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ABSTRACT
Soft-sediment deformational structures associated with paleoseismicity (e.g., planar clastic 

dikes) exist within Upper Cretaceous Mesaverde Group strata in the Laramide Elk Basin an-
ticline, northern Bighorn Basin (Wyoming, USA). Retrodeformation of the Elk Basin anticline 
to a horizontal Mesaverde Group position indicates that all basement offset is removed and 
that clastic dikes exhibit a dominant northeast trend. The trend of clastic dikes corresponds to 
the interpreted northeast-southwest direction of early Laramide layer-parallel shortening, sug-
gesting that the development of clastic dikes recorded initiation of basement deformation and 
Laramide tectonism. To determine the timing of clastic dike development, we present zircon U-Pb 
geochronology from the stratigraphically lowest sand-source bed generating upwardly injected 
clastic dikes and a volcanic bentonite bed (Ardmore bentonite) above the stratigraphic interval 
containing clastic dikes. Weighted mean ages bracket clastic dike development between 82.4 and 
78.0 Ma. Our results imply initiation of basement deformation ∼8–15 m.y. prior than other esti-
mates in the Bighorn Basin. Therefore, we interpret the development of clastic dikes in the Elk 
Basin anticline to represent an initial phase of Laramide tectonism associated with an applied 
end load stress transmitted from the southwestern North American plate margin in response to 
the collision of the conjugate Shatsky Rise oceanic plateau ca. 90–85 Ma. Results demonstrate 
how sedimentary responses in the foreland can be used to understand tectonic processes at plate 
boundaries and provide spatial-temporal parameters for models of Laramide deformation.

INTRODUCTION
Late Cretaceous through Eocene Laramide-

style (basement-involved) deformation occurred 
east of the Sevier thrust front in the western United 
States Cordillera (Fig. 1A; Dickinson and Sny-
der, 1978; DeCelles, 2004; English and John-
ston, 2004; Yonkee and Weil, 2015). Spatial and 
temporal observations of Laramide deformation 
continue to motivate geodynamic models aimed at 
understanding the driving forces and mechanisms 
for intraplate tectonism. The onset and duration 
of Laramide deformation are temporally brack-
eted by the transition from marine to nonmarine 
sedimentation (Dickinson et al., 1988; Raynolds, 
2003; Cather, 2004), crosscutting structural and 
stratigraphic relationships (Wiltschko and Dorr, 

1983; Stone, 1993; Hoy and Ridgway, 1997; 
Cather, 2004; Tindall et al., 2010), basin subsid-
ence (Mitrovica et al., 1989; Lawton, 1994; Heller 
et al., 2003; Leary et al., 2015), lulls in magmat-
ic activity (Dickinson and Snyder, 1978; Hum-
phreys, 2009), deposition of synorogenic strata 
(DeCelles et al., 1991), exhumation of basement 
arches (Omar et al., 1994; Crowley et al., 2002; 
Peyton et al., 2012), and paleoelevation estimates 
(Fan and Carrapa, 2014; Fan et al., 2014).

To describe these spatial and temporal rela-
tionships, models propose basal friction (e.g., 
Bird; 1998; Yonkee and Weil, 2015; Behr and 
Smith, 2016; Copeland et al., 2017), hydrody-
namic stresses and flow in the asthenosphere 
(e.g., Liu et al., 2008; Jones et al., 2011; Heller 

and Liu, 2016), and plate-margin end load stress-
es (e.g., Livaccari and Perry, 1993; Erslev, 1993; 
Tikoff and Maxson, 2001; Axen et al., 2018) 
as driving forces of Laramide tectonism. While 
models vary in methods and interpretations, flat-
slab subduction of the Farallon plate is common-
ly required as a principal mechanism. Flattening 
of the Farallon plate beneath the North American 
lithosphere commenced at ca. 90–85 Ma, pre-
sumably in response to the arrival and subduc-
tion of a buoyant oceanic plateau, which was 
a conjugate feature to the Shatsky Rise in the 
modern western Pacific Ocean (Saleeby, 2003; 
Liu et al., 2010). Numerical models by Axen 
et al. (2018) show that an applied end load along 
the plate margin associated with the collision of 
the conjugate Shatsky Rise would have resulted 
in a compressional stress state in the overriding 
North American lithosphere, thereby promoting 
the development of Laramide tectonism. How-
ever, it remains unclear how the application of 
an end load stress would be recorded in the rock 
record and, if so, how the end load stress would 
be distributed throughout the Laramide belt.

Soft-sediment deformational structures form 
in response to natural processes such as rapid 
sedimentation and paleoseismicity (Obermeier, 
1996; Audemard and Michetti, 2011; Owen and 
Moretti, 2011). Paleoseismites, defined as pre-
Neogene soft-sediment deformational structures 
associated with paleoseismicity, record syndepo-
sitional tectonism prior to lithification and the 
onset of major orogenic events (Winslow, 1983; 
Bartholomew et al., 2002; Stewart et al., 2002; 
Bartholomew and Whitaker, 2010). Upper Cre-
taceous through Eocene strata in the northern 
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Bighorn Basin (Wyoming, USA) contain paleo-
seismites that are interpreted to record Laramide 
deformation in the region (Bartholomew et al., 
2008; Stewart et al., 2008; Jackson et al., 2016). 
Thus, the objective of this study was to bracket 
the timing of paleoseismite development in the 
northern Bighorn Basin in order to evaluate the 
spatial-temporal evolution of Laramide deforma-
tion as it relates to an applied end load stress. We 
present field observations and structural analy-
sis of paleoseismites coupled with zircon U-Pb 
geochronology from Mesaverde Group strata in 
the Elk Basin anticline, northern Bighorn Basin.

ELK BASIN ANTICLINE
The Elk Basin anticline (Fig. 1B) is a north-

west-southeast–trending fault-propagation fold 
structure (McCabe, 1948; Engelder et al., 1997). 
Beneath the anticline, the Elk Basin thrust fault 
displaces Wyoming Province basement rock 
∼1900 m to the northeast, with net slip dissipat-
ing toward the surface (Stone, 1993). The Elk Ba-
sin anticline is erosionally breached, exposing an 
∼250-m-thick sequence of Mesaverde Group stra-
ta (Fig. 1B). Mesaverde Group strata represent a 
progradational sequence of marine, shallow-ma-
rine, and nonmarine deposits along the western 
margin of the Cretaceous Interior Seaway (Swift 
and Rice, 1984; Fitzsimmons and Johnson, 2000; 
Swift et al., 2008). At the Elk Basin anticline, 
the Mesaverde Group is subdivided from old-
est to youngest into the Telegraph Creek, Eagle, 
Claggett, and Judith River Formations (Fig. 1B). 

Mesaverde Group strata are assigned Campan-
ian ages based on ammonite biostratigraphy (Gill 
et al., 1972), paleomagnetic analysis (Hicks et al., 
1995), and the age of the Ardmore bentonite bed 
(Hicks et al., 1999), a regionally correlatable unit 
located stratigraphically in the middle part of the 
Mesaverde Group (Bertog et al., 2007).

PALEOSEISMITES
Soft-sediment deformational structures in 

the form of clastic dikes, convolute bedding, and 
overturned subvertical vents (i.e., modern pipe 
features) are present within Mesaverde Group 
strata in the Elk Basin anticline (Bartholomew 
et al., 2008). We focused on clastic dike devel-
opment for tectonic interpretations and to define 
the term paleoseismite because they provide the 
most direct evidence of soft-sediment deforma-
tional structures associated with seismic shak-
ing (e.g., Tuttle and Seeber, 1991; Obermeier, 
1996; Bourgeois and Johnson, 2001; Stewart 
et al., 2002). In the Elk Basin anticline, the Eagle 
Formation contains 71 outcrops with 145 clas-
tic dike segments. Clastic dikes exhibit planar 
shapes (Figs. 2A–2C), tend to taper upward 
and/or terminate at the base of the overlying 
sandstone (Fig. 2D), and contain en echelon 
segments (Fig. 2E), indicating that they were 
injected along preexisting, mixed-mode (open-
ing and shear) fracture avenues (Jackson et al., 
2016). When the Elk Basin thrust fault is retro-
deformed to a horizontal Mesaverde Group, a 
requirement for the generation of soft-sediment 

deformational structures (e.g., Obermeier et al., 
2002), all basement displacement is removed 
(Jackson et al., 2016). The unfolded strike of 
clastic dikes indicates a prominent northeast 
trend (Fig. 2F), which is compatible with inter-
preted early Laramide layer-parallel shortening 
directions in the Bighorn Basin and central Wyo-
ming (e.g., Weil and Yonkee, 2012). Together, 
these observations suggest that the clastic dikes 
(paleoseismites) recorded seismic shaking as-
sociated with initial displacement of basement 
rock beneath the Elk Basin anticline.

GEOCHRONOLOGY
We dated the stratigraphically lowest sand-

source bed in the Mesaverde Group (Eagle For-
mation) that produced upwardly injected clastic 
dikes (sample 18EB01) and a volcanic bentonite 
deposit (sample 18EB03) in the Claggett Forma-
tion (Fig. 1B). Zircon grains were separated and 
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Figure 1.  (A) Spatial distribution of Laramide arches and basins throughout western United 
States Cordillera, adapted from Heller and Liu (2016). Location of Elk Basin anticline (EBA) is 
denoted in northern Bighorn Basin (Wyoming, USA). A-A′ line corresponds to section A-A′ in 
Figure 4. BH—Black Hills; BHB—Bighorn Basin; BM—Bighorn Mountains; BWA—Beartooth, 
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Green River Basin; HB—Hanna Basin; HM—Hogback monocline; KP—Kaiparowits Plateau; 
KU—Kaibab uplift; LR—Laramie Range; MU—Monument upwarp; OC—Owl Creek Mountains; 
PB—Piceance Creek Basin; PR—Park Range; PRB—Powder River Basin; R—Rock Springs 
uplift; RB—Raton Basin; SJB—San Juan Basin; SJU—San Juan uplift; SLU—San Luis uplift; 
SR—Sawatch Range; SRS—San Rafael Swell; UB—Uinta Basin; UM—Uinta uplift; UU—Uncom-
pahgre uplift; WR—Wind River Range; WRB—Wind River Basin; WRP—White River Plateau. 
(B) Geologic map and generalized stratigraphic column of Elk Basin anticline with distribution 
of clastic dikes (stars) and locations of zircon U-Pb samples (diamonds). Geologic map and 
stratigraphic column adapted from Jackson et al. (2016) and Engelder et al. (1997), respectively.
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Figure 2.  (A–E) Examples of clastic dikes in 
Elk Basin anticline (Wyoming, USA). Scale 
bar = 0.92 m. (F) Stereographic plot illustrating 
clastic dike measurements. Dots represent 
poles to bedding with corresponding 2σ con-
touring. Rose diagram demonstrates strike 
of unfolded clastic dikes corresponding to 
early Laramide layer-parallel shortening (LPS; 
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Wyoming (e.g., Weil and Yonkee, 2012).
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mounted using standard mineral extraction meth-
ods at Missouri State University (Springfield, Mis-
souri, USA), and U-Pb analyses were conducted 
by laser ablation–inductively coupled plasma–
mass spectrometry (LA-ICP-MS) at the University 
of Arkansas (Fayetteville, Arkansas) and Rutgers 
University (New Brunswick, New Jersey) (Table 
DR2 in the GSA Data Repository1). Analyses that 
yielded discordant results (>30% discordant or 
10% reverse discordant) or high U (>2000 ppm) 
were excluded. Reported ages for each sample are 
based on a weighted mean average of the young-
est age population, which we defined as all grains 
within 2σ uncertainty of the youngest grain. Eight 
grains from sample 18EB01 were used to deter-
mine the weighted mean average of 81.0 ± 1.4 Ma 
(Fig. 3). Four grains from sample 18EB03 were 
used to determine the weighted mean average of 
81.3 ± 3.3 Ma (Fig. 3).

Because the bentonite bed represents a vol-
canic deposit, we interpreted the weighted mean 
average for sample 18EB03 as an approxima-
tion of the true depositional age of that bed. The 
stratigraphic position of the bentonite bed above 
the clastic dike interval in the Mesaverde Group 
establishes the upper age bound for paleoseis-
mite development in the Elk Basin anticline. This 
bentonite bed, regionally referred to as the Ard-
more bentonite, is 80.04 ± 0.40 Ma based on Ar/
Ar dating of biotite grains (Hicks et al., 1999). 

Obradovich (1993) and Hicks et al. (1995) dat-
ed the Ardmore bentonite bed in the Elk Basin 
anticline using Ar/Ar to 80.54 ± 0.55 Ma and 
80.71 ± 0.55 Ma, respectively. Our weighted 
mean average is within error of all three age de-
terminations for the Ardmore bentonite. Because 
the clastic dikes originated from the sand-source 
bed, we interpret the weighted mean average for 
sample 18EB01 as the lower age bound for paleo-
seismite development. Both of our detrital U-Pb 
age determinations correspond to regional ammo-
nite zones (Baculites obtusus) and paleomagnetic 
results for the Mesaverde Group in the northern 
Bighorn Basin (Hicks et al., 1995). The overlap in 
our ages and previously reported age determina-
tions suggests that Mesaverde Group strata were 
rapidly deposited in the northern Bighorn Basin 
region. This interpretation fits well with Late Cre-
taceous subsidence patterns for the Bighorn Basin 
(e.g., May et al., 2013). Our results indicate that 
the clastic dikes developed ca. 81 Ma; however, 
to provide an encompassing interpretation of the 
data, we use the minimum 2σ age uncertainty 
for sample 18EB03 (Ardmore bentonite) and the 
maximum 2σ age uncertainty for sample 18EB01 
(sand-source bed) to bracket the development of 
clastic dikes from 82.4 to 78.0 Ma (Fig. 3).

DISCUSSION
Our interpretation of 82.4–78.0 Ma for initial 

Laramide tectonism in the Elk Basin anticline 
is ∼8–15 m.y. older than other estimates for the 
Bighorn Basin (Peyton et al., 2012; Fan and 
Carrapa, 2014; Stevens et al., 2016; Beaudoin 
et al., 2018). However, our results do correlate 
to thermochronology results from the Beartooth 
Range, which bounds the Bighorn Basin to the 
west (Carrapa et al., 2019). Carrapa et al. (2019) 
suggested that early regional Laramide deforma-

tion and exhumation were products of propagat-
ing stress associated with enhanced intraplate 
coupling over the flat-slab region. We suggest 
a connection exists between the development of 
paleoseismites in the Elk Basin anticline and the 
collision of the conjugate Shatsky Rise along the 
southwestern North American plate margin ca. 
90–85 Ma (e.g., Saleeby, 2003; Liu et al., 2010).

Collision of the conjugate Shatsky Rise with 
the North American plate margin established a 
compressional stress through the upper-mantle 
lithosphere (Axen et al., 2018). Weil et al. (2014) 
suggested that stress propagation through the 
North American plate was enhanced because of 
a relatively cold and thick lithosphere, while also 
noting that heterogeneities in the upper lithosphere 
often collect propagating stresses, resulting in pre-
ferred zones of deformation. Bader (2018) sum-
marized how tectonically inherited basement an-
isotropies in the Wyoming Province controlled 
the spatial distribution of Laramide deformation 
in the Bighorn Basin region. Thus, we envision 
an applied end load stress, established at the plate 
margin, propagating through the overriding North 
American plate and coalescing at preexisting 
basement weaknesses, culminating in basement-
involved thrusting. Displacement along basement 
rock then generated earthquake waves that ap-
plied a localized shear stress to unconsolidated, 
saturated sedimentary layers at or near the surface. 
The applied shear stress caused an increase in the 
pore-fluid pressure for the saturated sand-source 
layer, which overcame overburden pressures and 
produced soft-sediment deformational structures 
(e.g., clastic dikes). As the conjugate Shatsky Rise 
subducted into and past the trench, the Farallon 
plate transitioned to flat-slab subduction, result-
ing in subsequent, more traditionally interpreted 
Laramide deformation (Fig. 4).

1GSA Data Repository item 2019369, Table DR1 
(clastic dike field data) and Table DR2 (U-Pb geochro-
nology), is available online at http://www.geosociety.
org/datarepository/2019/, or on request from editing@
geosociety.org.

Figure 3.  (A,B) Weighted mean averages of 
youngest zircon U-Pb age population for sample 
18EB01 (A) and sample 18EB03 (B) in Elk Basin 
anticline, northern Bighorn Basin (Wyoming, 
USA). Samples are ordered relative to strati-
graphic position. Horizontal bars represent 2σ 
error for individual analyses. Green bars indi-
cate grains that were included in weighted mean 
age calculation. Dashed lines represent kernel 
density estimations for each sample at a band-
width of 15. Bracketed timing of paleoseismite 
development from 82.4 to 78.0 Ma was estab-
lished by using minimum 2σ age for 18EB03 and 
maximum 2σ age for sample 18EB01. MSWD—
mean square of weighted deviates.

18EB01

18EB03

A

B

clastic dike
sand-source bed

Ardmore
bentonite bed

81.3 ± 3.3 Ma

81.0 ± 1.4 Ma

MSWD = 1.5

MSWD = 0.8

Bracketed Timing of Paleoseismite Development

75 80 85 90 95 100 105 11070

Zircon U-Pb Age (Ma)

Figure 4.  Plot illustrat-
ing spatial and temporal 
relationship between east-
ernmost edge of Farallon 
plate (gray line) and south-
western North America 
plate margin (adapted from 
Copeland et al., 2017). This 
relationship incorporates 
magmatism (solid gray 
dots), modeled location of 
conjugate Shatsky Rise (tri-
angles), youngest marine 
deposits (diamonds), 
timing of initiation of 
Laramide deformation (cir-
cles), timing of cessation 
of Laramide deformation 
(vertical bars), and attain-
ment of maximum surface 
elevation (hexagons). We 

correlated arrival and collision of conjugate Shatsky Rise to generation of paleoseismites (clas-
tic dikes) in Elk Basin anticline, northern Bighorn Basin. Multi-million-year lag time from collision 
of conjugate Shatsky Rise to development paleoseismites in Elk Basin anticline (red dashed line) 
represents an opportunity to quantify relationships between sedimentary responses in foreland 
and tectonic processes at plate margin during Laramide tectonism. Because paleoseismites 
indicate Laramide tectonism 8–15 m.y. prior to estimations for Bighorn Basin (green box), we pro-
pose that paleoseismites are surficial features that record initial phase of basement deformation.
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The predictive nature of our results provides 
motivation for future paleoseismite investiga-
tions. If paleoseismites in the Elk Basin anti-
cline were products of an applied end load stress 
from the plate margin, similar soft-sediment 
deformational structures should be present in 
age-equivalent strata throughout the Laramide 
belt. In contrast, if the Elk Basin anticline pa-
leoseismites were a result of localized Laramide 
deformation, and if similar paleoseismites are 
present throughout the Laramide belt, we would 
expect a spatial-temporal progression of paleo-
seismites with regard to their stratigraphic posi-
tion, in either a southwest-northeast or, possibly, 
a northeast-southwest direction. Therefore, to 
evaluate models of Laramide deformation, we 
advocate for continued examination of Upper 
Cretaceous through Eocene soft-sediment defor-
mational structures adjacent to Laramide struc-
tures in the western United States Cordillera.

CONCLUSIONS
The development of paleoseismites in the 

Elk Basin anticline recorded an initial phase of 
Laramide tectonism in the northern Bighorn Basin. 
By coupling the stratigraphic position of planar 
clastic dikes and zircon U-Pb geochronology, we 
can bracket the timing of paleoseismite devel-
opment from 82.4 to 78.0 Ma. We propose that 
the development of paleoseismites represents a 
surficial expression of basement deformation, 
associated with an applied end load stress from 
the southwestern North American plate margin 
that resulted from the arrival and collision of the 
conjugate Shatsky Rise ca. 90–85 Ma. The applied 
end load stress propagated through the overriding 
North America lithosphere, spatially concentrat-
ing along preexisting basement heterogeneities. 
Earthquakes associated with the displacement of 
basement rock produced shear waves that traveled 
through and increased the pore-fluid pressure in 
unconsolidated, saturated sand layers, producing 
soft-sediment deformational structures (clastic 
dikes) at or near the surface. This study high-
lights the opportunity provided by Upper Creta-
ceous–Eocene paleoseismites for understanding 
the spatial-temporal development of Laramide 
deformation as well as the temporal relationships 
between tectonic processes at the plate margin and 
sedimentary responses in the foreland.
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