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Abstract: Mathematical models of Zika virus dynamics are relatively new, and they mostly focus on either
vector and horizontal, or vector and vertical transmission only. In this work, we first revisit a recent model that
considers vector and vertical transmission, and we provide an alternative proof on the global stability of the
disease-free equilibrium point. Then, a new and general model is presented which includes vector, horizontal
and vertical transmission. For this new model, existence of both a disease-free and an endemic equilibrium
is studied. Using matrix and graph-theoretic methods, appropriate Lyapunov functions are constructed and
results on the global stability properties of both equilibria are established.
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1 Introduction

Zika virus is mainly transmitted to humans through bites of infected female mosquitoes from the Aedes genus.
Infected humans can pass this disease to other humans via horizontal (sexual activity) or vertical (mother—
child) transmission. In addition, infected humans can also pass the disease to susceptible mosquitoes, when
bitten. In general, the stage of the infection determines the type and the intensity of the transmission: during
the incubation period, infected humans can infect both susceptible mosquitoes and humans; after this ex-
posed period, symptomatic humans are more contagious to mosquitoes, and at the convalescence stage, they
can no longer infect mosquitoes, but they can still spread the infection to humans through sexual activity.
Some studies suggest a correlation between Zika virus infection and congenital anomalies such as micro-
cephaly and Guillain-Barre syndrome. Data available for these studies mostly come from the outbreaks in
Micronesia (2007), Polynesia (2013), and Brazil (2015). We refer the reader to [1, 4, 8, 10, 13, 14, 20] and the
references therein for a detailed biological and epidemiological description of the Zika virus.

Various types of disease epidemics have been extensively studied mathematically (e.g. [6, 11, 12, 16, 18, 19] ).
Mathematical modeling of these diseases has helped understand the dynamics of the disease, the conditions
under which an outbreak can occur, and how the disease would spread. However, mathematical models on
the dynamics of Zika virus are relatively new, and most of them study vector (mosquito-human and human-
mosquito) and horizontal transmission only [2, 10, 14, 17]. Evidence of Zika virus vertical (congenital and
perinatal) transmission has been reported by the Center for Disease Control (CDC). Further possible evidence
of vertical transmission has only recently been reported (e.g. [3, 5, 13, 20]). A recent work [1], considered a
mathematical model for vector and vertical Zika transmission, but did not include horizontal transmission;
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the authors also studied the development of microcephaly in newborns, and identified the most important
parameters that influence the spread of the disease.

In this work, we extend and generalize previous research on mathematical models for Zika virus dynamics
by proposing a model that includes vector, horizontal and vertical transmission simultaneously. While for
most models on Zika virus (e.g. [1, 10, 17]), an endemic equilibrium does not exist, the dynamical system in
this new model has both a disease-free and an endemic equilibrium, and we provide rigorous proofs on the
global stability properties of both equilibrium points.

We start by revisiting the model presented in [1], and provide an alternative proof on the global stability of
the disease-free equilibrium, under fewer restrictions. We then propose a new and more general model that
includes vector, horizontal and vertical transmission. Using matrix and graph-theoretic methods from [19],
we provide results on the global stability properties of both equilibria. To the best of our knowledge, this is
the first model of Zika virus dynamics that includes the three types of transmission.

2 Vector and Vertical Transmission

2.1 The Original Model

We start by studying the model presented by Agusto et al. [1], which includes vector and vertical transmission
only. Human population is divided into newborns, denoted with a B subscript, and everyone else (referred
to as adults), denoted with a W subscript. An individual with microcephaly is denoted with an M subscript.
Table 1 describes in detail the variables and parameters under study. The model proposed in [1] is given by:

Sg = mp—qanpAw — qiigly — qrmgRw—Ag(y, Np)Sp — (a + up)Sp
Ep = Ag(Iy,Np)Sp—(a+0p + up)Eg
Ap = qangAw +(1-p)ogEp —(a +~p + up)Ap

Iy = qingly + pogEp - (a+ vp + up)lp

Igy = rqripRw - (a+ up)lpy

Ry = (1-nqrrgRy +pAg +vpl5 - (a + up)Rp

Sw = aSp-Aw(v, Nw)Sw - puwSw

Eyw = Aw(y,Nw)Sw - (ow + uw)Ew (2.1)

Ay = A-p)owEw - (yw + uw)Aw

Iy = powEw - (yw + puw)lw

Iyy = alpy — pwlwm

Ry = aRp+ywAw +ywlw - kwRw

Sy = my-Ay(Ap, Ip, Aw, Iy, Ng, Nw)Sy - uvSy
Ey = Av(Ag, I, Aw,Iw, Ng, Nw)Sy - (uv + 0v)Ey
I, = ovEy-pyly,

where Ay(Iy, Ny) = L’A};;IV ,  Ag(Iy,Np) = 7’1/33\?;1" ,

Av(Ag, Is, Aw, Iw, Ng, Ny) = Byby (%’W) , and () denotes derivative with respect to t. We

always assume ¢ = 0.

The total populations are given by:

NB = SB+EB+AB+IB+IBM+RB
NW = SW+EW+AW+IW+IWM+RW
NV = SV+EV+IV:

and Ny = Ng + Ny . All variables are non-negative, and all parameters are strictly positive (except for pg, pw,
which are taken to be non-negative).
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Table 1: Adapted from Table 1in [1].

Variable Description

Sg, Sw Susceptible newborns and adults

Eg, Ew Exposed newborns and adults

Ap, Aw Asymptomatic newborns and adults

Ig, Iy Symptomatic newborns and adults without microcephaly

Igpts Iwm Newborns and adults with microcephaly

Rg, Ry Recovered newborns and adults

Sv, Ev, Iy | Susceptible, exposed and infected female mosquitoes
Parameter Description

TR Birth rate

) Fraction of newborns and adults who are infectious

1-p Remaining fraction of adults and newborns who are asymptomatic
a Maturation rate

r,qa,q1,qr | Fractions of newborns with microcephaly, or vertically infected
1-r Remaining fraction of newborns who are recovered

B, Bw Transmission probability per contact of newborns and adults
1, PB Pw Modification parameters

0B, Ow Progression rate of exposed newborns and adults

VB> YW Recovery rate of newborns and adults

UB, Uw Natural death rate of newborns and adults

Ty Recruitment rate of mosquitoes

Bv Transmission probability per contact of susceptible mosquitoes
by Mosquito biting rate

oy Progression rate of exposed mosquitoes

Hy Natural death rate of mosquitoes

DE GRUYTER

The terms g mgAw, qrigly, qrigRy in model (2.1) represent the vertical (mother - child) transmission, the
functions Ag and Ay, represent vector transmission from mosquitoes to newborns and adults respectively, and
the function Ay represents vector transmission from humans to mosquitoes. According to this model, asymp-
tomatic and symptomatic mothers can give birth to asymptomatic or symptomatic babies respectively, while
recovered mothers can give birth to babies who either have microcephaly or are recovered. On the other hand,
humans exposed to the disease through vector transmission progress to either asymptomatic or symptomatic
stages. It is also assumed that Zika virus generates lifelong immunity but individuals with microcephaly have
a short lifespan. An SEI-type model is assumed for mosquitoes. For a more detailed interpretation of this
model, see [1].

For model (2.1), one can readily show that the feasible region is

where

Iy =TyxTy CRY xR3,

Ty = {(S, Eg, A, Is, Inm, Rg, Sw, Ew, Aw, Iw, Iwar, Rw) € R : Ny

and Iy = {(Sv,Ev,Iy) € R} : Ny = % +Ny(0)},
\4

with ug = min {up, uw}. I is compact and invariant with respect to (2.1).

+ NH(O) },
H
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Remark 1. Note that the sets I'y and I'y here are different than the ones given in [1].

System (2.1) has only one equilibrium point, which corresponds to the disease-free state. This disease-free
equilibrium (DFE), denoted as E° = (S9, ES, AS, IS, 13,1, R, S%, ESys A%y, IS, Ioass RSy, SY, EY, I9) is given
by:

E°=(-"2_0,0,0,0,0,—2"__0,0,0,0,0, 2,0,0]. 2.2)
a+up uw(a + up) Hy

No endemic equilibrium point exists for this system.

2.2 Global Asymptotic Stability Analysis of the DFE

To analyze the global asymptotic stability of the DFE, we consider system (2.1) in compartmental form [19,
21], by splitting the variables into two compartments: a disease compartment x € R!® and a nondisease
compartmenty € R’ :

x = [Eg, Ag, Ig, Igy, Ew, Aw, Iw, Iym, Ev, Iy]", and
y =[S, Rs, Sw, Rw, Sy1."

The entries in vectors F(x, y) and V(x, y) € R1° below, represent rate of new infections and transition terms
respectively in the i-th disease compartment:

-%SB- [ (a+0p+up)Es 1
0 (& +~p +up)Ap — qampAw — (1 - p)opEp
0 (a +~p +up)Ip - qigly — popEp
rqrgRw (a + up)lpm
F_ Bl Sy L v- (ow +uw)Ew ’
0 (yw + uw)Aw - (1 - p)owEw

0 (yw + uw)lw - powEw
0 uwlwym — alpy
U (uy +ov)Ey
0 L uvly —ovEy

where U = Byby (L eufi ilsrpsds))s,

Note that the assumptions in [19]: F;(0,y) = 0,V;(0,y) = 0, Fi(x,y) = 0,V;(x,y) < 0 when x; = 0, and
S Vilx,y) 2 0fori =1, ..., 10 hold. We also define:

oF,;

F= ax:(O,YO)} , and V= [3}(7;(0,%)] , 2.3)

]
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where yo = (-22-,0, —%5__ 0, %).This gives

a+pp?® 2 py(a+ug)’
0 0 0 00 0 0 0 0 nBgby]
0 0 0 00 0 0 00 0
0 0 0 00 0 0 00 0
0 0 0 00 0 0 00 0
0 0 0 00 0 0 0 0 PBwby
o 0 0 0 0 0 o oo o |
0 0 0 00 0 0 00 0
0 0 0 00 0 0 00 0
0 Tt Wm0 0 Sl §he 00 0
o 0 0 00 0 o 00 o0 |
[k 0 0 0 0O 0 0 0]
-(1-p)og k, 0 0 —qaTp 0 0 0 0
—pog 0 k 0 0 -qmg O 0 0O
0 0 0 ks 0 0 o 0 0 o0
. 0 0 0 0 ks 0 o 0 0 o0
0 0 0 -1-pow ks 0 o o ol
0 0 0 0  -pow 0 ks 0 0 0
0 0 0 -a 0 0 0O uw O O
0 0 0 0 0 0 0 kg O
o 0 0 0 0 0 0 -oy uy

where k; = a+ o+ ug, ko = a+~g+up, k3 =a+ug, ky = ow + pw, ks =yw + uw, k¢ = v + oy. The next
generation matrix (NGM) [19, 21] is:

[0 0 0 0 0 0 0 0 A B]
0 0 0 00O O O OO0 O
0 0 0O 00O O O O O0TO
0 0 0 000 OO O0OTO
Fyl = 0 0 0O0OO0OOOTOTCTD , 2.4)
0 0 0 000 O O O0OTO
0 0 0 00O OO O0OTO
0 0 0O 00O O O OO0 O
E G HOI J KOO OO
0 0 0 0 0 0 0 0 O 04
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with
A - _OovnPsbvy 5 nBsbv C- ovpwby _ Bwbv
(uy +ov)uy’ My (uy +ov)uy’ My
onBvbySYI(1 - p)pg + pl
(a+0p +up)(a+p + up)(Sy, +nSP)’
G - npsBvbvSy _ nBvbvSy
(a+~p +up)(SY, +nS9)’ (a+~p +up)(SY, +nS%)’
[ - owBvbvSYI(1 - plpw + pl
(ow + uw)yw + uw)(SY, +nS%)
ngownBvbySYlqp + ga(1 - p)ps]
(ow + uw)(yw + uw)(a + pug +vg)(SY, + nS%)’
J - BvbvSY [p + _9aTBNPB ]
(vw + uw)(S, +nS2) Y la+p+up)]’
K BvbySY [1 L QBN } .
(vw + uw)(SY, +nS9) (a+~p +up)

The basic reproduction number Ry, defined as the expected number of secondary cases produced by an in-
fected individual in a completely susceptible population [7, 21], is the spectral radius p of the NGM:

Ro = p(FV™Y) = VAE + CI, (2.5)

>

where A, C, E, and I are defined as above. R, in (2.5) is actually an eigenvalue of the matrix FV !, computed
directly using the characteristic equation of (2.4).

Remark 2. The basic reproduction number in (2.5) can be written as

:R() =1/ :RV(RB + wa) (26)

byoySY b, 1_

Ry = #ﬂ,ﬁg) (1 - p)(kopw + HPBQANB) +p(ka + nqymg)] .

See [1] for biological interpretations of Ry, Rp and Ryy.

In the theorem below, we make the assumption Sy < S?,, which is biologically reasonable.

Theorem 1. If Ry < 1, then the disease-free equilibrium point E° (2.2) is globally asymptotically stable (GAS)
in Fl.

Proof. Following the matrix-theoretic method in [19], we set

fO,y) = (F-V)x-Fx,y) +V(x,y),

which gives

nBebyIv(M; SB) T
0
0
—Tqr7BRy

byIy(NySw)
£, y) = Pubvly Ty

0
0

Bvby(w + pwAw +n(Is + ppAp)) (5 oo mso -~ W)
0
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Note that we are not able to use Theorem 2.1 in [19] directly, as the condition f(x, y) = 0 fails (only on the
fourth entry). However, a Lyapunov function in the form proposed by the authors can still be constructed.
Indeed, define the function

Q= wTV_lx,

where w is a left eigenvector of the matrix V' F corresponding to the eigenvalue Ro. We are not able to use
Theorem 2.2 in [19] either, as the matrix VF is not irreducible. However, one can compute a nonnegative
left eigenvector w of V-'F, corresponding to Ro. In fact, the eigenvector has the form

wl =[0 a b 00 c d o 0 el

where a, b, c, d, and e are positive values. One can readily verify that V! is nonnegative, and hence Q(x) = 0.
Also observe that Q(x) = 0 at the DFE. We then have

Q=w'Vix = wTV_l(F -V)x- wTV"lf(x, y)=(Ro - 1)a)Tx - wTV"lf(x, y).

Even though the condition f(x, y) = 0 is not satisfied, one can verify that the product w” V-1f(x, y) is non-
negative. Thus, the condition Ry < 1 implies Q" = (Ry - D)w x - wTV-1f(x, y) < 0. Therefore, Q is in fact a
Lyapunov function in I';.

To prove global stability, first consider Ro < 1,and let S = {z € RY> : Q" = 0}. When Q’ = 0, we must have that
(Ro-DwTx = wTV1f(x,y). Since Ry < 1, we have (Ro - 1)w” x non-positive but w” V-1 f(x, y) non-negative.
Thus, (R — 1)w’x = 0, and hence w’x = 0. This implies that Ag = Iz = Ay = Iy = Iy = 0, and we get
S ={zeRY :Ag=1Iy = Ay = Iyy = Iy = 0}. On this set S, we are left with the following system:

Sz = mg-qrrgRw — (a+ pup)Sp

Ez; = -(a+o0p+up)Eg

Iyy = rqriigRw - (a+ up)lpy

Ry = (1-ngqrmpRw - (a+up)Rp

Sw = aSg-HwSw .7)
Ey = -(ow+uw)Ew

Iy = alpu(®) - pwlwn

Ry = aRg(t)- uwRy

S,V = 7y - WSy

Ey = —(uy+o0y)Ey.

Note that w"x = 0 does not imply x = 0 (which would lead to the disease-free system as in the proof of
Theorem 2.2in [19] ), because w is not strictly positive. However, one can show that system (2.7) has the unique
equilibrium point - see notation in (2.2):

(S%y E%) IgMy R%y SO ’ EO ’ I%/My RO ’ SO’ E(‘)/)y
and that this point is GAS for this system. On this set S, we also have

Ag =AY, Ig=1p, Aw =AYy, Iy =1y, Iy = I}

Thus, when R < 1, the largest and only invariant set where Q' = 0is the DFE.

Now let Ry = 1. Then, from Q" = 0 we get wTV"1f(x, y) = 0. One can show that this implies Sy = N and
Sw = Ny, and therefore Eg = Ag = Ig = Igyy = Rg = 0, and Eyy = Ay = Iy = Iyyr = Ry = 0. Thus, on this
new set S where Q' = 0, we are left with the system

Sz = mp-nPBebvly - (a+up)Sp

Sw = aSg-Bwbvly - uwSw

Sy = my-uSy (2.8)
Ey, = —(uv+ov)Ey

I,V = O'VEv—],lvlv.
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System (2.8) has the unique equilibrium point: (5%, S%, S%, EY, I9) - with notation as given in (2.2) - which
is GAS for this system. On this set S, we also have Ep = ES, Ag = A%, Iy = I9, Igy = I3y, Rg = RY, and
Ew=ES, Ay =A%, Iy = IS, Iyng = Iy Rw = RY,.

Thus, when R = 1, the largest and only invariant set where Q' = Ois also the DFE. Using LaSalle’s invariance
principle, one concludes that the DFE is GAS in I';, when R < 1. O

Remark 3. A different proof of Theorem 1is presented in [1], considering a different feasible set I'y.

3 Vector, Vertical and Horizontal Transmission

3.1 A General Model

The model proposed by Agusto et al.[1] and studied in Section 2 of this paper, considers vector (vector-human
and human-vector) and vertical (mother-child) Zika virus transmission only. On the other hand, most other
models (e. g. [2, 10, 17]) consider only vector and horizontal (human sexual) transmission. In this section, we
propose a model that includes vector, vertical and horizontal transmission of Zika virus simultaneously, thus
bringing together two different approaches to mathematical models of Zika virus dynamics. We show that the
system in this general model has both a disease-free and an endemic equilibrium point, we study conditions
under which such endemic equilibrium exists, and we provide results on global stability for both equilibria.

QuAw + ilw + geEw A
Ny

——
My
““

Ve

1
g
1

cagEg = Hu

I

Ye

dagE, 3
"—"—"—' b
By Hu

(my — py)N
[ro - et |

I Sy @ T -y T ,_l.—l_|

Ky By By

Figure 1: Adapted from Figure 1in [1]. Blue nodes represent non-infectious compartments, while red nodes represent infectious
ones. Dot-dashed arrows represent humans and mosquitoes entering the population. Black solid arrows show the progression
of the disease through the system. Dotted and dashed lines show the direction of transmission. The dot-dot-dashed arrow

shows the maturation of humans with microcephaly. The red arrows represent humans and mosquitoes leaving the population.

We consider the following model:
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, Ew+ qalw + qil
Sp = MH(NB-SB)-<qE w¥4alw T 91w ) g, _ Ap(Ey, Iy, Ng)Sp

Ny
, Ew+qgaAw +qql
Ep = Ag(Ey,Iy,Np)Sp+ (qE W qI\A}WW ar W)SB-(UB+HH)EB
A/B = (1—C—d)O'BEB—(’yB +}1H)AB
Iy = cogEp—(yg+umlp
Igy = dogEp—(a+up)lpm
Rp = ~BAp+~slp-puaRp
, KEw + YAy +1
Sw = VH(NW_SW)_X(W)SW_AW(E%IV)NW)SW
, KEw + YAy +1 €R))
Ey = AW(EV,IV,NW)SW+X(W)SW_(UW+FH)EW
Ay = (1-plowEw - (yw + up)Aw
Iy = powEw - (yw +umly
Iyne = alpy — pglum
Ry = ywAw +ywlw — ugRw
, Yy - N
Sy = (WV_%>NV_AV(EByIByEW:IW,NByNW)SV_HVSV
Ey = Ay(Ep,Ip, Ew,Iw, Np, Ny)Sy — (uy + oy)Ey
I, = oyEy-puyly,

where Ap(Ev, Iy, Np) = 7qﬁ8bvgg+eEV), Aw(Ey, Iy, Ny) = 7/3wa%;+9£"),
and AV(EB’ Ig, Eyw, Iy, Np, NW) = ﬁvbv(%w%).

The total human population Ny = Ny + Ny is constant, the parameters ¢ and d represent fractions of new-
borns who are infectious or have microcephaly respectively, and the maturation rate a of individuals with
microcephaly is considered to be very small. Following the notation and terminology in [2, 10, 16], ug is the
human birth and death rate, or baseline mortality of humans; the parameter y represents the horizontal (i.e.
sexual) transmission rate; x, 1 and 6 represent transmission probabilities; ¥y is the natural birth rate, and
Ky is the carrying capacity of mosquitoes. All other parameters are as in Table 1. See [1, 10] for appropriate
values of these parameters.

In this model, we assume babies in the womb or newly born can get the disease (first in the exposed stage)
from exposed, asymptomatic and symptomatic mothers, but recovered mothers do not transmit the disease,
and we assume that exposed babies progress to either asymptomatic, symptomatic or microcephalic stages.
An SEI-type model is still assumed for mosquitoes, but a more general recruitment rate is used, based on a
model originally proposed in [16], and considered in [2].

One can show that the feasible region for (3.1) is I'; = I'y x I'y € R? x R2, where
I'y = {(Sp, Ep, Ag, Ig, Iy, Ry, Sw» Ew, Aw, I, Twyr, Rw) € RE? : Ny < Ny(0)},

and Iy = {(Sv,Ev,Iv) S Rz :Ny < I(V}

The set I'; is compact. To show that for initial nonnegative data, all variables stay nonnegative, write system
(3.1) as z;- = Fi(z), withi=1,...,15.If z; = 0, then clearly F;(z) > 0, and hence I, is (positively) invariant.

System (3.1) has one disease-free equilibrium point (DFE), still denoted as E° =
(8%, ES, AS, 19, 19,1, RS, S%, Sy, AYy, IS, I RSy, SV, EY, I9), which is given by:

E° = (Ng,0,0,0,0,0,Ny,0,0,0,0,0,Ky,0,0). (3.2)

The system also has an endemic equilibrium point, which will be discussed in Section 3.3.
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3.2 Global Asymptotic Stability Analysis of the DFE

Using again the matrix-theoretic approach in [19], we split the variables into a disease compartment x and a
nondisease compartment y:

x = [Eg, Ig, Ew, Aw, Iy, Ey, Iy]", and

y = [Ss, Ag, Inu> Res Sw, Iuar> Rw Sy 1”.

Note that while the splitting of variables in Section 2.2 was made to match the work in [1], here we take a
different approach: humans with microcephaly are considered to be in the nondisease compartment y, as
they can no longer transmit the virus, and asymptomatic humans are considered in the disease compartment
only if they are adults, as they can still contribute to the disease through vertical or horizontal transmission
[1, 4,5,9,13].

Following the notation from Section 2.2, we then let

Uy (0B + un)Eg
0 (v + up)Ip — copEp
U, (ow + up)Ew
F=|0|, and V=|(w+ugAw-1-plowEw|,
0 (yw + ug)lw - powEw
Us (uy +0ov)Ey
| 0] L uvly —ovEy |

where U; = Ag(Ey, Iy, Ng)Sp + qeEw + qalw + qilw Sz,
Ny

U; = Aw(Ev, Iy, Nw)Sw +X<W)SW, and

Uz = Ay(Eg, I, Ew, Iy, Ng, Ny)Sy. Using (2.3) as before, we get the NGM:

0 0 A B CUDE
0000 O 0O
0 0P G H I J
Fv'l=lo o o o o o of, (33)
00 00 O 0O
KL M ON O O
00 0 0 0 0 O]
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where o
A - q&Sp . ow(ga(1 -p) + qip)Sp
(ow + H{){)S(ﬁv (ow + ur)lvw +0HH)S%; ’
qaSg q1Sp
B - s o 4
(yw + um)SYy (yw + um)Sy
p - 9mBsbv  ovnBgby £ - 1Bsby
(ov+py)  pyloy +uy)’ ’
P = XK + XUW(p + l/)(l _p))
(ow :rpllH) (ow + up)yw + pg)’
X X
¢ - X p-_X
(yw + pr) (vw + un)
; - _9Bwbv , ovBwby _ Bwbv
(ov+uy)  pyloy +puy)’ Uy
K - n¢BvbvKy N copnBvbyKy
(0p + uﬁH)l()Sgy; nS9) (o + up)ys + un)(SY + nSY)’
npvbviy
L = ’
(v + ur)(SY, + nSY)
M - PBvbyKy . owpBvbyvKy
~ (ow +up)(S% +nS%)  (ow + up)yw + up)(SS, + nS2)’
WEHbI%vnB w+ Ua)yw + HE) Oy, + Nop
N - vbyKy .
(yw + Mr)(SY, +1SY)

Unlike the original model (2.1), for this general model, the matrix V~1F is irreducible. Indeed,

0 0 A Ay As Ay As |
0 0 Ag A7 Ag A9 Ao
0 A A Az A Ass
A9 A s
0 Az Axp Az A Azs
Ay Az Azg 0 Ay O 0
A0 A1 Az 0 A3 0 O

S
-
I
o oo
S
=
N
b S
3
=
o

where each A;; entry denotes a positive value. This property of irreducibility guarantees that Ry is a positive
eigenvalue of V"1F (and of FV~1), and that there exists a positive left eigenvector w of V-1 F corresponding to
Ro. All other assumptions F;(0, y) = 0, V;(0, y) = 0, Fi(x, y) 2 0, V;(x, y) < 0 when x; = 0, and 217:1 Vi(x,y) 2
Ofori=1,...,7in[19] are also satisfied.

Theorem 2. If Ry < 1, then the disease-free equilibrium point E° (3.2) is globally asymptotically stable (GAS)
in Fz.

Proof. As in the proof of Theorem 1, this time we have

nBeby(Iy + 6Ey) (N‘L}V;SB) +(qeEw + qaAw + qilw) <Nfﬁf3)
0
(X(KEW +Iw + YAw) + Bwby(y + 9EV)> (W)
fl,y) = 0 ’
0
Bvby(Iw +nlp + $Ew + nEp) ( J;Vs,fm)
0

and therefore the condition f(x, y) > 0 holds true (this was not the case for model (2.1) ). One can readily verify
that the conditions F = 0 and V! > 0 are also satisfied for this new model. Then, by a direct application of
Theorem 2.1 in [19], we get that Q = w” V"x is a Lyapunov function.



DE GRUYTER Global Stability Analysis of a General Model of Zika Virus = 29

To prove global stability, first consider R < 1. One can verify that the 8-dimensional disease-free system has
the unique equilibrium point yo = (N, 0, 0, 0, Ny, 0, 0, Ky), which is GAS, and that f(x, yo) = 0in I',. Then,
by a direct application of Theorem 2.2 in [19], one concludes that if Ry < 1, the DFE (3.2) is GAS in I',.
Now let Ry = 1. From Q =0, we get V7 1f(x, y) = 0, as w is strictly positive. It is straightforward to show
that this implies Sy = Ng, Sy = Ny, and Sy = Ky, and therefore Eg = Ag = Ig = Igyy = Rp = 0, and
Ew = Aw = Iy = Iyyr = Ry = 0. Thus, when Q" = 0, we are left with the system
Ey
Iy

—(uy + oy)Ey

(3.4)
ovEy - uyly,

which has a unique equilibrium point: (EY, I % ) - with notation as given in (3.2) - that is GAS for this system.
In addition, we already have Ep = E%, Ap = A%, Ip = I3, Ipy = I3y, Rp = R}, and Eyy = E%,,IAW =AY, Iy =
1%, Iyt = IS, Rw = RY,. Thus, when Ry = 1, the largest and only invariant set where Q" = 0 is also the
DFE. Using LaSalle’s invariance principle, one concludes that the DFE is also GAS in I',, when Ry = 1. O

Existence of an Endemic Equilibrium. With the terminology and results established in Sections 3.1 and
3.2 above, part (2) of Theorem 2.2 in [19] guarantees the existence of an endemic equilibrium of system (3.1),
when Ry > 1. We will denote this endemic equilibrium point as

E" :=(Sp, Ep, Ap, I, Inns Ry Swy Ews Aws T, Twar> Rw> Svs Ev, Iy). (3.5)

In Theorem 2, we proved that if R < 1, then the disease-free equilibrium point (DFE) is globally asymptoti-
cally stable in the given feasible region. When this condition is lost; that is, when we instead have R > 1, the
DFE loses stability, and as noted above, an endemic equilibrium (EE) exists. In Theorem 3 below, we show
that the condition Ry > 1 also implies that the EE is globally asymptotically stable.

3.3 Global Asymptotic Stability Analysis of the EE

To establish global stability properties of the EE (3.5), we will use a graph-theoretic method as presented in
[19]. First, we briefly present some terminology and results about directed graphs and a technique for the
construction of a Lyapunov function. For details, the reader is referred to [15, 19].

A pair (i, j) is called an arc from vertex i to vertex j. Given a weighted digraph I'(A) with p vertices, the p x p
weight matrix A is defined with a;; > 0 equal to the weight of arc (j, i) if it exists, and a;; = 0 otherwise. The
Laplacian L of I'(A) is defined as

-ajj, i#],

=3 Yap. i=j.
o

Let c; be the cofactor of l;;. If I'(A) is strongly connected, then ¢; > O, foralli = 1,..., p. The following
combinatorial identities are useful in finding explicit expressions for c;:

If a;; > 0 and the out-degree of vertex j satisfies d*(j) = 1, for some i, j, then
p
Ciaj; = chajk. (36)
k=1
If a;; > 0 and the in-degree of vertex i satisfies d™ (i) = 1, for some i, j, then

p
cia,-j = chaki. (37)
k=1

The following theorem provides a graph-theoretic technique to construct a Lyapunov function Q.
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Theorem 3. [15, 19] For a given open set E C R™, and a function f : E — R™, consider the system
z = f(2), (3.8)

and assume that
(i) There exist functions Q; : E — R, G;; : E — R, and constants a;; > 0 such that

b
Qi = Qilzg = Zai,-G,-j(z), with zeE, i=1,...,p,

(ii) Each directed cycle C of I'(A) satisfies

Z GYS(Z) SO, ZGE,

(s,1) € S(C)
where S(C) denotes the set of all arcs in C.

Then, there exist constants ¢; 20, i = 1, ..., p (as defined above), such that the function

p
Q(2) = ZCiQi(Z)

i=1
satisfies Q' la.8) < 0, thatis, Q(2) is a Lyapunov function for (3.8).
With these tools at hand, we give a result on global stability of the endemic equilibrium of system (3.1) in the
interior of the feasible region I';.
Theorem 4. If Rg > 1, then, the EE of system (3.1) is unique and globally asymptotically stable (GAS) in
int (I3).

Proof. Define the functions:

Q, = Sp- SB—SBlnS +FEp - E;—Egln%,
B
Q = Ig-Iz- IBlnIB
BS E
Q3 = Sw-Sy-Syln W+EW—E;V—E;V1nTW,
W EW
Q4 = AW_AW_AwlnT,
AW
* * I
Qsq = Qsp = Qs¢ = IW—IW_IWIHITW’
w
Q = Sy-S,-SyInSY +Ey—E},-E,InLY,
SV E,
Q; = IV—I;,—I;,lnTV
IV

Using the inequality 1 - x + In x < 0, for x > 0, differentiation yields:

Q, <q AwSp Aw _, Aw _Ep lnEB
UUN, \A, Ay By E
+qIIWSB . —lnIl’V—E—EHnE—f
NW IW Iy Ep  Ep

Ny, EW Ew EB Ey
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IVSB( Iy Ep EB)
+nfgb r-In—-=+In-2
Ny \I; I, Eg Ep
“In Ey Ep

+1n EB>
Ey E, Ejp Eg

nBybyorSE (

Ny
=:1d1,4G1,4 +a1,5q0G1,50 +a1,3G1,3 +a1,7G1,7 + a1,6G16-
Qz CUBEB<EB lnE—f—I—§+lnI—§) =: az,le’l.
Ey Ep I Iy

Q, < Bw bVIVSW< v _Ew g B )
NW IV IV EW EW

E,S E, Ey . E
+Bwbyo—X W( YV m=Y-Z%4iIn *)
Ny \Ey, E, Ey Ey

+XIWSW (ﬁ—w v _ EEV +In El”)

Ny \I, Iy, E, Ey
oy (G -m4e 2w 20)
Ny \Ay Ay Ey Ey
=:a3,7G3,7 + a3,6G3 6 + a3 5,G3 5 + a3,4G3 4.
, E E A A
< (1 p)OWEW<EW In El/v - AYV +In AZV> =i (14’364’3.
w w Ay w
, Ew - Ey Iy . Iy
Qs pUWEw< —-In == - 5= +1In == ) =t a54,3G54,3.
“ Ey Ey Iy Iy,
QSb < poWEW< x ln o T ln * = a5b,3GSb,3'
Ey Ey Iy Iy,

, Ew 1 Ew _Iw o Iw
Q; pUWEW( . ln—> =: a5¢,3Gs5c 3.
<Brbup WV EwSy (EW ~mEw _Ev EV)
+11NB Ey Ey, Ey E,
E,S, (Es . Ey E E
+Bybypn——BV __(ZB _1nZB _ZV  n 2V
Pvbvn e "o Ne ( E, E, "E,
+Byb Vﬂ(lﬂ_ nlﬂ_EV +1nEV)
N, +qNG\I, "I, E, E,
IS} E E
b BSv__ (1B _y Is _Ev , Ev
byl e (1 L, B, E,

=:a6,3Ge3 + a6,1G6,1 + ds,5:Gg,5¢c + d6,2Gs,2-

-In Ev Iy +In %V) =:a7,6G7.

ok *
14 EV IV \4

Q7 UVEV(E

With the constants a;j above and A =[a;;], we construct the (strongly connected) directed graph I'(A) in Figure
2. Along each of the cycles on the graph, one can verify that ) G;; = 0; for instance, Gg 1 + G3,6 + Gsq,3 +
G154 =0, G2,1+ Ggr+ Gy,6 = 0, and so on. Then, by Theorem 3.5 in [19], there exist constants c; such that
Q = >, ¢;Q; is a Lyapunov function for (3.1). To find the constants c;, we use the combinatorial identities
(3.6) or (3.7); for instance, since d™(4) = 1, we use (3.7) to get c4a4,3 = €1a1,4 + C3a3,4. Similarly, we find that
C202,1 = CeQgp, C4043 = C1a1,4+C303,4, C5qd5q,3 = C1A1,5q, C5plsp 3 = €303 5h, C5clsc,3 = C3dg 5¢, and
C7a7,6 = C1a1,7 + c3az,7. With c1 = ¢c3 = ¢4 = 1, we get

___ BybynIpSy s = 4aAwSg + XPAwSw

copER(N}, + Ny’ '~ N, (1 -p)owE},

>
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Figure 2: Digraph for model (3.1).

~ qldySp _ xIwSw _ BvbvIySy
Csa=—" "% ,»> Csp=_—— % %> OC5¢= o =
powEy, Ny, powEy, Ny, powE},(Ny, +nNg)
e = nBebvIySENy + BwbvIySwNp
! ovE, NNy, ‘

Therefore, with the functions Q; and constants c; given above,

Q=c1Q1 +c2Q2 +¢3Q3 +c4Q4 + (C5q + C5p + €5¢) Qs + €6 Qg + €7Q7

is a Lyapunov function for (3.1). We also have:

, Sg-Sy.. Ep—Ey._, Ig-Tg .
Q = ( 5 Bsh + £, BEB> +c2( I Bry
Sw-Sw~ Ew-Ey . Aw-Ay .
+ ( SW WSW + EW WEW + C4 TWAW

Iy -Ty Sy-S, .. Ey-Ey._
+(c5a+c5b+csc)( WI WIW) + ( VS VSy + VE VEV>
w % v
| T
+ C7( v VIV).
Iy
Now we consider the set S = {x € R}® : Q' = 0}. When Q" = 0, one can readily verify that Sg = Sj, Eg = Ej,

Ig = Iy, Sw = Sy» Ew = Ey, Aw = A}y, Iy = Iy, Sy = Sy, Ey = Ey, and Iy = Iy, and we are left with the
system:

Ap=(1-c-d)opEp - (vp + up)Ag
Ipy = dogEp — (@ + pup)lpy
Rp = vAp +v8lp — MuRp (3.9)
Ty = algy - pplwy
Ry = ywAw +ywlw - ugRw.
One can show that system (3.9) has a unique equilibrium point - see notation in (3.5):
(Ag, Igys Ry, Iyys Ry ), and that this point is GAS for this system. Therefore, the largest and only

invariant set in S is the endemic equilibrium, E*. Using LaSalle’s Invariance Principle, we conclude that the
endemic equilibrium E” is GAS in int(I',), and thus unique. O
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4 Conclusions and Final Remarks

In this article, two distinct approaches to modeling the dynamics of Zika virus have been combined into a
general model. While previous work on the first approach is focused on vector and horizontal transmission
[2, 10, 14, 17], a recent work [1] included vector and vertical (but not horizontal) transmission of Zika virus. In
this work, the model proposed in [1] was revisited, and a global stability result of the corresponding DFE was
established, under fewer restrictions. The main contribution of this work is to propose a general model of Zika
virus dynamics that simultaneously includes vector, horizontal and vertical transmission, and to establish
global stability results on both the DFE and the EE of this new system. These results on global stability have
been established using matrix-theoretic and graph-theoretic techniques introduced in [15, 19], which allow
the construction of appropriate Lyapunov functions. It is important to note that even though the main two
theorems in [19] cannot be directly applied for the model proposed in [1], global stability of the DFE can still
be obtained using the same matrix-theoretic technique.

While it is crucial to have more data to get a better biological understanding of Zika virus and to construct
more accurate mathematical models, there are some possible avenues of improvement in the modeling of
this mosquito-borne disease. A more accurate modeling of vertical transmission is needed, including the one
through breast milk [3, 5], and how the stage of the infection of the mother determines the possible stages of
infection of the newborn. A better understanding and more accurate mathematical modeling of the dynamics
of humans with microcephaly due to Zika infection is also needed. Some other generalizations of these models
would be worth investigating, including the study of human connectivity between communities, as in [6, 12,
18], and a consideration of the so-called “critical community size", below which the disease would probably
die out [14]. Some specific heterogeneities in humans such as gender, would be worth studying. While the
introduction of these new features into the current models could potentially cause losing some mathematical
analytical tractability, it should bring richer dynamics, including the possible existence of some bifurcation
phenomena, and a better understanding of the disease.
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