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Pseudacteon parasitoids are potential biocontrol agents of invasive Solenopsis fire ants. Pseudacteon species that parasitize the
invasive S. invicta Buren and S. richteri Forel have been introduced to, and naturally dispersed across, the southeastern USA,
although there is no evidence yet that Solenopsis host ant populations have decreased. The ability of introduced Pseudacteon species
to regulate Solenopsis populations will depend upon the relative importance of top-down effects in the recipient communities.
In this paper, I examine the characteristics of the Pseudacteon/Solenopsis parasitoid/host system and evaluate the extent to
which research findings are consistent with top-down control. Laboratory and field experiments evaluating Solenopsis population
regulation have been equivocal, and overall the available evidence provides little support for strong top-down effects in this system.
Competitive exclusion may occur among introduced Pseudacteon species, and future efforts at biological control are likely to be
more efficacious if they focus on other types of natural enemies.

1. Introduction

Many species of Pseudacteon (Diptera: Phoridae) are para-
sitoids of Solenopsis (Hymenoptera: Formicidae) fire ants.
Several species of Solenopsis fire ants are invasive pests and
others have the potential to be [1]. High densities of the inva-
sive S. invicta Buren in North America are usually attributed
to an escape from natural enemies [2]. Much recent research
has focused on the potential use of Pseudacteon parasitoids
as classical biological control agents to regulate Solenopsis
fire ant populations, particularly S. invicta and S. richteri
Forel in North America. Two South American Pseudacteon
species—P. tricuspis Borgmeier and P. curvatus Borgmeier—
have been released at multiple locations and dispersed nat-
urally across the southeastern USA. It is estimated that P. tri-
cuspis now occurs in 65%, while P. curvatus may occur in as
much as 90% of the invasive S. invicta/S. richteri range [3].
Two other species—P. litoralis Borgmeier and P. obtusus
Borgmeier—have been established in localized areas, P. cul-
tellatus Borgmeier has been recently released in Florida, and
releases of additional species are planned [3, 4]. In addition
to the direct effect of mortality, Pseudacteon phorids may
have indirect effects on their Solenopsis hosts, affecting their

behavior and potentially putting the host species at a relative
disadvantage with competing ants [5].

There have been many studies conducted on various
aspects of the Pseudacteon/Solenopsis parasitoid/host system,
and the literature is in need of an objective, critical review.
There is great interest in whether the introduction of Pseu-
dacteon phorids can regulate invasive fire ant populations,
and if so, to what degree. I conducted original research on
this system for a decade, but have more recently pursued
other avenues of study. The success or failure (perceived or
actual) of this biological control program has no bearing on
my obtaining funding, promotion, or tenure. Thus, I am in
a good position to conduct a knowledgeable, yet detached
review. I do not attempt to review all the Pseudacteon/So-
lenopsis literature, but focus on the potential of introduced
Pseudacteon parasitoids from South America to regulate pop-
ulation densities of host Solenopsis ants in their invasive range
in North America, through both direct and indirect effects.

2. The Species

2.1. The Host. The genus Solenopsis contains about 185 de-
scribed species worldwide; the ∼20 Solenopsis species known
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as “fire ants” are all native to the new world [1]. Three of
these fire ants are invasive pests: S. invicta, the most no-
torious, is native to South America but has invaded North
America, the Caribbean, Australia, Taiwan, and China [6].
S. richteri, also native to South America, has invaded the
southeastern USA, where it has hybridized with S. invicta [7].
S. geminata (Fabricius), whose natural range spans southern
North America to northern South America, has been found
at numerous low latitude sites around the globe [7]. The vast
majority of Solenopsis fire ant research has focused on these
three species. All three are characterized by polymorphic
workers, which live between 2 and 8 months, depending on
worker size and temperature [8]. The massive fire ant litera-
ture has been summarized by Taber [7] and synthesized by
Tschinkel [1].

One important aspect of Solenopsis biology that is rele-
vant here is the seasonal cycle of population abundance. In
the southeastern USA, S. invicta reaches peak abundances
in midwinter, and the lowest worker numbers occurring in
midsummer are only about half that of winter highs [9]. S.
invicta above ground foraging activity is highest in summer,
however, and lowest in winter when soil temperatures are too
cold to forage [10, 11]. Thus, the availability of hosts to Pseu-
dacteon parasitoids is greatest in the summer months, even
though S. invicta absolute densities are near their lowest.

Beyond the seasonal oscillations in abundance, Solenopsis
population size may vary with other factors. The Solenopsis
species in question are disturbed habitat specialists [1, 12].
Disturbances come in all degrees, however, and across a
broad scale either too much or too little disturbance may re-
sult in lower fire ant abundances [13]. Disturbance regimes
undoubtedly vary temporally and result in variability in So-
lenopsis populations. Climatic events (i.e., droughts, floods,
and unusually cold weather) may also affect Solenopsis abun-
dances [14, 15]. Fluctuations in abundance due to a variable
disturbance regime or such climatic events could either am-
plify or dampen the inherent seasonal oscillations.

Finally, Solenopsis fire ants have the propensity to rapidly
increase in abundance. After removing all S. invicta from
experimental plots in Florida, for example, S. invicta recol-
onized the plots and in only two years reached abundances
similar to control plots [16]. It is against this background of
wide and potentially variable fluctuations in host population
size, in addition to a strong potential for colony growth, that
the regulatory effect of Pseudacteon parasitoids must be eval-
uated.

2.2. The Parasitoid. Although a number of taxonomic issues
remained unresolved, over 20 Pseudacteon species are known
to parasitize Solenopsis saevissima complex fire ants in South
America [17]. Similarly, more than 20 Pseudacteon species
parasitize Solenopsis geminata complex fire ants from North
America to northern South America [18]. The basic biology
and natural history of Pseudacteon phorids that parasitize
Solenopsis fire ants have been summarized by Porter [19] and
Morrison [20]. The life cycle of Pseudacteon, in brief, is as
follows. A female Pseudacteon hovers near Solenopsis worker
ants and inserts eggs into the thorax of hosts in aerial at-
tacks with a specialized ovipositor. Three larval instars—the

second of which migrates to the head—precede pupation. At
pupariation, the worker is killed by the parasitoid consuming
all the tissue inside the head capsule, which is then used as a
pupal case. Development from egg to adult takes from 5 to
12 weeks, depending upon temperature and the Pseudacteon
species. Pseudacteon are solitary parasitoids, with only one
larva able to complete development in each host. Each female
Pseudacteon, however, may produce >200 eggs [21].

3. Theory

Whether or not Pseudacteon parasitoids control or regulate
population densities of Solenopsis fire ants can be thought of
as a function of the relative importance of top-down versus
bottom-up effects in the communities in question. In food
web terminology, bottom-up effects occur when the abun-
dance of a resource affects the population of the consumer
of that resource. The higher the abundance of resources at
lower trophic levels, the higher the abundance or diversity
that can be obtained at higher trophic levels. Top-down ef-
fects, on the other hand, occur when the population density
of a consumer affects the abundance of its resource. Top-
down control refers to the situation where the abundance or
diversity of lower trophic levels is dependent on effects from
consumers at higher trophic levels [22]. There has been much
discussion in the literature over the relative importance of
top-down versus bottom-up effects in arthropod commu-
nities, including the seasonal and spatial variability in such
effects [23–29].

In a community with strong top-down effects, Solenopsis
populations would be regulated by Pseudacteon parasitoids
(or other predators or parasites). In contrast, in a community
with strong bottom-up effects, Solenopsis populations would
ultimately be regulated by the food resources available to
them, and simply support Pseudacteon populations but not
be controlled by them. Larger Solenopsis populations could
support larger Pseudacteon populations. Obviously, biolog-
ical control of host ants requires a system with relatively
strong (and consistent) top-down effects.

Interspecific competition has traditionally been viewed
as the primary mechanism organizing ant communities and
limiting ant populations [30]. It has been suggested, however,
that top-down processes such as parasitism may also play
an important role in some ant communities [31]. Here, I
make no attempt to evaluate the importance of parasitoids to
ant communities in general, but rather to determine which
characteristics of the Pseudacteon/Solenopsis parasitoid/host
system are consistent with top-down control. I refer to the
prevalence of such top-down effects as “strong control,” in
reference to the goal of regulating invasive Solenopsis pop-
ulations.

The relative importance of top-down effects can be illus-
trated by comparing two scenarios: in the first scenario—
“strong control”—top-down effects prevail. This scenario is
characterized by (1) a diversity of Pseudacteon species that
exert a broad range of parasitism pressure on host Solenop-
sis ants, (2) consistently high abundance and activity of Pseu-
dacteon, (3) high rates of mortality resulting from parasitism,
(4) a lack of refuge for, or ability to behaviorally adapt in,
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host ants, and (5) shifting of the outcome of interspecific in-
teractions with competing ants. The second scenario, which
I term “weak control”, is characterized by (1) low diversities
of Pseudacteon species, (2) low or fluctuating abundance or
activity of Pseudacteon, (3) low rates of mortality resulting
from parasitism, (4) the presence of a refuge or the ability
to behaviorally adapt by host ants, and (5) little or no effect
on the outcome of interspecific interactions with competing
ants.

These two scenarios more appropriately represent the
ends of a continuum rather than two mutually exclusive
states (or because multiple characteristics are involved, the
margins of a multidimensional space). Moreover, the char-
acteristics of each scenario are largely independent of each
other. Evaluation of recent research results relative to these
scenarios allows for a greater understanding of the degree to
which Pseudacteon parasitoids may control or regulate pop-
ulation densities of Solenopsis fire ants.

Given the high background population fluctuations
of host Solenopsis, the potential effects of Pseudacteon as
described in the two scenarios above are illustrated as a con-
ceptual model in Figure 1. In the strong control scenario
(Figure 1(a)), broad parasitism pressure (direct and indirect)
depresses fire ant populations consistently over time, result-
ing in peaks and troughs of fire ant population cycles that
are lower than without the parasitoids. The mean Solenopsis
abundance over time is also lower.

In the weak control scenario (Figure 1(b)), parasitism
pressure is weak and may only affect host ant populations
seasonally, or is otherwise greatly limited in intensity. Pseu-
dacteon populations also fluctuate, reaching their highest
abundances and thus exerting peak parasitism pressure in the
fall, due to greater host availability in the summer (because of
higher above-ground foraging activity by the ants). Because
of low rates of mortality due to parasitism and the ability
of ants to adapt behaviorally and lessen the indirect effects,
colony fitness is only slightly affected, and this decrease
comes at a time when overall colony size is peaking. Because
of the overall cyclical nature of Solenopsis abundance and the
added stochastic effects of disturbance and climate (depicted
in this figure as irregular seasonal oscillations), the impacts
of Pseudacteon may be relatively small. Over the long term,
such effects may be washed out by the greater population
variability due to other factors. Under optimum disturbance
intensity and climatic conditions, host ants may regain pre-
vious population peaks. In this scenario, the long-term
average Solenopsis abundance or range of fluctuations may
change relatively little due to Pseudacteon.

4. The Evidence

4.1. Diversity of Pseudacteon Species. In most locations that
have been studied, multiple Pseudacteon species have been
found. This is true for Solenopsis saevissima complex fire ants
in South America and Solenopsis geminata complex fire ants
in North America [17, 32–35]. Host ants are partitioned
among Pseudacteon species along several axes, including
size of worker [36–38], host location preferences [33, 39],
and time of day [35–40]. Thus multiple Pseudacteon species
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Figure 1: Two hypothetical scenarios of the potential effects of
introduced Pseudacteon parasitoids on Solenopsis fire ant popula-
tions. (a) Strong control: parasitism pressure depresses fire ant pop-
ulations consistently over time, resulting in peaks and troughs of fire
ant population cycles that are lower than without the parasitoids.
(b) Weak control: parasitism pressure primarily affects host ant
populations seasonally, or to an otherwise relatively small extent,
and ants rebound under optimum growth conditions. (Shaded
areas indicate the amount of decrease due to the parasitoids.)

attack a greater size range of workers, engaged in a wider di-
versity of activities, over a longer period of time than a single
Pseudacteon species would.

Although multiple Pseudacteon species may cooccur at a
site, most species are usually relatively rare. This is also true
both in North America [5, 34] and South America [32, 33,
35, 41–43]. The niche segregation observed is likely the result
of competition among Pseudacteon species for hosts. There is
now evidence that introduced South American Pseudacteon
species are competitively displacing each other in North
America [4, 44, 45], and a reanalyses of abundance data from
South America suggests competitive exclusion exists there as
well [44].

4.2. Abundance and Activity of Pseudacteon Species. Adult
Pseudacteon live for only a few days [46], and reveal relatively
great variability in abundance over time [34, 41, 47–49]. In
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tropical and subtropical climates, Pseudacteon species are
active year round, although relative abundance varies season-
ally [32, 35, 41, 49]. Pseudacteon species are active from dawn
to dusk, but diel variation exists among species [35]. In more
temperate zones, flight activity of Pseudacteon is limited by
cool air temperatures and adults may not be active in the
winter months [34].

Introduced P. tricuspis populations in the southeastern
USA reveal cyclical patterns of seasonal abundance, with
peaks in the fall and troughs in the spring [48, 50, 51]. Solen-
opsis above ground foraging activity, and thus host availabil-
ity is highest in summer. Thus P. tricuspis densities track host
ant availability (with some lag time to be expected based on
the 5–12-week-long development cycle) and greater avail-
ability of hosts (i.e., resources) is correlated with higher par-
asitoid (i.e., consumer) populations. Abundance patterns of
P. curvatus, however, may differ, at least in some areas [S. D.
Porter, unpublished data].

4.3. Mortality due to Parasitism. Parasitism rates (i.e., the
percentage of Solenopsis workers in a colony infected with a
Pseudacteon egg or larva at a given point in time) have been
reported to be very low in a number of studies. In Texas,
S. geminata—hosts of native North American Pseudacteon
species—had parasitism rates of <3% [36]. Parasitism rates
of Solenopsis invicta in its native range in Argentina by native
South American Pseudacteon species were similarly <3%
[35]. Parasitism rates of Solenopsis invicta in its exotic range
in Florida from introduced Pseudacteon are generally ≤2%
[48, 52, S. D. Porter, unpublished data]. These observed
rates are an order of magnitude below the lowest parasitism
rates associated with successful biological control programs
(>30%) [53, 54]. These rates for successful biocontrol for
other types of parasites, however, are based on the direct
effect of mortality only.

Workers that are parasitized by Pseudacteon are not a
random assortment from the colony, but rather represent
primarily older ants with a shorter life expectancy. Fire ants
exhibit a division of labor, in which the particular task en-
gaged in by a worker depends on the age and size of that
worker. In general, younger workers engage in relatively safe
activities within the central colony, whereas older workers are
found near the periphery of the nest, and the oldest workers
engage in the most dangerous activity: foraging [55]. Mor-
tality rates of foragers may be as high as 5% per day [1]. Be-
cause of the high mortality rates associated with foraging
activities in ants in general, foragers have been described as a
“disposable caste” [56].

Pseudacteon phorids attack host workers involved in
foraging, interspecific interactions, and colony defense—all
relatively dangerous activities. Thus most of the workers par-
asitized are engaged in high-risk activities and near the end
of their natural lives, and colony fitness is affected to a lesser
degree than if workers were parasitized at random with re-
spect to age.

4.4. Host Ant Refuges and Behavioral Adaptations. A primary
focus for research into the indirect effects of Pseudacteon has

been the reduction of foraging in host ants in the presence
of these parasitoids. A number of studies involving different
Pseudacteon/Solenopsis combinations in both North and
South America have revealed that in the presence of these
parasitoids, worker behavior changed and foraging at rich
food resources dramatically diminished [5, 57–61]. The size
of foraging Solenopsis workers has also been observed to
decrease in the presence of Pseudacteon [52–64]. These stud-
ies, however, have almost exclusively focused on short-term
effects of phorids at rich food resources, characterized by the
recruitment of many workers in the absence of any shelter or
refuge for the host workers and during ideal conditions for
Pseudacteon flight activity.

Yet foraging in these Solenopsis species occurs under a
great variety of conditions. In other words, these ants are
characterized by a relatively broad foraging niche (sensu,
[65]). They may forage by day or night [5, 66], as long as the
soil temperature is at least 15◦C [10, 11]. Solenopsis fire ants
are omnivorous, with a very catholic diet [67, 68]. They exca-
vate elaborate underground tunnel systems [69], and some
unknown proportion of their food may be derived from
underground sources (i.e., plant roots or root homopterans)
[67]. The range of food items and types varies greatly; they
may retrieve small items individually, but many workers may
recruit to larger or long-lasting resources.

In contrast, Pseudacteon flies are not active after dark.
Their aerial mode of attack makes it impossible to attack
workers in underground tunnels (worker ants will quickly
kill Pseudacteon flies if they can catch them). Additionally,
Pseudacteon are unlikely to affect foraging of items that can
be retrieved individually, although this has not been carefully
studied. Some Pseudacteon species may not even affect forag-
ing of relatively rich food resources if these are uncontested.
Introduced P. tricuspis in North America, for example, were
not attracted to workers foraging at such resources, unless
involved in interspecific interactions with other ants [39].
P. tricuspis is attracted to the alarm pheromones and venom
alkaloids that are typically released in such interactions [70,
71].

Pseudacteon native to North America are not active when
air temperatures drop below 20◦C [34], although some spe-
cies in South America are active down to 14◦C [41]. Thus
there may be a narrow temperature zone in which it is warm
enough for above-ground Solenopsis foraging, but not for
Pseudacteon activity, although this appears to vary geograph-
ically and by species. Thus, Pseudacteon phorids will affect
some unknown fraction of the overall broad spatiotemporal
foraging niche of Solenopsis.

Furthermore, although the reduction in food obtained
from such rich food resources may appear very large in the
short term, in the longer term Solenopsis ants may be able to
adapt behaviorally and still obtain much of the resource in
question, if not removed by competitors. Field studies have
shown that although forager numbers may decrease, Solenop-
sis workers do not usually completely abandon food resour-
ces in the presence of Pseudacteon, but some workers remain
behind to guard the resource [34, 47, 59]. Foraging has even
been observed to rebound to earlier levels after a depression
by Pseudacteon [33]. Workers have been observed tunneling
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beneath a rich food source and covering it with dirt and de-
bris [5, 47].

Although most laboratory studies have constrained for-
aging to occur only in the presence of Pseudacteon, the design
of one laboratory study allowed a colony of S. invicta to for-
age simultaneously in one arena with P. tricuspis and in a
second arena without the parasitoid. Although less food was
retrieved from the arena with P. tricuspis, the sum of food
obtained from both foraging arenas was not different from
that obtained in control trials without parasitoids [61]. Thus
the colonies were able to compensate for decreased food re-
trieval caused by P. tricuspis harassment by simultaneously
increasing food consumption when food was available else-
where.

4.5. Effects on Interspecific Interactions. Pseudacteon species
were never expected to have large direct effects of mortality
on Solenopsis ants, and the expectation of this parasitoid’s
ability to regulate host ant populations was based primarily
on the indirect effect on host behavior. These short-term
behavioral effects would mean relatively little to colony fit-
ness if they merely represented a delay in obtaining food re-
sources. If, however, other ant species are able to secure a
competitive advantage due to Solenopsis’ parasitoid evasion
behavior and are able to obtain relatively more food resour-
ces, then Pseudacteon could play an important role in mediat-
ing overall ant community dynamics and species abundance
relationships.

Orr et al. [60], working in South America, observed S. in-
victa to lose food resources to competing ants in the presence
of Pseudacteon phorids. Other studies, however, have found
that host Solenopsis workers under Pseudacteon attack often
did not lose control of the resource to competing ants. Stud-
ies of Pseudacteon parasitoids specific to S. geminata in Texas
revealed that the presence of the parasitoids had no effect on
the outcome of interspecific interactions involving S. gemi-
nata [5, 47]. A comparative study in Brazil revealed that
S. invicta-specific Pseudacteon had no effect on the outcome
of interspecific competition between S. invicta and other
ants at two of three sites [72]. Thus, based on the available
evidence, the ability of parasitoids to affect the outcome of
interference competition among ant species appears to be too
weak to be scientifically documented in many communities.

5. Long-Term Experiments

5.1. Laboratory Experiments. It has proven difficult to pro-
vide evidence for the success (or failure) of introduced Pseu-
dacteon species in regulating host Solenopsis ants at the pop-
ulation level. Most evidence for a Pseudacteon effect, as dis-
cussed above, comes from short-term behavioral studies
(minutes to hours in duration). In a relatively long-term lab
study (28 days) incorporating both Pseudacteon phorids and
a competing ant, Forelius pruinosus (Roger), Mottern et al.
[73] reported a reduction in foraging in S. invicta due to
Pseudacteon harassment, but no change in the colony growth
rate of S. invicta. It is possible that the duration of this exper-
iment was too short, or the method used to measure colony
growth (i.e., photographing brood piles) was not precise

enough. The most likely explanation, however, is that ants
were allowed to forage beyond the period that Pseudacteon
attacked, and Solenopsis was able to compensate by increasing
food retrieval when Pseudacteon were not active. Mottern
et al. [73] state that such conditions would be “representative
of those found in nature.” No change in the growth rate of
the competing ant was observed either, although this was not
surprising because F. pruinosus never entered the communal
foraging chamber.

In a longer lab study (50 days), Mehdiabadi and Gilbert
[74] documented that the reduction of foraging in S. invicta
due to Pseudacteon harassment did, as expected, eventually
result in reduced colony fitness. In that study, the presence of
P. tricuspis reduced the abundance of middle-sized workers,
but not small-or large-sized workers. Worker ants, however,
were always constrained to forage in small trays for limited
periods in the presence of P. tricuspis, without any refuge or
potential to adapt their foraging behavior. It is noteworthy
that a combination of P. tricuspis phorids and a competing
ant—this time Forelius mccooki (McCook)—had no greater
effect on colony fitness than the competing ant alone [74].
As in the Mottern et al. [73] study, no increase was observed
in the reproductive output of the competing ant [75]. (Inter-
estingly, Mottern et al. [73] criticized the statistical analysis
of Mehdiabadi and Gilbert [74], claiming that no significant
differences existed for any of their treatments!)

Thus, the ambiguous results of these laboratory experi-
ments provide little empirical support for the idea that Pseu-
dacteon phorids could mediate competitive interactions that
would ultimately lead to a decrease in Solenopsis populations,
while allowing for a relative increase in competing ant pop-
ulations. The general problem with such laboratory experi-
ments is that the design can greatly influence the outcome.
Given the complexity of fire ant foraging and the multitude
of interactions with other species, any community-level lab-
oratory experiment is destined to be an oversimplification of
the natural world with limited inference.

5.2. Field Experiments. Field experiments, while more realis-
tic, have their own limitations, in this case primarily logisti-
cal. Fire ant populations are undoubtedly affected by many
factors, and while many of these variables can be controlled
for in the laboratory, attempting to isolate the effect of one
factor in the context of a broad field experiment is very diffi-
cult. Moreover, introduced Pseudacteon species spread nat-
urally at a rapid rate; P. tricuspis dispersed at rates of up to
30 km/year for the first few years after establishment in north
Florida [76], and at rates of up to 57 km/year over the follow-
ing four years [77]. After three and a half years, P. curvatus
had dispersed even farther in Florida than P. tricuspis did
over the same period after initial release [78]. In Texas, small
satellite populations of P. tricuspis have been found tens of
km beyond the main expansion front; this jump dispersal was
probably assisted by the prevailing winds [79].

Thus it is difficult to have true control sites that are not
colonized within the time course of an experiment. Control
sites would have to be placed so far away that there could
be systematic differences in environmental variables between
the treatment and control sites. This is almost a moot point,
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as by now the vast majority of the invasive range of Solenopsis
in the southeastern USA is estimated to have been colonized
by at least one introduced Pseudacteon species [3]. Because
of the tiny size of Pseudacteon, it is impractical to attempt to
construct enclosures or exclosures, as these would include or
exclude almost all other species (except microscopic ones).

The only published field experiment—including control
plots (albeit 2 counties away) and spanning relatively large
spatiotemporal dimensions—failed to find any measurable
effect of introduced P. tricuspis on S. invicta in Florida [50].
The study was ended after 3 years when P. tricuspis dispersed
to control plots. Relatively large variabilities were observed in
fire ant activity and abundance, however, in both treatment
and control plots. Thus the effects of this parasitoid would
have had to be relatively large (perhaps reducing host ants by
as much as 30%) to be detectable [50].

Studies are underway to gauge impact by comparing fire
ant abundances before and after the introduction of Pseu-
dacteon, in the absence of any control sites [3]. Such com-
parisons could be misleading, however, and should be inter-
preted with extreme caution. Fire ant abundances can and
do change in response to many factors. S. invicta abundance,
for example, was found to decrease by almost an order of
magnitude over 12 years at a Central Texas site [80]. Pseu-
dacteon species had not become established in Central Texas
at the time, although other natural enemies of fire ants were
present [80]. Additionally, numerous pathogens of Solenopsis
fire ants are now known to be present in North America, and
many have relatively high infection rates [52, 81, 82]. Finally,
broad scale trends (i.e., climate cycles or directional change)
may affect fire ant abundances independently of parasitoids.

6. Synthesis

6.1. Summary of the Evidence in Relation to Theory. Multiple
Pseudacteon species frequently cooccur, although usually
only one or a few species are very abundant. Overall, the
Pseudacteon assemblage present at a given location may reach
relatively high abundances at times, although populations
fluctuate, and in the case of the introduced P. tricuspis in
Florida, in synchrony with host availability. Parasitism rates
are usually very low, and most workers parasitized are prob-
ably near the end of their natural lives, so this direct effect of
parasitism may be almost negligible. Host ants may engage
in much of their foraging in the absence of Pseudacteon flies
and have the ability to adapt their behavior in the presence of
this parasitoid, so that in the long term, the overall reduction
in resource retrieval is likely much less than that suggested in
short-term observations. Finally, Solenopsis species often do
not lose control of rich food resources to competing ants in
the presence of Pseudacteon.

Thus the available evidence suggests that any impacts of
Pseudacteon phorids on host ant populations are generally
small, especially when measured over the relatively large pop-
ulation variability of Solenopsis fire ants. Moreover, given the
ability of Solenopsis to rapidly increase in population size
under ideal conditions, any depression in Solenopsis popu-
lations by Pseudacteon phorids could be ephemeral if parasit-
ism pressure is not consistent. Thus, the effects are probably

much closer to the “weak control” scenario described above,
although such effects could vary geographically and tempo-
rally. Experimental assessments of the impact of introduced
Pseudacteon species have been few, and the results equivocal,
although certainly no large impacts have been documented
with any scientific rigor. Unfortunately, due to the con-
straints described above, we may never have a reliable, precise
estimate for the effect of Pseudacteon parasitoids on Solenop-
sis fire ant populations in nature.

Thus the available evidence provides little support for
strong top-down effects in this system. The accumulated data
reveal that introduced P. tricuspis in North America are pos-
itively correlated with S. invicta availability, both tempo-
rally [48, 50, 51] and spatially [51]. These findings are
not inconsistent with the hypothesis that larger Solenopsis
fire ant populations simply support higher abundances of
Pseudacteon parasitoids, and that Solenopsis populations are
primarily regulated by other factors.

6.2. Host Specificity and Knowledge Gaps. Although Pseu-
dacteon phorids may have relatively small effects on fire ant
populations, they possess two very desirable qualities of a
biocontrol agent. They have been documented to be highly
host specific, in a battery of tests conducted: (1) in the field
in South America [83, 84], (2) in the lab prior to the release of
South American Pseudacteon species to North America [85–
88], and (3) in the field in North America after the estab-
lishment of introduced populations [89, 90]. Thus, Pseu-
dacteon phorids appear to be safe (i.e., no documented ad-
verse effects on any other species), which is the most impor-
tant quality of any biocontrol agent. Additionally, once estab-
lished, Pseudacteon species will persist as a permanent com-
ponent of communities in which host Solenopsis are found,
and naturally disperse to others.

Several aspects of Pseudacteon/Solenopsis interactions
need more study. Some Pseudacteon are attracted to mound
disturbances [33, 39], although the potential effects of Pseu-
dacteon on mound disturbances are less clear than those of
interruption of foraging. The presence of Pseudacteon may
delay the mound rebuilding process, but only for a matter of
hours, until Pseudacteon activity ceases with darkness. The
mound is important in regulating brood temperature and
thus development [91], and movement of brood out of
the mound due to disturbance and delayed reconstruction
could adversely impact colony fitness, although such an effect
seems ephemeral and thus relatively small. The frequency of
natural mound disturbance events is an important variable
in assessing this impact, and this disturbance regime no
doubt varies geographically.

Morrison and King [39] found that numerous P. tricuspis
flies were attracted to S. invicta mound disturbances when
nonnestmate S. invicta were added, resulting in interspecific
interactions, but on average fewer than one parasitoid was
attracted in the absence of such interactions. Thus, most
mound disturbances in the absence of interspecific inter-
actions would probably be little affected by P. tricuspis,
although other Pseudacteon species may differ in this aspect
of their behavior. Pseudacteon are also attracted to Solenopsis
mating flights [92]. Although Solenopsis reproductives are
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not suitable hosts [19], workers are very active on the mound
surface before the reproductives take flight [93], and the
presence of Pseudacteon could dampen this activity, poten-
tially disrupting the mating flight. Large numbers of workers
may be vulnerable to parasitism during mating flights or
mound reconstruction, and such workers may be younger
than workers engaged in foraging, thus representing a poten-
tial greater loss to overall colony fitness. Finally, Pseudacteon
are carriers of pathogens that infect Solenopsis [94], although
actual vectoring of diseases among colonies has not been
demonstrated.

6.3. Implications and the Bigger Picture. Efforts are underway
to introduce additional South American Pseudacteon species
to North America. The question is how many additional
species should be introduced? Because of the relatively high
degree of niche partitioning observed in Pseudacteon species
in South America, and the coexistence of multiple species at
a site, the traditional wisdom has been that multiple Pseudac-
teon species will coexist at North American release sites, and
that more Pseudacteon species will exert greater parasitism
pressure on host Solenopsis ants. The species abundance pat-
terns of Pseudacteon in both North and South America,
and the recent, relatively unexpected finding of competitive
exclusion among introduced Pseudacteon species, however,
suggest only one or two introduced species may be abundant
at any given location. Thus the introduction of additional
Pseudacteon species may simply reduce the abundance of al-
ready-established species, without substantially increasing
the density of the overall Pseudacteon assemblage.

An argument can be made that multiple Pseudacteon spe-
cies are necessary because of the diversity in invasive Solen-
opsis populations in North America. Both S. invicta and
S. richteri (and a hybrid) are present, and colonies may be
either polygyne (i.e., multiple queen) or monogyne (i.e., sin-
gle queen) [1]. There have been attempts to “match” or find
the best combination of South American Pseudacteon species
or biotypes with North American Solenopsis populations
[95]. Ultimately, given the speed of dispersal of this par-
asitoid, after introductions of multiple Pseudacteon species
to multiple locations in the Solenopsis invasive range, the
flies may eventually sort themselves out. Not all Pseudacteon
species may disperse at the same rate as P. tricuspis and
P. curvatus, however. P. litoralis has spread much more slowly
from a single release site in Alabama [4]. Although Pseudac-
teon species appear to have no detrimental effects, the time
and effort involved in evaluating, rearing, and releasing these
flies might be better spent evaluating other types of natural
enemies. At this point, it seems likely that the marginal con-
tribution of each additional Pseudacteon species released will
be diminished as more species are added.

In South America, a diversity of parasites, pathogens,
predators, and competitors affect S. invicta [1, 96]. Thus,
introduction of a single type of natural enemy is unlikely to
result in outsized reductions of invasive Solenopsis popula-
tions. It is more likely that regulation is incremental, and
that each type of introduced natural enemy may have a rel-
atively small effect, yet one that is cumulative so that overall

control becomes greater with the addition of more types of
natural enemies. Thus, the continued search, evaluation, and
introduction of other safe (i.e., host-specific) natural ene-
mies of Solenopsis fire ants may eventually lead to measurable
levels of fire ant population regulation.

Given the general lack of evidence for strong top-down
control in this system, it is possible that other ants represent
the greatest natural enemies of Solenopsis. The South Ameri-
can ant fauna contains more species that are strong com-
petitors of S. invicta than does the North American fauna
[72, 97, 98]. Many of these ant species would have their own
deleterious impacts to recipient biotas, perhaps even greater
than Solenopsis fire ants, and introductions of such natural
enemies are not seriously contemplated. If competition from
other ants is the primary reason that S. invicta is less abun-
dant in South America, it follows that introductions of all
possible other types of natural enemies will not result in a de-
crease of North American S. invicta or S. richteri populations
to South American levels.

The conventional wisdom of Pseudacteon biological con-
trol is that the presence of these parasitoids may shift the
competitive balance away from Solenopsis fire ants to native
ant species, allowing for a relative increase in abundance of
the native species at the expense of the invasive Solenopsis.
Recent work on the effects of disturbance, however, chal-
lenges the conventional wisdom that Solenopsis fire ants are
strong competitors that have displaced native ants primarily
due to a competitive asymmetry. King and Tschinkel [99] ob-
tained experimental evidence suggesting that native ants are
first displaced as a result of habitat disturbance, and then So-
lenopsis fire ants—which are disturbed habitat specialists—
move into the disturbed areas. Experimentally removing
S. invicta from disturbed areas did not result in an increase of
native species [100]. In this study, conducted in forest habitat
in Florida, “disturbance” resulted in the simplification of
habitat structure to a type that was more similar to the habi-
tat where S. invicta is native (i.e., open areas with high inso-
lation). Thus, at least in some areas, disrupting the behavior
of Solenopsis fire ants or even reducing their abundances may
have limited effects on native ant diversity, in the absence of
restoring disturbed or simplified habitats.

Habitat type or disturbance alone, however, cannot ade-
quately explain the high abundances of invasive Solenopsis
fire ants in North America. Solenopsis species were found to
be more abundant at the same type of disturbed (i.e., road-
side) sites in North America relative to South America [2].
Thus the abundance of Solenopsis fire ants in an area is likely
the result of a number of factors (and interactions of factors),
including habitat type, degree of habitat disturbance, and
the presence of natural enemies. Ultimately, efforts to reduce
invasive fire ant densities would probably benefit by taking a
broad perspective and include attempts at habitat restoration
in addition to the introduction of an array of natural ene-
mies.
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