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Abstract: The classifier system proposed in this work combines the dissimilarity spaces produced
by a set of Siamese neural networks (SNNs) designed using four different backbones with different
clustering techniques for training SVMs for automated animal audio classification. The system is
evaluated on two animal audio datasets: one for cat and another for bird vocalizations. The proposed
approach uses clustering methods to determine a set of centroids (in both a supervised and
unsupervised fashion) from the spectrograms in the dataset. Such centroids are exploited to
generate the dissimilarity space through the Siamese networks. In addition to feeding the SNNs
with spectrograms, experiments process the spectrograms using the heterogeneous auto-similarities
of characteristics. Once the similarity spaces are computed, each pattern is “projected” into the
space to obtain a vector space representation; this descriptor is then coupled to a support vector
machine (SVM) to classify a spectrogram by its dissimilarity vector. Results demonstrate that the
proposed approach performs competitively (without ad-hoc optimization of the clustering methods)
on both animal vocalization datasets. To further demonstrate the power of the proposed system,
the best standalone approach is also evaluated on the challenging Dataset for Environmental Sound
Classification (ESC50) dataset.

Keywords: audio sound classification; clustering; prototype selection; Siamese network; dissimilarity space

1. Introduction

Over the past decade, research in sound classification and recognition has gained in popularity
and rapidly broaden in its application from the more traditional focus on speech recognition [1] and
music genre classification [2] to biometric identification [3], computer-aided heart sound detection [4],
environmental audio scene and sound recognition [5,6], biodiversity assessment [7], human voice
classification and emotion recognition [8], English accent classification, and gender identification [9],
to list a few of a wide range of application areas. As with research in pattern recognition generally,
the features fed into classifiers were initially engineered, which, in the case of sound applications,
meant extracting from raw audio traces such descriptors as the Statistical Spectrum Descriptor and
Rhythm Histogram [10].

In the past decade, researchers began exploring the possibility of visually representing audio signals
to apply more powerful image classification descriptors and techniques. Initially, visual representations
of audio traces centered around the display overtime of the frequency spectrum: examples of these
representations include the spectrogram [11] and Mel-frequency Cepstral Coefficients spectrogram [12].
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Although a spectrogram is typically a graph with two dimensions (time and frequency), additional
dimensions can be included, such as pixel intensity [13], which includes at each time step the
representation of an audio signal’s amplitude in a specific frequency. Initially, popular texture
descriptors, such as Haralick’s Grey Level Co-occurrence Matrices (GLCMs) [14], Gabor filters [15],
and Local Binary Patterns (LBP) [16] and its variants [17] were extracted from these spectrograms for
the task of music genre classification [18–20]. Fusions of a large set of state-of-the-art texture descriptors
were then experimentally applied to spectrograms, and certain combinations were shown to enhance
further the accuracy of music genre classification [2].

The rise in popularity of deep learning due to affordable graphic processing units (GPUs) changed
the trajectory in machine learning research [21]. Deep learners, such as the convolutional neural network
(CNN), produced far superior results to most other classifiers when it came to image classification [22].
Consequently, more attention was placed on representing acoustic traces through visual representations
so that deep learning approaches could be applied. Engineered features diminished in importance since
deep classifiers learn which patterns perform best for a specific problem during the training process.
However, engineered features have been shown to augment deep learning approaches when fused.
Early work with CNNs applied to visual representations obtained state-of-the-art in chord detection
and recognition [23,24] and in music genre classification [25]. In [25], for example, spectrograms were
converted into GCLM maps and trained on CNNs. In [26], canonical approaches, such as LBP-trained
SVMs were fused with CNNs and shown to outperform previous systems.

Another development in sound classification involves the design of deep learners and feature sets
specific to audio classification. For example, in [27], the authors explored variations in CNN architecture
and parameters; in [28] a novel sparse coding CNN was developed and shown to perform well if not
better than the state-of-the-art for sound event recognition and retrieval. Also of note is the hybrid
multimodal deep learning approach proposed in [29] for multilabel music genre classification that
combined album cover images, reviews, and audio tracks; this system was shown to outperform the
single-modality approaches. In [30] the authors present a gated CNN and a temporary attention-based
classification system for audio classification from weakly labeled data.

When it comes to animal sound classification, the focus of this study, fusions of CNNs with other
methods to classify animals have been evaluated in [31] and [32] for fish identification using the Fish
and MBARI benthic animal dataset and in [33] for bioacoustic bird species classification using a dataset
of audio samples from 43 species. In [31], the authors combined engineered features with CNNs,
and in [33], deep learning was combined with shallow learning. Both demonstrated that the fusions
performed better than the standalone approaches.

Animal sound classification is a vibrant area of research. Many benchmark datasets are available
for a variety of animals, such as bats [34], birds [34,35], whales [36], cats [37], and frogs [35]. In the
literature, animal audio classification is broadly divided into two categories: the CNN approach
discussed above and fingerprinting [38], which involves a compact audio representation for comparing
audio segments in terms of similarity and dissimilarity [39]. Both approaches, however, suffer from
limitations: fingerprinting can only find exact matches, and CNNs require large datasets for accurate
training; many animal datasets are small because of the difficulty of collecting samples.

The superiority of combining the deep learning approach with fingerprinting is demonstrated
in [40], where a Siamese Neural Network (SNN) produced semantic descriptions of audio signals. SNNs
have been applied to sound classification in [40–42] and have the advantage over the canonical CNN
in their ability to generalize. In [43], a system was developed based on dissimilarity spaces, such as
that proposed in [44] for brain image classification, where a distance model was learned by training a
SNN [45] on dissimilarity values. This system combined several clustering approaches to obtain a
dissimilarity space; each pattern was represented in such a space, and the resulting descriptors were
used to train a general purpose classifier (SVM). The clustering methods transformed the spectrograms
in a bird [46] and cat [37,47] dataset to a set of centroids that were used to generate a vector space
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representation for each pattern. This vector was then used to train an SVM. Results showed that this
approach worked better than the standalone CNNs.

The system proposed in this work is similar to [43] in that it generates a dissimilarity space from
the training set using an SNN to define a distance function from the input spectrograms. The objective
at this point in the process is to maximize the distance separating the patterns of the different classes.
Unlike [43], however, four different CNN architectures are selected for the twin classifiers, and both
the original input spectrograms and the spectrograms processed by Heterogeneous Auto-Similarities
of Characteristics [48] make up the inputs to the SNNs. In the testing phase, the unknown pattern
is compared to the centroids of the dissimilarity space using the different SNNs for comparing two
samples and measure their dissimilarity. Although it is the case that the entire training set can function
as the centroids of the dissimilarity space, it is desirable to reduce dimensionality by selecting a smaller
number of prototypes. In this work, both a supervised and unsupervised clustering algorithm are
used to reduce dimensionality. The dissimilarity space represents each input (both the original and the
processed spectrograms) by its distance from each of the centroids, or prototypes, a distance that is
learned by the SNNs. In other words, the SNNs compare a given spectrogram to each of the centroids to
obtain a dissimilarity feature vector. A support vector machine (SVM) is then trained on these features.

The approach taken in this paper is evaluated on the same animal vocalization datasets as in [43],
i.e., on cats [37] and birds [7]. In addition, the system is tested on the challenging benchmark dataset for
Environmental Sound Classification (ESC-50) [49]. As in [43], the most effective system is the result of
a fusion of classifiers, i.e., the sum rule of SVMs trained on different dissimilarity spaces generated by
changing the value of k in the clustering approaches and network topologies. Performance is compared
with both the state-of-the-art as well as with fusions with the state-of-the-art. Results demonstrate
the power of using dissimilarity spaces based on an ensemble of SNNs, particularly when coupled
with a standard CNN approach. The MATLAB code of the proposed method is freely available at
https://github.com/LorisNanni.

The remainder of this paper is broken down into the following sections. In Section 2, a detailed
overview of the proposed approach is provided; in Section 3, SNN is discussed along with the different
CNN architectures that make up the subnetworks. In Section 4, the supervised and unsupervised
clustering methods are outlined. In Section 5, experimental results are presented along with comparisons
with the state-of-the-art. The paper concludes in Section 6 with an overview and some suggestions for
future research.

2. Proposed System

The system presented here for spectrogram classification extends that proposed in [43] and is
schematized in Figure 1, which illustrates the approach using one SNN. The pseudocode in Algorithms
1 and 2 that correspond to Figure 1 are detailed in the remainder of this section.

The process begins by generating a similarity space during the training phase via a learning
distance measure d(x, y) from a set of prototypes P = p1, . . . pk. The distance measure is learned
by four SNNs trained (1) to maximize the similarity between pairs of spectrograms belonging to the
same class and (2) to minimalize the similarity for pairs of spectrograms belonging to different classes.
The set of prototypes generated in this phase are the k centroids of the clusters produced by a clustering
approach. What results is a feature vector f ∈ Rk that represents training sample x in the dissimilarity
space, where a given fi is the distance between x and the prototype pi : fi = d(x, pi). Once these
features have been calculated, they are used to train an SVM classifier.

https://github.com/LorisNanni
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Figure 1. Generalized schematic of the proposed approach.

In the testing phase, each unknown pattern is represented by its projection in a dissimilarity
space: the descriptor is obtained by calculating the pattern distance to the set of prototypes P, and the
resulting feature vectors of the input images are then classified by SVM. In our experiments, we test
both spectrograms and HASC [48], a 2D descriptor extracted from the spectrogram, as the input of the
classification process. The method for extracting HASC is outlined in Section 2.5.

Algorithm 1. Training phase

Input: Training images (imgsTrain), training labels (labelTrain), number of training iterations
(trainIterations), batch size (trainBatchSize), number of centroids (k), and clustering technique (type).
Output: Trained SNN (tSNN), set of centroids (C), and trained SVM (svm).
1: tSNN← trainSiamese(imgsTrain, labelTrain, trainIterations, trainBatchSize)
2: p← Clustering(imgsTrain, labelTrain, k, type)
3: F← getDissSpaceProjection(imgsTrain, P, tSNN)
4: tSVM← trainSvm(labelTrain, F)

Algorithm 2. Testing phase

Input: Test images (imgsTest), trained SNN (tSNN), Set of centroids (C), Trained SVM (tSVM).
Output: Actual test labels (labelTest).
1: F← getDissSpaceProjection (imgsTest, P, tSNN)
2: labelTest← predictSvm (F, tSVM)
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2.1. Siamese Neural Network Training

To define a similarity measure inside the Dissimilarity Space, a Siamese Network is trained to
compare a couple of spectrograms and return a similarity value that is the greater value if they belong
to the same class and the lower value if they belong to different classes. The pseudocode for training
an SNN, which is called in step 1 of Algorithm 1, is reported in Algorithm 3. The SNN architecture is
defined in steps 2 and 3 (more details are given in Section 3). The training process consists in repeating
Steps 5–8: random extraction of batchSize spectrogram pairs from the training set (via the function
GETBATCH), computation of loss and gradients for each pair passed to the SNN, and upgrade of the
SNN accordingly (i.e., the subnet and the fully connected (FN) layer of the Siamese network).

Algorithm 3. Siamese training pseudocode

Input: Training image (trainImgs), training labels (trainLabels), batch size (batchSize), and iterations (numberO f
Iterations).
Output: Trained SNN (tSNN).
1: function TRAINSVM
2: subnet←NETWORK([inputLayer,..., FullyConnectedLayer])
3: f cWeights←randomWeights
4: for iteration from 1 to numberO f Iterations do
5: X1, X2, pairLabels← getBatch (trainImgs, trainLabels, batchSize)
6: gradients, loss← Evaluate(subnet, X1, X2, pairLabels)
7: Update(subnet, gradients)
8: Update(f cWeights, gradients)
9: end for
10: return tSNN←subnet, f cWeights
11: end function

Note: if SNN fails to converge on the training set, the training phase is repeated.

2.2. Prototype Selection

Prototype selection involves extracting a total of k prototypes from the training set in order
to reduce the dimensionality of the dissimilarity space, which would be too high to maintain each
training sample as a prototype. Dimensionality can be reduced by employing clustering techniques
to calculate k centroids. In this work, we perform both prototype selection separately for each class
(kc prototypes per class) and via global (i.e., unsupervised) clustering (k prototypes): in both cases,
results are compared considering the same final dimension. Algorithm 4 presents the pseudocode for
prototype selection. As can be observed, a clustering technique is selected from a set of four possible
clustering methods, each of which is employed separately to cluster the training samples. For the sake
of space, only the pseudocode for the supervised clustering methods is included, though it should be
noted that this work used both supervised and unsupervised clustering approaches.

2.3. Projection in the Dissimilarity Space

Classically, classifiers are trained to predict patterns within a feature space. It is also possible,
as demonstrated here, for patterns to be projected in a dissimilarity space such that each pattern x is
characterized by its dissimilarity to a set of prototypes P = p1, . . . pk and by a dissimilarity vector
defined as

F(x) = [d(x, p1), . . . , d(x, pi), , . . . , d(x, pk)], (1)

where the similarity of pattern d(x, y) is obtained using a trained SNN.
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Algorithm 4. Clustering pseudocode

Input: Training images (imgsTrain), training labels (labelTrain), number of clusters (k), and clustering technique
(type).
Output: Centroids P.
1: function Clustering
2: numClasses←number of classes from labelTrain
3: kc←k/numClasses
4: for i from 1 to numClasses do
5: images←images of the class i from imgsTrain
6: switch type do
7: case “k-means” Pi ← KMeans(imgs,kc)
8: case “k-medoids” Pi ← KMedoids (imgs,kc)
9: case “hierarchical” Pi ← Hierarchical (imgs,kc)
10: case “spectral” Pi ← Spectral (imgs,kc)
11: P←P ∪Pi
12: end for
13: return P
14: end function

The projection of a set of images (from the training or the testing set) into a dissimilarity space
R

k is described in Algorithm 5. Each image of the input set (stored in the variable X, see step 3) is
compared with the k prototypes (stored in P) according to the dissimilarity measure learned by the
trained SNN (PREDICTSIAMESE function, see step 4). The number of centroids is a parameter, and
different values of k were tested (depending on the number of classes c): k = kc ∗ c, kc = {15, 30 45, 60}.
The output is the feature space F that includes the projections of all the input images imgs.

Algorithm 5. Projection in the Dissimilarity space pseudocode

Input: Images (imgs), Centroids (P), number of centroids (k), and trained SNN (tSNN).
Output: Feature vectors (F).
1: function getDissSpaceProjection
2: for j from 1 to SIZE(imgs) do
3: X←imgs[j]
4: F[j]← predictSiamese (tSNN, X, P)
5: end for
6: return F
7: end function

2.4. Classification by SVM

SVM [50] is a well-known binary learner that represents training samples as points in space.
The goal of SVM training (function TRAINSVM) is to find at least one hyperplane such that it separates
the data that belongs to each of the two classes. Prediction (function PREDICTSVM) is accomplished by
mapping an unseen pattern to the side of the hyperplane representing the class for a given data point.

SVM, as defined above, does a poor job discriminating input that is not linearly separable in its
original space. This difficulty can be overcome by selecting kernel functions that map the data into a
higher-dimensional space where separation is possible. In this work, we chose a radial basis function
kernel to map a single vector to a vector of higher dimensionality.

Although SVM is binary, it can be applied to nonbinary or multilabel problems by training an
ensemble of SVMs and combining their decisions. In the experiments reported here, the One-Against-All
method is used, where an SVM is trained systematically to distinguish each class against all the
others combined. The pattern is then predicted to belong to that class that produces the highest
confidence score.
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2.5. Heterogeneous Auto-Similarities of Characteristics (HASC)

HASC [48] is applied to heterogeneous dense feature maps. It encodes linear relations by
covariances (COV) and nonlinear associations with entropy combined with mutual information (EMI).
Three reasons for considering covariance matrices as descriptors are as follows: (1) they are low in
dimensionality, (2) robust to noise (but with the exception that outlier pixels can render them more
sensitive to noise), and (3) the covariance among two features is optimally able to encapsulate the
features of the joint PDF (but with the caveat that they be linked by a linear relation). HASC obviates
these limitations by combining COV with EMI.

The entropy (E) of a random variable measures the uncertainty of its value, and the mutual
information (MI) of two random variables captures their generic linear and nonlinear dependencies.
The way HASC utilizes these advantages is by dividing an image into patches from which it generates
an EMI matrix (d× d), such that the main diagonal entries encapsulate the amount of unpredictability
of the d features. The off-diagonal entries (element i, j) capture the mutual dependency between two
features, that is, the i-th and j-th feature. HASC is the concatenation of vectorized EMI and COV.
Specifically, the MI of a pair of random variables A, B is

MI(A, B) =
∫

A

∫
B

p(a, b) log
(

p(a, b)
p(a)p(b)

)
dbda, (2)

where p(a), p(b), and p(a, b) are the PDF of A, the PDF of B, and their joint PDF, respectively. If A = B,
then MI is the entropy of A:

E(A) = MI(A, A) = −

∫
A

p(a) log(p(a))da. (3)

If there exists a finite set K of realization pairs, MI can be estimated as a sample mean inside the
logarithm, thus:

MI(A, B) ≈
1
K

K∑
k=1

log
(

p(ak, bk)

p(ak)p(bk)

)
. (4)

A fast and efficient method for calculating from the K realizations the probabilities inside the
logarithm is to estimate them by building a joint 2D normalized histogram of values A and B, such that
each p(ak, bk) is estimated taking the value of the 2D histogram bin containing the pair ak, bk. In this
way, p(ak) and p(bk) can be estimated by summing all the bins corresponding to ak and bk, respectively.
Thus, the i, j-th component of the EMI matrix related to the patch P can be defined as

EMIp{i j} =
1
K

K∑
k=1

log

 p̃
(
zki, zkj

)
p̃(zki)p̃

(
zkj

) , (5)

where p̃( . . . ) and p̃(.) are the probabilities estimated with the histogram and zki is the i-th feature at
pixel K.

In this study, HASC is extracted from the whole spectrogram. Given the function HASC, the output
FEAT is a three-dimensional matrix (w × h × d) containing the features extracted from the image (d is
the number of low-level features). The number of bins used to evaluate the histograms in the EMI
computation is 28, and the number of low-level features is 6 (default parameters). FEAT is reshaped
to build the vector img = [FEAT (:,:,1) FEAT (:,:,2); FEAT (:,:,3) FEAT (:,:,4); FEAT (:,:,5) FEAT (:,:,6)],
and img is resized to the right dimension for the input into a CNN.

3. Siamese Neural Network (SNN)

SNN, initially proposed in [45], is a class of neural networks that contains two or more twin
networks that share the same weights and parameters. As illustrated in Figure 2, an SNN has two
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inputs that compare two patterns and one output that corresponds to the similarity between the two
inputs. In other words, an SNN identifies correlations between two different input patterns (see [51]
for a fairly comprehensive overview of SNN). As shown in Figure 2, the SNNs used in this work are
composed of five components, as described below.
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3.1. The Two Identical Twin Subnetworks

In this study, four twin CNN subnetworks are utilized. CNNs are constructed by assembling
specialized layers composed of neurons. Some of the more common layers found in CNN architectures
include convolutional, activation (ReLU), pooling, and fully connected (FC) layers. The specific CNN
architecture for the four twin subnetworks are outlined in Table 1.

Table 1. Convolutional neural network (CNN) Siamese networks (1–4) layers.

Siamese Network 1

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224
2D Convolution 215 × 215 × 64 6464 10 × 10 64

ReLU 215 × 215 × 64 0
Max Pooling 107 × 107 × 64 0 2 × 2

2D Convolution 101 × 101 × 128 401,536 7 × 7 128
ReLU 101 × 101 × 128 0

Max Pooling 50 × 50 × 128 0 2 × 2
2D Convolution 47 × 47 × 128 262,272 4 × 4 128

ReLU 47 × 47 × 128 0
Max Pooling 23 × 23 × 128 0 2 × 2

2D Convolution 19 × 19 × 64 204,864 5 × 5 64
ReLU 19 × 19 × 64 0

Fully Connected 4096 94,638,080

Siamese Network 2

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224 × 224 0
2D Convolution 220 × 220 × 64 1664 5 × 5 64

LeakyReLU 220 × 220 × 64 0
2D Convolution 216 × 216 × 64 102,464 5 × 5 64

LeakyReLU 216 × 216 × 64 0
Max Pooling 108 × 108 × 64 0 2 × 2

2D Convolution 106 × 106 × 128 73,856 3 × 3 128
LeakyReLU 106 × 106 × 128 0

2D Convolution 104 × 104 × 128 147,584 3 × 3 128
LeakyReLU 104 × 104 × 128 0
Max Pooling 52 × 52 × 128 0 2 × 2

2D Convolution 49 × 49 × 128 262,272 4 × 4 128
LeakyReLU 49 × 49 × 128 0
Max Pooling 24 × 24 × 128 0 2 × 2

2D Convolution 20 × 20 × 64 204,864 5 × 5 64
LeakyReLU 20 × 20 × 64 0 5 × 5

Fully Connected 2048 52,430,848
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Table 1. Cont.

Siamese Network 3

Layers Activations Learnable Filter Size Num. Filters

Input Layer 224 × 224
2D Convolution 55 × 55 × 128 6400 7 × 7 128

Max Pooling 27 × 27 × 128 0 2 × 2
2D Convolution 23 × 23 × 256 819,456 5 × 5 256

ReLU 23 × 23 × 256 0
2D Convolution 19 × 19 × 128 819,328 5 × 5 128

Max Pooling 9 × 9 × 128 0 2 × 2
2D Convolution 7 × 7 × 64 73,792 3 × 3 64

ReLU 7 × 7 × 64 0
Max Pooling 3 × 3 × 64 0 2 × 2

Fully Connected 4096 2,363,392

Siamese Network 4

Layers Activations Learnable Filter Size Num. of Filters

Input Layer 224×224
2D Convolution 218 × 218 × 128 6400 7 × 7 128

Max Pooling 54 × 54 × 128 0 4 × 4
ReLU 54 × 54 × 128 0

2D Convolution 50 × 50 × 256 819,456 5 × 5 256
ReLU 50 × 50 × 256 0

2D Convolution 48 × 48 × 64 147,520 3 × 3 64
Max Pooling 24 × 24 × 64 0 2 × 2

2D Convolution 22 × 22 × 128 73,856 3 × 3 128
ReLU 22 × 22 × 128 0

2D Convolution 18 × 18 × 64 204,864 5 × 5 64
Fully Connected 4096 84,938,752

Two activation functions are explored here: the ReLU activation function [52] and the Leaky
ReLU [53]. The well-known ReLU activation function for the points (xi, yi) is defined as:

yi = f (xi) =

{
0, xi < 0
xi, xi ≥ 0

. (6)

The Leaky ReLU variation of ReLU is defined as

yi = f (xi) =

{
axi, xi < 0
xi, xi ≥ 0

. (7)

The subnetworks of the Siamese CNNs 1–4 each learn the features that best represent the
information in the spectrograms that are the input patterns to the two input nodes (X1 and X2) and
return either a 2048 or a 4096-dimensional feature vector (F1 and F2). The subnetworks share the same
parameters and training weights.

3.2. Subtract Block, FC Layer, and Sigmoid Function

The Subtract Block calculates the feature vector Y as the absolute value of the difference between
the resulting vectors of the two subnetworks:

Y = |F1 − F2|. (8)

Following the method outlined in [44], the FC layer learns the distance model for calculating the
dissimilarity. Y, the result of the Subtract Block, is processed by the FC block to produce the measure
of dissimilarity between two spectrogram patterns. Because of this block, the resulting dissimilarity
measure is not a metric since it does not have the following properties: identity and triangle inequality.
It does, however, have the properties of symmetry and compactness as defined in [22], so that a
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sufficiently small perturbation of an object leads to an arbitrary small dissimilarity value between the
disturbed object and its original.

The sigmoid function is then applied to the dissimilarity value to transform it to a probability
value in the range [0,1]:

S(x) = 1/1 + e−x. (9)

4. Clustering

Clustering is a procedure that divides unlabeled patterns into groups that maximize the
commonality between members within a group and their differences with members belonging
to other groups. Clustering techniques often calculate the mean vector, or centroid, of all the patterns
within a cluster when forming the clusters. Centroids encapsulate salient characteristics of patterns
belonging to a cluster; for this reason, they can be used to reduce the dissimilarity space size without
losing too much important information. Even more information can be retained if the number of
centroids representing each class is increased.

Both supervised and unsupervised clustering approaches are considered here. If kc clusters are
extracted with a supervised approach, then, in each of NK classes, kc×NK clusters are extracted using
unsupervised clustering on the training set. A description of the four clustering methods used in this
study follows.

4.1. K-Means

K-means is one of the most popular clustering algorithms. It partitions patterns into k clusters
by placing each observation into a cluster based on the nearest centroid (according to the Euclidean
Distance measure).

The standard k-means algorithm involves four steps:

1. Randomly select a set of centroids from among the data points.
2. For each data point x remaining in the training set, compute the distance d(x) between it and the

nearest centroid.
3. Recalculate new centroids via a weighted probability distribution.
4. Repeat Steps 2 and 3 until convergence.

4.2. K-Medoids

K-medoids is a clustering technique that follows the same general logic behind k-means but differs
in the specific way it partitions data points into clusters: K-medoids minimizes the sum of distances
between a given pattern and the center of that pattern’s cluster. In short, the center of a cluster in
K-Means ends up being the centroid of the cluster, but the center in K-Medoids is a member (medoid)
of the cluster. In other words, a medoid is that member in a cluster whose sum of distances from all
other members is minimal.

The standard K-medoids algorithm involves three steps:

1. Step one is a build-step where each k cluster is associated with a potential medoid. There are many
ways to select the first medoid; the standard MATLAB’s implementation does this employing the
k-means++ heuristic.

2. Step two is a swap-step where each point in a cluster is tested as a potential medoid by checking
whether the sum of the within-cluster distances is smaller when using that point as the medoid.
Every point is then assigned to the cluster with the closest medoid.

3. The last step repeats previous steps until convergence.
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4.3. Spectral

Spectral clustering partitions data into clusters starting from the adjacency matrix representing
the undirected similarity graph of the patterns. Each pattern is a node of the graph, and two nodes are
connected only if their similarity is larger than a threshold (typically set to 0).

This clustering algorithm involves the following matrices:

• The similarity matrix M, whose cell mi j is the similarity value of two patterns (i.e., two spectrograms
si, s j);

• The degree matrix D, which is a diagonal matrix that is obtained by summing the rows of M:

Dg(i, i) =
∑

j

mi, j; (10)

• The Laplacian matrix L, which is defined as

L = Dg − M. (11)

The algorithm for spectral clustering is a five-step process:

1. Define a local neighborhood for each data point in the dataset (there are many ways to
define a neighborhood; the nearest-neighbor method is the default setting in the MATLAB
implementation of spectral clustering). Then compute the local similarity matrix of each pattern
in the neighborhood.

2. Calculate the Laplacian matrix L.
3. Create a matrix V containing columns v1, . . . , vk, where the columns are the k eigenvectors,

i.e., the spectrums (hence the name), corresponding to the k smallest eigenvalues of L.
4. Perform k-means or k-medoids clustering by treating each row of V as a datapoint.
5. Cluster the original pattern according to the assignments of their corresponding rows.

4.4. Hierarchical Clustering

Hierarchical clustering partitions data by creating a tree of clusters divided into n levels selected
for the specific classification task. In general, hierarchical clustering is divided into two types:

1. Agglomerative, where each pattern corresponds to a cluster. A strategy to merge couples of
clusters is defined as moving up the hierarchy: each cluster in the next level is the fusion of two
clusters from the previous level.

2. Divisive, where a single cluster contains all patterns in the first level, then a splitting strategy is
defined to halve clusters by moving down the hierarchy.

In this work, the agglomerative hierarchical approach is employed as this is the default MATLAB
implementation. The MATLAB algorithm involves three steps:

1. Using a distance metric, find the similarity or dissimilarity between every pair of data points in
the dataset;

2. Aggregate data points into a binary hierarchical cluster tree by fusing pairs of clusters according
to their distance;

3. Establish the level of the tree where it is cut into k clusters.

The resulting prototypes are selected as the mean vectors of each cluster.
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5. Experimental Results

The proposed approach is tested and compared with the canonical approaches with each using the
testing protocol proposed by the authors of the datasets. The performance indicator is the classification
accuracy and methods were tested on the following animal vocalization datasets:

• BIRDz, which functioned as a control and a real-world audio dataset in [46], a ten-run testing
protocol is used; we have used the same split used by the authors of the dataset. The real-world
tracks were collected from the Xeno-canto Archive (http://www.xeno-canto.org/). BIRDz includes
a total of 2762 bird acoustic samples from 11 North American bird species plus 339 “unknown”
samples that include noise and unknown species’ vocalizations. The observations are composed of
five different spectrograms: 1) constant frequency, 2) frequency modulated whistles, 3) broadband
pulses, (4) broadband with varying frequency components, and 5) strong harmonics. The dataset
is balanced: the size of all the “bird” classes varies between 246 and 259; only the class “other” is a
little larger.

• CAT, [37,47] is a dataset that contains ten balanced classes of approximately 300 samples per
class for a total of 2962 samples. The testing protocol is a 10-fold cross-validation. The ten
classes represent the following cat vocalizations: (1) Resting, (2) Warning, (3) Angry, (4) Defense,
(5) Fighting, (6)·Happy, (7) Hunting mind, (8) Mating, (9) Mother call, and (10) Paining. The average
duration of each sample is approximately 4 s. Samples were garnered from such online resources
as Kaggle, Youtube, and Flickr.

In this section, we report experiments aimed at evaluating the proposed system by varying several
components: i.e., the input images (spectrograms or HASC images), the topology of the Siamese
Network (NN1, NN2, NN3, NN4), the clustering algorithm (K-Means, K-Medoids, Hierarchical,
Spectral), the clustering modality (unsupervised or supervised, i.e., clustering on the whole training
set or on each class), and the number of prototypes (kc = 15, 30, 45, 60). For the training of the
Siamese networks in our experiments, we have selected the training options suggested by the MATLAB
framework for Siamese networks. This choice ensures that such values have not been overfitted on the
selected dataset. The binary cross-entropy gives the loss function between the predicted score and
the true label value. The parameters for ADAM optimization are the following: learning rate 0.0001,
gradient decay factor 0.9, squared gradient decay factor 0.99. The number of iterations has been set at
3000 (without any early stop criterion).

In the first experiment, reported in Table 2, only K-means clustering is explored. The results are
obtained from the fusion by sum rule of the four SVMs trained using the dissimilarity spaces built
with different values for kc (15, 30, 45, 60). Performance is reported for only NN1 and NN2 (the first
two network topologies) to reduce the computation time.

The ensembles in Table 2 are obtained by varying the input data (Sp = spectrograms,
HASC = HASC images), the type of clustering (unsupervised or supervised), and the network
topology. The clustering method is fixed to K-means for all the methods, and the number of prototypes
belongs to the following set (15,30,45,60). The column labeled #classifiers recaps the number of classifiers
in the ensemble, and the first column (“Name”) assigns a name to the ensemble.

The best average performance is obtained by the ensemble FA1_2 in the last row (which is the
sum rule of the methods in the first eight rows). On the BIRD dataset, there is a boost in performance
with NN1 and NN2 using the HASC images instead of the spectrograms, while on the CAT dataset,
HASC images boost the performance of NN2 but not NN1.

The goal of the second experiment is to compare the clustering methods. To achieve this aim,
in Table 3, we report the performance of different clustering approaches using the HSup-2 approach
(i.e., HASC images as input, NN2 as network topology, and unsupervised version of the clustering).
The last row reports the ensemble F_Clu obtained as the sum rule among the above four approaches.
F_Clu produces the highest performance, though this gain is only slightly higher than that of K-means.
All the clustering algorithms are quite similar in performance. Since their fusion does not achieve a

http://www.xeno-canto.org/
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clear advantage against a single approach, in the next experiments, we use only the K-means strategy
for clustering by varying the number of prototypes kc.

Table 2. Performance obtained by k-means clustering: accuracy ± standard deviation.

Name Input
Image

Network
Topology

Clustering
Method

Clustering
Type #Prototypes #Classifiers CAT BIRD

Sup-1 Sp NN1 K-means S 15, 30, 45, 60 4 78.64 ± 1.2 92.46 ± 0.71

Sup-2 Sp NN2 K-means S 15, 30, 45, 60 4 76.95 ± 1.3 92.74 ± 0.82

UnS-1 Sp NN1 K-means U 15, 30, 45, 60 4 81.69 ± 1.0 92.73 ± 0.95

UnS-2 Sp NN2 K-means U 15, 30, 45, 60 4 75.25 ± 1.4 92.80 ± 0.78

HSup-1 HASC NN1 K-means S 15, 30, 45, 60 4 78.64 ± 1.2 94.52 ± 0.65

HSup-2 HASC NN2 K-means S 15, 30, 45, 60 4 81.69 ± 0.9 93.22 ± 0.82

HUnS-1 HASC NN1 K-means U 15, 30, 45, 60 4 79.32 ± 1.1 94.53 ± 0.68

HUnS-2 HASC NN2 K-means U 15, 30, 45, 60 4 81.36 ± 1.3 92.97 ± 0.72

FSp-1 Sp NN1 K-means S,U 15, 30, 45, 60 8 81.02 ± 1.0 92.79 ± 0.85

FSp-2 Sp NN2 K-means S,U 15, 30, 45, 60 8 76.95 ± 1.2 92.77 ± 0.76

FA-1 Sp,HASC NN1 K-means S,U 15, 30, 45, 60 16 82.37 ± 0.9 94.50 ± 0.65

FA2 Sp,HASC NN2 K-means S,U 15, 30, 45, 60 16 83.73 ± 0.9 94.11 ± 0.70

FA1_2 Sp,HASC NN1 +
NN2 K-means S,U 15, 30, 45, 60 32 84.41 ± 0.9 94.37 ± 0.62

Table 3. Performance obtained considering different clustering algorithms: accuracy ± standard deviation.

Name Input
Image

Network
Topology

Clustering
Method

Clustering
Type #Prototypes #Classifiers CAT BIRD

HASC NN2 K-means S 15, 30, 45, 60 4 81.69 ± 0.9 93.22 ± 0.82

HASC NN2 K-Med S 15, 30, 45, 60 4 81.02 ± 1.0 92.85 ± 0.85

HASC NN2 Hier S 15, 30, 45, 60 4 81.69 ± 0.9 93.01 ± 0.87

HASC NN2 Spect S 15, 30, 45, 60 4 80.00 ± 1.1 93.13 ± 0.79

F_Clu HASC NN2 All S 15, 30, 45, 60 16 82.03 ± 0.9 93.37 ± 0.75

In Table 4, the four network topologies are coupled with K-means clustering and HSup (i.e., HASC
images as input and the unsupervised version of clustering). The last row, which reports the ensemble
F_NN is obtained as the sum rule among the above four approaches, and it produces the average best
performance on this test.

Table 4. Performance obtained considering different network topologies: accuracy± standard deviation.

Name Input
Image

Network
Topology

Clustering
Method

Clustering
Type #Prototypes #Classifiers CAT BIRD

HASC NN1 K-means S 15, 30, 45, 60 4 78.64 ± 1.2 94.52 ± 0.65

HASC NN2 K-means S 15, 30, 45, 60 4 81.69 ± 1.1 93.22 ± 0.72

HASC NN3 K-means S 15, 30, 45, 60 4 78.64 ± 1.2 94.91 ± 0.64

HASC NN4 K-means S 15, 30, 45, 60 4 82.37 ± 1.1 93.33 ± 0.68

F_NN HASC All K-means S 15, 30, 45, 60 16 84.07 ± 1.0 94.99 ± 0.64

Even better results are obtained by combining by sum rule all the approaches reported in the
previous tables: the combined performance on CAT is 85.76 and on BIRD 95.08. It is clear that the
ensemble strongly outperforms a simple Sup-1. The superiority of one method over another is validated
according to the Wilcoxon signed-rank test [54]; F_NN outperforms each of the other methods with a
p-value of 0.05.

The following experiment is aimed at evaluating the possibility of creating ensembles by varying
some parameters of the method. For a fair comparison among ensembles in Table 5, the performance of
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an ensemble obtained by retraining Siamese HSup-1 (i.e., by using the same approach as that reported
in Table 2) is compared with ensembles obtained by varying the network topology. The results of Table 5
indicate that changing the network topology introduces diversity in the ensemble: the comparison
among ensembles of 4, 8, and 16 networks (see HSup-1x), obtained from the topology NN1, and the
ensembles named F_NN, obtained by varying the topology of the Siamese Network, show an evident
performance gain in favor of the latter (with the same number of classifiers). It is also interesting to
observe the similar results in rows 2 and 3: both ensembles have four networks, but the first is made
simply by retraining the same model, while the second has different numbers of prototypes. Thus,
varying the values of kc is not very important when building an ensemble. For obtaining superior
performance, it is necessary to vary the network topologies.

Table 5. Comparison between ensembles of reiterated Siamese Networks with NN1 and ensembles
obtained considering different network topologies: accuracy ± standard deviation.

Name Input
Image

Network
Topology

Clustering
Method

Clustering
Type #Prototypes #Classifiers CAT BIRD

HSup-1(1) HASC NN1 K-means S 15 1 75.93 ± 1.5 93.92 ± 0.85

HSup-1(4) HASC NN1 K-means S 15 1×4 81.69 ± 1.3 94.50 ± 0.78

HSup-1 HASC NN1 K-means S 15, 30, 45, 60 4×1 78.64 ± 1.2 94.52 ± 0.65

HSup-1(8) HASC NN1 K-means S 15, 30, 45, 60 4×2 80.68 ± 1.1 94.56 ± 0.75

HSup-1(16) HASC NN1 K-means S 15, 30, 45, 60 4×4 81.02 ± 1.0 94.63 ± 0.77

F_NN(4) HASC All K-means S 15 4 83.39 ± 0.9 94.73 ± 0.62

F_NN(8) HASC All K-means S 15, 30 8 84.07 ± 0.8 94.90 ± 0.60

F_NN HASC All K-means S 15, 30, 45, 60 16 84.07 ± 0.8 94.99 ± 0.58

Finally, reported in Table 6 is a comparison between the Siamese networks and standard CNNs
trained with spectrograms. The method labeled eCNN is the fusion among different CNNs (GoogleNet,
VGG16, VGG19, and GoogleNetP365).

Table 6. Performance obtained considering different standard CNN.

Method CAT BIRD

OLD [43] 82.41 92.97
F_NN 84.07 94.99

GoogleNet 82.98 92.41
VGG16 84.07 95.30
VGG19 83.05 95.19

GoogleNetP365 85.15 92.94
eCNN 87.36 95.81

OLD + eCNN 87.76 95.95
F_NN + eCNN 88.47 96.03

From the results reported in the previous tables, the following conclusions can be drawn:

• The best way for building an ensemble of Siamese networks is to combine different
network topologies;

• The proposed F_NN ensemble improves previous methods based on Siamese networks (cf. OLD
in Table 6);

• F_NN obtains a performance that is similar to eCNN on BIRD but lower than eCNN on CAT;
• The best performance in both datasets is gained by sum rule between eCNN and F_NN

(i.e., the fusion among CNNs and the Siamese networks).

As far as the computation requirements are concerned, using a Xeon E5-1603 v4-2.8 GHz-64 GB
Ram, the proposed approach requires a classification time of less than 0.028 s per a batch of 1251
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images in the testing phase, the creation of the test dissimilarity space requires 44.30 s per a batch of
1251 images, and Hasc needs 0.006 s to be performed in a given spectrogram. The training phase for a
training dataset of 1511 images requires 4415 s for a single NN1 training (using a single GPU Titan Xp),
88.60 s for the creation of a single training dissimilarity space, and 0.07 s for the training of a single
SVM. Thus, the time required for testing is near real-time using a powerful server/GPU.

To further validate our approach, we tested it on the ESC-50 benchmark audio classification
dataset. To reduce the computation time, only Sup-1 was tested. It obtained 52% accuracy but needed
a high number of training iterations for network convergence. For the ESC-50 dataset, Sup-1 was
trained for 25,000 epochs rather than for 3000 epochs, as was done for CAT and BIRD. For comparison,
a simple CNN with only 3-layers [55] obtained an accuracy of 54%.

In Table 7, some other state-of-the-art results in the literature are reported on the CAT and BIRD
datasets (using the same testing protocol). As can be observed, the performance of the ensembles
described in this paper approaches those reported in the literature. Note that in Table 7 the results
from [46] are based on a feature selection approach where the number of selected features is the
hyperparameters selected on that dataset.

Table 7. Literature results.

Authors Reference CAT BIRD

Nanni et al. [56] — 96.3
Nanni et al. [2] — 95.1
Zhao et al. [7] — 93.6

Pandeya & Lee. [47] 87.7 —
Pandeya et al. [37] 91.1 —
Pandeya et al. [37]−CNN 90.8 —
Zhang et al. [46] — 96.7

Finally, it is worth noting that for a more fair comparison among acoustic animal classification
works, a deeper experimental evaluation across multiple datasets is needed. The experiments presented
in this paper speak to the robustness of the proposed approach: competitive classification accuracy,
compared to the state-of-the-art in the literature, has been obtained on two datasets including very
different data without any ad-hoc parameter tuning. These results were produced by following a clear
and unambiguous testing protocol. The value of reporting methods across datasets means that the
results reported here can reasonably serve as a baseline for later research comparisons in this area.

6. Conclusions

This work presents a method for classifying animal vocalizations using four Siamese networks
and dissimilarity spaces. Different clustering techniques taking both a supervised and unsupervised
approach were used for dissimilarity space generation. A compact descriptor is obtained by projecting
each pattern into the dissimilarity spaces generated by the clustering methods using different numbers
of centroids and the outputs of the four Siamese networks. The classification step is performed using a
set of SVMs trained from such descriptors and combined by the sum rule to obtain a highly competitive
ensemble as tested on two datasets of animal vocalizations. In addition, experimental results
demonstrated the diversity between the proposed approach and other state-of-the-art approaches can
be exploited in an ensemble to further improve the classification performance. The fusions improved
the performance on both audio classification problems, outperforming the standalone approaches.

Future work in this area will focus on experimentally deriving ensembles using the same
approach. The goal will be to assess the approach proposed here for generalizability across many
sound classification problems, such as those cited in [36,44]. This will involve testing the proposed
method by adding more supervised and unsupervised clustering techniques and additional Siamese
network architectures.
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