Myosin V-mediated transport of Snc1 and Vps10 toward the trans-Golgi network

Vy Nguyen
MSU Graduate Student

Jared Smothers
MSU Undergraduate

Paul Ballhorn
MSU Graduate Student

Sravya Kottapalli
MSU Graduate Student

Anh Ly
MSU Graduate Student

See next page for additional authors

Follow this and additional works at: https://bearworks.missouristate.edu/articles-cnas

Recommended Citation

This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution. For more information, please contact BearWorks@library.missouristate.edu.
Research paper

Myosin V-mediated transport of Snc1 and Vps10 toward the trans-Golgi network

Vy Nguyen a, Jared Smothers a, b, Paul Ballhorn a, Sravya Kottapalli a, Anh Ly a, Julia Villarreal a, Kyountae Kim a, * b
a Department of Biology, Missouri State University, 901 S National, Springfield, MO, 65807, USA
b Department of Biophysics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75235-8816, USA

A R T I C L E I N P R E S S

European Journal of Cell Biology xxx (xxxx) xxx

Contents lists available at ScienceDirect
European Journal of Cell Biology
journal homepage: www.elsevier.com/locate/ejcb

ARTICLE INFO

Keywords:
ATPase
Intracellular trafficking
Myosin
Snc1
Time-lapse images
Vps10

ABSTRACT

Retrieval of cargo proteins from the endosome towards the trans-Golgi network (TGN) is a crucial intracellular process for cellular homeostasis. Its dysfunction is associated with pathogenesis of Alzheimer and Parkinson’s diseases. Myosin family proteins are cellular motors walking along actin filaments by utilizing the chemical energy from ATP hydrolysis, known to involve in pleiotropic cellular trafficking pathways. However, the question of whether myosins play a role in the trafficking of Snc1 and Vps10 has not been addressed yet. The present study assesses the potential roles of all five yeast myosins in the recycling of two membrane cargo, Snc1 and Vps10. It appears that all myosins except Myo2 are not required for the Snc1 traffic, while it was found that Myo1 and 2 play important roles for Vps10 retrieval from the endosome and the vacuole. Multiple myo2 mutants harboring a point mutation in the actin binding or the cargo binding tail domain were characterized to demonstrate abnormal Vps10-GFP and GFP-Snc1 distribution phenotypes, suggesting a severe defect in their sorting and trafficking at the endosome. Furthermore, Vps10-GFP patches in all tested myo2 mutants were found to be near stationary with quantitative live cell imaging. Finally, we found that actin cables in the myo2 mutant cells were considerably disrupted, which may aggravate the trafficking of Vps10 from the endosome. Together, our results provide novel insights into the function of Myo-family proteins in the recycling traffic of Vps10 and Snc1 destined for the TGN.

1. Introduction

Myosins are a large family of motor proteins that interact with actin and use the energy driven by ATP hydrolysis to function for a spectrum of biological processes including intracellular trafficking, muscle contraction, and cell motility (Ryan and Nebenfuhr, 2018). Regardless of their types, the head domain of all myosins bind to filamentous actin and ATP, and the coiled-coil tail domain is able to interact with a variety of cargo molecules (Buss and Kendrick-Jones, 2011). Saccharomyces cerevisiae, the budding yeast, expresses 5 myosins, Myo1, Myo2, Myo3, Myo4, and Myo5 (Brown, 1997). Myo1 is a type II myosin that plays a pivotal role in cytokinesis (Lister et al., 2006; Lord et al., 2005), for which it appears that the C-terminal tail region of Myo1 exerts more important roles than the N-terminal motor domain (Lister et al., 2006; Santiago et al., 2016). Budding yeast Myo2 and Myo4 are class-V myosins, which serve as motors that function as vehicles that transport intracellular cargoes via actin filament-dependent motility (Pollard and Lord, 2014). Similar to mammalian myosin V, Myo2 in S. cerevisiae is responsible for delivering a wide spectrum of organelles and secretory membranes to the daughter cell (Breitschwerdt, 2003). The other type V myosin in the budding yeast is Myo4, a well-known motor protein that transports ASH1 mRNA to the growing bud (Jansen et al., 1996). Further investigations showed that at least two more proteins, including She2 and She3, work together to facilitate the transport of ASH1 mRNA (Bohl et al., 2006; Long et al., 2000). Finally, the budding yeast contains two class I myosins, Myo3 and Myo5, both of which are implicated in facilitating earlier steps of the receptor mediated endocytic pathway (Galletta et al., 2008; Lewellyn et al., 2015) by serving as an actin nucleation-promoting factor (NPF) (Kaksonen et al., 2005).

Many intracellular trafficking pathways depend on actin filament-based myosin motility. However, specific types of myosin motors implicated in the retrograde traffic from the endosome to the trans-Golgi network (TGN) have not been characterized yet. One of the most effective strategies to assess the significance of a protein factor...
implicated in the retrograde traffic would involve a quantitative measurement of defects in delivery of cargoes destined for the TGN in cells lacking the protein factor or in cells expressing a modified version of the factor. Two well-known cargoes for the traffic pathway are Sncl and Vps10. The former is a v-SNARE, which is synthesized in endoplasmic reticulum (ER) and is targeted to the plasma membrane. Recycling of Sncl is a complex process that involves endocytosis, retrograde trafficking from the early endosome to the TGN, and secretory back to the plasma membrane, primarily in the daughter membrane when the retrograde or recycling traffic is functional (TerBush et al., 1996; Woodman and Kim, 2018). The carboxypeptidase Y (CPY) receptor Vps10 shuttles between the late endosome and the TGN (Marcusson et al., 1994), thereby serving as a reporter for the retrograde traffic toward the TGN. The present study sought to identify specific types of myosin implicated in the retrograde traffic by examining proper recycling of GFP-Snc1 and Vps10-GFP toward the TGN. Our results here show that Myo2 is the key player on this traffic and that both the N-terminal actin binding domain and the C-terminal tail domain are required for optimal traffic of Sncl and Vps10. Further, we show that Vps10 exhibits reduced range of motion by a substitution of specific residues of Myo2. Additionally, actin cables are disrupted as small fragments, and actin patches are depolarized in myo2 mutant cells.

2. Materials and methods

2.1. Yeast strains and plasmids

All yeast mutant strains and plasmids used for this study are listed in Tables 1 and 2, respectively. *MATa ura3 his2 leu2-3,112 trp1 – 1 ade1 MYO1Δ::URA3* (KKY1990) strain was a gift from Dr. Ron Li (John Hopkins School of Medicine) (Tolliday et al., 2003). *MATα hisΔ1 leu2Δ0 met15Δ0 ura3Δ0 (KKY 0002), MATα leu2Δ0 met15Δ0 ura3Δ0 MYO3Δ::KanMX* (KKY 1963) and *MATα leu2Δ0 met15Δ0 ura3Δ0 MYO5::KanMX* (KKY 1964) strains were purchased from Invitrogen. *MATα hisΔ1 leu2Δ0 ura3Δ0 met15Δ0 MYO4::KanMX* (KKY 1935) strain was gotten from Euroscarf. *MATα his3 leu2 trp1 bar1 myo3a::HIS3 myo5Δ::TRP1* (myo5–1 URA3) (KKY 1924) strain was given as a gift by Dr. Spudich from Stanford University (Goodman et al., 1996). *MATα ade2–101 hisΔ2Δ200 leu2–3,112 lys2–801 ura3–52 myo2–16::HIS3* (KKY 1923) and *MATα ade2–101 hisΔ2Δ200 leu2–3,112 lys2–801 ura3–52 myo2–66::HIS3* (KKY 1922) strains were donated by Dr. Brecher from Cornell University (Schott et al., 1999). PPT1-GFP-SNC1 (pm) URA3 CEN (KKD 0062) and PT1-GFP-SNC1 LEU2 CEN (KKD 0064) plasmids were contributed by Dr. Tanaka from Hokkaido University (Furuta et al., 2007). pAD54-HA VPS10-GFP (KKD 0333) plasmid was received as a gift from Dr. Gerst from Weizmann Institute of Science (Kama et al., 2007). pRS413-myo2-1114–1519 HIS3 CEN (KKD 0369), pRS413-myo2-1–1345 HIS3 CEN (KKD 0368), pRS413-myo2-2–G1248D HIS3 CEN (KKD 0365), pRS413-myo2-D1297N HIS3 CEN (KKD 0363), pRS413-myo2-N1304D HIS3 CEN (KKD 0371), pRS413-myo2-Y1415R HIS3 CEN (KKD 0364), and pRS413-myo2-K1444A HIS3 CEN (KKD 0372) plasmids were designed by Dr. Louis Weisman (Michigan University Life Science Institute) (Catlett and Weisman, 1998; Eves et al., 2012; Ishikawa et al., 2003; Pashkova et al., 2005b, 2006). Before using them, we sequenced (Eurofins Genomics) and identified the mutated site from the vectors as well as confirmed no additional mutations in each vector (Table 3).

2.2. Cell growth and reagents

Wild-type yeast cells (KKY 0002) were grown in YPD liquid medium (1% bacto yeast extract, 2% bacto peptone, and 2% glucose). A variety of myo2 mutant strains were grown in appropriate media, including -URA (lacking Ura1), -LEU (lacking Leucine), -HIS (lacking Histidine), 5-FOA-His (5-fluoroorotic acid and lacking Histidine), -HIS-LEU (lacking both Histidine and Leucine), and -HIS-URA (lacking both Histidine and...
To replace pRS416-MYO2-URA plasmid with pRS413 plasmids carrying a myo2 mutant gene in the genetic background of myo2Δ, a plasmid shuffle experiment was performed. First, using the one step transformation (Chen et al., 1992), pRS413-myo2 mutant plasmids (pRS413-myo2-N1304D HIS3 CEN, pRS413-myo2-Y1415R HIS3 CEN, and pRS413-myo2-K1444A HIS3 CEN) were introduced to KKY1943 strain harboring pRS416-MYO2-URA (Table 1) in -HIS medium, which resulted in partial removal of pRS416-MYO2-URA. To eliminate cells harboring both pRS413-myo2 mutant plasmids and pRS416-MYO2-URA and keep cells only carrying pRS413-myo2 mutant plasmids, the positive colonies from the -HIS medium were plated on S-FOA medium lacking Histidine (S-FOA-HIS). As a result, we created the following 7 strains (KKY 1973, KKY 1974, KKY 1975, KKY 1969, KKY 1972, KKY 1970, and KKY 1971). As shown in Supplementary Fig. 1, some of the positive colonies from -HIS plates grew on -HIS+S-FOA plates. We also plated the positive colonies from the -HIS+S-FOA plate on -URA plates to confirm that all these positive colonies do not contain pRS416-MYO2-URA vector (Supplementary Fig. 1). For all these strains, MYO2 gene was substituted with a TRP auxotrophic marker (See Table 1), and therefore, we also checked if these strains grow on TRP plate (Supplementary Fig. 1). Among these strains, KKY 1975 is a temperature sensitive mutant (myo2–2) expressing myo2–2D1248D. The positive colonies from the plate were selected for next round of one step transformation to introduce either (pKT1490 [pRS315 GFP-SNC1] or pAD54-HA VPS10-GFP) (Furuta et al., 2007; Kama et al., 2007). As a result, we created a number of myosin 2 mutant strains expressing either GFP-Snc1 or Vps10-GFP (see Table 1). To measure defects in GFP-Snc1 and Vps10-GFP trafficking, all strains except the temperature sensitive mutant strain were incubated in a shaker at 30 °C prior to fluorescence imaging. For KKY1975 strain, the growth condition was 24 °C initially, and then the temperature was shifted to 37 °C for an hour prior to fluorescence imaging.

2.4. Cell imaging and confocal microscopy

Confocal fluorescent images were taken using a spinning confocal microscope equipped with a Yokogawa CSUX1 spinning disk head mounted on an inverted microscope (Olympus IX-81) with a ×100 oil immersion PlanApo objective lens and an ImageEM camera. The exposure time to record GFP-Snc1 and Vps10-GFP fluorescence was set at 100 ms, and camera intensification was 200. The excitation wavelength used for these fluorophores was 488 nm for the GFP channel generated by 3i laser box (Intelligent Imaging Innovations). To visualize GFP-Snc1-pm mutant expressed from P
tetR-1-GFP-SNC1(pm) plasmid (Table 2), a Leica TCS SPE II RGBV confocal imaging system with 63X objective lens was used. We chose 488 nm excitation wavelength of the system to excite the GFP for 800 ms.

2.5. Vps10 patch tracking

Time-lapse imaging experiments were conducted by using yeast cells expressing Vps10-GFP with the spinning confocal microscopy system. The exposure time for detecting and recording Vps10-GFP was set to 50 ms. All time-lapse videos were recorded in one minute for total 120 frames (2 frames/second). Only small-budded cells containing Vps10-GFP dots were chosen for further analysis. A regions of interest (ROI) with an applicable cell was cropped and exported to ImageJ (v1.52a) to track Vps10-GFP motility over time. For this, the “manual tracking” function under “tracking” icon of ImageJ was used to trace x and y coordinates for each individual Vps10-GFP dot over 30 s. These values were transferred to an Excel sheet in order to determine mean squared displacement (MSD) for each Vps10-GFP dot (0.026 μm²/pixel). At least 20 Vps10-GFP dots per each strain were chosen to obtain the MSD value for every time point. Finally, all MSD data points were plotted over time (15 s).

2.6. Actin filament staining

Yeast cells including wild type and Myo2 mutant cells were grown in selective media in a 30 °C incubator for 48 h until they reached an OD of...
between 0.5–0.8. The yeast cells that reached this OD range were then treated with 37 % formaldehyde stock to a final concentration of 4%. The cells incubated with the formaldehyde for ten minutes in order to fix the cells. Then the cells were put into a centrifuge and washed with 1XPBS, and this process was repeated multiple times. Then, the cells were washed with 3.3 μM of Rhodamine-phalloidin and incubated for an hour staining the actin filaments. Then, cells were washed with 1XPBS and ran through a centrifuge in order to get rid of the excess dye. The cells were then visualized with the spinning confocal microscope.

These cells were then put into categories such as polarized, non-polarized, and whether actin filament cables are present or not. Small budded yeast cells were chosen to be analyzed. All polarized cells are denoted by stain cortical actin patches being stained and heavily present in the daughter cell. Non-polarized cells do not have stained actin patches in the daughter cell or contain actin patches that are spread out randomly in the cytoplasm. If filamentous actin cables present in a cell, then they are seen as glowing long red fibers within the cell. The cables visualized were then denoted as fragmented or not. In particular, Myo2 mutant strains displayed polarized GFP-Snc1 at the growing bud, a similar phenotype to that of WT cells. The extent of GFP-Snc1 polarization for WT cells was 82.6 ± 11.3 %, and for strains of myo1Δ, myo3Δ, myo4Δ, myo5Δ, and myo3Δmyo5Δ. MYO2 is essential for cell viability, and therefore, we used two myo2 temperature sensitive mutant strains, myo2–16 and myo2–66, for the same purpose. myo2–16 and myo2–66 harbor a mutation in COOH-terminal tail domain and a mutation in the NH2-terminal motor domain, respectively. These mutants are known to affect adversely on the targeting of Sec4p, a Rab GTPase component of late secretory vesicles, to the developing buds (Elliie and Brown, 1994; Schott et al., 1999; Walch-Solimena et al., 1997). All single myosin knock-out (KO) strains except myo2Δ mutant strains displayed polarized GFP-Snc1 at the growing bud, a similar phenotype to that of WT cells. The extent of GFP-Snc1 polarization for WT cells was 82.6 ± 11.3 %, and for strains of myo1Δ, myo3Δ, myo4Δ, and myo5Δ the polarization levels were 94.5 ± 5.0 %, 94.4 ± 9.4 %, 88.9 ± 4.7 %, and 93.3 ± 6.5 %, respectively. In contrast, in all myo3Δmyo5Δ cells GFP-Snc1 was evenly distributed to the plasma membrane (Fig. 1, A&B), indicating defect in endocytosis. This result is agreement in the previous study that revealed the role of Myo3 and Myo5 in endocytosis (Sun et al., 2006). GFP-Snc1 localization patterns in both myo2Δ mutants at 24 °C were similar to that of WT cells, whereas levels of GFP-Snc1 polarization in these mutants were drastically reduced after 1-h incubation at 37 °C (Fig. 1, C&D). In addition to the depolarized distribution pattern of GFP-Snc1, we observed increased number of cytoplasmic GFP-Snc1 puncta (data not shown), suggesting the possibility that myo2 plays an important role in the retrograde trafficking of Snc1 toward the Golgi. To study whether GFP-Snc1 puncta found in myosin 2 mutant strains are mistargeted to multivesicular body (MVB) or at the vicinity of the vacuole, we performed an FM4–64 chase experiment. After 20 min chase, GFP-Snc1 puncta were partially colocalized with FM4–64 dots, whereas after 60 min chase none of GFP-Snc1 puncta was coincided with FM4–64 dots, suggesting GFP-Snc1 puncta in myo2 mutant strains are representing early endosome/Golgi instead of representing MVB or late endosomes (Supplementary Fig. 2A), a similar phenotype observed by Takeda et al. (2014). However, the questions of whether GFP-Snc1 dots in the mutant strain indeed represent endosome-derived vesicles need to be addressed. In addition, we measured the degree of GFP-Snc1 recycling defects with the following 4 myo2 mutant strains: a truncated Myo2 mutant lacking C-terminal half (myo2Δ1345), and three Myo2 tail mutant strains carrying a point mutation in each (myo2Δ1297N, myo2Δ1304D, and myo2Δ1306D). As shown in supplementary Fig. 3A&B, we observed severe defects of GFP-Snc1 distribution in these strains, comparable to those seen in myo2–16 strain at the non-permissive temperature (Fig. 1, C&D). Interestingly, we observed a partial polarization of GFP-Snc1 near the end of the bud in myo2Δ1345 and myo2Δ1306D strains, as seen in the figure (Supplementary Fig. 3A). However, we put those cells into the category of depolarized cells due to a strong GFP fluorescence in the mother’s membrane. To exclude the possibility that the observed distribution defects of GFP-Snc1 are due to defects in secretory pathway from the TGN to the plasma membrane, we introduced GFP-Snc1 (pSN), a Sncl1 mutant that is targeted to the plasma membrane but not endocytosed (Takeda et al., 2014). As a result, we found that this GFP-Snc1 mutant was properly secreted to the plasma membrane both in WT and four myo2 mutant strain (myo2Δ1297N, myo2Δ1344A, myo2Δ1304D, and myo2Δ1306D) (Supplementary Fig. 3C), suggesting no secretory defects in these myo2 mutant strains. Furthermore, it does not appear that the majority of GFP-Snc1 puncta in myo2 mutant strains do not coincide with the rim or lumen of the vacuole (Supplementary Fig. 1A). Therefore, both
accumulation of GFP-Snc1 cytoplasmic dots and uniformly strained Snc1 at the plasma membrane in myo2 mutant strains might be mainly due to either slow endocytosis or defects in the Golgi-bound traffic pathway.

3.2. The role of myosin family in the traffic from the Late Endosome to TGNs

Vps10 (vacuolar protein sorting 10), a type I membrane protein, functions in the sorting of carboxypeptidase Y (CPY), a soluble vacuolar hydrolase to yeast lysosome-like vacuole (Cooper and Stevens, 1996). It was presented that CPY from the TGN transits the late endosomal/prevacuolar compartment (PVC) prior to reach the vacuole, and this traffic is referred to as the CPY pathway. Immature CPY binds to Vps10 at the late Golgi, and the resulting complexes are delivered to PVC where CPY dissociates from Vps10. Vps10 then recycles back to the Golgi for additional rounds of sorting (Conibear and Stevens, 1998), and therefore, Vps10 serves an intracellular marker for studying retrograde traffic, especially, from the late endosome to the TGN. According to a previous study, Vps10-GFP is detected as punctate patterns corresponding to Golgi and/or endosome compartments in wild type cells (Burd et al., 2002). However, cells lacking genes for Vps10-GFP traffic toward the TGN displayed Vps10-GFP to the rim of the vacuole, forming bright ring-like structures (Arlt et al., 2015). We assessed distribution defects of Vps10-GFP in cells lacking a myosin gene to reveal normal traffic, especially, from the late endosome to the TGN. According to a previous study, Vps10-GFP is detected as punctate patterns corresponding to Golgi and/or endosome compartments in wild type cells (Burd et al., 2002). However, cells lacking genes for Vps10-GFP traffic toward the TGN displayed Vps10-GFP to the rim of the vacuole, forming bright ring-like structures (Arlt et al., 2015). We assessed distribution defects of Vps10-GFP in cells lacking a myosin gene to reveal normal function of each myosin gene in the Vps10 trafficking. Five myosin knock-out strains and two temperature sensitive myosin 2 mutant strains expressing Vps10-GFP were constructed for this purpose. Cells containing multiple cytoplasmic puncta are determined as normal cells. Cells showing accumulative fluorescence dots or ring-like structures are considered as abnormal cells. WT, all single myosin KO, and a double myosin KO cells except myo1Δ showed cytoplasmic Vps10-GFP puncta, an indication of normal phenotypes of Vps10-GFP distribution. The mean percentage of WT, myo3Δ, myo4Δ, myo5Δ and myo3Δmyo5Δ cells that showed normal Vps10-GFP distribution pattern was 88.1 ± 2.0 %, 66.1 ± 4.5 %, 77.9 ± 10.9 %, 80.8 ± 3.1 %, and 71.8 ± 16.1 %, respectively (Fig. 2, B). Unexpectedly, myo1Δ cells showed a significant defect phenotype by having all Vps10-GFP found in the lumen of an organelle (Fig. 2, A&B). We hypothesized that Vps10-GFP in myo1Δ is mistargeted to the lumen of vacuole and tested it by incubating the mutant cells with FM4–64 for 60 min. We found that Vps10-GFP was mainly located inside the lumen of vacuole as the vacuolar membrane was labeled with FM4–64 as a ring (Supplementary Fig. 2A). Because myo1Δ cells missort Vps10-GFP into the vacuole lumen, we further tested if cargos bound for vacuole were disrupted in the mutant. To that end, we have expressed and visualized GFP-Cps1. Both in WT and myo1Δ cells GFP-Cps1 was properly located in the lumen of vacuole (Supplementary Fig. 2C). This indicates that Cps1 sorting at the endosomal level is normal in the mutant. The vast majority of myo2–16 cells (84.1 ± 10.5 %) at 24 °C showed normal Vps10-GFP distribution phenotypes, when compared with WT cells (88.1 ± 2.0 %). At the non-permissive temperature, most of the mutant cells demonstrated one or more ring-like structure containing Vps10-GFP (Fig. 2, C). For myo2–66 cells, Vps10-GFP ring-like structure was obvious even at 24 °C, and the defect was significantly aggravated at 37 °C (Fig. 2, D). We extended our experiment to confirm that the Vps10-GFP ring-like structure represents the vacular membrane. As shown in Supplementary Fig. 2A&B, Vps10-GFP fluorescence was coincided with FM4–64 chase experiment, indicating that Vps10-GFP is accumulated at the vacuolar rim in myosin 2 mutant strains. Together, these results indicate that both Myo1 and Myo2 are implicated in Vps10 trafficking, in particular an early stage of the endosome-to-Golgi pathway.
3.3. Cargo-binding domains of myosin 2 functions in traffic of Vps10-GFP

Yeast Myosin 2, a type V myosin motor, is composed of two heavy chains. Each heavy chain is subdivided into four distinct functional domains. The N-terminal motor domain (residues 1 - 1,087) interacts with actin filaments, and this domain is followed by a neck region that contributes to the dimerization of the heavy chains, and the C-terminal globular tail domain that (resides 1,087 - 1,574) binds cargo (Weisman, 2006). Myosin V motors are able to associate with and transport diverse intracellular cargo, such as secretory vesicles, the vacuole/lysosome, late Golgi elements, peroxisomes, and mitochondria, to distinct destinations in the cell via cargo-specific receptors (Catlett et al., 2000; Catlett and Weisman, 1998; Fagarasanu et al., 2009; Schott et al., 1999; Valiathan and Weisman, 2008). Notably, the distinctive functions of the globular tail in vacuole-specific binding and secretory vesicle-specific binding properties are correlated with two structural subdomains, namely subdomain I (resides 1,087 - 1,345) and subdomain II (resides 1,346 - 1,574), respectively (Catlett and Weisman, 1998; Pashkova et al., 2005b; Schott et al., 1999).

The functional assessment of various myo2 point mutations that affect the interaction with the vacuole-specific adaptor protein Vac17 revealed that myo2D1297N, myo2N1304D, and myo2-2G1248D (residues on subdomain I) induce defects in vacuole inheritance (Catlett and Weisman, 1998; Eves et al., 2012) (Table 4). In particular, the first two residues, Myo2D1297 and Myo2N1304, are on the surface of the subdomain I and implicated in binding to Vac17 directly, while Myo2G1248 is buried within the subdomain I, locating apart from the two Vac17 binding residues of Myo2 (Pashkova et al., 2005a, 2006) (Table 4). Similarly, two myosin 2 mutants, myo2K1444A and myo2Y1415R (residues on subdomain II) cause a failure to translocate secretory vesicles (Donovan and Bretscher, 2012b; Eves et al., 2012; Pashkova et al., 2005a; Santiago-Tirado et al., 2011; Weisman, 2006) (4).

![Image](https://example.com/image.png)

Fig. 2. The effects of myosin knock-out and temperature sensitive mutants on Vps10 distribution pattern. (A) Vps10-GFP was exogenously expressed in WT, myo1Δ, myo2Δ, myo3Δ, myo4Δ, myo5Δ and myo3Δmyo5Δ. Representative pictures of Vps10-GFP in each strain are shown. (B) Percentage of budded cells showing abnormal Vps10-GFP distribution. Cells exhibiting enlarged cytoplasmic Vps10-GFP puncta or Vps10-GFP at the vacuolar ring are classified into the group of abnormal phenotype. The strains described above were quantified in triplicate (3 repeats of 30 small budded cells for each strains). 0.05 < p ≤ 0.1 is indicated with one asterisk and p ≤ 0.01 is indicated with three asterisks. (C) Representative pictures of Vps10-GFP pattern in WT, myo2-16, and myo2-66 are shown at permissive and restrictive temperature, 24°C and 37°C, respectively. (D) Percentage of budded cells showing abnormal Vps10-GFP distribution in WT, myo2-16, and myo2-66 strains. WT, wild type. Bars, 3 μm.

<table>
<thead>
<tr>
<th>Mutant residues</th>
<th>Defective function</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-16 (M1212 T)</td>
<td>Losing the ability in cargo binding, defecting in the distribution of a representative secretory vesicle, Sec4p</td>
<td>(Schott et al., 1999)</td>
</tr>
<tr>
<td>2-66 (E511 K)</td>
<td>Losing the ability in movement along actin filament, defecting in the actin patch distribution</td>
<td>(Lillie and Brown, 1994; Schott et al., 1999)</td>
</tr>
<tr>
<td>1-1345 (truncation)</td>
<td>Losing function in actin binding and vacuole binding</td>
<td>(Pashkova et al., 2005b)</td>
</tr>
<tr>
<td>1114-1519 (truncation)</td>
<td>Losing function in vacuole binding</td>
<td>(Pashkova et al., 2005b)</td>
</tr>
<tr>
<td>1248 (G1248D)</td>
<td>Vacuole inheritance dysfunction</td>
<td>(Ishikawa et al., 2003)</td>
</tr>
<tr>
<td>1297 (D1297 N)</td>
<td>Vacuole inheritance dysfunction</td>
<td>(Ishikawa et al., 2003)</td>
</tr>
<tr>
<td>1304 (N1304D)</td>
<td>Vacuole inheritance dysfunction</td>
<td>(Ishikawa et al., 2003)</td>
</tr>
<tr>
<td>1415 (Y1415R)</td>
<td>Vesicle-specific binding dysfunction</td>
<td>(Pashkova et al., 2006)</td>
</tr>
<tr>
<td>1444 (K1444A)</td>
<td>Vesicle-specific binding dysfunction</td>
<td>(Pashkova et al., 2006)</td>
</tr>
</tbody>
</table>
that these point mutants disrupted vacuole inheritance (Catlett and Weisman, 1998; Eves et al., 2012; Pashkova et al., 2005a, 2006) (Table 4). Similarly, two myosin 2 mutants of subdomain II, myo2Y1415R (a point mutant at residue that interact with Rab GTPases Ypt31/32, required for trans-Golgi vesicles formation) and myo2K1444A (localize to the secretory vesicle-binding region) cause a failure to translocate secretory vesicles (Donovan and Bretscher, 2012b; Eves et al., 2012; Lipatova et al., 2008; Pashkova et al., 2005a; Santiago-Tirado et al., 2011; Weisman, 2006) (Table 4).

To further investigate which domains/residues of Myo2 are required for Vps10-GFP traffic, the same experimental approach shown in the prior section was utilized. All point mutations and truncations in myosin 2 resulted in severe defects in the traffic of Vps10-GFP, manifesting frequent appearance of ring-like structures containing Vps10-GFP. The mean percentage of normal Vps10-GFP distribution in those myosin 2 mutant strains was drastically lower than that of WT cells (Fig. 3, B). Specially, the temperature-sensitive point mutant, myo2G1248D caused Vps10-GFP localization defects at both permissive and restrictive temperatures. Taken together, these results indicate that myosin 2 tail domain is required for the retrograde trafficking of Vps10.

3.4. Myosin 2 functions in Vps10-GFP motility

We examined the effect of myosin 2 mutants, including two truncated (myo21-1345 and myo21114-1519) and four point mutants (myo2D1297N, myo2N1304D, myo2G1248D, and myo2Y1415R), on Vps10-GFP motility by imaging and tracking Vps10-GFP patches. Vps10-GFP patches in WT cells displayed dynamic motility over time. For example, a Vps10-GFP patch in a WT cell moved away quickly from the origin of detection (Fig. 4 and movie 1) and disappeared from the plane of focus. However, the vast majority of Vps10-GFP patches in myo2Y1415R cells were stationary at the same location over the full-duration of time-lapse movie (Fig. 4 and movie 2). To define the motile behavior of Vps10-GFP patches in WT and myo2 mutant cells, we produced MSD (Mean Squared Displacement, μm2) plots with the function of time. Twenty Vps10-GFP patches per each strain were analyzed, and then the MSD curves at each time point for 15 s are plotted. The averaged Vps10-GFP motility curve from wild type cells indicated an exponential increase in moving distance for approximately 10 s, suggesting a direct motion of these patches, whereas patches in all six myo2 mutant strains appeared to be quite reduced with their corresponding MSD lines nearly parallel to the X-axis (Fig. 5). These results show that functional Myo2 is required for Vps10-GFP motility.
3.5. Myosin 2 mutants display severe disruption of actin cables and cortical actin patches

Actin cables have been known as the cytoskeleton track for polarized trafficking of Myo2. In light of finding a traffic delay of Vps10 in all tested myosin mutant strains, we hypothesized that the actin cable and cortical actin patches are disrupted in our myosin mutant strains. To this end, actin filaments were stained with Rhodamine-phalloidin in order to visualize them under the confocal microscope. Wild type cells expressing functional Myo2 showed intact actin cables that were parallel to the long axis of yeast cell (Fig. 6, A). myo2 mutant strains such as myo21345, myo21114–1519, and myo2Y1415R showed neither actin cables nor fragmented cables. Numerous actin patches were observed instead in those strains. Likewise, the majority of myo22G1248D, myo2N1304D, and myo221444A strains were observed to have several actin patches without intact or fragmented actin cables. However, these strains rarely contained short, fragmented actin cables (Fig. 6). Further, fragmented actin cables found in these myo2 mutant cells were observed to be in disarray within the cell. According to our measurement on the extent of actin patch polarization, wild type Myo2 cells were shown to have an average of 65.36 ± 12.18% of cells that displayed actin patches polarized to the growing bud, whereas the extent of actin patch polarization in all mutant strains was drastically lower: myo21345, myo21114–1519, myo22G1248D, myo2N1304D, myo2Y1415R, and myo221444A strains showed 32.7 ± 15.18%, 28.8 ± 9.63%, 32.1 ± 9.3%, 17 ± 21.39%, 25.8 ± 5.9%, 16.53 ± 7.9% of their cells displaying polarization of actin patches (Fig. 6, B). Because all myosin 2 mutant cells displayed varying degrees of actin cable defects, extrapolating the exact role of Myo2 under these conditions would be uneasy. Therefore, we envisioned to explore the potential role of actin cables in the trafficking of Vps10. To that end, we expressed Vps10-GFP in bnr1Δbni1–12 strain that lacks BNR1 gene and expresses mutated BNI1 gene. The actin cable mutant cells exhibited no actin cable not only at the non-permissive temperature (37 °C) but also in a permissive temperature (30 °C) (Supplementary Fig. 4). Under both temperature conditions, the mutant cells displayed an increase in numbers of Vps10-GFP puncta (Supplementary Fig. 4), without showing...
responsible for accumulation of Vps10 at the vacuolar rim or late standard deviation shown in the graph. 0.05 triplicate manner for each strain were analyzed to obtain the mean and the studies in which the disruption of Myo1 resulted in strong cytokinesis 4. Discussion the vacuole than actin cables. From this finding, we came to the conclusion that Myo2 of traffic between the late endosome and TGN, Vps10 also localizes to endosomes. Along with its well-known route the vacuolar rim prior to its retrieval toward the TGN (Arlt et al., 2015; Tolliday et al., 2003). Therefore, the mistargeting of Vps10-GFP inside the vacuole is observed throughout the cell cycle (data not shown) in cells lacking Myo1, the above-mentioned possibility of Myo1 association with the endosome is likely. Nevertheless, we speculate that the abnormal targeting of Vps10-GFP in the myo1 mutant cell has nothing to do with the function of ESCRT the sorting machinery responsible for loading receptor proteins into the intraluminal vesicle. It is because GFP-Cps1 targeting to the vacuole lumen in myo1Δ cells was not compromised when compared to that of WT cells (Supplementary Fig. 2C). Further, the prolonged existence of Vps10-GFP fluorescence in the vacuolar lumen (Fig. 2A and Supplementary Fig. 2A) suggests an alteration of the internal environment into a less acidic condition in which hydrolysis-based protein degradation activities are not optimal. Alternatively, it is possible that the Vps10 portion from the fusion protein would be vulnerable to the hydrolytic activity in the lumen, but the GFP portion might be stable in the condition, which could explain the prolonged fluorescence in the lumen. Interestingly, the GFP-Snc1 distribution pattern in myo1Δ cells were comparable to that of wild type cells, suggesting that Snc1 sorting and trafficking is independent of Myo1 function. Taken together, it is likely that Snc1 and Vps10 at the endosome are differently handled by their specific sorting machinery, and the potential function of Myo1 for assisting Vps10 sorting and trafficking is of great interest for an investigation.

4.2. Myo2 functions in Vps10 retrograde pathway

Retrieval of Vps10 to the Golgi is known to depend on the retromer complex, a group of proteins regulating the recycling of various cargo from the endosome to TGN (Vagnozzi and Pratico, 2019). Normally, Vps10-GFP is found as puncta in the cytoplasm, marking endosomes and the late Golgi, as shown previously (Chi et al., 2014; Piper et al., 1995). The dysfunction of retromer complex leads to a significant defect in Vps10 retrieval from endosomes and the vacuole, manifested by the presence of large cytoplasmic Vps10-GFP puncta and ring-like structures carrying Vps10-GFP (Arlt et al., 2015; Burda et al., 2002). Based on our observations of the abnormal Vps10-GFP distribution pattern resembling that of retromer mutant cells, we put forth a model that depicts the potential consequence of the presence of functional Myo2 or a mutated myo2 variant (Fig. 7). To our knowledge, the interaction between Myo2 and Vps10 has not been documented yet, but the myosin tail is known to bind to a diverse range of membranes by the aid of a membrane-specific adaptor or through the direct interaction between Myo2 tail and the cargo membrane (Jin et al., 2011; Winding and Gelfand, 2014; Yau et al., 2014). Furthermore, it was proposed that the actin filaments surrounding the Golgi complex have their plus ends toward the membrane and their minus ends pointing away (Warner et al., 2003). Therefore, we propose that Myo2 is able to interact with endosome or vacuole-derived vesicles, regardless of their interaction modes, and walks along the actin cable toward the Golgi, near which the positive end of actin cable may concentrate for efficient docking of transported membrane cargo to a cargo entry site (Fig. 7, A). In wild type cells, a minor fraction of Vps10 receptors are sorted into intraluminal vesicles (ILVs) that are destined for degradation in the vacuole, whereas the vast majority of them are retrieved to the Golgi from the late endosome and the vacuole (Nickerson et al., 2010) (Fig. 7). In light of finding that myo2 mutant cells exhibiting several large Vps10-GFP fluorescent dots and ring-like structures with Vps10-GFP (Figs. 2, C and 3, A), we came to the
conclusion that earlier stages of Vps10 retrieval, such as its sorting and loading to correct membrane vehicles or vesicles, at the endosome and the vacuole are significantly disrupted (Fig. 7, B). On the basis of our observation of enlarged Vps10-GFP puncta in myo2 mutant cells (Figs. 2 and 3), we also proposed the possibility that the endosomal sorting complex retromer might not function properly in the absence of intact Myo2. This idea is consistent with the previous investigation that reported defective retromer functions in cells manifesting enlarged Vps10-GFP puncta in mutant fission yeast cells (Yanguas et al., 2019). It appears that there is a positive correlation between this abnormal Vps10-GFP accumulation and the severity of actin cytoskeleton organization (Figs. 2, 3, and 6), which provides hints of certain unknown functions of the acto-myosin system for organizing the proper structure of its interacting endosome. Yet, the questions of whether the enlarged Vps10-GFP puncta present late endosome itself is of interest to be explored. Furthermore, it is highly likely that myo2 truncated mutants, lacking either a portion of its tail or motor domain (Figs. 3 and 6), would not bind their cargo membrane or the actin cable in an effective manner, respectively, resulting in a severe cargo traffic delay (Fig. 7, B). Similar defective phenotypes of Vps10-GFP shown in the truncated myo2 mutant cells were also found in myo2 point mutants whose functions are related to vacuole inheritance or secretory vesicle traffic pathways. These results are the first evidence that highlights the key function of Myo2 in delivering Vps10 to TGN.

4.3. Vps10-GFP motility affected by myo2 mutations

Time-lapse fluorescence imaging techniques in conjunction with moving-patch analysis have provided significant insights into understanding the nature of motile vesicles, including endocytic and exocytic vesicles, defining if they undergo either a directed or a random motion inside the cell. Nevertheless, the characteristic motile behavior of Vps10-carrying vesicles has been overlooked. As such, to our knowledge, we are the first group revealing that Vps10-GFP patches under normal conditions manifest a type of directed motion until they disappear from the focused field of view. Myo2 is proposed to function in directed transport of its cargo along the actin filament toward its positive end with the average moving velocity of 0.2 – 0.5 μm/s, by the use of fluorescence live imaging methods (Pierobon et al., 2009). Myo2 is also thought to be associated with secretory vesicles of GFP-Sec 4 through direct interaction between Myo2 and Sec 4, and the measured velocity of the cargo was approximately 3 μm/s (Donovan and Bretscher, 2012a; Jin et al., 2011; Schott et al., 2002). The discrepancy in moving speeds by myo2-mediated motility has been attributed to the lack of full capability of direct single-molecule measurements (Kodera and Ando, 2014; Pierobon et al., 2009). The mean velocity of Vps10-GFP patches in our experiments was approximately 0.21 μm/s while they exhibited a directed motion, which is comparable to the range of above-mentioned Myo2 velocity. Just because Vps10-GFP moves in a similar speed of Myo2, that does not necessarily serve as the direct evidence that the cargo is delivered via Myo2 motor. Further investigations using higher spatial and temporal resolution microscopy will help characterize whether Myo2 indeed carries Vps10 to the final destination. On the contrary, the majority of Vps10 patches in mutant cells exhibited a stationary behavior, consistent with abnormal accumulation of Vps10-GFP as cytoplasmic puncta. It is possible that Vps10 molecules...
are trapped in the endosomes as well as at the vacuolar rim, or that Vps10-bearing vesicles inefficiently interacts with mutant myo2. However, it is not conclusive if the enlarged Vps10-GFP puncta are vesicles derived from the endosome or endosome itself.

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgement

This work was supported by a Faculty Research Grant (to K. Kim) and by thesis funding from Missouri State University (to V. Nguyen). V. Nguyen contributed to the preparation of the figures and substantially contributed to the writing of this manuscript. K. Kim provided the intellectual input and participated in the manuscript correction, proofreading, and revision of the manuscript. J. Smothers and P. Ballhorn contributed to complete Figs. 1 and 2. S. Kottapalli, A. Ly and J. Villarreal contributed to data analysis and production of number of figures. We wish to thank Dr. Rong Li, Dr. Spudich, Dr. Bretscher, Dr. Tanaka, Dr. Gerst, Dr. Weisman and Sara Wong for yeast strains and plasmids.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.ejcb.2020.151143.

References

