Site-directed mutagenesis of P$_{2U}$ purinoceptors: Positively charged amino acids in transmembrane helices 6 and 7 affect agonist potency and specificity

Laurie Erb
Richard C. Garrad
Yanjun Wang
Tom Quinn
John T. Turner

See next page for additional authors

Follow this and additional works at: https://bearworks.missouristate.edu/articles-chhs

Recommended Citation

This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact BearWorks@library.missouristate.edu.
Site-directed Mutagenesis of P$_{2U}$ Purinoceptors

POSITIVELY CHARGED AMINO ACIDS IN TRANSMEMBRANE HELICES 6 AND 7 AFFECT AGONIST POTENCY AND SPECIFICITY*

(Received for publication, November 9, 1994, and in revised form, December 23, 1994)

Laurie Erb, Richard Garrad§§, Yanjun Wang, Tom Quinn, John T. Turner, and Gary A. Weisman
From the Departments of Biochemistry and Pharmacology, University of Missouri, Columbia, Missouri 65212

Two subtypes of G protein-coupled receptors for nucleotides (P$_{2U}$ and P$_{2Y}$ purinoceptors) contain several conserved positively charged amino acids in the third, sixth, and seventh putative transmembrane helices (TMHs). Since the fully ionized form of nucleotides has been shown to be an activating ligand for both P$_{2U}$ and P$_{2Y}$ purinoceptors (P$_{2U}$R and P$_{2Y}$R), we postulated that some of these positively charged amino acids are involved in binding of the negatively charged phosphate groups of nucleotides. To investigate the role of the conserved positively charged amino acids in purinoceptor function, a series of mutant P$_{2U}$R cDNAs were constructed so that lysine 107 and arginine 110 in TMH 3, histidine 262 and arginine 265 in TMH 6, and arginine 292 in TMH 7 were changed to the neutral amino acid leucine or isoleucine. The mutated P$_{2U}$R cDNAs were stably expressed in 1321N1 astrocytoma cells and receptor activity was monitored by quantitating changes in the concentration of intracellular Ca$^{2+}$ upon stimulation with full (ATP, UTP) or partial (ADP, UDP) P$_{2U}$R agonists. Neutralization of His262, Arg265, or Arg292 caused a 100–850-fold decrease in the potency of ATP and UTP relative to the unmutated P$_{2U}$R and rendered UDP ineffective. In contrast, neutralization of Lys107 or Arg110 did not alter the agonist potency or specificity of the P$_{2U}$R. Neutralization of Lys262 in the P$_{2U}$R, which is expressed as a glutamine residue in the P$_{2Y}$ subtype, did not alter receptor activity; however, a conservative change from lysine to arginine at this position altered the rank order of agonist potency so that ADP and UDP were approximately 100-fold more potent than ATP and UTP. A three-dimensional model of the P$_{2U}$R indicates the feasibility of His262, Arg265, and Arg292 interactions with the phosphate groups of nucleotides.

The cDNAs encoding two subtypes of G protein-coupled receptors (GPCRs) for extracellular nucleotides have been isolated (1–4) and, based upon the similarities of the predicted amino acid sequences, these nucleotide receptors apparently form a new subset within the GPCR superfamily (5). These receptors, known as P$_{2U}$ purinoceptors and recently renamed P$_{2Y}$ purinoceptors (6), are linked predominantly via the G$_1$G$_{12}$ and G$_2$G$_{13}$ families of G proteins to the inhibition of adenyl cyclase or the mobilization of intracellular calcium (7, 8). Physiological processes involving G protein-coupled P$_{2U}$ purinoceptors include platelet aggregation and wound healing (9), insulin secretion (10), mitogenesis (11), vasodilation (12, 13), and epithelial ion transport (14, 15), making these receptors an intriguing target for pharmacotherapy. For example, clinical studies in cystic fibrosis patients indicate that local delivery of ATP or UTP to lung epithelia stimulates chloride secretion and promotes mucus hydration (16), presumably by activating the P$_{2U}$ subtype of purinoceptors. Unfortunately, the lack of stable, selective agonists and antagonists for the various P$_{2}$ purinoreceptor subtypes has hindered further development of therapeutic applications centered around these receptor molecules. The work described in this paper used site-directed mutagenesis to investigate amino acid residues involved in determining the agonist potency and specificity of the P$_{2U}$R, an important step in the process of rational drug design.

EXPERIMENTAL PROCEDURES

Materials—Pfu DNA polymerase was purchased from Stratagene (La Jolla, CA). G418 (Geneticin) was purchased from Life Technologies, Inc. Human astrocytoma (1321N1) cells were obtained from M. L. Toews (University of Nebraska, Omaha, NE), and a clonal line that was not responsive to extracellular nucleotides was selected. cDNA encoding the murine P$_{2U}$R was provided by K. D. Lustig and D. Julius (University of California, San Francisco). Site-directed Mutagenesis of P$_{2U}$R cDNA—Point mutations in the murine P$_{2U}$R cDNA were made by using enzymatic inverse polymerase chain reaction as described previously (17). The class 2α restriction enzyme used was BstII (New England Biolabs, Beverly, MA). To reduce the amount of DNA sequencing necessary to confirm the mutation within the cDNA, an approximately 1-kilobase pair BstEI/AIII fragment containing the point mutation was removed and used to replace a similar fragment in the wild type receptor cDNA. All mutations were verified by double-stranded dideoxy sequencing (18).

Receptor Expression in Mammalian Cells—To generate stable transfectants expressing the mutant P$_{2U}$Rs, a 2.4-kilobase pair HindIII/NorI fragment encompassing nearly the entire receptor cDNA was excised from each mutant construct in the pBluescript vector and subcloned into the mammalian expression vector pBluescript CMV (Invitrogen, San Diego, CA). 1321N1 cells were stably transfected with the wild type or mutant pBluescript CMV-P$_{2U}$R (7). Transfected 1321N1 cells were selected in growth medium (Dulbecco’s modified Eagle’s medium, 5% fetal bovine serum, 1000 units/ml penicillin, and 100 µg/ml streptomycin) containing 500 µg/ml G418 and maintained in growth medium containing 100 µg/ml G418 at 37 °C in a humidified atmosphere of 5% CO$_2$ and 95% air. Clonal cell lines were isolated and assayed for P$_{2U}$R activity by quantitating changes in the concentration of cytoplasmic free calcium within the eDNA, an approximately 1-kilobase pair BstEI/AIII fragment containing the point mutation was removed and used to replace a similar fragment in the wild type receptor cDNA. All mutations were verified by double-stranded dideoxy sequencing (18).

The abbreviations used are: GPCR, G protein-coupled receptor; P$_{2U}$R, P$_{2U}$ purinoceptor; TMH, transmembrane helix.
P_{2U} Purinoceptor Mutagenesis

RESULTS AND DISCUSSION

The ligand binding sites of most GPCRs, with the possible exception of the glycoprotein and peptide hormone receptors, appear to be located in the transmembrane α-helical regions (22, 23). With this in mind and since the fully ionized form of nucleotides has been shown to be an agonist for both P_{2U} and P_{2Y} purinoceptors (19, 24, 25), we postulated that several of the positively charged amino acids in the putative transmembrane helices of G protein-coupled purinoceptors that are conserved between the P_{2U} and P_{2Y} subtypes may be responsible for binding the negatively charged phosphate groups of the nucleotide ligands.

Sequence alignment of the murine P_{2u}R, human P_{2u}R, chick P_{2y}R, and bovine A₁ adenosine receptor. Amino acids that form the third, sixth, and seventh TMHs are shown. Altered amino acids are underlined, and the position within the murine receptor sequence is indicated above each mutated residue. Hydropathicity analysis and two-dimensional modeling of the P_{2u}R indicated that the altered amino acids are located near the plasma membrane-extracellular interface.

Calcium Measurements—([Ca²⁺])_i was measured by dual excitation spectrofluorimetric analysis of cell suspensions loaded with fura-2 as described previously (19, 20) and assayed in 10 mM HEPES-buffered saline (pH 7.4) containing 1 mM CaCl₂ and 1 mM MgCl₂ unless indicated otherwise. Concentration response data were analyzed with the Prism curve-fitting program (GraphPAD, San Diego, CA).

Molecular Modeling—Construction of the P_{2u}R three-dimensional model was based on the following five criteria used to model neurotransmitter GPCRs (21). 1) Hydropathicity analysis and sequence alignment with highly conserved amino acids in other GPCRs were used to select regions of the receptor as probable transmembrane α-helices. 2) A model for bacteriorhodopsin based on high resolution electron cryomicroscopy was used as a template to position the sixth and seventh anti-parallel α-helices of the murine P_{2u}R. 3) The helices were oriented so that highly conserved residues and charged residues faced the central cleft of the receptor, as is the case for bacteriorhodopsin. 4) The peptide backbone dihedral angles, ϕ and ψ, were −63.0° and −45.3°, respectively, which is consistent for α-helices in a hydrophobic environment. 5) Energy minimalization was performed by using the Kollmann force field analysis in SYBYL (TRIPOS, St. Louis, MO) to optimize the packing of the model.

Purinoceptor Mutagenesis

To investigate the role of the conserved positively charged amino acids in nucleotide receptor function, we constructed a series of mutant cDNAs that encode P_{2u}Rs with single amino acid substitutions. Concentration response curves generated for the wild type and mutant P_{2u}Rs expressed in 1321N1 cells indicate that His²⁶², Arg²⁶⁵, and Arg²⁸⁹ are important for establishing the agonist potency and specificity of the P_{2u}R. Neutralization of His²⁶², Arg²⁶⁵, or Arg²⁸⁹ by substitution with the uncharged amino acid leucine in each case caused a 100–850-fold decrease in the potency of ATP and UTP without decreasing the efficacy of these ligands relative to the wild type receptor (Fig. 2). ADP and UDP, which are partial agonists of the wild type P_{2u}R (Fig. 2), were ineffective agonists of the His²⁶², Arg²⁶⁵, and Arg²⁸⁹ mutants at concentrations as high as 3 μM (Fig. 2). Neutralization of a nonconserved positively charged residue in TMH 7 (Lys²⁸⁹→Leu) as well as the 2 conserved positively charged residues in TMH 3 (Lys¹⁰⁷→Ile and Arg¹¹⁰→Leu) had little effect on the agonist potency or specificity of the P_{2u}R (Fig. 2), indicating that these residues are not critical for receptor activation.

Previous studies with the P_{2u}R in murine macrophages suggest that this receptor is activated by both ATP^{2−} and MgATP^{2−} but that ATP^{2−} is 10 times more potent than MgATP^{2−} (apparent K_{0.5} values were 0.65 μM and 6.5 μM, respectively).
Table I

<table>
<thead>
<tr>
<th>Divalent cations</th>
<th>EC50 values (μM)</th>
<th>Slope factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type P2UR</td>
<td>0.05 ± 0.13</td>
<td>1.00 ± 0.15</td>
</tr>
<tr>
<td>His289 → Leu</td>
<td>11.7 ± 1.0</td>
<td>105 ± 20</td>
</tr>
<tr>
<td>Arg265 → Arg292</td>
<td>21.7 ± 0.25</td>
<td>851 ± 160</td>
</tr>
</tbody>
</table>

The values are derived from concentration response curves as described in Fig. 2 and are generated from cells incubated in the presence (+) or absence (-) of 1 mM CaCl2 and 1 mM MgCl2. EDTA (0.1 μM) was added to the media of cells incubated in the absence of divalent cations. The data represent the mean ± S.E. of three experiments.

by 4- and 7-fold, respectively, whereas the potencies of ATP and UTP were decreased by 300- and 26-fold, respectively, for the Lys289 → Arg mutants. The efficacy of all four ligands, however, was reduced compared to the wild type receptor (Fig. 2), which could be due to a change in the receptor's tertiary structure introduced by the Lys289 → Arg mutation or a low expression level of this mutant receptor. Nonetheless, the altered rank order of agonist potency of the Lys289 → Arg mutant cannot be explained by a low level of receptor expression and strongly suggests that this conservative mutation affects ligand binding and not a subsequent step in the signaling pathway.

Interestingly, Lys289, which is conserved in the human and murine P2UR homologs, is instead the neutral amino acid glutamine in the chick P2yR (Fig. 1). Assuming that the phosphate docking site in these nucleotide receptor subtypes is the same, this could explain why neutralization of Lys289 in the P2yR did not alter receptor activity and suggests that the Lys289 residue is not directly involved in ligand binding. However, the finding that the Lys289 → Arg mutation altered the rank order of agonist potency of the P2yR could suggest that Lys289 is positioned close enough to the ligand binding pocket so that substitution of this residue with the slightly larger arginine residue is able to interfere with normal ligand binding.

Molecular modeling of the P2UR sixth and seventh transmembrane a-helical regions indicated the feasibility of His262, Arg265, and Arg292 interactions with the negatively charged phosphate residues of ATP (Fig. 3). Although ligand binding could not be directly demonstrated in this paper, due to the lack of a reliable assay, the finding that neutralization of His262, Arg265, and Arg292 decreased the potency but not the efficacy of ATP and UTP suggests that ligand binding is being affected. Furthermore, the observation that the agonist potency of both ATP and UTP were affected equally by these mutations supports the hypothesis that His262, Arg265, and Arg292 interact with the phosphate residues rather than the purine or pyrimidine group of these nucleotide ligands. Unlike the P2yR purinoceptor subtype, the P2y subtype is not activated by the pyrimidine nucleotides UDP or UTP. Further mutagenesis studies as well as the creation of P2y/P2y chimeric receptors should help to delineate which regions of these nucleotide receptors are responsible for selectivity of the nucleoside group.

Acknowledgments—We thank J. Oertel and J. M. Camden for valuable technical assistance and R. K. Hoover, E. Petekskaya, D. M. Sullivan, and M. van Rhee for advice and discussion.

REFERENCES

P2UR Purinoceptor Mutagenesis

4187

Fig. 3. Molecular model of the P2UR sixth and seventh TMHs showing the putative ATP binding site. Shown is a space-filling model of amino acid residues (highlighted in fuchsia) that are thought to interact with the negatively charged phosphate residues of ATP. The viewing direction is in the plane of the plasma membrane and within the central cleft of the receptor. ATP is colored by atom types: white, carbon; red, oxygen; orange, phosphorus; dark blue, nitrogen; light blue, hydrogen.
Purinoceptor Mutagenesis