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Unmanned ground vehicles (UGVs) are well suited to tasks that are either too dangerous or too monotonous for people. For
example, UGVs can traverse arduous terrain in search of disaster victims. However, it is difficult to design these systems so that they
perform well in a variety of different environments. In this study, we evolve controllers and physical characteristics of a UGV with
transformable wheels to improve its mobility in a simulated environment. The UGV’s mission is to visit a sequence of coordinates
while automatically handling obstacles of varying sizes by extending wheel struts radially outward from the center of each wheel.
Evolved finite state machines (FSMs) and artificial neural networks (ANNs) are compared, and a set of controller design principles
are gathered from analyzing these experiments. Results show similar performance between FSM and ANN controllers but differing
strategies. Finally, we show that a UGV’s controller and physical characteristics can be effectively chosen by examining results from
evolutionary optimization.

1. Introduction

Autonomous unmanned ground vehicles (UGV) provide an
excellent solution to tasks that require searching or moni-
toring in environments deemed too remote or dangerous for
humans. Consider search and rescue: after a natural disaster a
UGV can be used by first responders to help locate victims in
unstable and hazardous locations. UGVs have long operating
durations, can carry heavy payloads (e.g., sensors), and can
search in narrow and covered places such as forests and caves.

Ensuring that a UGV can handle many different types of
terrain is an ongoing challenge. Researchers have invented
several different methods for addressing the issue of mobility
in varied terrain. Specifically, robots have been designed with
treaded wheels, tracks, legs [1], legged-wheels (wheels are
rimless, wheel spokes make contact with the ground) [2–
5], wheeled-legs (wheels are on the end of legs and sus-
pensions can be actuated) [6–8], and transformable wheels
[9–12]. Although these systems provide an advantage over
traditional wheeled robots, optimization is not performed
in the vast majority of these studies. Moreover, as identified
by Mintchev and Floreano [13], most researchers in the area
of transformable wheels currently focus on the mechanical

design and leave control and decision making to future work.
For example, most robots with transformable wheels are
controlled remotely [11, 14], and Kim et al. [9] designed
a passive triggering mechanism that does not require any
controller input.

The device in this study, the Adabot (see Figure 1),
includes transformable wheels that can smoothly be con-
verted from a round wheel, to a wheel with tire studs, to
a legged-wheel. Wheel transformations are performed by
extending wheel struts radially outward from the center of
the wheel (see Figure 2). Adabot has been optimized using an
evolutionary algorithm such that its physical characteristics
and its controller are better able to handle terrain that
includes obstacles of varying sizes. In previous work [15], a
similar system was optimized to maximize forward velocity
over uneven terrain. The present study differs in two main
ways: (1) here we evolve controllers for a more difficult task:
way-point following, and (2) we analyze results from evolving
two types of feedback controllers (rather than feed-forward).

In this study, we evolve the robot’s chassis dimensions,
wheel radius, the number of wheel struts, along with either
a finite state machine (FSM) controller or an artificial neural
network (ANN) controller.The best evolved FSMs andANNs
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(a) Simulated Device (b) 3D Printed Prototype

Figure 1: Adabot, a UGV with transformable wheels.

Figure 2: Illustration of Adabot’s wheel extension mechanism, where the struts are fully retracted (left), partially extended like tire studs
(middle), and fully extended like legged-wheels (right).

are analyzed and compared. For this initial work, to ensure
that we are able to effectively analyze the ANN, the network
only has three input nodes, zero hidden nodes, and three
output nodes. The inputs are fully connected to the outputs.
The network is only slightly more complex than a Type
2 Braitenberg vehicle [16]. Conclusions drawn from our
analysis are used to create a set of design principles for
a new controller that takes advantage of both techniques.
In particular, it is attractive to design a controller that is
not a black-box like an ANN but less rigidly defined than
an FSM. Source code has been made available on GitHub
(https://github.com/anthonyjclark/adabot02-ann).

2. Related Work

In the field of evolutionary robotics (ER), an evolutionary
algorithm (EA) optimizes free variables of a given system [17].
ERmethods have been successfully applied to many different
types of robotic systems (aerial, aquatic, walking, etc.). For
example, we have previously used differential evolution to
evolve adaptive neural networks and morphologies for a
robotic fish [18, 19], and Moore et al. [20] evolved hierarchi-
cal controllers for segmented worm-like animats. Although
evolution has been regularly utilized at an abstract level to
optimize wheeled-robot navigation processes (for example,
see Gomes et al. [21] and Lehman and Stanley [22]), it has not
often been used to directly evolve UGVmorphologies, and to
the best of our knowledge this is the first study in which the
characteristics of a transformable wheel are evolved.

A large number of ER studies utilize ANNs to control
mobile robots, including Evolving Virtual Creatures [23],

which is considered one of the first ER works. ANNs provide
several benefits when using an evolutionary method. First,
since ANNs are so-called universal approximators [24], evo-
lution often produces novel and sometimes unintuitive results
that may not have been found when creating a controller by
hand [25]. And second, ANNs require a minimal amount of
user design. Specifically, an evolutionary algorithm can auto-
matically decide the importance of each input (sensor values)
in the calculation of each output (actuation mechanisms)
[26]. The primary disadvantage of using an ANN is that it is
considered a black-box system.That is, how an ANN achieves
its results is not often clear or analyzed. Recently, however,
some researchers have attempted to extract state machines
from evolved neural networks. For example, Yaqoob and
Wróbel [27] automatically generated a state machine with the
same properties of an evolved spiking neural network.

3. Adabot

Hardware. The Adabot, pictured in Figure 1, is a prototype
device that includes a Raspberry Pi 3 Model B (RPi) as
its main control board. The RPi was chosen for its ability
to run the Robot Operating System (ROS) [28, 29], which
Adabot uses to deploy its software systems. The size of an
RPi constrains the minimum dimensions of the Adabot’s
chassis. Specifically, the chassis must be at minimum 8 cm
by 8 cm. Table 1 lists all configurable parameters for Adabot’s
physical characteristics, where 𝑊ℎ𝑒𝑒𝑙𝐵𝑎𝑠𝑒 and 𝑇𝑟𝑎𝑐𝑘𝑊𝑖𝑑𝑡ℎ
denote the distance between the front and rear axles and the
lateral distance betweenwheels, respectively, and 𝑆𝑡𝑟𝑢𝑡𝐶𝑜𝑢𝑛𝑡
parameter indicates the number of struts per wheel.

https://github.com/anthonyjclark/adabot02-ann
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Figure 3: An example environment including randomly generated obstacles. The current way-point is shown as a dark gray sphere, and the
robot starts at the origin facing in the positive x-axis (away from the way-point, along the red axis line).

Table 1: Adabot physical parameters.

Name Range
𝑊ℎ𝑒𝑒𝑙𝐵𝑎𝑠𝑒 8 to 16 cm
𝑇𝑟𝑎𝑐𝑘𝑊𝑖𝑑𝑡ℎ 8 to 16 cm
𝑊ℎ𝑒𝑒𝑙𝑅𝑎𝑑𝑖𝑢𝑠 2 to 3 cm
𝑆𝑡𝑟𝑢𝑡𝐶𝑜𝑢𝑛𝑡 0 to 7

Each wheel is driven by its own DC gear-motor with
magnetic encoders. Likewise, each wheel includes a set of
struts that can be extended and retracted by a linear servo.
For sensing, Adabot includes three forward facing distance
sensors and an IMU (3-axis gyroscope, 3-axis accelerometer,
and 3-axis magnetometer). Finally, it uses a 2.4 GHz wireless
communication module and is powered by a 2200 mAh
battery pack, which provides roughly two hours of operating
time.

Strut Extension. Figure 2 depicts the strut extension process.
This mechanism enables the wheel to exhibit a range of
characteristics. With the struts fully retracted, the wheels
operate conventionally; when extended a small amount, the
struts act as tire studs; andwith the struts fully extended, each
wheel resembles a legged-wheel. Due to limitations of the
design, the maximum extension of the struts is equal to the
wheel’s radius minus 1 cm (𝑀𝐴𝑋𝐸𝑋𝑇 = 𝑊ℎ𝑒𝑒𝑙𝑅𝑎𝑑𝑖𝑢𝑠 − 1
cm). For a more detailed discussion of Adabot’s software
and wheel extension mechanism, and an example of evolving
Adabot with ROS and Gazebo (a simulation environment
tightly coupled with ROS), see our preliminary study [15].

Simulation. An image of the simulation environment is
shown in Figure 3. The environment is populated by gen-
erating 40 boxes with random dimensions, positions, and
densities. These boxes act as obstacles that the simulated
robot must traverse. If a newly generated box collides with
an existing box it is removed from the simulation. We see
on average 31 boxes placed in the environment. Box heights
range from 2 to 5 cm, which is high enough (compared
to 𝑊ℎ𝑒𝑒𝑙𝑅𝑎𝑑𝑖𝑢𝑠 values) to drastically reduce mobility for a

wheeled robot [30]. Moreover, rather than each box being in
a fixed position, it is possible for the Adabot to push a box
(depending on its size and density).

For this study, we are using the Dynamic Animation
and Robotics Toolkit (DART) (https://dartsim.github.io/
index.html). DART is specifically designed for robotics appli-
cations, and is comparable in speed (if not faster) than
common alternatives [31].

Way-Point Navigation Control. Adabot is a skid-steer style
robot–it turns by rotating its left and right wheels at different
rates. Although each wheel and wheel strut set can be
controlled independently, in this study we only have three
control outputs: (1) an angular rate for the left wheels,
(2) an angular rate for the right wheels, and (3) a single
extension amount for all four sets of struts. Although it may
be beneficial to control each wheel independently, for this
study we have chosen to synchronize both left wheels and
both right wheels.This reduces the number of evolved control
parameters and enables us to use a differential drivemodel for
predicting the robots dynamics. In the future, we will explore
the effects of controlling each wheel independently.

For Adabot to aid during a search and rescue operation,
it must be able to successfully cover (completely search) its
designated area. A simplified version of this task, called way-
point navigation, is considered during evolutionary optimiza-
tion. For this task, a UGV must visit a set of way-points in
sequence.

FSM Control. The hand-designed FSMs for this task are
depicted in Figure 4. This FSM includes two independent
actions: (a) directing the robot towards the next way-point
by controlling the left and right wheels, and (b) extending
the struts when the robot is experiencing reduced mobility
due to an obstacle. Essentially, the robot remains in the
Forward state as long as the angle between the heading of
the UGV and the direction to the target (𝛼𝑡𝑎𝑟𝑔𝑒𝑡) is within
some threshold. Once the threshold is surpassed, the FSM
transitions to either the Le� or Right state. In the Le� and
Right states, the robot will rotate in place until𝛼𝑡𝑎𝑟𝑔𝑒𝑡 is greater
than 𝐿.𝑇𝑜𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑇ℎ𝑟𝑒𝑠ℎ or less than 𝑅.𝑇𝑜𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑇ℎ𝑟𝑒𝑠ℎ,

https://dartsim.github.io/index.html
https://dartsim.github.io/index.html
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Figure 4: (a) The FSM controlling the direction of the robot, (b) the single state controlling wheel struts, and (c) a diagram depicting the
angles used to trigger transitions between states.

respectively, after which point the FSM transitions back to
Forward. Threshold angles are shown in Figure 4(c).

To determine when, and by how much, wheel struts
should be extended, we use a simple differential drive
model and compare expected speeds with measured speeds.
Specifically, we calculate an expected linear (V) and angular
(𝜔) velocity (based on the wheel rates) using the following
model:

V = 𝑉𝑟 + 𝑉𝑙2 , (1)

𝜔 = 𝑉𝑟 − 𝑉𝑙𝑇𝑟𝑎𝑐𝑘𝑊𝑖𝑑𝑡ℎ (2)

where 𝑉𝑟 and 𝑉𝑙 are the left and right wheel linear veloc-
ities, respectively, and 𝑇𝑟𝑎𝑐𝑘𝑊𝑖𝑑𝑡ℎ represents the distance
between wheels on the same axle line (front or rear axles).
These calculated values (expected based on the differential
drive model) are then subtracted from the actual (measured)
linear and angular velocities values. The actual speed of the
simulated robot is provided by the simulator, and in a real-
world environment it can be measured using an overhead
camera system. The difference values (the error between
expected and actual velocities) are then scaled between 0 and
1 to produce V𝑒 and𝜔𝑒, which are the scaled linear and angular
velocity errors, respectively. These two error values are then
filtered using exponential smoothing. Finally, they are used
in the following to calculate the extension amount of all
struts:

𝑒𝑥tV = 𝑚𝑒𝑥𝑡 ⋅ V𝑒 + 𝑏𝑒𝑥𝑡, (3)

𝑒𝑥t𝜔 = 𝑚𝑒𝑥𝑡 ⋅ 𝜔𝑒 + 𝑏𝑒𝑥𝑡, (4)

𝑒𝑥𝑡% = max [𝑒𝑥𝑡V, 𝑒𝑥𝑡𝜔] , (5)

𝑒𝑥𝑡 = 𝑀𝐴𝑋𝐸𝑋𝑇 ⋅ 𝑒𝑥𝑡% (6)

where 𝑒𝑥𝑡V and 𝑒𝑥𝑡𝜔 denote the extension amount calculated
due to the linear and angular speed values, respectively.
These two values are calculated using a linear equation with
a configurable slope (𝑚𝑒𝑥𝑡) and intercept (𝑏𝑒𝑥𝑡). The final
extension amount (𝑒𝑥𝑡) is based on the maximum of these
two values, and is calculated as a percentage of the maximum
possible extension (𝑀𝐴𝑋𝐸𝑋𝑇). In essence, the struts will
be extended by an amount that is linearly proportional to
the current error in speed (maximum between linear and
angular error). Thus, when Adabot encounters an obstacle
that reduces its mobility (compared to that predicted by the
differential drive model), it will extend the struts in an effort
to climb over the obstacles.

Table 2 shows all configurable parameters for the FSM
(hand-chosen values are shown in parentheses). Aside from
the first𝑚𝑒𝑥𝑡 and 𝑏𝑒𝑥𝑡, each name in the table takes the follow-
ing form: a capital letter representing a state in Figure 4(a)
(Forward, Le�, or Right), followed by a period, followed by
either an angular wheel rate or a angle threshold value also
described in Figure 4(a). Finally, to reduce vibration and
potential damage to the wheel struts, the maximum angular
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Table 2: Adabot FSM parameters (Hand-Chosen).

Name Range
𝑚𝑒𝑥𝑡 (0.5) 0 to 1
𝑏𝑒𝑥𝑡 (0.5) 0 to 1
𝐹.𝑆𝑝𝑒𝑒𝑑 (20) 0 to 20 rad s−1

𝐹.𝑇𝑜𝐿𝑒𝑓𝑡𝑇ℎ𝑟𝑒𝑠ℎ (10) 0 to 90∘

𝐹.𝑇𝑜𝑅𝑖𝑔ℎ𝑡𝑇ℎ𝑟𝑒𝑠ℎ (-10) −90 to 0∘
𝐿.𝐿𝑒𝑓𝑡𝑆𝑝𝑒𝑒𝑑 (-20) −20 to 20 rad s−1

𝐿.𝑅𝑖𝑔ℎ𝑡𝑆𝑝𝑒𝑒𝑑 (20) −20 to 20 rad s−1

𝐿.𝑇𝑜𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑇ℎ𝑟𝑒𝑠ℎ (5) 0 to 90∘

𝑅.𝐿𝑒𝑓𝑡𝑆𝑝𝑒𝑒𝑑 (20) −20 to 20 rad s−1

𝑅.𝑅𝑖𝑔ℎ𝑡𝑆𝑝𝑒𝑒𝑑 (-20) −20 to 20 rad s−1

𝑅.𝑇𝑜𝐹𝑜𝑟𝑤𝑎𝑟𝑑𝑇ℎ𝑟𝑒𝑠ℎ (-5) −90 to 0∘

rate of the wheels is linearly scaled down from 20 rad s−1 to 4
rad s−1 when the struts are fully extended.

ANN Control. As an alternative to the FSM controller, we
evolve anANN for the same task.Theneural network receives
three inputs (each scaled between 0 and 1): (1) 𝛼𝑡𝑎𝑟𝑔𝑒𝑡, (2) V𝑒,
and (3) 𝜔𝑒. Essentially, the ANN is given the same informa-
tion as the FSM, and produces the same three output values
(left and right wheel rates and an extension amount). In our
preliminary work, we found hidden nodes were unnecessary
for this task (the same strategies and fitness values were
attained with and without hidden nodes). The genome for
our ANN includes 13 values: one integer value representing
the activation function (logistic, hyperbolic tangent, or the
rectified linear unit) and 12 values for the neural network
weights (three inputs plus one bias for each of the three
outputs).

Evolution. For this study, we employ the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) [32]. In particular,
we use pycma (developed by Hansen [33]), which works well
on real-valued problems and has support for handling integer
values such as 𝐸𝑥𝑡𝐶𝑜𝑢𝑛𝑡.
4. Discussion and Results

In this section we provide our results from evolving the
Adabot. Specifically, we evolved the Adabot in two environ-
ments (with and without obstacles) and with two different
controllers. Each of these four experiments is repeated 20
times. Finally, we discuss principles that can be learned from
these experiments.

4.1. Fitness Calculations. Here, Adabot’s goal is to visit a set
of coordinates (way-points) in sequence. During a single
simulation, the device has 30 (𝑡𝑚𝑎𝑥) seconds to visit four
predefined way-points, but the simulation will terminate as
soon as the fourth way-point is reached. Fitness is calculated
as follows (pycma is used to maximize this function):

𝑓 = 2𝑤 + (1 − min [𝑑, 𝑑𝑚𝑎𝑥]𝑑𝑚𝑎𝑥 ) + (𝑡𝑚𝑎𝑥 − 𝑡)𝑡𝑚𝑎𝑥 (7)

where 𝑤 represents the number of way-points reached, 𝑑
and 𝑑𝑚𝑎𝑥 denote the distance to the next way-point and a
scaling factor for distances, respectively, and 𝑡 denotes the
time transpired. This function is meant to provide a smooth
gradient for generating controllers that quickly navigate to
all way-points in order. The first part of the equation ensures
that the CMA-ES algorithm heavily favors any controller that
reaches even a single way-point; values for this component
range from 0 to 8. Next, a distance component is added
to reward solutions that drive near the next way-point in
sequence, but do not reach all four. This is particularly useful
at the beginning when solutions are at an early stage of
evolution. The distance component results in a value scaled
between 0 and 1. Since the simulation ends once all four way-
points have been reached, the time component will be a value
between 0 (zero time remaining) and 1 (all four way-points
are reached in an instant). The time component is meant to
favor any controllers that solve the task quickly. Thus, the
maximum possible fitness is 10.

4.2. Evolution without Obstacles. In our first experiment,
FSM-0-1, we evolve the fifteen parameters found in Tables
1 (physical) and 2 (control) in an environment without
obstacles. The naming scheme for our experiments indicates
the controller type (FSM or ANN), the maximum number
of potential obstacles (0 or 40), and the number of trials
per fitness evaluation (1 or 2). Plots of fitness vs iteration
are shown in Figure 5 (this figure shows the fitness values
for both experiments not containing obstacles). In this
first experiment, there are zero obstacles and therefore the
environment will always be the same. In later experiments,
each fitness evaluation includes two trials with randomly
generated obstacles. As shown in the figure, in all repli-
cate experiments the Adabot reaches all four way-points in
approximately 10 seconds, which corresponds to a fitness
value of 9.7. The population quickly converges on a final
value, likely because this experiment was seeded with a
hand-designed set of parameters known to achieve good
results (see Table 2). The evolved results, however, quickly
outperform the hand-chosen values. This experiment serves
as a convenient baseline with which the others can be
compared.

The second experiment, denoted ANN-0-1. also reaches
a fitness value of 9.7, which shows that the an ANN can
effectively perform the task of navigating the robot to a
sequence of points. For this experiment, 17 total parameters
were evolved: the four physical characteristics listed in Table 1
and the 13ANNparameters discussed in the previous section.
Although both of these experiments reach the same final
fitness value, an examination of Figure 5 shows that the ANN
result takes longer to evolve–roughly 120 iterations compared
with less than 10 iterations for the FSM.This can be explained
by the lack of a seed controller and the fact that, unlike an
FSM, an ANNmust learn the entire solution from scratch.

Figure 6 depicts the trajectories taken by the best per-
forming controllers from these two experiments. Although
these trajectories look similar, there is one key difference: the
ANN actively controls only one wheel. FSMs, on the other
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Figure 5: Plots for the maximum fitness found in the two experiments without obstacles. Shaded regions indicate confidence intervals of one
standard deviation from the mean for the 20 replicates of each experiment. The maximum possible fitness is 10, and fitness values above 2
indicate that Adabot was able to reach at least one way-point.
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Figure 6: Trajectories of the best evolved individual for the first two experiments: FSM-0-1 and ANN-0-1. No obstacles were present for these
trajectories.

hand, can rotate in-place both clockwise and couterclockwise,
which is why there are sharper turns in the left plot.

Figure 7 shows the wheel speeds for the best FSM and
ANN controllers.The evolved ANN perpetually sets the right
wheel to its maximum speed. The ANN moves forward by
setting its left wheel to the same value, and turns by making
the left wheel rotate in the opposite direction. Effectively, the
ANN can only turn left, however, this is not a problem for the
relatively simple task at hand.

Figure 8 provides a comparison of the fitness values and
evolved physical characteristics for these two experiments.
This figure only shows results for the combined final pop-
ulations of all replicate experiments. From this figure, we
can establish what will be good physical characteristics for
the Adabot when it does not face any obstacles. Specifically,
WheelBase and TrackWidth should be 8.5 cm and 11.5 cm,
respectively, WheelRadius should be 3 cm, and StrutCount
does not matter since the struts are not extended.
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Wheel Speeds and Extensions for Best ANN-0-1
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Figure 7: Left and right wheel speeds and strut extension amounts for the best evolved solutions for FSM-0-1 (a) and ANN-0-1 (b). The left
vertical axis shows values for wheel speeds (the solid red line and the dash-dot blue line), and the right vertical axis shows the scale for wheel
strut extension amounts (the orange dashed line).
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Figure 8: Distributions for the evolved fitness values and physical characteristics for the combined final populations of the FSM-0-1 (left side)
and ANN-0-1 (right side) experiments. The y-axis limits are the parameter limits allowed during evolution.

Finally, Figure 9 plots the distributions for all evolved
FSM parameters. It is worth noting that in the absence of
obstacles, neither the evolved FSMs or the ANNs extend the
struts by a significant amount.This result is not unexpected as
any extension would result in a reduced speed due to scaling
of linear velocity mentioned previously, and the struts are
not needed when obstacles are not present. Also of interest is
the evolved symmetry of the FSM. Specifically, the threshold
values and speeds evolved for the Le� and Right states are
nearly perfect mirror images of each other.

4.3. Evolution with Obstacles. The final two evolutionary
experiments are referred to as FSM-40-2 and ANN-40-2.

These experiments differ from the previous two in two
respects. First, each fitness value is calculated as the average
of two trials (where each trial lasts at most 30 seconds),
and second, each fitness trial occurs in an environment with
around 31 randomly generated obstacles. Utilizing multiple
trials during fitness evaluations improves the robustness of
the evolved results [34]. The fitness plots for these exper-
iments appear in Figure 10. Of note is that the ANNs
evolved with obstacles have a greatly reduced maximum
fitness. A few individuals achieve a fitness above 9, how-
ever, we found that this was only when the randomly
generated environment did not pose much difficulty. Videos
(and interactive animations) for high fitness individuals can
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Figure 9: Distributions for all evolved FSM parameters for the FSM-0-1 experiment. These parameters are described in Figure 4(a) and
Table 2.

be found here: FSM-40-2: https://youtu.be/VXnrwwpE598
(https://goo.gl/NtoVYe) and ANN-40-2: https://youtu.be/
q8PFqQps5e4 (https://goo.gl/2xjh6X).

Similar to Figure 8, Figure 11 shows the distributions for
the evolved physical characteristics. These distributions have
a larger spread due to the randomly generated environments.
The values found in these distributions indicate that the
presence of obstacles does not have a drastic effect on
the evolution of physical characteristics. At first this was
unexpected, however, analyzing these values (and visualizing
their resulting behaviors) reveals a few basic principles: (1)
for a skid steer robot it is important for the WheelBase to
be less than the TrackWidth (this will reduce the amount
of skidding and improve controllability), (2) to maximize
velocity WheelRadius should be maximized (since we are
evolving wheel angular rate a larger wheel will result in a
higher velocity), and (3) as long as the number of struts is
greater than 4 the systemwill be able to navigate the generated
environments. The first and second principles match results

that we have seen on the physical prototype, and we intend to
investigate the third principle in the near future.

While the physical characteristics are similar between the
two sets of experiments, control strategies have been adjusted
to handle the obstacles. Figure 12 shows the control patterns
for two solutions randomly selected from the best performing
individuals of the FSM-40-2 and ANN-40-2 experiments.
Note that since environments are randomly generated, even
though the evolved ANN does not reach all four way-points
for this test, it does not mean that it did not do so during
fitness evaluation. The two most striking features of the
plots in Figure 12 are that the evolved controllers ANNs
are operating at reduced speeds and that with the addition
of obstacles to the simulation the wheels struts are being
extended for both controllers. For the evolved FSM, thewheel
struts are extended when the first obstacle is reached, and
they remain roughly halfway extended for the duration of
the evaluation. The ANN controller uses a slightly different
strategy. The wheel struts are fully extended at the beginning

https://youtu.be/VXnrwwpE598
https://goo.gl/NtoVYe
https://youtu.be/q8PFqQps5e4
https://youtu.be/q8PFqQps5e4
https://goo.gl/2xjh6X
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Figure 10: Plots for the maximum fitness found in the two exper-
iments including obstacles. Shaded regions indicate confidence
intervals of one standard deviation from the mean for the 20
replicates of each experiment. The maximum possible fitness is 10,
and fitness values above 2 indicate that Adabot was able to reach at
least one way-point.

of the simulation and remain so throughout.This means that
the top speed of the UGV must be reduced for safety (see
Section 3).

Examining the evolved FSM values, we see that nearly
identical values are discovered for all parameters except𝑏𝑒𝑥𝑡 (a set of distributions similar to Figure 9 has been
omitted to save space). In the experiment with no obstacles,𝑏𝑒𝑥𝑡 converged to zero; however, for this experiment 𝑏𝑒𝑥𝑡
converged to 0.45. A higher value for 𝑏𝑒𝑥𝑡 results in the struts
always being extended (even when no obstacle has been
encountered). Thus, these behaviors are slower because the
struts are required to climb obstacles.

Directly examining the evolved weights of a neural net-
work provides only a limited view of the resulting behavior.
Likewise, comparing each input’s effect on each output in
isolation obscures the resulting behaviors. For example, some
output values are only active when some combinations of
multiple input values are provided. Thus, in Figure 13 we
provide all pairwise input relationships on the output for
the speed of the left wheels in the form of heat-maps. These
heat-maps were generated using a parameter sweep over
all possible input combinations. Each square represents the
output value given the two input values on the x- and y-
axes averaged over all possible values for the remaining input.
As was the case for the ANN-0-1 experiment, all navigation
is handled by driving the left wheel at different speeds, and
so we have not provided heat-maps for the wheel strut and
right speed outputs. Examining the figure shows that the left
wheel’s speed has a positive linear relationship with both 𝜔𝑒
and 𝛼𝑡𝑎𝑟𝑔𝑒𝑡 and that 𝛼𝑡𝑎𝑟𝑔𝑒𝑡 has the greatest effect on control
(since it is used to turn the robot towards the target).

In both experiments including obstacles, the evolved
controllers extended the struts andnever fully retracted them.
However, there is a clear advantage to retracting the struts: the
robot has a higher maximum allowed speed. Thus, it is likely

an issue with using the differential drive model to calculate
the error. We have identified two sources of error with the
simple model: (1) it does not take into account that when the
struts are extended the wheel has a larger effective radius, and
(2) the model does not take into account the noisy nature of
skid steering and extended struts.

For our final comparison between these two control
models, we took five best performing individuals from each
replicate experiment and evaluated them on three new
environments. The new environments required the mobile
robot to drive four times further and handle twice as many
obstacles.The simulation timewas also increased from 30 s to
90 s. Results from these evaluations are shown in Figure 14. As
shown in the figure, the FSM controllers were still on average
able to reach two way-points, while the ANN controllers
frequently failed to reach even one.

In summary, regarding the optimization of the Adabot
system we found that

(1) Similar physical characteristics are optimal with and
without obstacles in the environment.

(2) The speed of the left and right wheels should have a
linear relationship with 𝛼𝑡𝑎𝑟𝑔𝑒𝑡 (rather than a discrete
relationship as is the case with the current FSM).This
will enable the robot to veer towards the target.

(3) The task can be solved by controlling only a single side
of wheels, though, this is likely not a desirable trait. In
future work, we plan to add an evolutionary pressure
so that the evolved ANNs turn in both directions, for
example, by creating environments and way-points
that require both left and right turns.

(4) Controlling the strut will require a more complex
model of the robots dynamics. Once the struts are
extended, it is difficult to discern when they should
be retracted. In our future work, we will investigate
vision-based methods and parameter identification
for measuring and detecting poor mobility.

Taking these observations into account, we developed a
hybrid two-state controller. The controller is in Le� when𝛼𝑡𝑎𝑟𝑔𝑒𝑡 is greater than zero and in Right otherwise. Equations
for these states are as follows:

𝛼𝑠𝑐𝑎𝑙𝑒 = 2 ⋅ (1 − 𝛼𝑡𝑎𝑟𝑔𝑒𝑡
𝜋 ) − 1 (8)

𝐿𝑒𝑓𝑡𝑙𝑒𝑓𝑡 = −𝑀𝐴𝑋𝑅𝐴𝐷 ⋅ 𝛼𝑠𝑐𝑎𝑙𝑒 (9)

𝐿𝑒𝑓𝑡𝑟𝑖𝑔ℎ𝑡 = 𝑀𝐴𝑋𝑅𝐴𝐷 (10)

𝑅𝑖𝑔ℎ𝑡𝑙𝑒𝑓𝑡 = 𝑀𝐴𝑋𝑅𝐴𝐷 (11)

𝑅𝑖𝑔ℎ𝑡𝑟𝑖𝑔ℎ𝑡 = 𝑀𝐴𝑋𝑅𝐴𝐷 ⋅ 𝛼𝑠𝑐𝑎𝑙𝑒 (12)

where 𝛼𝑠𝑐𝑎𝑙𝑒 is 𝛼𝑡𝑎𝑟𝑔𝑒𝑡 scaled between -1 and 1. This simple
hybrid controller is able to visit all way-points in 9.9 seconds,
which is one tenth of a second faster than the evolved
controllers reported above. The controller also works well
in the presence of obstacles when the struts are extended
10%. Overall, this hybrid controller provides a smoother
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Figure 12: Left and right wheel speeds and strut extensions for the best evolved FSM (a) and ANN (b) in a randomly generated environment
that includes obstacles. Similar to Figure 7, the left and right vertical axes show scales for wheel speeds and strut extension amounts,
respectively.

motion and good performance. For future work, we intend to
evolve this hybrid controller along with a more sophisticated
approach to handling strut extension as mentioned in point(4) above.
5. Conclusion

UGVs are becoming more prevalent. Likewise, their envi-
sioned environments are becoming more dynamic and var-
ied. We have evolved a UGV so that it is better able to
handle obstacles of varying sizes. Specifically, we compared
and analyzed FSM and ANN controllers with and without

obstacles in the environment while simultaneously evolving
the physical characteristics of our UGV. In comparing these
two techniques we were able to find design principles that
incorporate the advantages of both. Specifically, we found
that a mixture of the two strategies seems able to maintain
the strengths of both approaches. For example, an advantage
of the FSM designed for this study is that it turns in both
directions, but there was insufficient evolutionary pressure
for this behavior to evolve in the ANNs. On the other hand,
ANNs evolved a more continuous nature to their turning.
Instead of turning in place, they tend to veer towards the
target. Our final, hand-designed controller incorporates both
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evaluated in new environments. FSM controllers were still able to
reach some way-points, but most ANN controllers failed to reach
even one.

of these strategies, but it may not have been obvious to design
such a controller without first evolving the FSMs and ANNs.

Although a direction controller is straightforward to
optimize, the complex dynamics associated with climbing
over obstacles makes it more difficult to design a controller
for extending the Adabot’ struts. Specifically, the differential
drive model used to predict the robot linear and angular
speed does not take into account obstacles, wheel slipping,
or the extension of wheel struts. Our future work will focus
both on optimizing the hybrid controller and investigating
different strategies for extending and retracting the struts so
that the robot is able to more effectively gain the benefits of
both wheeled and legged-wheel locomotion.

One possibility for improving control is to use a recurrent
neural network (RNN) for control. Doing so may provide a
means by which the robot can sense that it has transitions
from one type of terrain to another. Evolving an RNN,
however, will require a more careful selection of evolutionary
pressures, and it may require a more gradual increase in task

difficulty. A technique such as Lexicase selection [35] could be
used to evolve RNNs that work well in many types of terrain.

Data Availability

All code used to produce our results and all data generated
by the evolutionary algorithm used to support the findings
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https://github.com/anthonyjclark/adabot02-ann.
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