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ABSTRACT

We present a detailed analysis of the rapidly pulsating subdwarf B star (or EC14026 star) PG 1325+101. This analysis exploits the outcome of
dedicated multisite observations using time-series photometry that revealed the presence of (at least) 15 periodicities in the luminosity modulation
of this star (Silvotti et al. 2006, A&A, 459, 557, Paper I). Based on high-S/N, medium-resolution spectra obtained at the Steward Observatory’s
2.3 m Telescope and at the 6.5 m MMT Telescope, new NLTE spectroscopic derivations of the atmospheric parameters of PG 1325+101 are
presented. The mean values of Teff = 35 050 ± 220 K, log g = 5.81 ± 0.04, and log N(He)/N(H) = −1.70 ± 0.02 are in agreement with previous
determinations, but are significantly more accurate. These improved spectroscopic parameters are essential for isolating a unique asteroseismic
model solution for the observed pulsation spectrum of PG 1325+101. Using the “forward modeling” approach, our combined spectroscopic and
asteroseismic analysis leads objectively to the identification of the (k, �) indices of the 12 independent modes observed in this star, and to the
determination of its structural parameters. The periods correspond to low-order acoustic modes with adjacent values of k and having degrees
� = 0−4. They define a band of unstable modes, in agreement with nonadiabatic pulsation theory. The average dispersion achieved between the
observed periods and the periods of the corresponding theoretical modes of the optimal model is only ∼0.46% (∼0.54 s), comparable to the results
from similar analyses of other EC14026 stars analysed to date. The inferred structural parameters of PG 1325+101 are Teff = 35 050 ± 220 K,
log g = 5.811 ± 0.004, log Menv/M∗ = −4.18 ± 0.10, M∗ = 0.50 ± 0.01 M� (i.e., close to the canonical mass of extreme horizontal branch stars),
R/R� = 0.145 ± 0.002, and L/L� = 28.3 ± 1.5. In addition, by combining detailed model atmosphere calculations with V = 14.019 ± 0.012, we
estimate that this star has an absolute visual magnitude MV = 4.45±0.04 and is located at a distance of d = 820±21 pc. Finally, the presence of fine
structure in the observed period spectrum suggests a rotation period of P = 1.6±0.2 days, leading to an equatorial velocity of Veq = 4.6±0.6 km s−1.
Hence, asteroseismic evidence suggests that PG 1325+101 is a slow rotator, a conclusion reinforced by the limit V sin i < 20−30 km s−1, which
we determined by modeling the He I 4471 line in our 1 Å-resolution MMT spectrum.

Key words. stars: interiors – stars: oscillations – stars: horizontal-branch – stars: individual: PG 1325+101

1. Introduction

Probing the inner layers of stars using the pulsations they might
exhibit – a field that we refer to as asteroseismology – has been
a goal actively pursued for more than two decades. Indeed, os-
cillating stars allow a direct investigation of their structure from
the analysis of pulsation modes, the eigenfrequencies of a self-
gravitating gaseous sphere. These frequencies (or periods) are
determined by internal properties which are otherwise difficult
or impossible to measure directly. Considering that our current
knowledge of stars relies almost exclusively on what is seen at
their surfaces – the properties of their hidden, inner layers being
deduced only from modeling – the promise of extracting direct
information on their internal structure through asteroseismology
has tremendous implications.

Among all known classes of pulsating stars spanning the HR-
Diagram, the group of rapidly pulsating hot subdwarf B (sdB)

� Some spectroscopic observations reported here were obtained at the
MMT Observatory, a joint facility of the University of Arizona and the
Smithsonian Institution.
�� This study made extensive use of the computing facilities offered
by the Calcul en Midi-Pyrénées (Calmip) project, France.

stars (or EC14026 stars) has so far provided excellent opportu-
nities for pursuing asteroseismic studies. Subdwarf B stars dom-
inate the populations of faint blue stars down to V ∼ 16 and
are found in both the old disk (field sdBs) and halo populations
(globular cluster members) of our own Galaxy. They are the most
likely source of the UV excess observed in elliptical galaxies
(Brown et al. 1997) and have been identified (Heber 1986; Saffer
et al. 1994) with models of Extreme Horizontal Branch (EHB)
stars burning He in their cores and having extremely thin residual
H-rich envelopes (Dorman et al. 1993). Significant holes persist
in our understanding of this phase of stellar evolution, however.
For instance, the mechanisms that lead to their formation are
still being debated. The main contenders are single star evolu-
tion with enhanced mass loss at the tip of the red giant branch
and various scenarios involving binary evolution (see Han et al.
2003, and references therein). Furthermore, there remain impor-
tant details concerning the exact behavior of the helium burning
cores during this stage of evolution that are not yet understood.
So far, classical observation and modeling techniques have been
unable to provide answers to these basic questions, and thus new
approaches to constrain the global structure of EHB stars are
needed.
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Asteroseismology has become a valuable technique now that
a significant number of sdB stars have been discovered to be
pulsators, similar to the one first identified a few years ago by
Kilkenny et al. (1997). About three dozen EC14026 variables,
with Teff ∼ 30 000–36 000 K and periods in the range 100–600 s,
are now known. Their pulsations are associated with low-order
low-degree p-modes and are driven by an opacity peak in the
sdB envelope which is mainly due to iron locally enhanced by
radiative levitation (Charpinet et al. 1997, 2001). More recently,
Green et al. (2003) established that some of the cooler B subd-
warfs may belong to a second, seemingly independent class of
multiperiodic pulsators with significantly longer periods. These
long period sdB variables (the PG 1716+426 pulsators, some-
times also referred to as the “Betsy” or the “lpsdBV” stars) pop-
ulate the low-temperature/low-gravity corner (Teff � 30 000 K,
log g � 5.7) of the region in the log g−Teff plane where sdB
stars are found. Their multiperiodic luminosity variations occur
on timescales of ∼0.75–2.0 h (i.e., much longer than the periods
observed in the EC14026 stars), implying that relatively high-
order gravity modes are involved. The same mechanism respon-
sible for the oscillations in the EC14026 stars has been proposed
to operate in the long-period sdB pulsators as well, in this case
destabilizing high-order, � � 3 gravity modes (Fontaine et al.
2003).

While it is too early to assess the real asteroseismologi-
cal potential of the newly discovered PG 1716+426 stars (but
see Randall et al. 2006), the EC14026 pulsators have proven to
be highly suitable for detailed asteroseismic studies. This has
been demonstrated for the pulsating sdB stars PG 0014+067
(in the pioneering work of Brassard et al. 2001), PG1047+003
(Charpinet et al. 2003), PG 1219+534 (Charpinet et al. 2005b)
and Feige 48 (Charpinet et al. 2005a), all based on high S/N
“white light” photometry gathered at the Canada-France-Hawaii
Telescope. Close simultaneous matches of all periodicities, as
well as the determination of fundamental structural parameters
of these stars were achieved using a new global optimization
technique. In every case, mode identifications (i.e., the determi-
nation of the radial order k and degree �) for all of the observed
modes have also been derived.

Continuing the asteroseismic studies mentioned above, we
now present the results of a detailed analysis of the rapidly pul-
sating sdB star PG 1325+101. The variability of this star was
first announced by Silvotti et al. (2002) during a survey con-
ducted at the Nordic Optical Telescope (Solheim et al. 2004).
This discovery was followed by a significant observational effort
to obtain high frequency resolution seismic data for this star. In
Paper I (Silvotti et al. 2006), we presented the results of about
215 hours of time-series photometry acquired for PG 1325+101
at nine different sites during 25 nights of observation in the
spring of 2003. The resulting analysis clearly reveals the pres-
ence of 15 periodicities, with possible additional signal still re-
maining in the residual light curves. The rather rich pulsational
spectrum obtained for PG 1325+101 has thus revealed the high
potential of this star for asteroseismic probing. In Sect. 2, we
propose new improved estimates of the atmospheric parameters
of PG 1325+101 obtained from high-S/N, medium-resolution
spectra. These will prove essential in the course of the detailed
asteroseismic analysis described in Sect. 3. Major conclusions
resulting from this analysis are then summarized in Sect. 4.

2. Atmospheric parameters from spectroscopy

The atmospheric parameters of PG 1325+101 were first esti-
mated by Saffer et al. (1994) who gave Teff = 34 500 ± 1000 K,

log g = 6.11 ± 0.15, and log N(He)/N(H) = −1.68 ± 0.17 on
the basis of a rather low S/N ratio (∼20) optical spectrum. This
spectrum is referred to as RS6 below. The parameters were de-
rived by comparing the available H Balmer lines and He lines
in the spectrum with a detailed grid of LTE H/He model atmo-
spheres and synthetic spectra. The uncertainties quoted by Saffer
et al. (1994) are conservative and include the effects of external
errors. His estimates are consistent with those of O’Donoghue
et al. (1998) who followed a very similar approach using an inde-
pendent grid of pure H model atmospheres in LTE. O’Donoghue
et al. (1998) proposed two possible solutions from two different
observations using different instrumental configurations. They
found Teff = 35 900± 250 K, log g = 5.90± 0.05 (formal errors
of the fit), and Teff = 34 800 ± 300 K, log g = 5.82 ± 0.07. Of
course, they could not estimate the helium abundance with their
pure H models. The differences here can be taken as estimates of
the external errors in the O’Donoghue et al. (1998) procedure.

For their part, Telting & Østensen (2004) found average val-
ues of Teff = 34 800 K, log g = 5.81, and log N(He)/N(H) =
−1.65, again using LTE H/He model atmospheres. They also
carried out an interesting experiment in which they fitted the in-
stantaneous spectra of PG 1325+101 obtained during the course
of time-resolved low-resolution spectroscopy, to derive appar-
ent effective temperature and surface gravity variations of am-
plitude 610 K and 0.05 dex, respectively. No discussion of the
expected uncertainties attached to the proposed average values
for the atmospheric parameters was given in Telting & Østensen
(2004), but reasonable estimates of these are ∆Teff ∼ 390 K,
∆ log g ∼ 0.05, and ∆ log N(He)/N(H) ∼ 0.02 (external errors).

The available estimates of the atmospheric parameters (three
independent sources) are all consistent with each other and point
to a star with a relatively high value of the surface gravity.
Despite this agreement, we felt that it would be important to ob-
tain additional measurements because of the key role that spec-
troscopic constraints may play in discriminating between vari-
ous asteroseismological solutions (see Charpinet et al. 2005a,b,
for examples of this). To this end, we first obtained an optical
spectrum of PG 1325+101 with ∼6 Å resolution and S/N ∼ 80
covering the range from 3060 Å to 5240 Å at the Steward
Observatory’s 2.3 m Telescope. This is similar to the older spec-
trum obtained by Saffer et al. (1994) except for the much im-
proved S/N ratio. We will refer to this newer spectrum as PB6.
We also obtained at the same telescope five spectra at lower res-
olution (∼9.4 Å) covering the range from 3620 Å to 6900 Å
which, when coadded and median-filtered, produced a spectrum
of very high precision (S/N ∼ 280 per pixel, with 3.6 pixels per
resolution element). We will refer to this one as BG9. Finally,
our best measurement was obtained using the Blue Spectrograph
of the 6.5 m MMT Telescope. Four ∼1 Å resolution spectra of
PG 1325+101 were coadded to achieve a combined S/N ∼ 200
(per pixel, with 3.0 pixels per resolution element). The latter
spectrum covers the range from ∼4000 Å to ∼4950 Å and will
be referred to as MMT1.

We analyzed these new time-averaged spectra of
PG 1325+101 with the help of two detailed grids of model
atmospheres, one in LTE and the other in NLTE, especially
designed for subdwarf B stars. Some properties of these models
are discussed in Charpinet et al. (2005a), and further details
will be provided in Green et al. (in preparation). Suffice it to
say here that these banks of atmosphere models and synthetic
spectra were computed recently with the help of the public
codes Tlusty and Synspec (Hubeny & Lanz 1995; Lanz
& Hubeny 1995). One of the conclusions of Green et al. is
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Fig. 1. Model fits (thick curves) to the hydrogen and helium lines (thin curves) available in the 4000−4950 Å spectral range in our time-averaged
spectrum RS6 (upper left panel), PB6 (upper right panel), BG9 (lower left panel), and MMT1 (lower right panel).

that systematic differences due to the inclusion of higher order
Balmer lines in the fits, compared to fits using only Hβ, Hγ, and
Hδ, are quite small as long as the S/N of the data is relatively
high over all of the fitted lines. For this paper, we analysed all
of our new spectra over the shorter spectral range defined by the
MMT1 spectrum, 4000−4950 Å, for consistency.

Some of our results are shown in Fig. 1, where the quoted
uncertainties are the formal errors of the fits and do not include
external errors. In the upper left panel, we show our LTE so-
lution for spectrum RS6, the original spectrum of Saffer et al.
(1994), available to us since one of us (P.B.) is coauthor on that
paper. While our results are consistent with the previous LTE
analyses, the figure shows a rather noisy spectrum with rela-
tively large fitting errors. The fits to our higher S/N spectra are

more interesting since they provide much tighter constraints on
the spectroscopic solution. We illustrate the preferred NLTE fits
to our new spectra in the upper right panel (PB6), in the lower
left panel (BG9), and in the lower right panel (MMT1). We note
that these three fits are remarkably consistent with each other
and, also, are quite good. They are not perfect, however; In all
three cases, the He II 4686 line is stronger than predicted. This
is not new and was encountered, for example, in the pulsating
EC14026 star PG 1219+534 (Charpinet et al. 2005a). This phe-
nomenon has been referred to as the “helium problem” in hot
sdB stars and the culprit is suspected to be the absence of metals
in the models (see, e.g., Heber et al. 2000). Irrespective of the
inherent computational problems associated with the inclusion
of metals in NLTE models of sdB stars, the basic difficulty is
that we do not know what metal abundances to use since their
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Table 1. Atmospheric parameters of PG 1325+101 derived from spectroscopy.

Source Teff (K) log g log N(He)/N(H)
Telting & Østensen (2004) 34 800 ± 390 5.81 ± 0.05 −1.65 ± 0.02
This work (PB6) 34 890 ± 525 5.84 ± 0.09 −1.74 ± 0.07
This work (BG9) 35 090 ± 450 5.81 ± 0.08 −1.71 ± 0.05
This work (MMT1) 35 420 ± 390 5.78 ± 0.05 −1.68 ± 0.02
Mean† 35 050 ± 220‡ 5.81 ± 0.04‡ −1.70 ± 0.02‡

† Reference values used for the asteroseismic analysis. ‡ The given error is the quadratic combination of the uncertainties of each measurement.

Fig. 2. Model fits (dotted curves) to the He I 4471 line (solid curves)
in our MMT spectrum of PG 1325+101 assuming various values of the
projected rotational velocity Vsin i.

atmospheric values vary from one star to another and are not in
solar proportions.

Until a complete study of the spectrum of PG 1325+101
is carried out (with feedback between derived abundances and
NLTE H/He/metals models), we will have to be content with the
results currently available. Taking into account external errors,
which we evaluate from multiple observations with the same
setup and include quadratically with the formal errors of the fits
(those shown in Fig. 1), we find that our best estimates of the at-
mospheric parameters of PG 1325+101 are our NLTE solutions
based on spectra PB6, BG9, and MMT1. The values are summa-
rized in Table 1, and are used below, along with the estimates of
Telting & Østensen (2004), to constrain the asteroseismic solu-
tions.

As an interesting aside, we have noticed in the past that
MMT spectra similar to the one used here for PG 1325+101 are
of sufficient resolution and sensitivity to reveal weak and narrow
metal lines when present. This has been used quite succesfully
by Chayer et al. (2003) to derive very interesting abundance pat-
terns for several sdB stars. We therefore searched for such lines
in the MMT1 spectrum in the hope of constraining V sin i from
possible rotational broadening. Unfortunately, the few metal
lines detectable in the MMT spectrum of PG 1325+101 are
much too weak for us to use them for that purpose. No doubt
such lines would be numerous in the FUV spectral range but,
unfortunately, PG 1325+101 has not been observed by FUSE,
nor will it ever be. However, we noticed that the He I 4471 line

is particularly well reproduced in our fit (see lower right panel
of Fig. 1) and that it is relatively narrow, so that it might perhaps
serve as a surrogate for metal lines.

In Fig. 2, we show the results of modeling efforts that as-
sume a range of possible values for the projected rotational ve-
locity. There is no sign of rotational broadening in the observed
profile of the He I 4471 line, and the only useful result that
we can gather from this experiment here is a limit of perhaps
20–30 km s−1 on V sin i. While this is interesting in itself and
suggests a relatively low rotation rate, this limit is not stringent
enough to be combined with asteroseismic results, as will be dis-
cussed below. Moreover, Telting & Østensen (2004) found, from
their time-resolved spectroscopic analysis of PG 1325+101, a
radial velocity modulation of half-amplitude ∼18 km s−1 due to
the dominant pulsation mode. In a time averaged spectrum, this
would result in a pulsational broadening that would be undistin-
guishable from rotational broadening, unless the latter is signif-
icantly larger than the former. Hence, low values of V sin i may
not be measurable at all based on time-averaged spectra.

3. Nonadiabatic asteroseismic analysis

3.1. Search for the optimal model

The moderately rich pulsational spectrum resulting from the
multisite PG 1325+101 campaign reported in Paper I ranks
this subdwarf B star among those particularly well suited for
a detailed asteroseismic study. To achieve this objective, we
followed the same procedure applied to the fast sdB pulsator
PG 1219+534, which is described at length in Charpinet et al.
(2005b). This procedure is a “forward modeling” method which
consists of a systematic search of the best matching models
within the vast ensemble of model solutions that can possibly
reproduce the observed period spectrum of the star under con-
sideration. For PG 1325+101, we based our analysis on 12 well-
established periods out of the 15 given in the upper part of the
Table 2 provided in Paper I (the Fn frequencies). Additional sus-
pected – but somewhat uncertain – frequencies dubbed f1 − f15
and given in the lower part of this table were not used in the
asteroseismic analysis that follows. This conservative approach
strongly limits the risk of overly (and perhaps incorrectly) con-
straining the models based on signal that may turn out to be spu-
rious. Nonetheless, it will be interesting to discuss a posteriori
how these additional periodicities – some of them being possibly
real oscillations of the star – may be interpreted and compared to
the theoretical periods of the optimal model solution uncovered
(see Sect. 3.2). Among the well-secured frequencies, three (F6,
F7, and F8) are suspected components of a well-formed triplet,
and thus must be considered as a single independent mode for
the asteroseismology exercise (see, e.g., Charpinet et al. 2005a).
The central frequency (period) of the triplet (F7) was kept as
the m = 0 component that needs to be compared to periods
computed from purely spherical pulsation models (see below).
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We note that considering these three frequencies as independent
modes (i.e., with different values of the indices k and/or �) signif-
icantly degrades the period fit of the best model solution because
it requires the presence of too many modes in a very narrow fre-
quency range, which is inconsistent with the structure of the the-
oretical pulsation spectrum with no rotation. Finally, the period
F15 was not considered, as it clearly corresponds to the first har-
monic of the dominant mode, and thus is not an eigenfrequency
of the oscillating star.

Theoretical spectra to which the observed periods can be
compared were computed using the so-called “second genera-
tion” models suitable for pulsating subdwarf B stars (Charpinet
et al. 1997, 2001). These models are static structures extending
as deep as log q ≡ log(1 − M(r)/M∗) � −0.05 that incorporate
the nonuniform abundance profiles of iron predicted by the the-
ory of microscopic diffusion assuming an equilibrium between
gravitational settling and radiative levitation. Such models with
diffusion are currently the most accurate structures available to
derive the pulsation properties of pulsating B subdwarfs, both
in terms of predicting which modes are driven and of provid-
ing precise period evaluations for asteroseismology (Charpinet
et al. 2005b; Fontaine et al. 2006). Four fundamental parameters
are needed to fully specify the internal structure of a hot sub-
dwarf B star with the second generation models: the effective
temperature Teff, the surface gravity log g, the total mass of the
star M∗, and the logarithmic fractional mass of the hydrogen-
rich envelope log q(H) ≡ log[M(H)/M∗]. The latter parameter
is intimately related to the more familiar parameter Menv, the
mass of the H-rich envelope. These are the natural quantities
that define the parameter space which needs to be explored in or-
der to localize the optimal model(s). Pulsation properties of the
models are evaluated through the combined application of adi-
abatic and nonadiabatic nonradial pulsation codes described in
Brassard et al. (1992) and Fontaine & Brassard (1994), respec-
tively. These provide the necessary quantities to compare with
the seismic observations which, for asteroseismology purposes,
are mainly the periods and the stability coefficients. The pul-
sation calculations were performed assuming perfect spherical
symmetry, as is standard and fully justified for slowly rotating
stars. The comparison is achieved using a period matching code
that derives the best possible match for that particular model.
This match is evaluated quantitatively in a minimum dispersion
sense, through the computation of a merit function

S 2 =

n∑

i=1

(
Pi

obs − Pi
th

)2
, (1)

where Pi
obs is one of the n periodicities observed (in the present

case, n = 12) and Pi
th is the theoretical period that matches it best

(note that we used the weights σi = σ = 1 in the evaluation of
S 2; see Eq. (1) of Charpinet et al. 2005b). Since no a priori mode
identification is available for the observed periods (as is gener-
ally the case for pulsating sdB stars), this last step is a global
procedure that seeks the best possible simultaneous fit of the ob-
served periods. The mode identification then emerges as a result
of this procedure.

We carried out a search for optimal model solution(s) by
first applying a dedicated optimization code based on a Genetic
Algorithm (GA), designed to efficiently explore the vast model
parameter space. This code is aimed at finding minima for the
quantity S 2(Teff, log g, log q(H),M∗) expressed as a function of
the model parameters. The value of S 2 for a given set of param-
eters is derived from the period matching procedure referred to
above. However, as will be illustrated and justified below, due to

the nature of some degeneracies that affect potential solutions,
we initially imposed the additional constraint of keeping the pa-
rameter Teff constant, set to the value dictated by spectroscopy.
To this end, we adopted the mean value of Teff = 35 050 K
(±220 K) as a reasonable estimate of the effective temperature of
PG 1325+101 according to the four independent measurements
summarized in Table 1 (excluding here the cruder estimate ob-
tained from the low-S/N spectrum RS6). Hence, the search was
initially limited to the three-dimensional space defined by the
remaining free fundamental parameters.

Initial boundaries considered for the search were defined
as follows: 5.65 ≤ log g ≤ 6.05 – i.e., loosely set according
to current spectroscopic estimates of log g for PG 1325+101–,
−5.0 ≤ log q(H) ≤ −2.0, and 0.30 ≤ M∗/M� ≤ 0.70, based
on current constraints provided by Extreme Horizontal Branch
stellar evolution and various formation scenarios (see Charpinet
et al. 2005b, for details). For the pulsation calculation step, we
considered modes of degree � = 0 up to � = 4 with periods
in the range 60–500 s, i.e., covering amply the range of periods
observed in PG 1325+101. The inclusion of � > 2 oscillations
was motivated by the density of modes in the observed period
range that simply cannot be explained in terms of low degree
(� ≤ 2) modes only, unless one invokes an improbable large fre-
quency splitting caused by a hypothetical rapid differential rota-
tion of the star, as proposed by Kawaler & Hostler (2005), which
is tuned to mimic the typical p-mode spectrum of a spherical star
with higher degree modes involved. In the current analysis, we
favor the simpler explanation that modes of degree higher than
� = 2 are effectively seen in this star. Contrary to previously
published asteroseismic studies which were limited to � = 3
modes, � = 4 pulsations are also included here. While not re-
quired by the mode density argument, according to recent calcu-
lations (e.g., Randall et al. 2005; Jeffery et al. 2005), their visi-
bility is comparable, or even superior, to the � = 3 modes in the
optical wavelength domain. Hence, considering pulsations with
� = 3 while rejecting � = 4 would overly restrict the parameter
space for the search of a best-fit solution. In addition, evidence
for the presence of � = 4 modes in two EC14026 pulsators has
been suggested by Jeffery et al. (2004, 2005).

Within the search domain specified, the GA identified one
family of solutions that turns out to be highly consistent with
the independent spectroscopic estimates of the atmospheric pa-
rameters of PG 1325+101. At fixed Teff = 35 050 K, this best-
fit model solution has parameters log g = 5.8105 (while es-
timations from spectroscopy lead to a mean value of log g =
5.81 ± 0.04), log q(H) = −4.2747, and M∗ = 0.4988 M�. With a
S 2 value of 4.89 (or log S 2 = 0.69), this model provides an ex-
cellent simultaneous match to the 12 periods observed in this star
(see below). We next examined the shape of the S 2 hypersurface
in the vicinity of this best-fit solution, exploring, this time, the
full 4d-space. This includes the effects of varying the effective
temperature in the broad interval 30 000 K ≤ Teff ≤ 38 000 K.
Maps displayed in Fig. 3 summarize the gist of our results. They
show the complex shape of the S 2-function (shown as isocon-
tours of constant value of log S 2) in the vicinity of the poten-
tial solution, whose exact location according to the GA-code is
indicated by a red-cross. These maps respectively show slices
of this function along the log g−Teff plane (at fixed parameters
log q(H) and M∗, which are set to their optimal values) and along
the M∗− log q(H) plane (at fixed parameters Teff and logg, set
to their optimal values). Best fitting models corresponding to
low values of S 2 appear as dark blue regions, while red areas
indicate regions of the model parameter space where theoreti-
cal periods computed from these models do not fit the observed
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Fig. 3. Left panel: slice of the S 2-function (in logarithmic units) along the log g−Teff plane at fixed parameters M∗ and log q(H), set to their
optimal values found from the best-fit model solution (M∗ = 0.4988 M� and log q(H) = −4.2747). The black dot-dot-dashed-line, dashed-line,
dot-dashed-line, and dotted-line rectangles represent the various spectroscopic estimates and their uncertainties for the atmospheric parameters of
PG 1325+101. They correspond to the MMT1, BG9, PB6, and Telting & Østensen (2004) measurements, respectively. The mean values derived
from these measurements appear as the black solid-line rectangle. The red dotted-line rectangle shows the estimated error box associated with
our asteroseismic determination of the parameters log g and Teff . The red cross indicates the position of the best-fit solution. The white dotted-
line delimits the region in the log g−Teff plane where all the observed periods are identified with modes predicted to be unstable according to
nonadiabatic theory. Right panel: slice of the S 2-function (in logarithmic units) along the M∗− log q(H) plane at fixed parameters Teff and log g,
set to their optimal values found from the best-fit model solution (Teff = 35,050 K and log g = 5.8105). The red dotted-line rectangle shows the
estimated error box associated with our asteroseismic determination of the parameters log g and Teff . The red cross indicates the position of the
best-fit solution.

periods well (high values of S 2). Considering the logarithmic
scale used to represent the merit function on these plots, we
stress that the blue regions correspond to well-defined minima.

Thorough exploration of the model parameter space with the
GA code revealed the presence of other potential families of so-
lutions having comparable quality of the period fit. These, how-
ever, are found at much lower surface gravities (log g � 5.70
and below), i.e., in obvious conflict with all present measure-
ments of log g provided by spectroscopy (see Fig. 3), and are
clearly rejected on this basis. Similar degeneracies have been
encountered in all EC14026 stars analysed so far, and hence ac-
curate spectroscopic measurements of the atmospheric parame-
ters have proven essential to limit duplicities in the asteroseismic
solutions. However, another kind of degeneracy appears when a
change in one of the model parameters can be almost exactly
compensated by a change in another model parameter, such that
the computed periods remain unchanged. Such a phenomenon
was encountered in the study of PG 1219+534 (Charpinet et al.
2005b), and indeed occurs in a similar way in the present analy-
sis of PG 1325+101.

First, there is a weak correlation between the log q(H) and
Teff parameters. A change of log q(H) relative to its optimal
value while keeping the parameter M∗ constant (set to its op-
timal value) generates a shift of the position of the local mini-
mum, mostly along the Teff axis. This trend is illustrated in the
map shown in Fig. 4 which represents the “projection” of the
log q(H) axis onto the log g−Teff plane. More precisely, the log-
arithm of the S 2 value associated with each grid point shown on
this map is the minimum value found among all the values of
the S 2-function obtained at fixed Teff, log g (with values corre-
sponding to the specific grid point), and M∗ (set to its optimal

value), but with the parameter log q(H) varying within the limits
of the specified search domain, i.e., between log q(H) = −5.0
and −2.0. The labelled axis positioned along the valley asso-
ciated with the preferred solution indicates the position of the
local minimum of S 2 as a function of log q(H) near the opti-
mal solution. There is a clear monotonic trend showing that this
minimum shifts from higher to lower Teff as the envelope mass of
the star increases (i.e., the value of log q(H) increases). However,
this shift is also associated with a degradation of the overall qual-
ity of the period fit as the S 2-value of the minimum increases as
well. Consequently, the optimal solution still occupies the center
of a well defined region of the parameter space.

This is no longer the case when one explores changes ap-
plied to the total mass of the star. A similar map was constructed
to visualize the “projection” of the M∗-axis onto the log g−Teff
plane (Fig. 5). The parameter log q(H) was kept constant, set to
its optimal value, and the total mass was varied between 0.40
and 0.60 M� (i.e., a subset of the search domain relevant for
the present illustration). The map clearly shows that a correla-
tion exists between the parameters M∗, Teff, and to a much lesser
extent, log g. A change in M∗ generates a shift in both Teff and
log g of the position of the S 2 minimum (as indicated by the
labelled axis along the region of best-fit models). However, con-
trary to the case of the log q(H) parameter previously discussed,
there is no degradation of the quality of the period fit over the
range considered for the M∗ parameter. This leads to a line-
degeneracy, clearly apparent in Fig. 5 as a long and flat valley
of minimum S 2, along which models reproduce similarly well
the observed periods. As already observed for PG 1219+534, the
trend is monotonic and associates cooler Teff (and slightly lower
log g) to lower values of M∗. The correlation with the effective
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Fig. 4. Slice of the “projected” S 2-function (in logarithmic units) along the log g−Teff plane at fixed parameter M∗, set to its optimal value from the
best-fit model solution (M∗ = 0.4988 M�). The projected log q(H) parameter was varied between −2.0 and −5.0, in steps of 0.025. The labelled
axis positioned along the valley of minimum S 2 indicates the location of the local minimum of S 2 for the given values of log q(H). The dot-dot-
dashed-line, dashed-line, dot-dashed-line, and dotted-line rectangles represent the various spectroscopic estimates with their uncertainties for the
atmospheric parameters of PG 1325+101. They correspond to the MMT1, BG9, PB6, and Telting & Østensen (2004) measurements, respectively.
The mean values derived from these measurements appear as the solid-line rectangle.

temperature is however much stronger than the (weak) corre-
lation with the surface gravity parameter. Again, the additional
constraints brought by spectroscopy are essential to lift this de-
generacy. The measurements of Teff, with their associated errors,
permits us to select the appropriate section along the line of de-
generacy which correspond to the “correct” solution. The fact
that one has to rely on the spectroscopic value of the effective
temperature to uniquely derive the total mass of the star from as-
teroseismology indicates, however, that M∗ cannot be measured
independently of Teff for PG 1325+101. Finally, we stress that
the existence of this line-degeneracy justifies a posteriori the
strategy of setting the value of Teff according to spectroscopic
estimates during the initial search with the GA-code. Not pro-
viding this additional constraint would have potentially led the
code to converge anywhere along this extended and unbounded
region of minimum S 2.

3.2. Period fit and mode identification

The optimal model isolated for PG 1325+101 provides an ex-
cellent match to the 12 independent periods clearly identified
in this star. The resulting identification of the modes involved
in the luminosity variations is given in Table 2 (see also Fig. 6
for a graphical representation). Besides the quantities that reflect
the properties of the nonradial modes computed for the best-fit

model (we again refer the reader to Charpinet et al. 2005b for a
complete description), Table 2 provides the derived distribution
of the observed periods (Pobs) as they were matched to the theo-
retical modes with periods Pth, degree � and radial order k. The
relative and absolute differences in period, ∆P/P (in %) and ∆P
(in seconds), for each pair (Pobs, Pth) is also given in this table.

The average relative dispersion between the fitted periods is
∆P/P � 0.46%. On an absolute scale, this represents an average
dispersion of ∆P � 0.54 s (or ∆ν � 40.46 µHz), with, for the
worst case, a difference of only ∆P � 1.19 s. The quality of this
simultaneous fit of all the periods is similar to – even slightly bet-
ter than – those obtained for other EC14026 pulsators analysed
under comparable conditions. Yet, the accuracy at which the pe-
riods are measured is still approximately one order of magnitude
better than the mean period dispersion achieved for the fit. This
difference was already noted in previous studies and it points to
the fact that current equilibrium models describing the structure
of sdB stars still suffer from imperfections that leave significant
room for improvements. Such improvements are, of course, one
of the goals to be sought in future asteroseismic studies of sdB
pulsators.

The observed periods are identified with radial (� = 0)
and nonradial (� = 1−4) p-modes having low radial orders
(k = 1−5). All but one mode are indeed predicted to be excited
by the “Fe” κ-mechanism according to nonadiabatic calculations
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Fig. 5. Slice of the “projected” S 2-function (in logarithmic units) along the log g−Teff plane at fixed parameter log q(H) set to its optimal value
found for the best-fit model solution (log q(H) = −4.2747). The projected, M∗ parameter was varied between 0.40 M� and 0.60 M� (by steps of
0.0025 M�). The labelled axis positioned along the valley of minimum S 2 indicates the location of the local minimum of S 2 for the given values of
M∗. The solid-line, dashed-line, dot-dashed-line, and dotted-line rectangles represent the various spectroscopic estimates and their uncertainties
for the atmospheric parameters of PG 1325+101. They correspond to the MMT1, BG9, PB6, and Telting & Østensen (2004) measurements,
respectively.

(i.e., negative values of σI in Table 2). The exception is the pe-
riod F1 (167.778 s) associated to the stable � = 1, k = 1 mode.
We find, however, that this mode is only marginally stable and
a slight decrease of only ∼40 K of the effective temperature of
the model, which is well within the uncertainties for the deter-
mination of this parameter, is sufficient for the mode to become
unstable. Indeed, the region of the log g−Teff plane where all the
observed periods can be associated to driven modes is shown in
Fig. 3 (delimited by the white dotted-line). Clearly, the relatively
high Teff estimated for PG 1325+101 places this star close to
the blue edge of this region. But it remains entirely compatible,
within the uncertainties, with the nonadiabatic stability calcula-
tions. Hence, PG 1325+101 is yet another example for which
strong consistency can be achieved between three independent
aspects of the modeling of these stars: 1) the reproduction of the
observed period distribution; 2) the nonadiabatic properties of
the pulsations; and 3) the determination of the atmospheric pa-
rameters through spectroscopy. However, at this point we stress
that several modes predicted to be excited in the model are in
fact not detected in the present data. Such “holes” (or “miss-
ing modes”) in pulsation period spectra of rapidly pulsating B
subdwarfs are common, and remain largely unexplained so far.
Nonetheless, since our past experience indicates that high S/N
ratio photometric observations of EC14026 stars usually lead to
the detection of more pulsation modes, it is likely that not all

modes in the excited frequency bandpass are driven up to suffi-
cient amplitudes such that they can easily be seen. Large intrin-
sic, and possibly time-variable, amplitude differences may also
exist between excited modes. Since the standard, linear oscilla-
tion theory is incapable of predicting mode amplitudes, a non-
linear approach to the nonadiabatic pulsation problem will be
essential to fully understand such behavior. Unfortunately, such
a nonlinear nonradial pulsation theory does not yet exist.

We note also that the period of 129.893 s (F7), possibly a
triplet according to the data, is indeed identified as a � = 1 mode
in the fit. The dominant mode, F4, corresponding to a period of
137.826 s, is associated with a � = 2 mode in the present fit, con-
trary to the suggestion of Telting & Østensen (2004) that it could
be a radial pulsation (although they admit that other identifica-
tions might be possible). However, considering the global mode
distribution observed in PG 1325+101, as was done in this anal-
ysis, it appears difficult to assign this period to a radial mode.
In this context, the presence of residual power in the Fourier
spectrum near F4 (see Paper I) may suggest the existence of fine
structure associated with this frequency, which could also indi-
cate a nonradial mode (see below).

At this stage, it is interesting to look back at Table 2 of
Paper I. The periodicities f1− f15 given in the lower part of
this table are all considered questionable and, as such, were ig-
nored in the preceding asteroseismic analysis. Some of these
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Table 2. Pulsation properties of the best-fit model solution and mode identification.

Pobs Pth σI (stability) log E Ckl ∆P/P ∆P Comments
l k (s) (s) (rad/s) (erg) (%) (s)

0 7 ... 70.810 +3.754 × 10−5 (S) 39.664 ... ... ...
0 6 ... 77.096 −3.398 × 10−5 (U) 40.024 ... ... ...
0 5 ... 86.656 −8.407 × 10−5 (U) 40.087 ... ... ...
0 4 99.808 99.841 −4.361 × 10−5 (U) 40.474 ... −0.03 −0.032 F12 ; [ f15 closeby (see text)]
0 3 ... 109.044 −2.109 × 10−5 (U) 40.758 ... ... ...
0 2 ... 131.753 −5.736 × 10−6 (U) 41.080 ... ... ...
0 1 [150.615] 150.218 −1.865 × 10−7 (U) 42.142 ... [+0.26] [+0.397] [ f1]
0 0 ... 168.298 +1.372 × 10−8 (S) 42.190 ... ... ...

1 8 ... 70.047 +4.800 × 10−5 (S) 39.680 0.0053 ... ...
1 7 ... 75.884 −2.992 × 10−5 (U) 39.932 0.0064 ... ...
1 6 ... 85.932 −8.431 × 10−5 (U) 40.068 0.0065 ... ...
1 5 98.379 97.755 −3.903 × 10−5 (U) 40.512 0.0121 +0.64 +0.625 F13

1 4 106.608 107.214 −3.035 × 10−5 (U) 40.612 0.0110 −0.57 −0.606 F10

1 3 129.893 130.506 −5.932 × 10−6 (U) 41.080 0.0140 −0.47 −0.614 F7 ; F6, F8 closeby (∼7 µHz)
1 2 144.983 145.108 −4.356 × 10−7 (U) 41.909 0.0261 −0.09 −0.125 F3 ; [ f2 closeby (∼6 µHz)]
1 1 167.778 167.702 +1.033 × 10−8 (S) 42.150 0.0175 +0.04 +0.076 F1 ; only marginally stable

2 7 ... 74.423 −2.051 × 10−5 (U) 39.804 0.0068 ... ...
2 6 ... 84.695 −7.876 × 10−5 (U) 40.062 0.0088 ... ...
2 5 94.830 94.073 −3.866 × 10−5 (U) 40.493 0.0189 +0.80 +0.757 F14

2 4 ... 105.229 −4.172 × 10−5 (U) 40.484 0.0129 ... ...
2 3 ... 126.399 −5.323 × 10−6 (U) 41.168 0.0376 ... ...
2 2 137.826 137.597 −2.066 × 10−6 (U) 41.398 0.0400 +0.17 +0.229 F4 ; [ f5 − f10 closeby (see text)]
2 1 ... 166.486 +6.768 × 10−10 (S) 42.090 0.0224 ... ...
2 0 ... 204.017 +2.018 × 10−10 (S) 45.108 0.4340 ... ...

3 7 ... 72.984 −1.561 × 10−6 (U) 39.698 0.0094 ... ...
3 6 ... 82.331 −5.810 × 10−5 (U) 40.108 0.0211 ... ...
3 5 ... 89.796 −5.629 × 10−5 (U) 40.297 0.0268 ... ...
3 4 ... 103.171 −4.911 × 10−5 (U) 40.419 0.0203 ... ...
3 3 117.859 117.427 −5.947 × 10−6 (U) 41.218 0.0794 +0.37 +0.432 F9

3 2 134.570 133.376 −4.617 × 10−6 (U) 41.134 0.0299 +0.89 +1.194 F5 ; [ f11, f12 closeby (see text)]
3 1 ... 163.198 −3.627 × 10−8 (U) 42.041 0.0701 ... ...
3 0 ... 175.018 +9.313 × 10−9 (S) 43.021 0.1849 ... ...

4 7 ... 71.627 +2.344 × 10−5 (S) 39.652 0.0136 ... ...
4 6 ... 78.926 −3.765 × 10−5 (U) 40.121 0.0332 ... ...
4 5 ... 87.125 −7.648 × 10−5 (U) 40.130 0.0214 ... ...
4 4 99.823 100.752 −4.850 × 10−5 (U) 40.423 0.0323 −0.93 −0.929 F11 ; [ f15 closeby (see text)]
4 3 ... 110.825 −1.375 × 10−5 (U) 40.919 0.0618 ... ...
4 2 ... 131.468 −5.626 × 10−6 (U) 41.074 0.0254 ... ...
4 1 156.518 157.317 −1.004 × 10−7 (U) 42.073 0.1159 −0.51 −0.799 F2

4 0 ... 169.420 +1.786 × 10−8 (S) 42.391 0.0703 ... ...

periodicities may however correspond to real pulsations of the
star and a comparison a posteriori with the theoretical periods
and mode identification associated with our optimal model so-
lution could provide further insight. All values and comments
given within brackets in Table 2 are related to these uncertain
frequencies.

An obvious correspondence exists between the f1 periodic-
ity (P = 150.615 s) and the unassigned � = 0, k = 1 theoret-
ical mode (P = 150.218 s). This match, with a relative disper-
sion of ∆P/P = +0.26% (∆P = +0.397 s on an absolute scale),
does not degrade the overall period fit and suggests, at the out-
set, that f1 may be a real oscillation mode of PG 1325+101.
On the other hand, we find no equivalent in the optimal seis-
mic model for the two close and apparently isolated frequen-
cies f3 and f4. Test calculations indicate that modes of degree
� = 6 or more would have to be invoked to achieve a satisfactory
match with one of these frequencies, which sounds somewhat

improbable. It is however difficult to assess whether these rela-
tively low-amplitude structures swamped by the low-frequency
tail of the dominant peak in the Fourier spectrum are real pulsa-
tions. Additional high-S/N photometry may be required to con-
firm or deny the presence of these periodicities in the lightcurve
of PG 1325+101.

The remaining 12 fn frequencies all turn out to be very close
to several of the well-secured Fn frequencies. This suggests they
may be either fine structure, caused by rotational splitting, for
instance, or artifacts generated by the prewhitening procedure.
Looking at these frequencies in more detail, we note that:

a) f2 is approximately 6 µHz away from F3. Since the well-
identified triplet (F6, F7, F8) has a frequency spacing ∆ν ∼
7 µHz (see Paper I and/or the next subsection), it is tempting
to interpret f2 as a real mode, part of a multiplet split by the
star’s rotation. This possibility is consistent with our astero-
seismic result identifying F3 as a nonradial � = 1 mode;
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Fig. 6. Comparison of the observed period spectrum of PG 1325+101
(thick dashed-dotted-line red segments) with the theoretical pulsation
spectrum of the optimal model. For the latter spectrum, solid-line seg-
ments indicate excited modes, while dotted-line segments correspond to
damped modes. All pulsation modes with � = 0, 1, 2, 3, and 4 in the
period interval 60–210 s are illustrated. The values of the radial order
k are also indicated for each mode. These modes are all acoustic waves
(including the f -modes). The g-modes have periods that fall outside the
range of interest for PG 1325+101.

b) the dominant mode, F4, is surrounded by six frequencies
( f5− f10). Among these, f6 and f10 are separated from F4
by ∼8 µHz and ∼14 µHz, respectively. Again, this would
be consistent with rotationally split components, this time
leading to the interesting constraint that the F4 mode must
have a degree � = 2 or more (because the frequency separa-
tions imply that ∆m = 2 between F4 and f10 and ∆m = 3
between f6 and f10). Furthermore, this would support the
identification given in Table 2 for that mode. We note, how-
ever, that the other frequencies f5, f7, f8, and f9, if real, do
not have the expected spacing for rotationally split compo-
nents. If f5 is far enough away from the other frequencies
in this narrow bandpass that it could be considered an inde-
pendent mode, we find no counterpart in our optimal seismic
model that it could be assigned to. This fact along with the
very low S/N ratio of that frequency (∼3.8; see Table 2 of
Paper I) may plead for a false detection here. Concerning f9,
we note that this low-amplitude frequency is approximately
11 µHz away from F4, i.e., dangerously close to the 1-day
alias of the dominant mode, with a huge amplitude contrast.
Hence, the chances are significant that f9 may be a spurious
residual following prewhitening of the dominant frequency.
Finally, both f7 and f8 are low-amplitude frequencies partic-
ularly close to F4 (only 3 µHz away) that trigger the same
cautionary remarks as above;

c) f11 and f12 are very close to F5 (separated by only ∼1 µHz
and ∼4 µHz, respectively). They can hardly be interpreted as
multiplet components caused by slow stellar rotation and the
mode density they imply, along with their low amplitudes,
raise doubts concerning their reality;

Table 3. Inferred structural parameters of PG 1325+101 (V = 14.019±
0.012, Wesemael et al. 1992).

Quantity Estimated value
Teff (K)† 35050 ± 220 (0.6%)
log N(He)/N(H)† −1.70 ± 0.02 (1.2%)
log g 5.811 ± 0.004 (0.07%)
M∗/M� 0.50 ± 0.01 (2.0%)
log(Menv/M∗) −4.18 ± 0.10 (2.4%)

R/R� (M∗, g) 0.145 ± 0.002 (1.5%)
L/L� (Teff , R) 28.3 ± 1.5 (5.4%)
MV (g, Teff , M∗) 4.45 ± 0.04 (0.9%)
d (V , MV) (pc) 820 ± 21 (2.6%)
Prot (day) 1.6 ± 0.2 (12.5%)
Veq (Prot, R) (km s−1) 4.6 ± 0.6 (13.9%)

† From spectroscopy.

d) f13 and f14 are again low-amplitude frequencies, less than
∼0.6 µHz away from F7 and F8, respectively, suggesting that
they too are likely artifacts;

e) f15 just barely emerges above the noise level (S/N ∼ 3.9)
and is separated from F11−F12 by 10–12 µHz, very close to
the 1-day alias of these frequencies. The probability of f15
being spurious is therefore high.

In summary, among the 15 questionable ( fn) frequencies given
in the lower part of Table 2 in Paper I, we find that 4 frequen-
cies ( f1, f2, f6, f10) could indeed easily be interpreted either as
independent modes ( f1) or as components of multiplets splitted
by the slow rotation of the star ( f2, f6, f10), 9 frequencies ( f5,
f7− f9, f11− f15) appear particularly doubtful and could easily be
artifacts, and 2 frequencies ( f3, f4) remain ambiguous.

To conclude this subsection, we recall that further checks of
the proposed mode identification can possibly be achieved using
multicolour photometry. While discriminating between � = 0,
1, and 2 modes from amplitude ratios at various wavelengths
may turn out to be difficult, the signature of the � = 3, 4 modes
– which are seen in this star according to the fit – should, in
principle, be more easily recognized using this technique.

3.3. Structural parameters of PG 1325+101

The basic properties inferred for PG 1325+101 from the com-
bined spectroscopic and asteroseismic approaches are summa-
rized in Table 3. Following the usual primary quantities (Teff,
log g, log Menv/M∗ ∼ log q(H), and M∗) derived from the pa-
rameters of the optimal model, are a set of secondary quanti-
ties, functions of the primary values. These are the radius of the
star R, its luminosity L, its absolute magnitude MV (obtained
with the use of model atmospheres), and its distance d. Estimates
of the 1σ (internal) errors attached to the primary quantities were
derived following Brassard et al. (2001; see also Charpinet et al.
2005b) and are represented in Fig. 3 as red dotted-line boxes.
These uncertainties were then used to estimate the errors associ-
ated with the secondary parameters.

Additional parameters can be inferred if we interpret the fre-
quency spacing ∆ν = 6.9 ± 0.7 µHz (mean value; see Paper I)
measured for the identified triplet (F6, F7, F8) as a consequence
of the slow rotation of the star. Indeed, the optimal model solu-
tion identifies F7 as a � = 1, k = 3 mode, thus implying that
the measured spacing occurs between modes with ∆m = ±1. It
follows that the rotation period of PG 1325+101 can be evalu-
ated to Prot � (1 − C31)/∆ν � 1.6 ± 0.2 day (using the value
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C31 = 0.0140 given in Table 2). This first-order estimate as-
sumes that the star rotates as a solid body. The rotation pe-
riod combined with our asteroseismic estimate of the star radius
then leads to the evaluation of the equatorial rotation velocity
Veq = 2πR/Prot � 4.6 ± 0.6 km s−1. Combined with a V sin i
measurement from spectroscopy, it offers, in principle, an op-
portunity to constrain i, the inclination of the rotation axis of the
star from the line of sight. Unfortunately, as we saw above, the
only limit we got on rotational broadening from our modeling
of the He I 4471 line is V sin i < 20−30 km s−1, quite insuffi-
cient to constrain the inclination angle since Veq � 4.6 km s−1.
Moreover, such a low equatorial velocity would be hardly mea-
surable based on time-averaged spectra only, as the broadening
would be dominated by the pulsations.

Of special interest, we stress that the value derived for the
mass of PG 1325+101, M = 0.50 ± 0.01, coincides with the
canonical mass expected from standard evolution and formation
scenarios for Extreme Horizontal Branch stars. In addition, the
suggestion of a thin H-rich envelope – with log(Menv/M∗) =
−4.18 ± 0.10 – given by this asteroseismic study is consistent
with standard expectations for PG 1325+101, a rather hot and
compact EHB star.

4. Summary and conclusion

Following the results, reported in Paper I, of a multisite cam-
paign of time-series photometry dedicated to the relatively
bright (V = 14.019 ± 0.012), rapidly pulsating hot B subdwarf
PG 1325+101, we conducted a thorough analysis of the proper-
ties of this star using new, improved spectroscopic evaluations
of its atmospheric parameters to perform a detailed asteroseis-
mic study of its pulsations.

Our approach relied on the “forward modeling” method with
the goal of objectively finding the model that would best match
the 12 periods identified as independent oscillation modes in
PG 1325+101 with a set of theoretical periods. For this purpose,
we have used the second generation sdB models of Charpinet
et al. (1997) to compute the theoretical periods, since these
have proved to account quite well for the class properties of
the EC14026 pulsators (Charpinet et al. 2001). Our exhaustive
exploration of the vast model parameter space, combined with
the spectroscopic constraints, then allowed us to isolate a unique
seismic model solution that best reproduces the observed periods
of PG 1325+101. From this model we derived the main struc-
tural properties of this star as well as the identification of the
modes responsible for the luminosity variations.

The basic properties of PG 1325+101 inferred from our com-
bined spectroscopic and asteroseismic approach are summarised
in Table 3. Once the appropriate seismic solution has been identi-
fied with the help of spectroscopy, fundamental parameters, such
as the surface gravity log g, could be determined with a much
higher precision. In addition, measurements of the H-rich en-
velope mass (a pure product of asteroseismology) and the total
mass of the star could be derived. These quantities, in particular,
will be of prime importance to constrain scenarios of the evolu-
tion and formation of Extreme Horizontal Branch stars and their
progenitors. In our study of PG 1325+101, we found that the
total mass could not be inferred independently of the spectro-
scopic measurement of the effective temperature. Nonetheless,
the value derived for the total mass, M = 0.50 ± 0.01 M�, in-
dicates a mass of PG 1325+101 that is close to the value com-
monly admitted for sdB stars. Although this value depends on
the reliability of the spectroscopic estimate of Teff (particularly
regarding eventual systematic effects), we stress that masses

significantly different from the derived, nearly canonical value,
such as some scenarios of binary evolution suggest, would re-
quire a shift of several thousand Kelvins in effective temperature
to be compatible with asteroseismology. Such a drastic change in
the evaluation of Teff from spectroscopy is highly unlikely and,
therefore, we are confident in concluding that PG 1325+101 has
a mass close to the canonical mass of extreme horizontal branch
stars. Interestingly, we point out that current evidence strongly
suggests an absence of orbital motion due to the presence of a
close companion (e.g., Telting & Østensen 2004), although it
cannot be completely ruled out at the present time, for instance,
if the inclination is large and the orbital period relatively long
(several days). If PG 1325+101 is confirmed as a single sdB
star with the mass given from asteroseismology, it would add
to the growing constraint already posed by other similar single
sdB pulsators regarding the hypothesis that mergers of two he-
lium white dwarfs may be the progenitors of such stars. Notably,
we also found that PG 1325+101 has a thin hydrogen-rich en-
velope mass – with log(Menv/M∗) = −4.18 ± 0.10 – as one
would expect for a rather hot and compact EHB star (Dorman
et al. 1993). Also of interest, we found asteroseismic sugges-
tions that PG 1325+101 is a slow rotator, with a rotation period
of Prot = 1.6 ± 0.2 days, consistent with the independent, albeit
loose, spectroscopic constraint of V sin i < 20−30 km s−1.

Finally, we found that our optimal model solution is able to
reproduce simultaneously the 12 independent periods observed
in PG 1325+101 with an average dispersion of only ∼0.46%
(or ∼0.54 s, on an absolute scale). The observed periods cor-
respond to low-order � = 0−4 modes which, indeed, are ex-
pected to be observable according to nonadiabatic pulsation the-
ory. Hence, PG 1325+101 constitutes another case for which
a seismic model solution exists and can, at the same time, re-
produce all the periods observed in this star at a high level
of accuracy, be consistent with nonadiabatic theory, and sat-
isfy the spectroscopic constraints. Such a consistency between
three independent aspects of the modeling of these pulsating
stars is a result that was not guaranteed at the outset. This is
a strong indication that the basic constitutive physics incorpo-
rated into our current models used for the asteroseismic analyses
of EC14026 stars is sound, especially as it follows similar re-
sults already obtained for the rapid sdB pulsators PG 0014+067,
PG 1047+003, PG 1219+534, and Feige 48 (Brassard et al.
2001; Charpinet et al. 2003, 2005b,a). Furthermore, the excel-
lent agreement between observations and theory at the nonadi-
abatic level adds another confirmation that the iron bump opac-
ity mechanism of Charpinet et al. (1997) is at the origin of the
EC14026 phenomenon.
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