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Understanding behaviors associated with reproductive events is vital to management

of captive breeding programs for threatened and endangered species. The Ozark

hellbender (Cryptobranchus alleganiensis bishopi) is a federally endangered aquatic

salamander with only one successful captive breeding program (the Saint Louis Zoo’s

Ron Goellner Center for Hellbender Conservation). Although anecdotal observations

have been reported for hellbender reproductive behavior from field observations, no

quantitative assessments have been made. We quantified hellbender behavior from

video-recordings of three successful breeding events at the Saint Louis Zoo that

occurred in 2012, including aggressive, sexual, social, and locomotory behaviors. We

used transition matrices to organize these data into kinematic diagrams that illustrated

behavioral sequences for five time periods: pre-oviposition (2 nights), first oviposition

night, inter-oviposition night, second oviposition night, and post-oviposition. General

activity and agonistic behaviors increased moderately through the first oviposition night,

peaked during inter-oviposition, and declined abruptly following the second oviposition

night. Agonistic behavior included bites, charges, chases, and flight. Female-female

aggression was common. Surfacing (presumably for accessory air breathing) followed

intense activity. Presumed courtship behaviors (tail swishing and circling) occurred at low

rates. During oviposition, females remained in the nest box for 1–2+ h. We encourage

managers of captive breeding programs to use quantitative behavioral analyses to

pin-point critical time periods and conditions for successful reproduction.

Keywords: reproduction, kinematic analysis, captive breeding, endangered species, hellbender

INTRODUCTION

Captive breeding and subsequent reintroduction can be an important tool in conservation
of declining populations (Griffiths and Pavajeau, 2008), particularly when the reason for
the decline is unclear or unresolved. Zoos, aquariums, and other ex situ breeding facilities
frequently do an excellent job of developing ethograms (lists and descriptions of behavior),
which can be helpful in design and implementation of captive breeding programs (e.g.,
Stanton et al., 2015). Quantitative studies of behavior of animals in captivity are less common
(Maple and Segura, 2015), but these detailed analyses can lead to improved captive breeding
success. For example, due to expense, space, and availability of reproductive adults, captive
breeding efforts often are made only between assigned pairs of males and females, but
quantitative behavioral studies showed that mating can be enhanced when females are allowed
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to choose their mating partners (Martin-Wintle et al., 2015;
Hartnett et al., 2018). Behavioral studies have also helped to
define receptivity periods for species in captivity (e.g., duck-billed
platypusOrnithorhynchus anatinus, Hawkins and Battaglia, 2009;
collared peccary, Pecari tajacu, da Silva et al., 2016), which helps
program directors to better target breeding efforts.

Historically, captive breeding efforts have focused on large,
charismatic species, particularly mammals (Leader-Williams
and Dublin, 2000). As species are added to threatened and
endangered lists at an unprecedented rate, captive breeding
efforts are expanding to include many nontraditional species,
including fishes, amphibians and invertebrates, which have added
benefits of often requiring less space, having higher birth rates
and being easier to reintroduce than larger fauna (Keulartz,
2015). Amphibians, in particular, have received increasing
attention (Griffiths and Pavajeau, 2008; Harding et al., 2015;
Murphy and Gratwicke, 2017) due to the rapid widespread
severity of their population declines (41% of amphibian species
listed as threatened with extinction by the IUCN: https://
www.iucn.org/theme/species/our-work/amphibians). However,
studies of behavior related to captive breeding of amphibians are
not as well developed as for taxa with a longer history of ex situ
breeding efforts.

About half of salamanders (Amphibia: Urodela) are
considered by the IUCN to be threatened or extinct. One family
of particular conservation concern is the Cryptobranchidae,
which contains the world’s largest extant salamanders and
which is represented by only two genera, Andrias in Asia and
Cryptobranchus in the United States. All species of these fully
aquatic salamanders are threatened or endangered (Browne
et al., 2014). Generally, captive breeding efforts have been
more successful for Andrias (Kuwabara et al., 1989) than for
Cryptobranchus, which has had only one known successful
breeding program (the Ron Goellner Center for Hellbender
Conservation at the Saint Louis Zoo: Ettling et al., 2013).

Two subspecies are currently recognized within the genus
Cryptobranchus, the Eastern (Cryptobranchus alleganiensis
alleganiensis) and Ozark (C. a. bishopi) hellbenders, although
both are paraphyletic (Crowhurst et al., 2011; Tonione et al.,
2011). The Ozark subspecies is listed as federally endangered in
the United States (USFWS, 2011), and the Eastern hellbender
(Cryptobranchus alleganiensis alleganiensis) is currently
petitioned to be listed as threatened or endangered under
the Endangered Species Act (USFWS, https://ecos.fws.gov/ecp0/
profile/speciesProfile?spcode=D043). A Population and Viability
Assessment indicated a high probability of extinction within
75 years without significant intervention, including captive
propagation (Briggler et al., 2007; Ettling et al., 2017).

Hellbenders are exceptionally long-lived for amphibians,
with a lifespan of over 50 years (Nickerson and Mays, 1973).
These large salamanders are habitat specialists, requiring clear,
cool, fast-flowing water with rocky substrates (Nickerson and
Mays, 1973). During a short breeding season (several weeks),
males aggressively defend spawning sites under rocks or within
bedrock, court females, and guard eggs after spawning. The
cause(s) for the decline have not been specifically identified,
although numerous factors have been suggested, including river
sedimentation/siltation and changes in electrical conductivity

due to deforestation, pollution from run-off, increased predation
from introduced or reintroduced species, amphibian chytrid
fungus infections, and over-collection (Nickerson and Briggler,
2007; Briggler et al., 2008; Gall andMathis, 2011; Nickerson et al.,
2017; Pitt et al., 2017).

As part of a strategy to combat the decline of hellbenders,
captive rearing efforts were initiated at the Saint Louis Zoo’s
(SLZ) Ron Goellner Center for Hellbender Conservation
(RGCHC) and the Missouri Department of Conservation’s
(MDC) Shepherd of the Hills Fish Hatchery in Branson,
Missouri. Both programs have successfully hatched eggs collected
fromnaturally-occurring nests and reared larvae for release in the
wild (Briggler, 2007; Briggler et al., 2011; Crowhurst et al., 2011;
Bodinof et al., 2012).

Captive breeding of hellbenders proved to be more difficult. In
2011, a conservation milestone was reached when the RGCHC,
in collaboration with MDC, reported the first successful breeding
of Ozark hellbenders in captivity (Ettling et al., 2013). The SLZ
continued to successfully breed Ozark hellbenders each year
between 2011 and 2016 (Briggler, 2007; Briggler et al., 2011;
Ettling et al., 2017).

The success of the captive breeding program at RGCHC
appears to be largely attributable to use of artificial breeding
streams that closely mimic natural conditions, including
temperature, photoperiod, precipitation, water quality, and prey
availability (Ettling et al., 2013). Adjusting the ionic composition
(total dissolved solids) and the introduction of artificial nest
boxes were likely major contributing factors to the success of
fertilized clutches (Ettling et al., 2013). At the time of the
first successful breeding events, an indoor artificial stream was
outfitted with a four-camera surveillance system that recorded
hellbender activity around the clock.

In this study, we provide an analysis of the video
recordings of the behavior of the hellbenders during the three
successful sequential oviposition events of 2012, culminating
in kinematic diagrams of sequences of behavior that occurred
before, during, between, and immediately after the successful
reproductive events. Although there have been numerous
anecdotal descriptions of reproductive events in the wild (Smith,
1907; Huheey and Stupka, 1967; Floyd and Unger, 2016), there
has not been a systematic ethological analysis of the steps
involved in courtship and mating. Herein, we (a) describe the
behaviors that we observed during pre-oviposition, oviposition,
inter-oviposition and post-oviposition periods, (b) quantify the
frequency of each behavior during each period, and (c) use
transition matrices to describe sequences of behavior. These
observations will help to identify social interactions and other
behaviors that contributed to successful captive breeding and
help to identify behaviors that signal that reproduction is
imminent and that signal transitions between sequential breeding
periods.

METHODS

Broodstock and Artificial Stream
The successful breeding events occurred at the RGCHC in
an indoor artificial stream (9.7m × 1.7m × 0.6m; Figure 1)
containing five male and three female adult Ozark hellbenders.
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FIGURE 1 | Diagram of the artificial indoor stream (9.7m × 1.7m × 0.6m), including nest box (a–g) and cover rock locations, at the Saint Louis Zoo Herpetarium. For

boot-shaped nest boxes (a–f), the neck of the boot is the entrance chamber and the foot of the boot is the nest chamber. Nest box (g) is of an older, non-boot,

design and was not used during any oviposition events.

Broodstock (Table 1), collected from the North Fork of the
White River, Ozark County, Missouri, were added to the indoor
artificial stream at the time of collection and were kept in
the stream until after the successful breeding events reported
in this study. The excess number of males vs. females was
used to provide increased opportunities for mate selection by
females. For details about quarantine and husbandry protocols,
see Ettling et al. (2013). All males had the typical donut cloacal
swelling that indicates reproductive condition. The range of
male sizes (Table 1) was chosen to maximize the probability
of healthy sperm by including a range of individuals from
small/young (near lower-end of sexual maturity) to large/old
(near high end of size range) (e.g., Peterson et al., 1983).
Females all exhibited abdominal swellings consistent with egg
production.

The stream was a closed recirculating system with water
flow in a circular direction at 227 L/min at an average depth
of 0.3m. Mechanical and biological filtration together with
ultraviolet sterilization helped to maintain water quality, and
reconstituted reverse osmosis water was used for water changes.
Year-round light:dark cycles, water temperature, water quality
and precipitation events were selected to mimic values that
occurred in natural habitats in the river of origin. A chiller
was used to manually adjust temperatures each day to match
data recorded by data loggers in the river of origin; annual
temperatures ranged from 4.4 to 22.2◦C. Total dissolved solids
were also kept similar to natural river water at 175–300 mg/L
because related characteristics, such as salinity and osmolality,
can influence sperm motility in some aquatic species (Alavi
and Cosson, 2006; Bonislawska et al., 2015). Data for other
measures of water quality (pH, nitrates, nitrites, ammonia,
phosphates, dissolved oxygen) are provided by Ettling et al.
(2013). A manual sprinkler system plus adjustment of water
levels was used to mimic natural precipitation, and photoperiods

were adjusted daily via an automatic timer. The floor of the
artificial stream was covered with river gravel (10.2–15.2 cm),
and a variety of large (approximately 0.2–0.7m) sandstone and
moss-covered rocks were scattered over the gravel. Crayfish
(Orconectes spp., Procambarus spp.), darters (Etheostoma spp.),
sculpins (Cottus bairdi, Cottus carolinae), and shiners (Notropis
spp.) were collected from various streams near the St. Louis, MO,
area and introduced into the stream as a source of natural forage.

Artificial nest boxes (n = 7) were positioned in the stream
(Figure 1) with the open end of the entrance tunnel of the boxes
facing downstream of water flow. As described in Briggler and
Ackerson (2012), nest boxes were constructed with a chicken-
wire base frame covered with hardware cloth and a concrete/sand
mixture. All but one of the nest boxes were a modified “boot”
design, with an entrance tunnel (“leg” of the boot; ∼27 tunnel
length× 7.3 entrance height× 10 entrance width cm) connected
to a nesting chamber (“foot” of the boot, ∼ 39 × 31 cm). An
opening with a removable lid was made on the surface of the
nesting chamber so that eggs deposited inside the chamber
could be monitored periodically with minimal disturbance. The
seventh box (Figure 1, g) was an older non-“boot” design andwas
not used during any of the oviposition events.

A four-camera (Figure 1) infrared video recording system
positioned directly above the stream monitored the hellbenders
between 20:00 and 08:00 h daily because hellbenders are
primarily nocturnal (Noeske and Nickerson, 1979; Coatney,
1982). Video recordings were archived to computer hard drives
at the RGCHC.

Behavioral Sequence Data Collection and
Analysis
Our analyses are based on video data collected from 21 to 26
September 2012, during which time three oviposition events
occurred (Ettling et al., 2013). We quantified the behavior of
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TABLE 1 | Collection and demographic data for hellbender broodstock.

Collection date Sex Snout-Vent Length (cm) Mass (g)

2004 F 32.0 713

2004 M 25.5 444

2004 M 34.0 596*

2005 F 33.0 907

2005 F 36.0 995

2007 M 30.0 569

2007 M 33.0 815

2011 M 29.5 552

*Missing both hind limbs.

the hellbenders on the night before the first oviposition to
illustrate “pre-oviposition behavior”; qualitatively, the behavior
on this night was similar to the behavior on the preceding three
nights (personal observations). The first oviposition night (two
oviposition events) occurred on 22 September 2012 and the
second oviposition night (one oviposition event) occurred on 24
September 2012. The night between the two oviposition events
(23 September 2012) was categorized as “Inter-oviposition”
behavior. Post-oviposition behavior was quantified for 2 days
following the last oviposition event.

Each night’s videos (4 videos × 12 h) were viewed in their
entirety using Milestone XProtect R© Smart Client 2013 R2 –
Player v. 8.1b. The hellbender keepers at the zoo developed a
list of behaviors that they observed during their daily surveys,
and this list formed the basis of the ethogram (list of species-
specific behavior describing the elements and putative function
of each behavior) (Table 2) we used in this study. Behaviors
were categorized as “agonistic,” “solitary/locomotory,” “sexual,”
or “social.” We recorded every occurrence of any of the defined
behaviors, the location of the behavior (camera number, nest box
number, etc.), and, when possible, the sex of the individual. An
individual’s sex was identified based on physical features unique
to that individual, and these features were not always visible
on the video; we estimate that we were unable to identify the
individuals, and, thus, their sex, for about 10% of observations.

We defined a behavioral sequence as beginning when one
or multiple individuals performed any of the defined behaviors
(Table 2) and ending when the hellbender(s) was/were inactive
for a period of 5min, began a new defined behavior, or when
the individual(s) entered a next box or other cover object
(i.e., natural rock). We calculated transitional probabilities (the
probability that one behavioral pattern follows another) through
the use of transition matrices (Martin and Bateson, 2007), which
were calculated for all individuals combined. The columns and
rows of the matrix consisted of all behavioral patterns, and the
numbers in each cell were the percentage of times that the first
behavioral pattern (rows) was followed by the second behavioral
pattern (columns). We illustrated the transition probabilities
using kinematic graphs (flow diagrams) (Lehner, 1996). Separate
transitional matrices and kinematic diagrams were made for
the periods of pre-oviposition, first oviposition night, inter-
oviposition, second oviposition night, and post-oviposition (2
nights).

TABLE 2 | Ethogram of behaviors recorded during video observations.

Behavior Description

AGONISTIC

Bite One hellbender bites or snaps at another

Charge A hellbender swims toward another at a noticeably

increased swimming speed

Chase One hellbender follows another

Flee An individual quickly swims away from another (flight)

SOLITARY/LOCOMOTORY

Surface Hellbender contacts surface with any part of body

Swim Wave-like movements of the tail propel the body forward,

and limbs are not in contact with the substrate

Walk Hellbender moves forward while limbs are in contact with

substrate

SEXUAL

Oviposition Female deposits eggs

Circle Hellbender swims in tight circle near another who may or

may not perform circling at the same time

Tail Swish Male swishes tail laterally while stationary

SOCIAL

Approach One hellbender moves to within 0.5m of another without

changing swimming speed

Nose-to-nose Individuals touch or nearly touch their noses while

stationary

Consider the following two examples of sequence scenarios.
The first example is one sequence comprised of four sequential
behaviors: Hellbender A (1)Walked out of a nest box onto a rock.
He (2) Approached and (3) Bit Hellbender B, while Hellbender
B (4) Fled. The second example is comprised of two sequences,
with the first consisting of one behavior only and the second
consisting of four behaviors: Hellbender A (1) Walked, rested for
5 or more min, (1) Walked, (2) Approached Hellbender B, (3) Bit
Hellbender B and caused Hellbender B to (4) Flee.

Transitional sequences between any two specific behaviors
did not occur with sufficient frequencies for statistical analysis.
However, we increased sample sizes by combining behaviors into
functional categories so that we could address two questions.
First, does Approach lead to a higher proportion of interactive
behaviors (e.g., combined Bite, Flee, Swim, Oviposition,
additional Approaches) than non-interactive behaviors (walk)?
Second, does Surfacing follow a greater proportion of high-
activity behaviors (e.g., combined Swim, Chase, Flee) than
low-activity behaviors (e.g., Walk). These two comparisons were
made via two-tailed Binomial tests (Minitab, v. 16). Note that
each event was treated as a unique data point even though the
same individual hellbender may have initiated multiple events.

RESULTS

In our artificial streams, individuals commonly shared cover
objects, including nest boxes, prior to the breeding season, but
exclusive residency occurred as the breeding period approached
(Ettling et al., 2013). The reproductively successful males in our
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study had become established in their nest boxes before we began
our observations. However, all males did not engage in nest
box defense, and nest boxes were sometimes occupied by single
females. Hellbenders were generally most active during 01:00–
07:00 h, and oviposition occurred between 02:00 and 07:00 h,
with females remaining in the nest box with the male for 65min
to over 2 h. For the results below, the transitional matrices used
to construct kinematic diagrams are in Supplementary Material.

Pre-oviposition Night
On the night before oviposition (21 September), most behaviors
were Solitary/locomotory (Figure 2A). Almost all (97%) of
these locomotory movements were Walking, with the rest
being Swimming (Figure 2A). Only one agonistic sequence
was recorded during the pre-oviposition period. This sequence
was initiated by a hellbender Approaching another hellbender
and Biting it, resulting in the bitten hellbender Fleeing. No
sexual behaviors (Tail swish, Circle) were observed during the
quantified pre-oviposition period (21 September 2012) or during
our observations of the videos for 18–20 September 2012, which
are not included in Figure 2A.

First Oviposition Night
During the first oviposition night (22 September), the overall
level of activity was higher and the diversity of behavior
increased to include all behavioral categories (agonistic,
solitary/locomotory, reproductive and social) (Figure 2B).
Solitary/locomotory behavior continued to be the most
frequently performed behavior, but, in comparison to the
previous night, the frequency of Walking decreased by about
50%, from 103 to 54 instances, and Swimming behavior increased
by a factor of 8 (from 3 to 25 instances). Agonistic behavior also
increased in frequency, with Biting occurring five times, Fleeing
occurring three times, and the first occurrences of Chasing.
Surfacing behavior was also observed for the first time during
this event (four times).

Some patterns in behavioral sequences were apparent
(Figure 2B). Although Bites sometimes (1/5) led to Circling
behavior, Circling did not lead directly to escalated agonistic or
sexual interactions, but only to more circling (1/5) or locomotory
behaviors (4/5). Flight resulted only from either Bites (2/3) or
Chases (1/3). Approach led to swimming (1/8) or the intense
social interactions of Biting (3/8), Nose-to-nose (2/8), and
Oviposition (2/8) (Interactive vs. Noninteractive, Z = 1.76, P =

0.078). Surfacing events only followed the high-activity behaviors
of Swimming (2/4) and Chasing (2/4).

The two oviposition behaviors during the first oviposition
night occurred as follows. After two females Approached a nest
box (Figure 1), nest box e containing a male, one female Bit the
other, and the bitten hellbender Fled away from the nest box
while being chased. The female that initiated the bite then slowly
entered the nest box (∼02:00 h). She stayed inside the nest box
for approximately 120min and exited without any indication of
coercion by the male. After approximately 90min, the second
female Approached and entered the nest box (∼06:00 h) and
stayed inside the nest box until the video stopped recording

(08:00 h). The male did not leave the nest box after oviposition
occurred.

Inter-Oviposition
During the Inter-oviposition period (23 September), locomotory
behavior occurred at the highest frequencies of the entire data
collection period. Walking initiated behavioral sequences 330
times, and Swimming initiated sequences 110 times (Figure 3A).
In addition, an increased number of interactions between
hellbenders were observed. Approach (n= 30) almost always led
to interactive events (20 Bites, 5 Flees, 2 additional Approaches;
interactive vs. noninteractive: Z = 4.20, P < 0.001) (Figure 3A).
Agonistic behaviors also occurred at the highest frequencies
during the Inter-oviposition period: 20 Bites, 23 Flees, 23 Chases,
and 2 Charges. Charges always led to Walking and Biting always
led to Fleeing. Female-female aggression occurred in 55% of the
aggressive acts, with male-male (30%) and female-male (15%)
aggression explaining the remainder. Tail swishing (n = 1) and
Circling (n = 6) were the only sexual behaviors to occur, and
both of these behaviors led only to locomotory behaviors. As
in the previous night, Surfacing followed high-activity behaviors
(Flee, Swim) or other Surfacing (high-activity vs. low activity: Z
= 2.12, P = 0.034). During this period, the male defending the
nest box with eggs briefly emerged a few times, but generally did
not engage in aggressive acts.

Second Oviposition Night
Although locomotory behaviors were not as frequent during the
second oviposition night (24 September) as during the Inter-
oviposition period, locomotory behavior was still moderately
frequent and initiated behavioral sequences at a higher rate than
on the first oviposition night (Walk, increase of 257%; Swim,
increase of 72%) (Figure 3B). Agonistic sequences occurred,
but at a lower frequency than the previous night and similar
to that during the first oviposition night. Behavioral transition
sequences showed some similar patterns as observed during the
first oviposition night. With one exception, Surfacing events
only followed the high-activity behaviors of Fleeing and Chasing
(High-activity vs. Low-activity: Z = 2.41, P = 0.020). Flight
continued to result only from Bites or Chases. The most intense
interactions of Biting and Oviposition followed from Approach
behavior (Interactive vs. Noninteractive: Z = 1.76; 0.042). In
general, sexual behavioral transitions were less complex than
those occurring in the first oviposition night; neither Circling nor
Nose-to-nose behaviors were observed during this oviposition
event.

The oviposition activity during the second oviposition night
was less complex than in the first oviposition night. The
remaining non-spent female approached a separate nest box
(Figure 1, nest box a) that was occupied by a different male than
the male that fertilized both clutches on the first oviposition
night. After Approach, the sequence of behavior by the female
was:Walk,Walk,Walk, Swim, Surface,Walk, Swim, Swim,Walk,
Walk, Walk, Approach, Walk, Approach, Oviposition (06:00 h).
The female stayed within the nest box for approximately 65min
and slowly exited after Oviposition. The male remained within
the nest box, and so we could not observe his behavior.

Frontiers in Ecology and Evolution | www.frontiersin.org 5 December 2018 | Volume 6 | Article 205

https://www.frontiersin.org/journals/ecology-and-evolution
https://www.frontiersin.org
https://www.frontiersin.org/journals/ecology-and-evolution#articles


Settle et al. Reproductive Behavior of Hellbenders in a Captive-Breeding Program

FIGURE 2 | Behavioral transitions during (A) the night before the oviposition events occurred and (B) the first night of oviposition when 2 oviposition events occurred.

Frequency of initiating behavioral actions (inside boxes) and % time initiated action was followed (arrow) by other actions are indicated. Zeros indicate that the behavior

occurred but did not initiate a sequence within the 5min designated time frame. Shape sizes are indicators of the relative frequency in which the initiating behavior

occurred (e.g., larger boxes indicate the behavior occurred more often than smaller boxes).

FIGURE 3 | Behavioral transitions during (A) the night between the two oviposition and (B) the second oviposition night when 1 oviposition event occurred.

Frequency of initiating behavioral actions (inside boxes) and % time initiated action was followed (arrow) by other actions are indicated. Zeros indicate that the behavior

occurred but did not initiate a sequence within the 5 min designated time frame. Shape sizes are indicators of the relative frequency in which the initiating behavior

occurred (e.g., larger boxes indicate the behavior occurred more often than smaller boxes).

Post-oviposition
The post-oviposition period began on 25 September 2012 and
ended on 26 September 2012. This period was characterized
by an abrupt decrease in frequency of all behaviors, with only
Solitary/locomotory behavior exhibited. On the first night post-
oviposition, Walking was the only behavior exhibited, and it
occurred only four times (Figure 4A). To determine whether this
very low level of activity continued, we also quantified behavior

on the second night post-oviposition; 14 instances of Walking
and one of Swimming occurred (Figure 4B).

Summary Comparisons Across Nights
Figure 5 shows a clear pattern of behavioral changes across the
six nights of the study. Frequencies of all behavioral categories
were relatively low during pre-oviposition. Although the total
number of behavioral events remained relatively low on the first
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FIGURE 4 | Behavioral transitions during (A) the first night post-oviposition and (B) the second night post-oviposition. Locomotory behaviors were followed (arrows)

by only other locomotory behaviors. Frequency of initiating behavioral actions (inside box) and the % time the initiated action was followed (arrow) by another action

are indicated.

oviposition night, there was a shift to include more agonistic
and sexual/social behaviors. By far, the highest level of all activity
was on the inter-oviposition night, with an approximately 5-fold
increase in all categories of behavior from the previous night. On
the second oviposition night, the frequency of behavioral events
decreased to only about 2× that of the first oviposition night.
On the two post-oviposition nights, the frequency of behavior
dropped abruptly to below that of the pre-oviposition night, and
the only behavior that occurred was solitary/locomotory (mostly
walking).

DISCUSSION

Descriptions of the reproductive behavior of hellbenders is
limited both in natural habitats due to their secretive nature,
and in captivity, where the first successful reproductive event
occurred relatively recently (Ettling et al., 2013). This study
provides the first quantitative ethological analysis of the behavior
of hellbenders immediately prior to, during and after an
oviposition event. These data, which were collected from video
recordings of the captive reproductive events reported in Ettling
et al.’s (2013) study, help to fill in the details of sequences of
behavior previously reported in anecdotal field observations.
Studies of captive breeding events for threatened and endangered
species, including our study, often suffer from low sample sizes
due to availability of reproductive individuals and appropriate-
sized of enclosures (Snyder et al., 1996). In our study, the
minimal information on individual variation of the behaviors
due to low sample size limits the strengths of the inferences
that can be drawn. However, behavior surrounding our three
observed reproductive events were generally consistent, and
there were several similarities with some anecdotal observations
from nature.

FIGURE 5 | Summary of frequencies of behavioral transitions across the six

nights of the study, which included one night each, including pre-oviposition,

oviposition night 1 (2 breeding events), inter-oviposition, oviposition night 2 (1

breeding event), and two nights post-oviposition. Agonistic behaviors were

Bites, Charges, Chases and Flight. Solitary/Locomotory behaviors were

Walking, Swimming, and Surfacing. Sexual and Social behaviors were

Ovipositions, Circling, Tail Swishes, Approach, and Nose-to-Nose.

As reported in numerous previous studies (Smith, 1907;
Bishop, 1941; Peterson, 1988), males began defending nesting
sites prior to the oviposition period. In nature, males typically
defend a “den” site consisting of a depression located under
a flat cover rock, or within crevices or holes in the bedrock
(Bishop, 1941; Pfingsten and Downs, 1989). Although flat rocks
were available, the hellbenders in our study defended only the
boot-shaped nest boxes. The same type of nest boxes have been
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successfully used for oviposition by hellbenders in the wild, with
success likely due primarily to the ease of defensibility provided
by the single, narrow neck opening and the spacious chamber for
eggs (Briggler and Ackerson, 2012).

Our findings are consistent with other studies that suggest
that aggression increases during the breeding period (Smith,
1907; Peterson, 1988; Foster et al., 2009). Although our data
span a limited period (after initial establishment of den sites
by males), the increase in aggression we observed was abrupt,
with increases in both number and types of overt acts. The
night before the first oviposition included only three agonistic
acts (one each of approach, bite and flee), whereas the night
of the first oviposition included 38 acts of six overt behaviors
(chase, flee, nose-to-nose, approach, circle, bite). Locomotory
activity also became more intense, with swimming (as opposed
to walking) comprising only 3% of pre-oviposition locomotory
movements, increasing to 28% on the night of oviposition. It
is not known whether the observed increase in aggression and
movement intensity is as abrupt in the field or whether the very
low level of aggression and movement intensity on the night
before oviposition is typical of a more extended pre-oviposition
period under natural conditions. In any case, we recommend
that managers of captive breeding facilities carefully monitor
hellbenders for increased aggression and swimming activity as
a possible indicator of imminent oviposition. Continued high
levels of activity, including aggression, after one oviposition
event, could indicate that additional oviposition events are
forthcoming.

Most previously-reported anecdotal field observations of
aggression and the apparent territorial spacing of males in
the field suggest that aggression has three primary functions:
male-to-male competition for breeding sites (Alexander, 1927;
Hillis and Bellis, 1971; Nickerson and Mays, 1973), (2) male
attempts to coerce females to enter or leave their nest sites or
(3) male attempts to protect their eggs from oophagy (Smith,
1907). However, the aggressive acts that we observed in the
artificial stream were mostly (55%) female-female, with females
apparently competing to occupy the oviposition sites. Female-
female aggression associated with reproduction may be more
common than previously thought; relatively few overt aggressive
acts have been observed in the field, and the contestants are
rarely definitively identified with respect to sex (e.g., Nickerson
and Mays, 1973). Alternatively, female-female aggression could
be a result of the specific conditions/densities within the artificial
stream, which could be tested with artificial streams with varying
sizes and densities if sufficient numbers of adults in breeding
condition were available. The consequences of aggression may be
severe. After this breeding period, both males and females in our
study had severe lacerations on the limbs, bite marks along the
lateral folds, and even lost limbs (Ettling et al., 2013).

It is possible that the dramatic reduction of population sizes
of Ozark hellbenders in recent decades (e.g., Wheeler et al., 2003)
has also resulted in alterations in the frequency or intensity of
aggressive behavior in natural habitats. For example, limitation
of available receptive females or fertile males (see Unger and
Mathis, 2013) may have resulted in more intense male-male
or female-female competition. Alternatively, lower population

densities may have led to an overall reduction in aggressive
encounters in the wild. The latter seems unlikely since fresh
wounds, in at least some cases resembling conspecific bite
marks, have been reported in post-decline (∼ early 1980’s:
Wheeler et al., 2003) populations (Pfingsten, 1990; Wheeler
et al., 2003; Miller and Miller, 2005; Williams and Groves,
2014).

The kinematic analysis also allows for inferences about
whether there are consistent transitions from one behavior to
the next. Although variability of transitions was high, some
general patterns were apparent from the data. Not surprisingly,
Flight was typically the result of being bitten or chased.
Both Swimming and Chasing appear to be energetically costly
because they were frequently followed by surfacing behavior,
presumably for accessory air breathing. Strenuous activity
can lead to respiratory and metabolic acidosis in hellbenders
(Boutilier et al., 1980); although hellbenders rely primarily on
cutaneous respiration (Guimond and Hutchison, 1973), lung-
based respiration may be important for maintenance of sufficient
blood oxygen levels during stressful periods. Although we
did not measure levels of stress hormones, we hypothesize
that corticosterone may increase during reproductive events to
mobilize energy for high activity levels, as has been reported
for some other salamanders (Reedy et al., 2014). Overall,
hellbenders have very low plasma corticosterone levels, but
levels rise during periods of acute stress (restraint), and, at
least during the early breeding season, males have higher
corticosterone levels than females (Hopkins and DuRant,
2011).

Circling behavior, which occurred 11 times, has been reported
during courtship in a taxonomically wide range of salamanders
(e.g., Plethodontidae: Cupp, 1971; Salamandridae: Bruni and
Romano, 2011), frequently leading to oviposition; however, in
our observations, circling consistently led only to locomotory
behavior or more circling. Approach typically led to physical
interactions (bite, nose-to-nose, and oviposition). Tail Swishing
by the male was observed on only two occasions and so may
not play as strong a role as the tail undulations that are a part
of courtship of some other salamander taxa (Houck and Arnold,
2003).

Our set-up had an excess of males to allow females
opportunities for mate choice. However, no particular feature
stands out as a basis for success. The two successful males
were intermediate in size (SVL), and the male that fertilized
the third clutch was missing both hind limbs (Table 1; see
Nickerson et al., 2011 for discussion of recent increases in
hellbender abnormalities). Oxygen concentration (see Settle
et al., 2018) or other features of the nest box might also
be important, but the successful nest boxes were at opposite
sides of the artificial stream (Figure 1, nest boxes a and
e), suggesting general nest box location was not a critical
factor.

Two females in our study laid eggs in the same nest
box, with fertilization by the same male, and clutches of
multiple females in the same nest has also been reported for
hellbenders in nature (Nickerson and Mays, 1973). Spawning
of several females in one nest site also occurs in the other
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species in this family, the Asian giant salamanders (Andrias
sp.: Browne et al., 2014), but the function of this behavior
is not known. Generally, such spawning decisions by females
could result either from preferred characteristics of the nest
site or preferred characteristics of the male (e.g., Refsnider
and Janzen, 2010). In any case, we recommend that managers
provide females with multiple nest sites and multiple males
during the spawning season [see also details in (Ettling
et al., 2013)]. In addition to mate choice opportunities,
multiple individuals could provide increased concentrations
of potential pheromones or reproductive hormones that
are released into the water. For example, in lampreys,
Petromyzon marinus, odors from mature males facilitate
sexual maturation for both sexes, attract females, and are
important for nest construction and gamete release (review in
Buchinger et al., 2015).

CONCLUSIONS

The use of quantitative behavioral data to predict timing of
potential reproduction should be useful in captive breeding
programs for a wide range of species. In addition, understanding
the sequence of events that lead to copulation/oviposition can
help managers to pinpoint the point at which failure occurs so
that problems can be more effectively addressed. For example,
detailed behavioral observations of Giant Pandas at a breeding
center near Wolong, China, led to the conclusion that copulation
failure was due to lack of motivation by the male (Zhang
et al., 2004). Even though mounting successfully occurred,
unsuccessful males frequently had improper mounting positions,
low persistence, and low penetration success. Mitigation efforts
could then be focused on steps to increase the motivation of the
male.

For hellbenders, in combination with husbandry details
described by Ettling et al. (2013), close monitoring of hellbender
behavior during the breeding season can provide clues to
the imminent onset of oviposition. The most striking result
was the rapid on-set of behavioral changes. We recommend
that the behavior of hellbenders in captive breeding programs
be monitored closely each night during the breeding season.
An increase in surfacing events is easy for even staff with
minimal training to detect. Closer observation should reveal
increased aggression and other social interactions as well as
a substantial increase in the proportion of locomotory events
involving swimming as opposed to walking. Such observations
allow managers to detect newly deposited eggs early and to
intervene if aggression levels are high enough to endanger
the lives of the adults. Although the presence of a guarding
male undoubtedly increases survival of eggs in natural habitats,
we recommend removal of the eggs from the nest for
rearing; at the RGCHC, we remove the eggs 14 days after
oviposition. Separate rearing allows for the elimination of
potential predation, including by the guarding male, and allows
for close control of water quality, maintenance of high levels
of oxygenation, and removal of eggs that become infected with
disease.

Surprisingly, much of the observed aggression in this study
of captive individuals was among females, so it is important
that females are provided with multiple males and multiple nest
sites. Even so, two females in this study spawned in the same
nest with the same male. A relatively large space is required
for captive-breeding of this species, and having more than one
gravid female per breeding stream increases the probability
of at least one successful mating event. Moreover, it is not
known whether female-female social interactions are important
to maintaining normal behavior. However, managers should
be aware of the potential cost of the high level of aggression
(female-female, male-male, male-female) during reproductive
activities, and carefully examine individuals for injuries
post-reproduction.
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