigenvector w of V−1F corresponding to
R0. All other assumptions Fi(0, y) = 0,Vi(0, y) = 0,Fi(x, y) ≥ 0,Vi(x, y) ≤ 0 when xi = 0, and

∑7
i=1 Vi(x, y) ≥

0 for i = 1, ..., 7 in [19] are also satis�ed.

Theorem 2. If R0 ≤ 1, then the disease-free equilibrium point E0 (3.2) is globally asymptotically stable (GAS)
in Γ2.

Proof. As in the proof of Theorem 1, this time we have

f (x, y) =



ηβBbV (IV + θEV )
(
NB−SB
NB

)
+ (qEEW + qAAW + qI IW )

(
NB−SB
NW

)
0(

χ(κEW + IW + ψAW ) + βWbV (IV + θEV )
)(

NW−SW
NW

)
0
0

βVbV (IW + ηIB + ϕEW + ηϕEB)
(

KV−SV
NW+ηNB

)
0


,

and therefore the condition f (x, y) ≥ 0 holds true (this was not the case formodel (2.1) ). One can readily verify
that the conditions F ≥ 0 and V−1 ≥ 0 are also satis�ed for this new model. Then, by a direct application of
Theorem 2.1 in [19], we get that Q = ωTV−1x is a Lyapunov function.
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To prove global stability, �rst considerR0 < 1. One can verify that the 8-dimensional disease-free system has
the unique equilibrium point y0 = (NB , 0, 0, 0, NW , 0, 0, KV ), which is GAS, and that f (x, y0) = 0 in Γ2. Then,
by a direct application of Theorem 2.2 in [19], one concludes that if R0 < 1, the DFE (3.2) is GAS in Γ2.
Now let R0 = 1. From Q′ = 0, we get V−1f (x, y) = 0, as ω is strictly positive. It is straightforward to show
that this implies SB = NB , SW = NW , and SV = KV , and therefore EB = AB = IB = IBM = RB = 0, and
EW = AW = IW = IWM = RW = 0. Thus, when Q′ = 0, we are left with the system

E′V = −(µV + σV )EV
I′V = σVEV − µV IV ,

(3.4)

which has a unique equilibrium point: (E0V , I0V ) - with notation as given in (3.2) - that is GAS for this system.
In addition, we already have EB = E0B , AB = A0B , IB = I0B , IBM = I0BM , RB = R0B, and EW = E0W , AW = A0B , IW =
I0W , IWM = I0WM , RW = R0W . Thus, when R0 = 1, the largest and only invariant set where Q′ = 0 is also the
DFE. Using LaSalle’s invariance principle, one concludes that the DFE is also GAS in Γ2, when R0 = 1.

Existence of an Endemic Equilibrium. With the terminology and results established in Sections 3.1 and
3.2 above, part (2) of Theorem 2.2 in [19] guarantees the existence of an endemic equilibrium of system (3.1),
when R0 > 1. We will denote this endemic equilibrium point as

E* := (S*B , E*B , A*B , I*B , I*BM , R*B , S*W , E*W , A*W , I*W , I*WM , R*W , S*V , E*V , I*V ). (3.5)

In Theorem 2, we proved that if R0 ≤ 1, then the disease-free equilibrium point (DFE) is globally asymptoti-
cally stable in the given feasible region.When this condition is lost; that is, whenwe instead haveR0 > 1, the
DFE loses stability, and as noted above, an endemic equilibrium (EE) exists. In Theorem 3 below, we show
that the condition R0 > 1 also implies that the EE is globally asymptotically stable.

3.3 Global Asymptotic Stability Analysis of the EE

To establish global stability properties of the EE (3.5), we will use a graph-theoretic method as presented in
[19]. First, we brie�y present some terminology and results about directed graphs and a technique for the
construction of a Lyapunov function. For details, the reader is referred to [15, 19].

A pair (i, j) is called an arc from vertex i to vertex j. Given a weighted digraph Γ(A) with p vertices, the p × p
weight matrix A is de�ned with aij > 0 equal to the weight of arc (j, i) if it exists, and aij = 0 otherwise. The
Laplacian L of Γ(A) is de�ned as

lij =

 −aij , i ≠ j,∑
k≠i
aik , i = j.

Let ci be the cofactor of lii. If Γ(A) is strongly connected, then ci > 0, for all i = 1, . . . , p. The following
combinatorial identities are useful in �nding explicit expressions for ci:
If aij > 0 and the out-degree of vertex j satis�es d+(j) = 1, for some i, j, then

ciaij =
p∑
k=1

cjajk . (3.6)

If aij > 0 and the in-degree of vertex i satis�es d−(i) = 1, for some i, j, then

ciaij =
p∑
k=1

ckaki . (3.7)

The following theorem provides a graph-theoretic technique to construct a Lyapunov function Q.
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Theorem 3. [15, 19] For a given open set E ⊂ Rm, and a function f : E → Rm, consider the system

ż = f (z), (3.8)

and assume that
(i) There exist functions Qi : E → R, Gij : E → R, and constants aij ≥ 0 such that

Q′i = Q′i |(3.8) ≤
p∑
j=1

aijGij(z), with z ∈ E, i = 1, . . . , p,

(ii) Each directed cycle C of Γ(A) satis�es ∑
(s,r)∈ S(C)

Grs(z) ≤ 0, z ∈ E,

where S(C) denotes the set of all arcs in C.

Then, there exist constants ci ≥ 0, i = 1, . . . , p (as de�ned above), such that the function

Q(z) =
p∑
i=1

ciQi(z)

satis�es Q′ |(3.8) ≤ 0, that is, Q(z) is a Lyapunov function for (3.8).

With these tools at hand, we give a result on global stability of the endemic equilibrium of system (3.1) in the
interior of the feasible region Γ2.

Theorem 4. If R0 > 1, then, the EE of system (3.1) is unique and globally asymptotically stable (GAS ) in
int ( Γ2).

Proof. De�ne the functions:

Q1 = SB − S*B − S*B ln
SB
S*B

+ EB − E*B − E*B ln
EB
E*B

,

Q2 = IB − I*B − I*B ln
IB
I*B
,

Q3 = SW − S*W − S*W ln SW
S*W

+ EW − E*W − E*W ln EW
E*W

,

Q4 = AW − A*W − A*W ln AW
A*W

,

Q5a = Q5b = Q5c = IW − I*W − I*W ln IW
I*W

,

Q6 = SV − S*V − S*V ln
SV
S*V

+ EV − E*V − E*V ln
EV
E*V

,

Q7 = IV − I*V − I*V ln
IV
I*V
.

Using the inequality 1 − x + ln x ≤ 0, for x > 0, di�erentiation yields:

Q′1 ≤ qA
A*WS*B
N*W

(
AW
A*W

− ln AW
A*W

− EB
E*B

+ ln EB
E*B

)
+qI

I*WS*B
N*W

(
IW
I*W
− ln IW

I*W
− EB
E*B

+ ln EB
E*B

)
+qE

E*WS*B
N*W

(
EW
E*W

− ln EW
E*W

− EB
E*B

+ ln EB
E*B

)
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+ηβBbV
I*VS*B
N*B

(
IV
I*V
− ln IV

I*V
− EB
E*B

+ ln EB
E*B

)
+ηβBbVθ

E*VS*B
N*B

(
EV
E*V
− ln EV

E*V
− EB
E*B

+ ln EB
E*B

)
=: a1,4G1,4 + a1,5aG1,5a + a1,3G1,3 + a1,7G1,7 + a1,6G1,6.

Q′2 ≤ cσBE*B
(
EB
E*B
− ln EB

E*B
− IB
I*B

+ ln IB
I*B

)
=: a2,1G2,1.

Q′3 ≤ βWbV
I*VS*W
N*W

(
IV
I*V
− ln IV

I*V
− EW
E*W

+ ln EW
E*W

)
+βWbVθ

E*VS*W
N*W

(
EV
E*V
− ln EV

E*V
− EW
E*W

+ ln EW
E*W

)
+χ I

*
WS*W
N*W

(
IW
I*W
− ln IW

I*W
− EW
E*W

+ ln EW
E*W

)
+χψA

*
WS*W
N*W

(
AW
A*W

− ln AW
A*W

− EW
E*W

+ ln EW
E*W

)
=: a3,7G3,7 + a3,6G3,6 + a3,5bG3,5b + a3,4G3,4.

Q′4 ≤ (1 − p)σWE*W
(
EW
E*W

− ln EW
E*W

− AW
A*W

+ ln AW
A*W

)
=: a4,3G4,3.

Q′5a ≤ pσWE*W
(
EW
E*W

− ln EW
E*W

− IW
I*W

+ ln IW
I*W

)
=: a5a,3G5a,3.

Q′5b ≤ pσWE*W
(
EW
E*W

− ln EW
E*W

− IW
I*W

+ ln IW
I*W

)
=: a5b,3G5b,3.

Q′5c ≤ pσWE*W
(
EW
E*W

− ln EW
E*W

− IW
I*W

+ ln IW
I*W

)
=: a5c,3G5c,3.

Q′6 ≤ βVbVϕ
E*WS*V

N*W + ηN*B

(
EW
E*W

− ln EW
E*W

− EV
E*V

+ ln EV
E*V

)
+βVbVϕη

E*BS*V
N*W + ηN*B

(
EB
E*B
− ln EB

E*B
− EV
E*V

+ ln EV
E*V

)
+βVbV

I*WS*V
N*W + ηN*B

(
IW
I*W
− ln IW

I*W
− EV
E*V

+ ln EV
E*V

)
+βVbVη

I*BS*V
N*W + ηN*B

(
IB
I*B
− ln IB

I*B
− EV
E*V

+ ln EV
E*V

)
=: a6,3G6,3 + a6,1G6,1 + a6,5cG6,5c + a6,2G6,2.

Q′7 ≤ σVE*V
(
EV
E*V
− ln EV

E*V
− IV
I*V

+ ln IV
I*V

)
=: a7,6G7,6.

With the constants aij above and A=[aij], we construct the (strongly connected) directed graph Γ(A) in Figure
2. Along each of the cycles on the graph, one can verify that

∑
Gij = 0; for instance, G6,1 + G3,6 + G5a,3 +

G1,5a = 0, G2,1 + G6,2 + G1,6 = 0, and so on. Then, by Theorem 3.5 in [19], there exist constants ci such that
Q =

∑
i ciQi is a Lyapunov function for (3.1). To �nd the constants ci, we use the combinatorial identities

(3.6) or (3.7); for instance, since d−(4) = 1, we use (3.7) to get c4a4,3 = c1a1,4 + c3a3,4. Similarly, we �nd that
c2a2,1 = c6a6,2, c4a4,3 = c1a1,4 + c3a3,4, c5aa5a,3 = c1a1,5a , c5ba5b,3 = c3a3,5b , c5ca5c,3 = c3a6,5c , and
c7a7,6 = c1a1,7 + c3a3,7. With c1 = c3 = c6 = 1, we get

c2 =
βVbVηI*BS*V

cσBE*B(N*W + ηN*B)
, c4 =

qAA*WS*B + χψA*WS*W
N*W (1 − p)σWE*W

,
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Figure 2: Digraph for model (3.1).

c5a =
qI I*WS*B

pσWE*WN*W
, c5b =

χI*WS*W
pσWE*WN*W

, c5c =
βVbV I*WS*V

pσWE*W (N*W + ηN*B)
,

c7 =
ηβBbV I*VS*BN*W + βWbV I*VS*WN*B

σVE*VN*BN*W
.

Therefore, with the functions Qi and constants ci given above,

Q = c1Q1 + c2Q2 + c3Q3 + c4Q4 + (c5a + c5b + c5c)Q5c + c6Q6 + c7Q7

is a Lyapunov function for (3.1). We also have:

Q′ =
(
SB − S*B
SB

S′B + EB − E*B
EB

E′B
)

+ c2
(
IB − I*B
IB

I′B
)

+
(
SW − S*W
SW

S′W + EW − E*W
EW

E′W
)

+ c4
(
AW − A*W
AW

A′W
)

+ (c5a + c5b + c5c)
(
IW − I*W
IW

I′W
)

+
(
SV − S*V
SV

S′V + EV − E*V
EV

E′V
)

+ c7
(
IV − I*V
IV

I′V
)
.

Now we consider the set S = {x ∈ R15
+ : Q′ = 0}. When Q′ = 0, one can readily verify that SB = S*B, EB = E*B,

IB = I*B, SW = S*W , EW = E*W , AW = A*W , IW = I*W , SV = S*V , EV = E*V , and IV = I*V , and we are left with the
system:

A′B = (1 − c − d)σBE*B − (γB + µH)AB
I′BM = dσBE*B − (α + µH)IBM
R′B = γBAB + γB I*B − µHRB
I′WM = αIBM − µH IWM
R′W = γWA*W + γW I*W − µHRW .

(3.9)

One can show that system (3.9) has a unique equilibrium point - see notation in (3.5):
(A*B , I*BM , R*B , I*WM , R*W ), and that this point is GAS for this system. Therefore, the largest and only
invariant set in S is the endemic equilibrium, E*. Using LaSalle’s Invariance Principle, we conclude that the
endemic equilibrium E* is GAS in int(Γ2), and thus unique.
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4 Conclusions and Final Remarks

In this article, two distinct approaches to modeling the dynamics of Zika virus have been combined into a
general model. While previous work on the �rst approach is focused on vector and horizontal transmission
[2, 10, 14, 17], a recent work [1] included vector and vertical (but not horizontal) transmission of Zika virus. In
this work, the model proposed in [1] was revisited, and a global stability result of the corresponding DFE was
established, under fewer restrictions. Themain contribution of thiswork is to propose a generalmodel of Zika
virus dynamics that simultaneously includes vector, horizontal and vertical transmission, and to establish
global stability results on both the DFE and the EE of this new system. These results on global stability have
been established using matrix-theoretic and graph-theoretic techniques introduced in [15, 19], which allow
the construction of appropriate Lyapunov functions. It is important to note that even though the main two
theorems in [19] cannot be directly applied for the model proposed in [1], global stability of the DFE can still
be obtained using the same matrix-theoretic technique.

While it is crucial to have more data to get a better biological understanding of Zika virus and to construct
more accurate mathematical models, there are some possible avenues of improvement in the modeling of
this mosquito-borne disease. Amore accurate modeling of vertical transmission is needed, including the one
through breast milk [3, 5], and how the stage of the infection of the mother determines the possible stages of
infection of the newborn. A better understanding andmore accuratemathematicalmodeling of the dynamics
of humanswithmicrocephalydue to Zika infection is alsoneeded. Someother generalizationsof thesemodels
would be worth investigating, including the study of human connectivity between communities, as in [6, 12,
18], and a consideration of the so-called “critical community size", below which the disease would probably
die out [14]. Some speci�c heterogeneities in humans such as gender, would be worth studying. While the
introduction of these new features into the currentmodels could potentially cause losing somemathematical
analytical tractability, it should bring richer dynamics, including the possible existence of some bifurcation
phenomena, and a better understanding of the disease.
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