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Since the first generation of DNA vaccines was introduced in 1988, remarkable improvements have been made to improve their
efficacy and immunogenicity. Although human clinical trials have shown that delivery of DNA vaccines is well tolerated and safe,
the potency of these vaccines in humans is somewhat less than optimal. The development of a gene-based vaccine that was effective
enough to be approved for clinical use in humans would be one of, if not the most important, advance in vaccines to date. This
paper highlights the literature relating to gene-based vaccines, specifically DNA vaccines, and suggests possible approaches to
boost their performance. In addition, we explore the idea that combining RNA and nanomaterials may hold the key to successful
gene-based vaccines for prevention and treatment of disease.

1. Introduction

Gene-based vaccines have been extensively studied in recent
years in the hope of unlocking their potential as pre-
ventative or therapeutic tools against infectious diseases,
cancer, autoimmune diseases, and other conditions resulting
from molecular defects. An ideal vaccine is safe, highly
immunogenic, nonintegrating, easy to manipulate, stable,
and inexpensive to produce. In addition to these character-
istics, a therapeutic vaccine must not be compromised by
any preexisting immunity of the patient against the vaccine
delivery vehicle [1–5].

Gene-based vaccines approach this ideal and demon-
strate several advantages over conventional vaccines. How-
ever, gene-based vaccines, specifically DNA vaccines, have
produced disappointing results in human clinical trials, sug-
gesting that there is something missing from this puzzle. The
gene-based approach requires a performance boost before
these vaccines will be suitable for the clinic. One approach

may be to explore the benefits of using RNA vaccines rather
than DNA vaccines. This approach raises the issue of stability
and delivery, which in turn suggests potential roles for
nanomaterials as vital components in gene-based vaccines.

Nanomaterials harness the power to act as stabilizing
delivery vehicles for gene-based vaccines. With their small
size and large surface area, nanomaterials have the ability
to deliver a high payload of DNA or RNA [6], thus
increasing the efficacy of gene-based vaccines. Among the
most common nanomaterials studied for vaccine delivery
are metallic and magnetic nanoparticles, nanoliposomes,
and dendrimers [7]. This paper touches on the recent
developments in gene-based vaccines and their advantages in
terms of inducing both a cellular and humoral response. The
idea that RNA, along with nanomaterials, could play a critical
role in the development of the ideal gene-based vaccine
is also discussed, as well as the nanomaterials’ potential
advantage in terms of binding, stabilization, and delivery.
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2. Overview of Current Approaches in Vaccines

Conventional vaccines are composed of recombinant pro-
teins, live-attenuated viruses, purified bacterial or virus
components, or conjugates of proteins with polysaccharide
carriers [3]. These vaccines have a long track record and
have been widely used to eradicate numerous infectious
diseases, such as smallpox, poliomyelitis, and diphtheria [8].
However, conventional vaccines suffer from numerous prob-
lems. For example, recombinant protein vaccines are ex-
tremely costly to produce, often tedious to purify, and do
not effectively induce CD8+ T cells [3, 4]. Conventional
vaccines that employ recombinant viruses have their own
risks, including reversion, inadvertent spread of infection,
insertional mutagenesis, and the induction of autoimmunity
[3–5]. In addition to these risks, there are numerous
diseases for which conventional vaccines are not effective;
alternatively, gene-based vaccines demonstrate tremendous
promise in several of these areas, including cancer [7, 9],
tuberculosis [10, 11], HIV [12], and malaria [13, 14].

3. DNA Vaccines

3.1. Delivery. The concept behind DNA vaccines was devel-
oped by Wolff et al. using reporter genes to show that the
types of cells that are transfected are dependent on the route
and method of delivery [15]. DNA vaccines can be delivered
to cells by several different routes, including, but not limited
to, intramuscular, intraepidermal, intravenous, intranasal,
oral, and subcutaneous delivery [1, 4, 16, 17]. Delivery
methods are numerous and include injection, tattooing,
particle-mediated biolistic bombardment, electroporation,
laser, and ultrasound. Intramuscular injection is the most
common method, which leads predominantly to transfection
of myocytes [4, 15, 17, 18].

In the search for a delivery method that induces a
stronger immune response, much attention has been given to
particle-mediated biolistic bombardment via the gene gun.
For this method, recombinant plasmid DNA, containing the
gene coding for a specific antigen, is affixed to an inert
particle, such as a gold microparticle, and forced into the
target cells by high-pressure gun. Delivery by the gene gun
has been employed in the direct transfection of epidermal
keratinocytes, Langerhans cells, and dendritic cells [19, 20].
Studies performed by Mendez et al. demonstrated that the
DNA vaccine dosage required to induce full protection
in mice challenged with Leishmania major was five times
smaller using the gene gun than subcutaneous or intramus-
cular injection [21]. Interestingly, another study reported
that approximately 100-fold less DNA is required for an
equivalent immune response than that achieved with needle
injection in mice [22]. Both these studies clearly indicate that
the efficacy of DNA vaccines is improved when delivered
by particle-mediated biolistic techniques rather than by
intramuscular injection.

3.2. Mechanism of Action. Although the exact mechanisms
and pathways are still under investigation, DNA vaccines are
believed to be relatively simple tools for transfection, leading

to antigen production with the ultimate goal of an immune
response. The plasmid DNA that encodes the desired antigen
is under the control of a mammalian promoter and can be
produced seamlessly in bacteria [23]. The optimized, desired
gene sequence is delivered by one of several methods, and
the plasmid is transported to the nucleus where it uses
the host’s transcriptional and translational machinery to
produce the desired protein product. Proteases cleave the
protein into peptides, which can be presented subsequently
by the MHC class I molecules to induce the CD8+ T
lymphocytes [3, 4, 24, 25]. The dendritic cells endocytose
then express the antigen via MHC class I and MHC class
II molecules, thereby inducing both the CD4+ and CD8+ T
lymphocyte populations [19, 20]. The major advantage of
this vaccination approach is endogenous expression of the
encoded antigen, resulting in either direct processing of the
protein in an antigen presenting cell or in cross-presentation,
as illustrated in Figure 1 [19–29].

3.3. Potential Issues. The general consensus in the current
literature is that DNA vaccines are considered safe because
they are not living and do not replicate. Yet there are a few
concerns that have been raised, such as the induction of
autoimmunity against the patient’s DNA [23, 30], as well
as undirected integration, which may lead to insertional
mutagenesis by inducing oncogenes or silencing tumor
suppressor genes [16, 31]. During plasmid production,
antibiotic resistance genes are used as a selection tool,
and this use has raised concern that antibiotic resistance
could be transferred to the patient’s enteric bacteria [16,
32]. To eliminate this concern entirely, there are other
selection methods that are available, including auxotrophy
complementation [33], repressor titration [34], and protein-
based antidote/poison selection strategies [35]. Despite these
concerns, DNA vaccines have an impeccable safety record
in preclinical work and clinical trials [16, 23]. It is because
of this record that these potential safety concerns, although
closely monitored, have become secondary to the attempts to
enhance the efficacy and immunogenicity of DNA vaccines.

3.4. Enhancing DNA Vaccines. There are many possible
approaches to enhancing the efficacy and immunogenic-
ity. As previously mentioned, the route and method of
delivery can have a profound effect on the outcome of
vaccination. Codon optimization, promoter sequences, in-
trons, enhancers, polyadenylation signals, and unmethylated
cytosine-guanine dinucleotide (CpG) repeats can be mod-
ified within the plasmid to yield maximum expression of
the protein product [32, 36–41]. Another popular option
is using formulation adjuvants. The most common of these
include proteins, conjugates of small molecules, liposomes,
and micro- and nanoparticles [3, 6, 7]. The answer to the
problem of enhancing the efficacy and immunogenicity of
DNA vaccines likely resides in a novel combined approach.
The goal is to enhance the benefits by an effective delivery
system combined with various adjuvants. Nanomaterials,
which can act as both the delivery vehicle and stabilizing



Journal of Nanotechnology 3

Biolistic bombardment: gold microparticle-mediated
epidermal delivery of plasmid DNA containing a gene
coding for a specific antigen of pathogenic material.
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Figure 1: Basic mechanism of action for DNA vaccines delivered by particle-mediated biolistic bombardment and the resulting immune
response. Using DNA attached to the gold particles provides increased stability and higher payload, and the dosage requirement is
significantly lower than that for intramuscular injection.

adjuvant [7, 42], are likely to play a crucial role and will be
discussed later.

4. RNA Vaccines

4.1. Simplified Mechanism of Action. One major advantage
of RNA vaccines is that the RNA acts in the cytoplasm and
is translated directly to proteins, therefore bypassing nuclear
localization and transcription necessary for DNA vaccines [3,
4]. Just as in DNA vaccines, RNA vaccines activate both the
cellular and humoral pathways of the immune response [42–
52]. Other advantages of RNA are that it is easily degraded
and is rapidly cleared from the tissue, resulting in greater
control of the outcome [47]. This situation is in contrast to
DNA vaccines that carry the risk of insertional mutagenesis,
thus altering the host cell gene expression in an undesirable
and uncontrollable fashion.

A substantial amount of research exists regarding the use
of RNA in diverse forms, including messenger RNA, short
interfering RNA, and splice-site switching oligomers [42–
52], some of which are discussed later in this paper. There
has also been a surge in the interest in double-stranded RNA,

especially polyinosinic:polycytidilic acid, also known as poly
I:C. Poly I:C is a promising adjuvant for vaccines, especially
cancer, since it is a potent immunostimulant and powerful
activator of the toll-like receptor-3 (TLR3) and melanoma
differentiation-associated protein-5 (MDA5) [42, 53].

4.2. Stability in Storage and Delivery. Another widespread
concern is that RNA is too unstable for storage and delivery
to be an effective player in gene therapy. Although RNA is
unstable, new evidence shows that it may be better suited
for vaccines than researchers had originally thought [43, 44].
Just as the difficulties pertaining to RNA stability during
storage are being solved, solutions to problems associated
with stability during delivery are being addressed. Although
a few studies have demonstrated that even unprotected RNA
may be able to induce cytotoxic T lymphocyte responses
in patients [5, 51–55], there are ongoing efforts to stabilize
RNA molecules in order to make delivery more efficient and
enhance the effect.

RNA vaccines avoid many of the potential problems
with DNA vaccines, and they require a less complicated
pathway to exert their effect. RNA vaccines may very well
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be essential to the success of future vaccine strategies for
fighting infectious diseases, cancer, and other conditions
caused by molecular defects. However, just as with DNA
vaccines, there are some difficulties that need to be overcome
before RNA vaccines can be optimized into the ideal gene-
based vaccine. Stability and delivery are the main targets for
optimization, and nanomaterials offer promising candidates
for these targets.

5. Nanomaterials: The Missing
Piece to the Puzzle

The term nanomaterials encompasses a broad and fasci-
nating range of molecules and compounds. However, for
the purposes of this paper, the focus will be on select
nanomaterials with the ability to enhance the delivery and
effect of gene-based vaccines, especially RNA vaccines. Due
to their unique physicochemical properties, nanomaterials
are promising platforms for gene-based vaccines. They offer
many biomedical advantages, including increased stability,
efficient delivery, desirable biodistribution, and specific cell
targeting, just to name a few [53]. The uptake of nano-
materials by cells, specifically cells of the immune system,
is influenced by numerous factors [53, 56–60]. Different
nanomaterials and their distinct characteristics, such as size,
morphology, and surface chemistry, play a role in the specific
internalization pathway, the effect of the nanomaterial on the
cell, and its biodistribution [56–59].

There are numerous approaches and advantages for
nanomaterial-mediated delivery of nucleic acids. Com-
pared to viral delivery systems for gene-based vaccines,
nanomaterial-mediated delivery systems offer a higher pay-
load and greater stabilization potential. Often when nano-
materials are complexed with biomolecules, the result is an
improvement in stability, biocompatibility, and retention of
other desirable characteristics for both the nanoparticle and
the biomolecule [42, 55]. These improvements are important
for delivery into the body where exposure to physiological
fluids, nucleases, and other biological components create
endless obstacles for the nanomaterial:nucleic acid complex
to reach its target.

5.1. Gold Nanoparticles. Like DNA vaccines, RNA can be
affixed onto functionalized gold micro- or nanoparticles
and delivered by particle-mediated biolistic bombardment
[48, 56, 57]. The surface of the gold can be functionalized
with specific tumor targeting agents, which are often a ligand
for a specific receptor on the target cell surface not expressed
on other cells. This targeting agent increases the transfection
efficiency of the vaccine. Qui et al. used the functionalized
gold particle-mediated gene gun to deliver three different
mRNA molecules into several tissue types. Protein expression
from RNA transcripts of the three reporter genes was
detected after in vitro delivery in monolayer and suspension
cell cultures, and in rat liver tissues, mouse liver, and
epidermal tissues after in vivo delivery [48].

Experiments performed by Sandhu et al. indicate that
gold nanoparticles were eight times more efficient at con-
densing and delivering nucleic acid compared to the com-
monly used polyethyleneimine polymer [57]. Protamine, an
arginine-rich protein, can be used in conjunction with the
RNA and gold nanoparticles. Protamine, which is necessary
for DNA condensation in spermatogenesis, also enhances
the stability of the RNA and protects it from degradation
by RNases by condensing the RNA into a nanoparticle. In
addition to its function as a stabilizer for RNA, protamine
is known to be a cell-penetrating molecule and acts as a
strong danger signal to the immune system, activating the
immune response through a MyD-88-dependent pathway
[46]. Delong et al. reported that combining the nucleic
acid: protamine complex with gold nanoparticles forms
a nanocomplex that can be analyzed by dynamic laser
light scattering particle analysis (DLLS), gel shift mobility
assays, and fluorescence [55]. In other work, the researchers
reported that the RNA structure and vaccine bioactivity
were retained even after exposure to physical, chemical, and
thermal degradation. They demonstrated that the biological
activity of the RNA was conserved by using a splice-
site switching assay and delivering siRNA against a key
cancer target, B-Raf [55]. A schematic of the nanocomplex
formation for siRNA delivery is shown in Figure 2. It is
important to note that condensing the RNA with protamine
and attaching it to gold nanoparticles may be useful for
numerous types of RNA, including siRNA, antisense RNA,
and messenger RNA.

5.2. Nanoliposomes. Another common method of stabiliza-
tion is to use liposomes, or nanoliposomes, as protective
carriers of nucleic acids. Liposomes are cationic lipids that
form stable complexes with negatively charged nucleic acids
through electrostatic interactions [49]. The association of
nucleic acids with lipids or polymers results in positively
charged particles small enough for entry through the nega-
tively charged plasma membrane by endocytosis, resulting in
the formation of a double-bilayer vesicle. In the process of
maturation of the endosome into a lysosome, the endosome
may rupture, and the nucleic acid cargo could be released
into the cytoplasm. Translocation to the nucleus might
result in gene expression for DNA [49–51]. In addition
to cellular entry by endocytosis, as illustrated in Figure 3,
nanoliposomes may also fuse with the membrane and unload
their cargo directly into the cytosol.

Changes in the surface charge on nanoliposomes can
improve delivery and cellular uptake. Liposomes themselves
can be immunostimulatory, a characteristic that could
enhance the immunogenicity of the vaccine, or they can be
coated with a polymer, such as derivatives of polyethylene
glycol and others, to prevent recognition by the immune
system [3, 7, 50, 51]. The data suggest that antigen-
presenting cells are better able to sequester nanoliposomes
than larger-sized liposomes. Cationic liposomes are much
more potent in eliciting an immune response than anionic
or neutral liposomes. The surface of the liposome can also be
modified with various ligands to allow targeting to specific
tissues or cells [49, 50].
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Figure 2: Graphical representation of the formation of complexes
between gold nanoparticles, protamine, and siRNA. The cationic
protamine condenses the RNA into nanoparticles, assisting its
stabilization and protecting it from degradation. The protamine:
RNA complexes then bind to the surface of the gold nanoparticle,
which confers more stability and protection.

5.3. Dendrimers. Dendrimers are highly branched syn-
thetic polymers with a high-density positive surface charge.
Polyamidoamine (PAMAM) dendrimers are able to con-
dense nucleic acids into a nanoparticle; such condensation
has been shown to protect them from nuclease degra-
dation [7, 55]. Dendrimers are also known to be cell-
penetrating molecules. There are different generations of
PAMAM dendrimers, and this parameter, along with the
size-to-charge ratio, is important in the formation of stable
nanoparticles [61]. An increase in the PAMAM dendrimer
generation has been correlated to an increase in the delivery
efficiency, yet it is well-known that the higher generation
dendrimers are also cytotoxic [59–65]. The nucleic acid
binding characteristics must be carefully balanced with
the cytotoxicity, often executed by functionalization of the
dendrimer branches. An example of this functionalization is
amine acetylation of PAMAM dendrimers. This acetylation
decreases the interaction of siRNA with the dendrimers,
thereby facilitating the unpackaging of siRNA in target cells.
The increased release of the siRNA cargo from the dendrimer
in the cell leads to an increase in transfection efficiency
[61, 64].

Different generations of PAMAM dendrimers have
been complexed to other nanoparticles to stabilize and
deliver DNA and RNA [61]. Pan et al. complexed mag-
netic nanopartcles to PAMAM dendrimers and antisense
survivin oligonucleotides. Human cells from breast and
liver tumors were incubated with these nanocomplexes
and subsequently, the samples were subjected to analy-
sis by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT), quantitative RT-PCR, Western blot, and
transmission electron microscopy. The results demonstrated
that within 15 minutes, the nanocomplexes had entered the
tumor cells and significant downregulation of the targeted
survivin gene and its protein product were observed. The
authors reported in addition that cell proliferation was
inhibited in a dose-dependent and time-dependent manner
[61].

5.4. Nanomaterials and Nanotoxicity. Nanomaterials can
have very different physicochemical properties compared
with bulk materials of the same chemical composition. Some
of these properties (small size, large surface area, etc.) that
make nanomaterials desirable for biomedical use also gen-
erate potential risks for cytotoxicity. Results from numerous
experiments with various nanomaterials suggest that size,
surface area, morphology, surface chemistry, and chemical
composition are the major determinants of nanomaterial
uptake and cytotoxicity [54, 56–65, 67, 68]. Just like many
other nanosciences, the study of nanotoxicity has become
an area of intense focus; however, researchers are still trying
to develop an improved understanding of the pathways and
mechanisms involved.

Experiments performed by Kroll et al. [62] demonstrated
the influence of physicochemical properties on cytotoxicity
by using different groups of engineered nanoparticles with
the same chemical composition. For example, some of the
samples used were prepared using identical particle prepa-
rations, but one sample was dispersed at a different pH.
Other samples varied in their surface area, particle size, or
surface chemistry. The researchers used three in vitro assays
on ten different cell lines to monitor different stages of
cytotoxicity: oxidative stress, cellular metabolic activity, and
cell death. The outcome of this study, although too extensive
to elaborate here, confirms that in vitro toxicity cannot be
linked to a single, specific physicochemical property of the
nanomaterial. Kroll et al. suggest that the response is due
to the combined effects of the size, morphology, surface
chemistry, and chemical composition of the nanomaterial,
yet the effects are also cell-type dependent, and the results
vary depending on the endpoint used to measure toxicity.

Because dendrimers have enormous potential as delivery
vehicles for therapeutic nucleic acids, it is important to
harness that potential while still balancing the cytotoxic
effects. There are numerous approaches to reducing the
cytotoxicity while maintaining optimal function, including
binding hydrophilic polymers to the outermost branches of
the dendrimers, creating half-generation dendrimers, and
modifying some of the cationic amine groups to neutralize
them [59–65].
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Table 1: Summary of current data and future direction for gene-based vaccines.

DNA Vaccines [1–42, 66] RNA Vaccines [5, 42–55]
Future Direction: RNA and Nano-
materials [6, 53, 55–65, 67–77]

Design

Relatively easy, inexpensive, and
quick to construct. Easy to
manipulate. Does not require cold
chain.

Relatively easy, inexpensive, and quick to
construct. Can be produced in large
amounts in vitro from DNA template.

Functionalized nanomaterials can
be conjugated to further stabilize
RNA and to increase penetration.

Delivery

IM injection is most common, but
often requires prime/boost. Biolistic
bombardment with DNA-coated
gold microparticles is currently
most efficient. Needle-free delivery
via Bioinjector.

Currently, there is no standard delivery
method; IM injection is most common.
Liposome carriers can also be used.

Gene gun delivery of RNA conju-
gated with dendrimers and various
nanoparticles as stabilizing delivery
vehicles.

Stability
Generally stable at room
temperature. Long shelf life.

Unstable for storage unless oxidation,
hydrolysis, and contact with nucleases are
prevented. Quickly degraded in
physiological fluid, although studies show
unprotected RNA can induce immune
response.

Complexing the RNA with multi-
ple nanomaterials can have a com-
pounding effect to increase stability
for storage and delivery.

Safety

Considered relatively safe, though
there is theoretical risk of
insertional mutagenesis after
integration, induction of
autoimmunity, and transfer of
antibiotic resistance.

Rapidly cleared from tissue and does not
need to enter nucleus; therefore, there is
no risk of insertional mutagenesis after
integration, induction of autoimmunity,
or transfer of antibiotic resistance.

Continue researching the effect of
shape, size, and surface chemistry on
biocompatibility and cellular inter-
actions of various nanomaterials.

Immunogenicity

Activate both cellular and humoral
pathways. Poor result in human
clinical trials. Must be transported
to the nucleus in order to exert
biological effect.

Activate both cellular and humoral
pathways. No need to cross nuclear
membrane to exert its biological effect.
No need to be replicated or transcribed.

Complex RNA to nanomaterials that
recognize and target specific cells.
Continue research on nanomaterials
that penetrate the cell membrane
with adverse cellular effects.

Gold nanoparticles are generally considered safe and
biocompatible [68–72]. Studies performed by Chithrani et
al. indicate that 50 nm spheres of citric acid ligand-stabilized
gold nanoparticles are endocytosed by HeLa cells more
rapidly than 14 nm and 74 nm spheres [68]. Goodman et
al. studied cationic and anionic gold nanoparticles and
determined that the cationic particles exhibit moderate
toxicity, while anionic gold particles were nontoxic [69].
The researchers suggested that the mechanism for toxicity
was related to the initial electrostatic binding of the cationic
particles to the negatively charged cell membrane, while the
anionic particles were repelled from the cell surface, thereby
reducing the toxicity. In experiments studying the effect of
the morphology of gold nanoparticles on uptake and toxicity,
again executed by Chithrani et al., it was determined that

nanorods and nanospheres are both taken up by HeLa cells,
although nanorods were taken up at a much slower rate
[70]. Other nanomaterials, such as iron oxide [73, 74], zinc
oxide [75–77], silicon dioxide [78, 79], quantum dots [80],
and many more are under investigation for their potential as
biocompatible gene-delivery vehicles.

6. Summary

In summary, the search for an ideal vaccine has led to gene-
based approaches because they have numerous advantages
over conventional vaccines. The fundamental advantage of
gene-based vaccines is that they induce both the cellular
and humoral pathways of the immune system, a capability
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that conventional vaccines have been unable to achieve. The
problems with the performance of DNA vaccines have given
rise to the idea of using various forms of RNA in place of
DNA. Although RNA offers definite advantages over DNA
for use in vaccines, this approach generates new questions
relating to RNA stability for storage and delivery. Many of
the concerns about RNA stability have been addressed, and
using nanomaterials as stabilizing delivery vehicles could be
essential to the solution of these issues. Table 1 summarizes
the current advantages and challenges not only of DNA
and RNA vaccines, but also of RNA vaccines enhanced with
nanomaterials, which we see as the future of gene-based
vaccines.

7. Conclusion

On the horizon, nanomaterials may tip the balance and
finally be able to deliver on the promise of gene vaccines and
achieve a beneficial change in the proteome. RNA vaccines,
which can be robustly translated into protein antigens
that can more effectively elicit an immunotherapeutic Th1
and Th2 response, represent a powerful and promising
solution for cancer and infectious diseases that have eluded
cures so far. Critical to this solution will be identifying
nanomaterials that permit RNA entry into cells, bypassing
the cell membrane while at the same time protecting the
RNA from many nucleases that can destroy it. This route
could potentially enable a more prolonged and sustained
expression of the encoded proteins, and hence, weighing in
more heavily on the overall proteomic pattern on the key
cells of the immune system. With further work, it may be
possible to construct RNA nanoconjugates having these key
capabilities built into them.

At present, there is a massive effort to identify nanoma-
terials that, while providing the above advantages, elicit the
desired alterations in the cellular proteome, but which do
not have untoward, off-target, or other undesirable effects.
The proteome is complex and our understanding of how it
can be modulated selectively is evolving. The effects of these
bionanoconjugates on the binding, stabilization, and delivery
of DNA and RNA vaccines, in addition to how these novel
bionanomaterials “tip the proteome” is perhaps one of the
critical scientific questions of the 21st century.
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