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OPTIMALLY SPARSE REPRESENTATIONS OF 3D DATA WITH C2 SURFACE
SINGULARITIES USING PARSEVAL FRAMES OF SHEARLETS

KANGHUI GUO∗ AND DEMETRIO LABATE†

Abstract. This paper introduces a Parseval frame of shearlets for the representation of 3D data, which is especially
designed to handle geometric features such as discontinuous boundaries with very high efficiency. This system of 3D shearlets
forms a multiscale pyramid of well-localized waveforms at various locations and orientations, which become increasingly thin
and elongated at fine scales. We prove that this 3D shearlet construction provides essentially optimal sparse representations
for functions on R3 which are C2-regular away from discontinuities along C2 surfaces. As a consequence, we show that within
this class of functions the N -term approximation fSN obtained by selecting the N largest coefficients of the shearlet expansion
of f satisfies the asymptotic estimate

∥f − fSN∥22 ≍ N−1(logN)2, as N → ∞.

This asymptotic behavior significantly outperforms wavelet and Fourier series approximations which only yield an approxima-
tion rate of O(N−1/2) and O(N−1/3), respectively. This result extends to the 3D setting the (essentially) optimally sparse
approximation results obtained by the authors using 2D shearlets and by Candès and Donoho using curvelets and is the first
nonadaptive construction to provide provably (nearly) optimal representations for a large class of 3-dimensional data.

Key words. Affine systems, curvelets, nonlinear approximations, shearlets, sparsity, wavelets.

AMS subject classifications. 42C15, 42C40

1. Introduction. Sparse representations of multidimensional data have gained more and more promi-
nence in recent years as a variety of applied problems require to process massive and multi-dimensional data
sets in a timely and effective manner. This is a major challenge in applications such as remote sensing,
satellite imagery, scientific simulations and electronic surveillance. Sparse representations enable not only
to accurately and reliably compress data and expedite their transmission and storage, but also to develop
more effective algorithms for tasks such as feature extraction and pattern recognition. In fact, constructing
sparse representations for data in a certain class entails the intimate understanding of their true nature and
structure [10].

Wavelets and other traditional multiscale methods have been extremely successful during the past 20
years because of their ability to provide optimally sparse representations for data with point singularities.
This property was exploited to develop a number of impressive applications in signal and image processing.
Wavelets, however, are not equally efficient when dealing with distributed discontinuities, and this is a ma-
jor limitation in multidimensional applications where edges and discontinuous boundaries are frequently the
dominant features of the objects to be analyzed. This inefficiency of wavelets in dealing with distributed
singularities is due to their isotropic nature, which hampers the ability to really capture the geometry of
edges and other essential features of multidimensional data. To overcome these limitations, a new generation
of multiscale systems was introduced in recent years, most notably the curvelets [2], the contourlets [8] and
the shearlets [13, 14], which are especially designed to represent efficiently anisotropic features in images.
The intuitive idea behind their construction is that, in order to deal efficiently with the edges and the other
anisotropic features which are prominent in most images of practical interest, the analyzing elements must
be defined not only at various locations and scales, as traditional wavelets, but also at various orientations
and with highly anisotropic shapes. Thanks to their geometrical properties, the curvelet and shearlet repre-
sentations turn out to be essentially as good as an adaptive representation from the point of view of their
ability to approximate images containing edges. Specifically, for functions f which are C2 away from C2

edges, the N term approximation fSN obtained from the N largest coefficients in its curvelet or shearlet
expansion, obeys

∥f − fSN∥22 ≍ N−2(logN)3, as N → ∞. (1.1)
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Ignoring the loglike factor, this is the optimal approximation rate for this class of functions, as claimed in [2];
in comparison, the wavelet and Fourier representations only achieve approximation rate N−1 and N−1/2,
respectively.

The goal of this paper is to extend to the 3D setting the remarkable optimal approximation result
achieved for piecewise smooth functions of 2 variables. This new 3D result will be derived using a system of
3D shearlets which forms a Parseval frame of well-localized functions defined at various locations, scale and
orientations.

Notice that a number of 3D multiscale directional constructions have been already proposed in the
literature, including the 3D curvelets in [1] and the surfacelets in [26]. In all these cases, the focus of
these constructions is the numerical implementation. Also 3D shearlets have been already introduced in the
literature (e.g., [5, 6, 14]) and some of their microlocal properties have been recently analyzed by the authors
in [16]. However, no rigorous analysis of the sparsity properties of curvelets or shearlets or any other similar
system in the 3D setting has been published so far and, in particular, there is no proof of the analogue of
estimate (1.1) for the 3D setting. The extension of this result to 3D is highly nontrivial since the proof of
the (almost) optimal sparsity does not follow directly from the arguments used in the 2-variable case and,
as it will be apparent from our presentation below, this analysis requires to introduce some fundamentally
new tools.

In this paper, we prove that Parseval frames of 3D shearlets provide essentially optimal sparse represen-
tations for piecewise smooth function of 3 variables. As a consequence of our result we show that, denoting
by fSN the shearlet approximation of f which is obtained from the N largest coefficients of its shearlet
representation, the approximation error satisfies

∥f − fSN∥22 ≍ N−1(logN)2, as N → ∞. (1.2)

This is the first published proof for a result of this type and it is the analogue of estimate (1.1) in the 3D
setting. In a certain sense which will be made precise below, the rate N−1 is the best rate achievable. Notice,
in particular, that the approximation error rate (1.2) obtained using the shearlet representation significantly
outperforms wavelet and Fourier approximations, whose asymptotic approximation error rates are of the
order of N−1/2 and N−1/3, respectively.

As an additional remark, it is important to emphasize that the approach presented in this paper is
purely non-adaptive. Adaptive approximations of multidimensional piecewise smooth functions can be found
in [3, 25, 27, 31, 32]. Remarkably, for the class of functions considered in this paper, the shearlet approach is as
effective as an adaptive representation with respect to its ability to approximate 3D data with discontinuous
boundaries.

Concerning the comparison of shearlet and curvelet representations, one prominent difference is that
shearlets use shear matrices rather than rotations to control the directional features of the representation
system. This is more ‘natural’ in discrete implementations, since shear matrices, unlike rotations, preserve
the integer lattice. In fact, it is useful to recall that the so-called digital curvelets introduced in [1] to derive
a digital implementation of the curvelet transform use shearing rather than rotations. In this respect, the
shearlet approach ensures a unified framework for both the continuum to the digital setting [19, 20, 22].
Digital implementations of the shearlet representation which are faithful its continuous-domain counterparts
are found in [12, 23] for the 2D setting and in [29] for the 3D one.

Remark. During the final editing of this paper, a similar (essentially) optimal sparsity result was
announced, without proof, by Kutyniok, Lemvig and Lim, based on a new remarkable construction of
compactly supported shearlet frames [24]. This approach considers frames which are not Parseval frames
and extends the corresponding 2D approach introduced by the same authors in [21]. Despite the fact that
such frames are not tight, the ability to have compactly supported analyzing functions is an advantage in
some applications. While the proof of this result is not available at this time, we expect it to be very different
from the one found in this paper, due to the very different construction of the analyzing system (cf. the 2D
proof in [21]).
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1.1. Outline. The paper is organized as follows. The construction of the 3D Parseval frame of shearlets
is presented in Section 2. The main results of the paper are given in Section 3. The technical constructions
needed for the proofs are collected in Section 4. Finally, Section 5 discusses the general issue of optimally
sparse approximations and the theoretical best error approximation rate that can be achieved in 3D.

2. The shearlet representation. The shearlet representation, originally derived from the framework
of wavelets with composite dilations [18, 19], provides a general method for the construction of function
systems made up of waveforms ranging not only at various scales and locations, as traditional wavelets, but
also at various orientations. Thanks to the ability of the shearlet systems to deal with directionality and
anisotropy, the geometric content of multivariate functions and data is captured much more efficiently than
using wavelets or other traditional representation methods. In addition, as mentioned above, the use of
shear matrices enables shearlets to provide a unified treatment of the continuum and digital setting. These
properties and the special flexibility of the shearlet framework made shearlets very successful in several
imaging applications [4, 11, 12, 15, 30, 34].
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Fig. 2.1. Frequency support of a representative shearlet function ψ
(1)
j,ℓ,k, inside the pyramidal region P1. The orientation

of the support region is controlled by ℓ = (ℓ1, ℓ2); its shape is becoming more elongated as j increases (j = 4 in this plot)

The construction of 3D shearlets presented below is similar to the digital curvelets from [1]. An alter-
native way to construct smooth Parseval frames of shearlets is discussed in Sec. 5.2

In dimension D = 3, a shearlet system is obtained by appropriately combining 3 systems of functions
associated with the pyramidal regions

P1 =
{
(ξ1, ξ2, ξ3) ∈ R3 : | ξ2ξ1 | ≤ 1, | ξ3ξ1 | ≤ 1

}
,

P2 =
{
(ξ1, ξ2, ξ3) ∈ R3 : | ξ1ξ2 | < 1, | ξ3ξ2 | ≤ 1

}
,

P3 =
{
(ξ1, ξ2, ξ3) ∈ R3 : | ξ1ξ3 | < 1, | ξ2ξ3 | < 1

}
,

in which the 3D Fourier space is partitioned.
To define such systems, let ϕ be a C∞ univariate function such that 0 ≤ ϕ̂ ≤ 1, ϕ̂ = 1 on [− 1

16 ,
1
16 ] and

ϕ̂ = 0 outside the interval [−1
8 ,

1
8 ]. That is, ϕ is the scaling function of a Meyer wavelet, rescaled so that its
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frequency support is contained the interval [− 1
8 ,

1
8 ]. For ξ = (ξ1, ξ2, ξ3) ∈ R3, define

Φ̂(ξ) = Φ̂(ξ1, ξ2, ξ3) = ϕ̂(ξ1) ϕ̂(ξ2) ϕ̂(ξ3) (2.1)

and

W (ξ) =

√
Φ̂2(2−2ξ)− Φ̂2(ξ).

It follows that

Φ̂2(ξ) +
∑
j≥0

W 2(2−2jξ) = 1 for ξ ∈ R3. (2.2)

Notice that each function W 2
j =W 2(2−2j ·) has support into the Cartesian corona

[−2−2j−1, 2−2j−1]3 \ [−2−2j−4, 2−2j−4]3 ⊂ R3,

and the functions W 2
j , j ≥ 0, produce a smooth tiling of the frequency plane into Cartesian coronae, where∑

j≥0

W 2(2−2jξ) = 1 for ξ ∈ R3 \ [−1
8 ,

1
8 ]

3. (2.3)

Next, let v ∈ C∞(R) be such that supp v ⊂ [−1, 1] and

|v(u− 1)|2 + |v(u)|2 + |v(u+ 1)|2 = 1 for |u| ≤ 1. (2.4)

In addition, we will assume that v(0) = 1 and that v(n)(0) = 0 for all n ≥ 1. It was shown in [14] that
there are several examples of functions satisfying these properties. It follows from equation (2.4) that, for
any j ≥ 0,

2j∑
m=−2j

|v(2j u−m)|2 = 1, for |u| ≤ 1. (2.5)

Hence, for d = 1, 2, 3, ℓ = (ℓ1, ℓ2) ∈ Z2, the 3D shearlet systems associated with the pyramidal regions
Pd are defined as the collections

{ψ(d)
j,ℓ,k : j ≥ 0,−2j ≤ ℓ1, ℓ2 ≤ 2j , k ∈ Z3}, (2.6)

where

ψ̂
(d)
j,ℓ,k(ξ) = | detA(d)|−j/2W (2−2jξ)V(d)(ξA

−j
(d)B

[−ℓ]
(d) ) e

2πiξA−j
(d)

B
[−ℓ]

(d)
k
, (2.7)

V(1)(ξ1, ξ2, ξ3) = v( ξ2ξ1 )v(
ξ3
ξ1
), V(2)(ξ1, ξ2, ξ3) = v( ξ1ξ2 )v(

ξ3
ξ2
), V(3)(ξ1, ξ2, ξ3) = v( ξ1ξ3 )v(

ξ2
ξ3
), the anisotropic dila-

tion matrices A(d) are given by

A(1) =

4 0 0
0 2 0
0 0 2

 , A(2) =

2 0 0
0 4 0
0 0 2

 , A(3) =

2 0 0
0 2 0
0 0 4

 ,

and the shear matrices are defined by

B
[ℓ]
(1) =

1 ℓ1 ℓ2
0 1 0
0 0 1

 , B
[ℓ]
(2) =

 1 0 0
ℓ1 1 ℓ2
0 0 1

 , B
[ℓ]
(3) =

 1 0 0
0 1 0
ℓ1 ℓ2 1

 .
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Notice that (B
[ℓ]
(d))

−1 = B
[−ℓ]
(d) ).

Due to the support conditions on W and v, the elements of the system of shearlets (2.6) have compact

support in Fourier domain. In particular, for d = 1, the shearlets ψ̂
(1)
j,ℓ,k(ξ) can be written more explicitly as

ψ̂
(1)
j,ℓ1,ℓ2,k

(ξ) = 2−2j W (2−2jξ) v
(
2j
ξ2
ξ1

− ℓ1

)
v
(
2j
ξ3
ξ1

− ℓ2

)
e
2πiξA−j

(1)
B

[−ℓ1,−ℓ2]

(1)
k
, (2.8)

showing that their supports are contained inside the trapezoidal regions

Uj,ℓ = {(ξ1, ξ2, ξ3) : ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1], |ξ2
ξ1

− ℓ12
−j | ≤ 2−j , |ξ3

ξ1
− ℓ22

−j | ≤ 2−j}.

These support regions 1 become increasingly more elongated at fine scales, with the orientations controlled
by ℓ1, ℓ2, as illustrated in Fig. 2.1.

A simple computation shows that the elements of the shearlets systems (2.7) can be written in space
domain as

ψ
(d)
j,ℓ,k(x) = | detA(d)|j/2 ψ

(d)
j,ℓ (B

[ℓ]
(d)A

j
(1)x− k), (2.9)

for j ≥ 0, ℓ = (ℓ1, ℓ2) with ℓ1, ℓ2 ≤ 2j , k ∈ Z3, d = 1, 2, 3, where

ψ̂
(d)
j,ℓ (ξ) =W (2−2jξB

[ℓ]
(d)A

j
(d))V(d)(ξ),

showing that the systems (2.7) are not affine-like. However, the functions ψ
(d)
j,ℓ depend very little on j, ℓ.

Indeed, thanks to the support and regularity conditions on W and V(d), one can show [17] that for each
γ = (γ1, γ2, γ3) ∈ N3 and each N ≥ 0 there is a constant Cγ,N,d > 0 such that,∣∣∣∂γxψ(d)

j,ℓ (x)
∣∣∣ ≤ Cγ,N,d (1 + |x|)−N , (2.10)

with Cγ,N,d independent of j, ℓ.

2.1. A smooth Parseval frame of shearlets for L2(R3). A Parseval frame of shearlets for L2(R3)
is obtained by using an appropriate combination of the systems of shearlets associated with the 3 pyramidal
regions Pd, d = 1, 2, 3, together with a coarse scale system, which will take care of the low frequency region.
In order to build such system in a way that all its elements are C∞

c in the Fourier domain, the elements of
the shearlet systems overlapping the boundaries of the pyramidal regions Pd in the Fourier domain have to
be modified. Hence, we define the 3D shearlet systems for L2(R3) as the collections{

ψ̃−1,k : k ∈ Z3
}∪{

ψ̃j,ℓ,k,d : j ≥ 0, |ℓ1| < 2j , |ℓ2| ≤ 2j , k ∈ Z3, d = 1, 2, 3
}

∪{
ψ̃j,ℓ,k : j ≥ 0, ℓ1, ℓ2 = ±2j , k ∈ Z3

}
(2.11)

consisting of:
• the coarse-scale shearlets {ψ̃−1,k = Φ(· − k) : k ∈ Z3}, where Φ is given by (2.1);

• the interior shearlets {ψ̃j,ℓ,k,d = ψ
(d)
j,ℓ,k : j ≥ 0, |ℓ1||ℓ2| < 2j , k ∈ Z3, d = 1, 2, 3}, where ψ(d)

j,ℓ,k are
given by (2.7);

• the boundary shearlets {ψ̃j,ℓ,k,d : j ≥ 0, |ℓ1| < 2j , ℓ2 = ±2j , k ∈ Z3, d = 1, 2, 3} and {ψ̃j,ℓ,k : j ≥
0, ℓ1, ℓ2 = ±2j , k ∈ Z3}, obtained by joining together slightly modified versions of ψ

(1)
j,ℓ,k, ψ

(2)
j,ℓ,k and

ψ
(3)
j,ℓ,k, for ℓ1, ℓ2 = ±2j . Their precise definition is given below.

1Notice that, since |ℓ1|, |ℓ2| ≤ 2j , each support region Uj,ℓ is contained in a box of size ≈ 22j × 2j × 2j in the Fourier

domain. Since the functions ψ̂
(1)
j,ℓ1,ℓ2,k

are C∞
c , it follows that in space domain their supports are essentially contained inside

boxes of size ≈ 2−2j × 2−j × 2−j .
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For j ≥ 1, |ℓ1| < 2j , ℓ2 = ±2j , we define

(ψ̃j,ℓ1,ℓ2,k,1)
∧(ξ) =

2−2j−3W (2−2jξ) v
(
2j ξ2

ξ1
− ℓ1

)
v
(
2j ξ3

ξ1
− ℓ2

)
e
2πiξ2−2A−j

(1)
B

[−(ℓ1,ℓ2)]

(1)
k
, if ξ ∈ P1,

2−2j−3W (2−2jξ) v
(
2j ξ1

ξ2
− ℓ1

)
v
(
2j ξ3

ξ2
− ℓ2

)
e
2πiξ2−2A−j

(1)
B

[−(ℓ1,ℓ2)]

(1)
k
, if ξ ∈ P2;

(2.12)

(ψ̃j,ℓ1,ℓ2,k,2)
∧(ξ) =

2−2j−3W (2−2jξ) v
(
2j ξ1

ξ2
− ℓ2

)
v
(
2j ξ3

ξ2
− ℓ1

)
e
2πiξ2−2A−j

(2)
B

[−(ℓ2,ℓ1)]

(2)
k
, if ξ ∈ P2,

2−2j−3W (2−2jξ) v
(
2j ξ1

ξ3
− ℓ2

)
v
(
2j ξ2

ξ3
− ℓ1

)
e
2πiξ2−2A−j

(2)
B

[−(ℓ2,ℓ1)]

(2)
k
, if ξ ∈ P3;

(ψ̃j,ℓ1,ℓ2,k,3)
∧(ξ) =

2−2j−3W (2−2jξ) v
(
2j ξ2

ξ1
− ℓ2

)
v
(
2j ξ3

ξ1
− ℓ1

)
e
2πiξ2−2A−j

(3)
B

[−(ℓ1,ℓ2)]

(3)
k
, if ξ ∈ P1,

2−2j−3W (2−2jξ) v
(
2j ξ1

ξ3
− ℓ1

)
v
(
2j ξ2

ξ3
− ℓ2

)
e
2πiξ2−2A−j

(3)
B

[−(ℓ1,ℓ2)]

(3)
k
, if ξ ∈ P3.

For j ≥ 1, ℓ1, ℓ2 = ±2j , we define

(ψ̃j,ℓ1,ℓ2,k)
∧(ξ) =


2−2j−3W (2−2jξ) v

(
2j ξ2

ξ1
− ℓ1

)
v
(
2j ξ3

ξ1
− ℓ2

)
e
2πiξ2−2A−j

(1)
B

[−(ℓ1,ℓ2)]

(1)
k
, if ξ ∈ P1,

2−2j−3W (2−2jξ) v
(
2j ξ1

ξ2
− ℓ1

)
v
(
2j ξ3

ξ2
− ℓ2

)
e
2πiξ2−2A−j

(1)
B

[−(ℓ1,ℓ2)]

(1)
k
, if ξ ∈ P2,

2−2j−3W (2−2jξ) v
(
2j ξ1

ξ3
− ℓ1

)
v
(
2j ξ2

ξ3
− ℓ2

)
e
2πiξ2−2A−j

(1)
B

[−(ℓ1,ℓ2)]

(1)
k
, if ξ ∈ P3.

Similarly, for j = 0, ℓ1, ℓ2 = 0, ±1, we define

(ψ̃0,ℓ1,ℓ2,k)
∧(ξ) =


W (ξ) v

(
ξ2
ξ1

− ℓ1

)
v
(

ξ3
ξ1

− ℓ2

)
e2πiξk, if ξ ∈ P1,

W (ξ) v
(

ξ1
ξ2

− ℓ1

)
v
(

ξ3
ξ2

− ℓ2

)
e2πiξk, if ξ ∈ P2,

W (ξ) v
(

ξ1
ξ3

− ℓ1

)
v
(

ξ2
ξ3

− ℓ2

)
e2πiξk, if ξ ∈ P3.

Notice that the boundary shearlet functions are compactly supported in the Fourier domain by construction.
In addition, it can be shown that they are C∞ in the Fourier domain. In fact, let us consider the function
(ψ̃j,2j ,ℓ2,k)

∧, given by (2.12). To show that it is continuous, it is easy to verify that the two terms of the
piecewise defined function are equal when ξ1 = ξ2 and ξ1 = ξ3. The smoothness is verified that checking the
derivatives of these functions on the plane ξ1 = ξ2 = ξ3. Specifically, we have that

∂

∂ξ1
[W (2−2jξ) v

(
2j(

ξ2
ξ1

− 1)
)
v
(
2j
ξ3
ξ1

− ℓ2

)
e
2πiξ2−2A−j

(1)
B

[−2j ,−ℓ2]

(1)
k
]|ξ3=ξ2=ξ1

= 2−2j ∂W

∂ξ1
(2−2j(ξ1, ξ1, ξ1)) v(0) v(2

j − ℓ2) e
2πi2−2j−2ξ1k1

−2j

ξ1
W (2−2j(ξ1, ξ1, ξ1)) v

′(0) v(2j − ℓ2) e
2πi2−2j−2ξ1k1

−2j

ξ1
W (2−2j(ξ1, ξ1, ξ1)) v(0) v

′(2j − ℓ2) e
2πi2−2j−2ξ1k1

+2πi(2−2j−2k1 − 2−j−2k2 − 2−2j−2ℓ2k3)W (2−2j(ξ1, ξ1, ξ1)) v(0) v(2
j − ℓ2)

×e2πi(2
−2j−2ξ1k1+2−j−2(ξ2−ξ1)k2+2−j−2(ξ3−ℓ22

−jξ1)k3);
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∂

∂ξ1
[W (2−2jξ) v

(
2j(

ξ1
ξ2

− 1)
)
v
(
2j
ξ3
ξ2

− ℓ2

)
e
2πiξ2−2A−j

(1)
B

[−2j ,−ℓ2]

(1)
k
]|ξ3=ξ2=ξ1

= 2−2j ∂W

∂ξ1
(2−2j(ξ1, ξ1, ξ1)) v(0) v(2

j − ℓ2) e
2πi2−2j−2ξ1k1

+
2j

ξ1
W (2−2j(ξ1, ξ1, ξ1)) v

′(0) v(2j − ℓ2) e
2πi2−2j−1ξ1k1

+2πi(2−2j−2k1 − 2−j−2k2 − 2−2j−2ℓ2k3)W (2−2j(ξ1, ξ1, ξ1)) v(0) v(2
j − ℓ2)

×e2πi(2
−2j−2ξ1k1+2−j−2(ξ2−ξ1)k2+2−j−2(ξ3−ℓ22

−jξ1)k3).

Since v′(0) = 0 and v′(2j − ℓ2) = 0 (this is due to the fact that v′(0) = 0 and v′ vanishes outside its support
in (−1, 1)), the two partial derivatives agree for ξ1 = ξ2 = ξ3. A very similar calculation shows that also the
partial derivatives with respect to ξ2 and ξ3 agree for ξ1 = ξ2 = ξ3. This observation can be repeated for
higher order derivatives since v(n)(0) = 0 for all n ≥ 1, implying that the functions (ψ̃j,ℓ1,ℓ2,k)

∧(ξ), given by
(2.12), are infinitely differentiable. A similar computation shows that all boundary shearlets are infinitely
differentiable. Notice that this idea for constructing regular boundary shearlets by matching the shearlet
elements from different pyramidal regions is similar to an idea [1] (even though no details are provided there).

For brevity, in the following it will be convenient to denote the system of shearlets (2.11) using the
compact notation:

{ψ̃µ, µ ∈M}, (2.13)

where M =MC ∪MI ∪MB are the indices associated with the coarse-scale shearlets, the interior shearlets,
and the boundary shearlets, respectively, given by

• MC = {µ = (j, k) : j = −1, k ∈ Z3} (coarse-scale shearlets)
• MI = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ 0, |ℓ1|&|ℓ2| < 2j , k ∈ Z3, d = 1, 2, 3} (interior shearlets)
• MB = {µ = (j, ℓ1, ℓ2, k, d) : j ≥ 0, |ℓ1| < 2j , ℓ2 = ±2j , k ∈ Z3, d = 1, 2, 3} ∪ {µ = (j, ℓ1, ℓ2, k) : j ≥
0, ℓ1, ℓ2 = ±2j , k ∈ Z3} (boundary shearlets)

We have the following result, whose proof is found in [17].
Theorem 2.1. The 3D shearlet system (2.13) is a Parseval frame for L2(R3). In addition, the elements

of this systems are C∞ and compactly supported in the Fourier domain.

2.2. Significance. Before presenting the proof of the main sparsity result, a simple heuristic argument
can be used to explain why the 3D Parseval frame of shearlets constructed above is expected to be particularly
effective in providing very sparse representations for functions of 3 variables with discontinuous boundaries.
In fact, let us consider a bounded function f , defined on a bounded domain, which is smooth away from a
discontinuity along a smooth surface. We will examine the behavior of the shearlet coefficients of f , which
are given by sµ(f) = ⟨f, ψ̃µ⟩, where the shearlet elements ψ̃µ are given by (2.13). For simplicity, we will

only consider the interior shearlets ψ
(d)
j,ℓ,k, given by (2.6). The first observation is that, thanks to their

localization properties, at scale 2−2j , the elements ψ
(d)
j,ℓ,k, are essentially supported on a parallelepiped of size

2−2j ×2−j ×2−j , with locations controlled by k, and orientations controlled by ℓ. Also, using (2.9) it follows
that ∫

R3

|ψ(d)
j,ℓ,k(x)| dx = 22j

∫
|ψ(d)

j,ℓ (B
[ℓ]
(d)A

j
(d)x− k)| dx = 2−2j

∫
R3

|ψ(d)
j,ℓ (y)| dy,

so that, at scale 2−2j , all these shearlet coefficients are controlled by

|sj,ℓ,k(f)| ≤ ∥f∥∞ ∥ψ(d)
j,ℓ ∥L1 ≤ C 2−2j . (2.14)

At sufficiently fine scales (for j sufficiently large), it is reasonable to assume that the only significant coef-
ficients are those corresponding to the shearlet elements which are tangent to the surface of discontinuity.
Since there are O(22j) coefficients of this type and they are bounded by (2.14), it follows that the N -th
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largest shearlet coefficient in magnitude, denoted by |s(f)||N | is bounded by O(N−1). This implies that, if f
is approximated by taking the N largest coefficients in the shearlets expansion, the L2–error approximately
obeys the estimate:

∥f − fN∥2L2 ≤
∑
ℓ>N

|s(f)|2|ℓ| ≤ C N−1. (2.15)

A rigorous analysis of the behavior of the shearlet coefficients is the main goal of this paper and will be
presented below. This analysis requires a careful examinations of the terms which were neglected in our
heuristic argument and, as the detailed calculations below will show, this produces an additional logarithmic
factor, finally yielding estimate (1.2).

3. Main Results. Before stating our main results, let us define the class of functions that will be
considered in this paper. Fix a constant A > 0. We will consider a class M(A) of indicator functions of sets
B ⊂ [0, 1]3 whose boundary Σ = ∂B is a C2 2-manifold which can be written as

∪
α Σα, where α ranges

over a finite index set and Σα = {(v, Eα(v)), v ∈ Vα ⊂ R2}, such that ∥Eα∥C2(Vα) ≤ A for all α. Also, let
C2

c ([0, 1]
3) be the collection of twice differentiable functions supported inside [0, 1]3. Hence, we define the

set E2(A) of functions which are C2 away from a C2 surface as the collection of functions of the form

f = f0 + f1 χB,

where f0, f1 ∈ C2
c ([0, 1]

3), B ∈ M(A) and ∥f∥C2 =
∑

|α|≤2∥Dαf∥∞ ≤ 1.

Let {ψ̃µ : µ ∈ M} denote the Parseval frame of shearlets for L2(R3) given by (2.13). The shearlet

coefficients of a function f are the elements of the sequence {sµ(f) = ⟨f, ψ̃µ⟩ : µ ∈ M}. We denote by
|s(f)|(N) the N -th largest entry, in magnitude, in this sequence. We can now state the main results of this
paper.

Theorem 3.1. Let f ∈ E2(A) and {sµ(f) = ⟨f, ψ̃µ⟩ : µ ∈ M} be the sequence of shearlet coefficients
associated with f . Then

sup
f∈E2(A)

|sµ(f)|(N) ≤ C N−1 (logN). (3.1)

Let us comment on the significance of this result. It shows that, up to the loglike factor, the shearlet
representation provides the optimal degree of sparsity for functions in E2(A). In fact, as discussed in more
detail in Sec. 5.1 (extending a classical 2D result by Donoho in [9]), there is no representation

f =
∑

ci(f)ϕi

satisfying polynomial depth search that can provide approximations for f ∈ E2(A) where the coefficients
(ci(f)) are bounded in weak ℓp norm for p < 1. That is, the rate N−1 in (3.1) is the optimal that can be
achieved using not only orthogonal bases or frames but even considering larger dictionary, as long as they
satisfy a polynomial depth search condition.

Using Theorem 3.1, we are just one step away from our other main result about shearlet approximations.
Indeed, let fSN be the N–term approximation of f obtained from the N largest coefficients of its shearlet
expansion, namely

fSN =
∑
µ∈IN

⟨f, ψ̃µ⟩ ψ̃µ,

where IN ⊂ M is the set of indices corresponding to the N largest entries of the sequence {|sµ(f)| =

|⟨f, ψ̃µ⟩|2 : µ ∈M}. The approximation error satisfies the estimate:

∥f − fSN∥22 ≤
∑
m>N

|s(f)|2(m).
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Therefore, from (3.1) we immediately have:
Theorem 3.2. Let f ∈ E2(A) and fSN be the approximation to f defined above. Then

∥f − fSN∥22 ≤ C N−1 (logN)2.

This result extends to the 3D setting the essentially optimal approximation result given by (1.1).

3.1. Arguments and constructions. The general structure of the proof of Theorem 3.1 follows the
overall structure of the corresponding 2-dimensional sparsity result in [14]. However, as it will be clear below,
the core of the proof requires a fundamentally new approach which is significantly different from the 2D case.

As in [14], it will be convenient to introduce the weak–ℓp quasi–norm ∥·∥wℓp to measure the sparsity of
the shearlet coefficients (cf. [7] for an overview of the weak–ℓp spaces). For a sequence (sµ), this is defined
by

∥sµ∥wℓp = sup
N>0

N
1
p |sµ|(N),

wheret |sµ|(N) is the N -th largest entry in the sequence {sµ}. One can show (cf. [33, Sec.5.3]) that this
definition is equivalent to

∥sµ∥wℓp =

(
sup
ϵ>0

#{µ : |sµ| > ϵ} ϵp
) 1

p
.

To analyze the decay properties of the shearlet coefficients {⟨f, ψ̃µ⟩: µ ∈M} at a given scale 2−j , j ≥ 0, we
will smoothly localize the function f near dyadic cubes. Namely, for a scale parameter j ≥ 0 fixed, let Qj

be the collection of dyadic cubes of the form Q = [k1

2j ,
k1+1
2j ]× [k2

2j ,
k2+1
2j ]× [k3

2j ,
k3+1
2j ], with k1, k2, k3 ∈ Z. For

w a nonnegative C∞ function with support in [−1, 1]3, we define a smooth partition of unity∑
Q∈Qj

wQ(x) = 1, x ∈ R3,

where, for each dyadic square Q ∈ Qj , wQ(x) = w(2jx1 − k1, 2
jx2 − k2, 2

jx3 − k3). We will then examine

the shearlet coefficients of the localized function fQ = f wQ, i.e., {⟨fQ, ψ̃µ⟩ : µ ∈ Mj}, where Mj denotes
the collection of the µ ∈ M such that j is fixed (for example, in the case of the indices associated with the
interior shearlets, Mj = {(j, ℓ1, ℓ2, k, d) : −2j ≤ ℓ1, ℓ2 ≤ 2j , k ∈ Z3, d = 1, 2, 3}).

As it will be shown below, for f ∈ E2(A), the shearlet coefficients {⟨fQ, ψ̃µ⟩ : µ ∈Mj} exhibit a different
decay behavior depending on whether the surface intersects the support of wQ or not. Let Qj = Q0

j ∪ Q1
j ,

where the union is disjoint and Q0
j is the collection of those dyadic cubes Q ∈ Qj such that the surface

intersects the support of wQ. Since each Q has sidelength 2 · 2−j , then Q0
j has cardinality |Q0

j | ≤ C0 2
2j ,

where C0 is independent of j. Similarly, since f is compactly supported in [0, 1]3, |Q1
j | ≤ 23j + 6 · 22j .

Using this notation, we can now state the basic results that are needed to prove Theorem 3.1. For
simplicity, in the following, we will use the same letter C to denote different uniform constants.

Theorem 3.3. Let f ∈ E2(A). For Q ∈ Q0
j , with j ≥ 0 fixed, the sequence of shearlet coefficients

{⟨fQ, ψ̃mu⟩ : µ ∈Mj} obeys

∥⟨fQ, ψ̃µ⟩∥wℓ1 ≤ C 2−2j ,

for some constant C independent of Q and j.
Theorem 3.4. Let f ∈ E2(A). For Q ∈ Q1

j , with j ≥ 0 fixed, the sequence of shearlet coefficients

{⟨fQ, ψ̃µ⟩ : µ ∈Mj} obeys

∥⟨fQ, ψ̃µ⟩∥ℓ1 ≤ C 2−4j ,
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for some constant C independent of Q and j.
The proofs of Theorems 3.3 and 3.4 are rather involved. Theorems 3.3, in particular, is the “hardest”

part of the new sparsity result, and is the result whose argument is most different with respect to the 2D case.
Concerning Theorem 3.4, it also shows that 3D shearlets are as effective as traditional isotropic wavelets in
dealing with smooth functions. 2 Before presenting the proofs of Theorems 3.3 and 3.4, we show how these
two theorems are used to prove Theorem 3.1. Indeed, we have the following simple corollary.

Corollary 3.5. Let f ∈ E2(A) and, for j ≥ 0, sj(f) be the sequence sj(f) = {⟨f, ψ̃µ⟩: µ ∈Mj}. Then
there is a constant C independent of j such that:

∥sj(f)∥wℓ1 ≤ C.

Proof. Using Theorems 3.3 and 3.4, by the triangle inequality for weak ℓ1 spaces, we have

∥sj(f)∥wℓ1 ≤
∑

Q∈Qj

∥⟨fQ, ψ̃µ⟩∥wℓ1

≤
∑

Q∈Q0
j

∥⟨fQ, ψ̃µ⟩∥wℓ1 +
∑

Q∈Q1
j

∥⟨fQ, ψ̃µ⟩∥ℓ1

≤ C |Q0
j | 2−2j + C |Q1

j | 2−4j

≤ C(22j 2−2j + 23j 2−4j) ≤ C.

Here we used the facts that |Q0
j | ≤ C 22j , where C is independent of j, and |Q1

j | ≤ 23j + 6 · 22j .

We can now prove Theorem 3.1

Proof of Theorem 3.1. By Corollary 3.5, we have that

R(j, ϵ) = #{µ ∈Mj : |⟨f, ψ̃µ⟩| > ϵ} ≤ C ϵ−1. (3.2)

Next observe that, for an interior shearlet ψ
(d)
j,ℓ,k, given by (2.6), using (2.9) and (2.10), a direct calculation

gives

|⟨f, ψ(d)
j,ℓ,k⟩| =

∣∣∣∣∫
R3

f(x) 22j ψ(d)(B
[ℓ]
(d)A

j
(d)x− k) dx

∣∣∣∣
≤ 22j ∥f∥∞

∫
R3

|ψ(d)
j,ℓ (B

[ℓ]
(d)A

j
(d)x− k)| dx

= 2−2j ∥f∥∞
∫
R3

|ψ(d)
j,ℓ (y)| dy < C ′ 2−2j . (3.3)

A very similar computation holds for the boundary shearlets. As a consequence, there is a scale jϵ such
that |⟨f, ψ̃µ⟩| < ϵ for each j ≥ jϵ. Specifically, it follows from (3.3) that R(j, ϵ) = 0 for j > 2 (log2(ϵ

−1) +
log2(C

′)) > 2 log2(ϵ
−1). Thus, using (3.2), we have that

#{µ ∈M : |⟨f, ψ̃µ⟩| > ϵ} ≤
∑
j≥0

R(j, ϵ) =

2 log2(ϵ
−1)∑

j=0

R(j, ϵ) ≤ C ϵ−1 log2(ϵ
−1),

and this implies (3.1). �

4. Proofs of Main Theorems.

2Furthermore, an argument similar to Theorem 8.2 in [2] can be used to analyze the estimate the Sobolev norm of a smooth
function using shearlet coefficients.
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4.1. Proof of Theorem 3.3. Let us consider a function f ∈ E2(A) which contains a C2 surface of
discontinuity. For j > j0 sufficiently large, the scale 2−j is small enough, so that, over a cube of side 2−j ,
the surface of discontinuity can be parametrized as x1 = E(x2, x3) or x2 = E(x1, x3) or x3 = E(x1, x2). For
simplicity, we will assume that this surface, denoted by Σ, satisfies the equation

x1 = E(x2, x3), −2−j ≤ x2, x3 ≤ 2−j .

Also we assume that the surface contains the origin (0, 0, 0) and the normal direction of the surface at (0, 0, 0)
is (1, 0, 0), which is equivalent to assuming that E(0, 0) = Ex2(0, 0) = Ex3(0, 0) = 0. As we will show in
Section 4.5, there is no loss in generality in analyzing this case only, since the situation where the surface
does not contain the origin or has a different normal direction can be easily converted into the case where
E(0, 0) = Ex2(0, 0) = Ex3(0, 0) = 0. To further simplify the notation, throughout the remainder of the
paper, for a function g(x) with x ∈ R2 and m = (m1,m2) with 0 ≤ |m| = m1 +m2 ≤ 2, we will write ∂m

∂xm g
as gm.

From Taylor’s Theorem we have that E(x2, x3) =
1
2 (E(2,0)(c)x

2
2 + 2E(1,1)(c)x2x3 + E(0,2)(c)x

2
3), where

c = (c2, c3) is some point in [−2−j , 2−j ]2. It follows that

|E(x2, x3)| ≤ 2−2j(∥E(2,0)∥∞ + ∥E(1,1)∥∞ + ∥E(0,2)∥∞).

Thus, the surface is locally nearly flat near the origin. Notice that this only holds for j > j0. The situation
when j ≤ j0 is much simpler and will be handled separately in Section 4.6.

x1=E(x2,x3)
Surface

��

��x

x3

x2

x1

L⃗ϕ′

L⃗⊥
ϕ′

Σ

Fig. 4.1. The surface of discontinuity Σ of equation x1 = E(x2, x3). A line with direction L⃗ϕ′ through the point x
intersects the surface at most in one point.

The key step in the following argument is based on the estimate of the decay of the function f near the
surface of discontinuity. In order to define this localized version of f , let w0 be a nonnegative C∞ window
function with support in [−1, 1]3. Hence, for j ∈ Z, a surface fragment is a function of the form:

f(x) = w0(2
jx) g(x)χ[x1>E(x2,x3)](x), x ∈ [−2−j , 2−j ]3, (4.1)
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where g ∈ C2
0 ((−1, 1)3). After re-scaling, we have

F (x) = f(2−jx) = w0(x) g(2
−jx)χ[x1>E(j)(x2,x3)](x), x ∈ [−1, 1]3, (4.2)

where E(j)(x2, x3) = 2j E(2−jx2, 2
−jx3). In particular, we have that F̂ (ξ) = 23j f̂(2jξ), and, thus, writing

ξ ∈ R3 in spherical coordinates as λΘ, where λ ≥ 0, Θ ∈ S2, we have that∫
λ∈[a,b]

|f̂(λΘ)|2 dλ = 2−5j

∫
λ∈2−j [a,b]

|F̂ (λΘ)|2 dλ. (4.3)

For simplicity of notation, without loss of generality we may assume that (∥E(2,0)∥∞+∥E(1,1)∥∞+∥E(0,2)∥∞) =
1, which yields that |E(x2, x3)| ≤ 2−2j and |Em(x2, x3)| ≤ 2−j for |m| ≤ 2 for all (x2, x3) ∈ [−1, 1].

4.2. Analysis of the Surface Fragment. The main goal of this section is to obtain an L2 estimate for
the elements of the Parseval frame of shearlets against the surface fragment (4.2). For this, it will be sufficient
to consider the interior shearlets (2.6) associated with the pyramidal region P1. In fact, the boundary
shearlets satisfy similar support and regularity conditions, except for the fact that they are piecewise defined,
so that the estimates involving these functions against the surface fragment can be handled in the same way.
It is also clear that the analysis for the shearlets associated with the other pyramidal regions P2 and P3 can
be handled in exactly the same way.

In the following, it will be convenient to express ξ ∈ R3 using spherical coordinates, so that we will write
ξ = (ρ cos θ sinϕ, ρ cos θ sinϕ, ρ cosϕ), where ρ > 0, θ ∈ [0, 2π) and ϕ ∈ [0, π]. Since we are only dealing
with the frequency region contained in P1, we will assume that ϕ ∈ [π4 ,

3π
4 ] and θ ∈ [−π

4 ,
π
4 ]. Also notice

that, since the variables ξ2, ξ3 are symmetric in the construction of the shearlets in P1, we may assume that
|ℓ1| ≤ |ℓ2|.

For ξ = (ξ1, ξ2, ξ3) ∈ P1, j ≥ 0, |ℓ1| ≤ |ℓ2| ≤ 2j , let

Γj,ℓ(ξ) =W
(
2−2j ξ

)
v

(
2j
ξ2
ξ1

− ℓ1

)
v

(
2j
ξ3
ξ1

− ℓ2

)
. (4.4)

Using this notation, the interior shearlets (2.8) associated with the pyramidal region P1 can be written as

ψ̂
(1)
j,ℓ,k(ξ) = 2−2j Γj,ℓ(ξ) e

2πiξA−j
(1)

B
[−ℓ]

(1)
k
.

We have the following useful result:
Theorem 4.1. Let f be the surface fragment given by expression (4.1). Then, for each j ≥ 0, and

|ℓ1|, |ℓ2| ≤ 2j, the following estimate holds:∫
R̂3

|f̂(ξ)|2 |Γj,ℓ(ξ)|2 dξ ≤ C 2−4j(1 + |ℓ2|)−5. (4.5)

The proof of these results is based on the computation of the ray transform of the surface fragment f which
is presented below.

4.3. Ray Transform And Fourier Slice Theorem. While the Radon and ray transforms of bivariate
functions are equivalent, this is not true in the three-dimensional setting [28]. Namely, the 3-dimensional ray
transform maps a function on R3 into the sets of its line integrals; this is different from the Radon transform
which maps a function on R3 into the sets of its integrals over planes in R3. More precisely, if Θ ∈ S2 and
x ∈ R3, then the ray transform of g ∈ S(R3) is defined by

Pg(Θ, x) =

∫
R
g(tΘ+ x) dt.

This is the integral of g over the straight line through x with direction Θ (see Figure 4.2). Notice that
Pg(Θ, x) does not change if x is moved in the direction Θ. Hence, x is normally restricted to Θ⊥ so that Pf
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is a function on the tangent bundle {(Θ, x) : Θ ∈ S2, x ∈ Θ⊥}. It is useful to recall the Fourier Slice Theorem
which establishes that following relationship between the ray transform of g and its Fourier transform:

F2[Pg](Θ, η) =

∫
Θ⊥

Pg(Θ, x) e−2πiηx dx = ĝ(η), η ∈ Θ⊥,

where F2 denotes the Fourier transform over the second variable. We refer the reader to [28] for this and
additional properties of the ray transform.

x

Θ

Θ⊥

x1

x3

x2

Fig. 4.2. The ray transform is defined by integration over the lines through the point x with direction Θ.

In order to deduce an estimate for the integral of the surface fragment given by the expression (4.3),
we will analyze the ray transform of the surface fragment F , given by (4.2). Let ϕ′ ∈ [−π

4 ,
π
4 ]. The ray

transform of F in the direction L⃗ϕ′ = (sinϕ′, 0, cosϕ′) is given by

PF (ϕ′, x) =

∫
R
F (tLϕ′ + x) dt (4.6)

where x ∈ R3. This is the integral of F over the straight line through x with direction Lϕ′ . Notice that

PF (ϕ′, x) does not change if x moves along the direction L⃗ϕ′ . Hence, x is effectively restricted to L⃗⊥
ϕ′ so

that PF is a function on the tangent bundle {(L⃗ϕ′ , x) : L⃗ϕ′ ∈ S2, x ∈ L⃗⊥
ϕ′}. By introducing the vectors

L⃗1 = (0,−1, 0) and L⃗2 = (cosϕ′, 0,− sinϕ′), we can express x ∈ L⊥
ϕ′ as

{x ∈ L⃗⊥
ϕ′} = {sL⃗1 + wL⃗2 : s, w ∈ R}. (4.7)

It follows that

PF (ϕ′, s, w) =

∫
R
F

ρϕ′

 t
s
w

 dt, (4.8)
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where ρϕ′ =

(
sinϕ′ 0 cosϕ′

0 −1 0
cosϕ′ 0 − sinϕ′

)
.

By the Fourier Slice Theorem, we have that

F2[PF ](ϕ
′, η) =

∫
L⃗⊥

ϕ′

PF (ϕ′, s, w) e−2πiη·(s,w) ds dw = F̂ (η, ϕ′), η ∈ L⃗⊥
ϕ′ .

Hence, by the properties of the Fourier transform (Plancherel and differentiation theorems), we obtain the
following identity:

∥(PF )ss∥2 + 2∥(PF )sw∥2 + ∥(PF )ww∥2 = (2π)4
∫
R2

|η|4 |F̂ (η, ϕ′)|2 dη, (4.9)

where η = η1 L⃗1 + η2 L⃗2.

4.3.1. Ray Transform of the Surface Fragment. For brevity, let us introduce the following nota-
tion:

Fϕ′
(t, s, w) = F

ρϕ′

 t
s
w

 , gϕ
′
(t, s, w) = g

2−jρϕ′

 t
s
w

 , wϕ′
(t, s, w) = w

ρϕ′

 t
s
w

 .

Using this notation, we will rewrite the ray transform of the surface fragment, given by expression (4.8), as

PF (ϕ′, s, w) =

∫
R
Fϕ′

(t, s, w) dt. (4.10)

As described above, this is an integral over the lines Λs,w,ϕ′ = {y ∈ R3 : y · L⃗1 = s & y · L⃗2 = w}, where
L⃗1 and L⃗2, given by (4.7), depend on ϕ′. Depending on the values of (s, w, ϕ′), the lines Λs,w,ϕ′ may or
may not intersect the surface Σ = {(E(j)(u, v), u, v) : |u|, |v| ≤ 1}. In the following, we will analyze the two
situations separately.

Case 1: No Intersection.
When the line Λs,w,ϕ′ does not intersect the surface Σ, the ray transform of F takes the form:

PF (ϕ′, s, w) =

∫
R
gϕ

′
(t, s, w)wϕ′

(t, s, w) dt. (4.11)

In this case we have the following result.
Proposition 4.2. The function PF is twice differentiable as a function of s and w and admits the

decomposition

(PF (ϕ′, s, w))ss (ϕ
′, s, w)+(PF (ϕ′, s, w))sw (ϕ′, s, w)+(PF (ϕ′, s, w))ww (ϕ′, s, w) = F 0(ϕ′, s, w)+F 1(ϕ′, s, w),

where

∥F 0(ϕ′, s, w)∥2 ≤ C 2−2j ,

∥
(
F 1(ϕ′, s, w)

)
s
∥2 + ∥

(
F 1(ϕ′, s, w)

)
w
∥2 ≤ C.

Proof. With an abuse of notation, in the following we will write g for gϕ
′
and w0 for wϕ

0 . By direct
computation we have:

(PF )ss(ϕ, s, w) =

∫
R

∂2

∂s2
(g(t, s, w)w(t, s, w)) dt = F 0(ϕ′, s, w) + F 1(ϕ′, s, w),
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where F 0(ϕ′, s, w) =
∫
R(gss w0 + 2gs w0s) dt and F

1(ϕ′, s, w) =
∫
R g w0ss dt.

Recalling that g(t, s, w) = gϕ
′
(t, s, w) = g

(
2−jρϕ′

(
t
s
w

))
, a direct computation yields that |gs| ≤ C 2−j

and |gss| ≤ C 2−2j . It follows that |gsw0s| ≤ C 2−j and |gssw0| ≤ C 2−2j . Since w0 (and hence PF ) has
compact support, it follows that

∫
R |gss w0|dt ≤ C 2−2j , and

∫
R |gs w0s|dt ≤ C 2−j . This implies that

∥F 0(ϕ′, s, w)∥2 ≤ C 2−2j .

For F 1(ϕ′, s, w), we have

∂

∂s
(F 1(ϕ′, s, w)) =

∫
R

∂

∂s
(g w0ss) dt =

∫
R
(gs wss + g wsss) dt.

Using the same argument as the one used for F 0(ϕ′, s, w), it follows that ∥
(
F 1(ϕ′, s, w)

)
s
∥2 ≤ C. Simi-

larly it follows that ∥
(
F 1(ϕ′, s, w)

)
w
∥2 ≤ C. The proof is completed by repeating the same argument for

(PF )sw(ϕ, s, w) and (PF )ww(ϕ, s, w).

From Proposition 4.2, using the Fourier Slice Theorem for the ray transform and the Plancherel theorem,
it follows that ∫ ∞

0

∫ 2π

0

|F̂ (r, θ′, ϕ′)|2 r5 dθ′ dr ≤ C 2−2j

and, hence, that ∫ 2j+1

2j−2

∫ 2π

0

|F̂ (r, θ′, ϕ′)|2 dθ′ dr ≤ C 2−7j .

Since F (x) = f(2−jx), we have F̂ (ξ) = 23j f̂(2jξ). Thus, the above inequality implies the following one:∫ 22j+2

22j−4

∫ 2π

0

|f̂(r, θ′, ϕ′)|2 dθ′ dr ≤ C 2−12j . (4.12)

This completes the analysis in the case where there is no intersection.

Case 2: Intersection.
In order to find the intersection of the line Λs,w,ϕ′ and the surface Σ, one has to solve the equation

ρ′ϕ

 t
s
w

 =

E(j)(u)
u
v

 ,

which leads to the system:

t = E(j)(u, v) sinϕ′ + v cosϕ′, (4.13)

s = −u, (4.14)

w = E(j)(u, v) cosϕ′ − v sinϕ′. (4.15)

To compute the solution of this system, we will use the Implicit Function Theorem to express t as a function
of s and w. In order to do that, we first check that the conditions of the Implicit Function Theorem are
satisfied. A direct computation gives:

su = −1,sv = 0,

wu = E(j)
u (u, v) cosϕ′,wv = E(j)

v (u, v) cosϕ′ − sinϕ′,
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and

∆(ϕ′) = det

(
su sv
wu wv

)
= sinϕ′ − E(j)

v cosϕ′ (4.16)

The following proposition deals with the case when | sinϕ′| ≤ 21−j .
Proposition 4.3. Assume that | sinϕ′| ≤ 21−j. Then, for each fixed j and ϕ′, we have that∫ 22j+2

22j−4

∫ 2π

0

|f̂(r, θ′, ϕ′)|2 dθ′ dr ≤ C 2−7j ,

where where C is independent of j and ϕ′.

Proof. Since |E(j)
v | ≤ 2−j (from the assumption that ∥E′′∥L∞ = 1), it follows that |∆(ϕ′)| ≤ C2−j

with C independent of j and ϕ′. Let A be the region defined by {(s(u, v), w(u, v)) : (u, v) ∈ [−1, 1]2}. Since∫
A
ds dw =

∫ 1

−1

∫ 1

−1
|∆(ϕ′)| du dv ≤ C| sinϕ′| and F is bounded (and hence PF is bounded), it follows from

a direct calculation that ∥(PF )∥2L2 ≤ C
∫ 1

−1

∫ 1

−1
|∆(ϕ′)| du dv ≤ C2−j . Using the Fourier Slice Theorem for

the ray transform and the Plancherel theorem, we have that∫ ∞

0

∫ 2π

0

|F̂ (r, θ′, ϕ′)|2 r dθ′ dr ≤ C 2−j

and, hence, that ∫ 2j+1

2j−2

∫ 2π

0

|F̂ (r, θ′, ϕ′)|2 dθ′ dr ≤ C 2−2j .

Since F (x) = f(2−jx), we have F̂ (ξ) = 23j f̂(2jξ). Thus the above inequality gives∫ 22j+2

22j−4

∫ 2π

0

|f̂(r, θ′, ϕ′)|2 dθ′ dr ≤ C 2−7j .

This finishes the proof of Proposition 4.3.

For the case when | sinϕ′| ≥ 21−j , we have that 2−j ≤ 1
2 | sinϕ

′| ≤ |∆(ϕ′)| ≤ 2| sinϕ′|. Thus, we can
apply the Inverse Function Theorem and use equations (4.14) and (4.15) to derive the functions u = u(s, w)
and v = v(s, w). Inserting these functions into (4.13), we obtain the intersection point in terms of t as

t0(s, w, ϕ
′) = E(j)(u(s, w), v(s, w)) sinϕ′ + v(s, w) cosϕ′. (4.17)

This shows that there is at most one point of intersection for each fixed (s, w) and ϕ′.

We can write η ∈ L⃗⊥
ϕ′ as η = (η2 cosϕ

′,−η1,−η2 sinϕ′) = (r sin θ′ cosϕ′,−r cos θ′,−r sin θ′ sinϕ′), where
η1 = r cos θ′, η2 = r sin θ′. Then (4.9) can be rewritten as

∥(PF )ss∥2 + 2∥(PF )sw∥2 + ∥(PF )ww∥2 =

∫ ∞

0

∫ 2π

0

r5|F̂ (r, θ′, ϕ′)|2 dθ′ dr. (4.18)

Since the same η can also be expressed in spherical coordinates as η = (ρ cos θ sinϕ, ρ sin θ sinϕ, cosϕ), it
follows that we must have ρ = r and

sin θ′ cosϕ′ = cos θ sinϕ,

cos θ′ = sin θ sinϕ,

− sin θ′ sinϕ′ = cosϕ.
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From the first and the third identities, we have tanϕ′ = − cotϕ sec θ, which implies that ϕ′ is equivalent to
ϕ − π

2 , that is, there is are constants 0 < C1(θ) ≤ C2(θ) < ∞ such that C1(θ)ϕ
′ ≤ ϕ − π

2 ≤ C2(θ)ϕ
′. Also

since |ϕ− π
2 | ≤

π
4 and |θ| ≤ π

4 , we see that |∂ϕ
′

∂ϕ | ≤ C and |∂ϕ
′

∂θ | ≤ C and hence

|ϕ′1 − ϕ′2| ≤ C (|ϕ1 − ϕ2|+ |θ1 − θ2|). (4.19)

Also, we have

us =
E

(j)
v (u, v) cosϕ− sinϕ

∆(ϕ′)
,uw = 0, (4.20)

vs = −E
(j)
u (u, v) cosϕ

∆(ϕ′)
,vw = − 1

∆(ϕ′)
. (4.21)

From (4.20) and (4.21), it is easy to verify the following proposition.
Proposition 4.4.

|us| ≤ C
1

| sinϕ′|
, |us2 | ≤ C

2−j

| sinϕ′|3
, |usw| ≤ C

2−j

| sinϕ′|3
, |uw2 | ≤ C

2−j

| sinϕ′|3

|vs| ≤ C
1

| sinϕ′|
, |vs2 | ≤ C

2−j

| sinϕ′|3
, |vsw| ≤ C

2−j

| sinϕ′|3
, |vw2 | ≤ C

2−j

| sinϕ′|3
,

where the constant C is independent of (u, v) ∈ [−1, 1]2, ϕ′ ∈ [−π
4 ,

π
4 ] with | sinϕ′| ≥ 21−j.

Using the expression (4.17) that was found for the intersection point, from (4.6) and (4.8) we obtain the
following formulation of the ray transform PF (ϕ′, s, w):

PF (ϕ′, s, w) =

∫ t0(s,w,ϕ′)

−∞
F

ρϕ′

 t
s
w

 dt. (4.22)

From Proposition 4.4, one can use essentially the same argument as the 2-dimensional case (see Lemma 6.2
in [2]) to prove the following proposition. For completeness, a sketch of its proof is provided below.

Proposition 4.5. The ray transform of F is twice differentiable as a function of s and w and admits
the decomposition

(PF (ϕ′, s, w))ss (ϕ
′, s, w)+(PF (ϕ′, s, w))sw (ϕ′, s, w)+(PF (ϕ′, s, w))ww (ϕ′, s, w) = F 0(ϕ′, s, w)+F 1(ϕ′, s, w),

where

∥F 0(ϕ′, s, w)∥2 ≤ C 2−2j | sinϕ′|−5,

∥
(
F 1(ϕ′, s, w)

)
s
∥2 + ∥

(
F 1(ϕ′, s, w)

)
w
∥2 ≤ C| sinϕ′|−5.

Proof (Sketch). We will adopt the same notations as in Proposition 4.2.
From (4.22), we have that

PF (ϕ′, s, w) =

∫ t0(s,w,ϕ′)

−∞
F

ρϕ′

 t
s
w

 dt =

∫ t0(s,w,ϕ′)

−∞
g(t, s, w)w0(t, s, w) dt.

This implies that

(PF )s(ϕ
′, s, w) = g(t0, s, w)w0(t0, s, w) t0s +

∫ t0(s,w,ϕ′)

−∞
(gs(t, s, w)w0(t, s, w) + g(t, s, w)w0s(t, s, w)) dt

(PF )ss(ϕ
′, s, w) = T1 + T2 + T3 + T4,
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where T1 = gt w0 (t0s)
2+gs w0 t0s+g w0 t0ss, T2 = gw0t (t0s)

2+g w0s t0s, T3 =
∫ t0(s,w,ϕ′)

−∞ (gss w0+2gs w0s) dt,

T4 =
∫ t0(s,w,ϕ′)

−∞ g w0ss dt.

From t0(s, w, ϕ
′) = E(j) (u(s, w), v(s, w)) sinϕ′ + v(s, w) cosϕ′, using Proposition 4.4, it is easy to ver-

ify that |t0s| ≤ C 1
| sinϕ′| , |t0ss| ≤ C 2−j

| sinϕ′|3 . It follows that |T1| ≤ C 2−j

| sinϕ′|3 and, hence, ∥T1∥2 ≤
C 2−2j

| sinϕ′|6
∫
A
dsdw ≤ 2−2j

| sinϕ′|5 since
∫
A
dsdw ≤ C| sinϕ′|. Using the assumption that | sinϕ′| ≥ 22−j , one

can verify that |(T2)s| ≤ C 1
| sinϕ′|3 . Similarly one can verify that |T3| ≤ C2−j , and (T4)s| ≤ C. Thus, it

follows that ∥T3∥2 ≤ C 2−2j

| sinϕ′|5 , and ∥(T4)s∥2 ≤ C | sinϕ′|5 since | sinϕ′| ≤ 1.

Now the argument is completed by letting F 0(ϕ′, s, w) = T1 + T3 and F 1(ϕ′, s, w) = T2 + T4. �
As a direct corollary of Proposition 4.5, it follows that∫ ∞

0

∫ 2π

0

r5|F̂ (r, θ′, ϕ′)|2 dθ′ dr ≤ C 2−2j | sinϕ′|−5,

which implies that ∫ 2j+1

2j−2

∫ 2π

0

|F̂ (r, θ′, ϕ′)|2 dθ′ dr ≤ C 2−7j | sinϕ′|−5. (4.23)

Using again the identity F̂ (ξ) = 23jf(2jξ), from (4.23) it follows that∫ 22j+2

22j−4

∫ 2π

0

|f̂(r, θ′, ϕ′)|2 dθ′ dr ≤ C 2−12j | sinϕ′|−5. (4.24)

We can now prove Theorem 4.1

Proof of Theorem 4.1.
We only need to consider ξ = (ξ1, ξ2, ξ3) inside the support of Γj,ℓ By the assumptions on the support

of W and v if follows that

suppW (2−2jξ) ⊂
{
ξ1 ∈ [−22j−1,−22j−4] ∪ [22j−4, 22j−1]

}
,

supp v(2j ξ2
ξ1

− ℓ) ⊂
{
(ξ1, ξ2, ξ3) : |2j

ξ2
ξ1

− ℓ1| ≤ 1
}
,

supp v(2j ξ3
ξ1

− ℓ) ⊂
{
(ξ1, ξ2, ξ3) : |2j

ξ3
ξ1

− ℓ2| ≤ 1
}
.

By representing (ξ1, ξ2, ξ3) using spherical coordinates as (λ cos θ sinϕ, λ sin θ sinϕ, λ cosϕ), we can write the
last two expressions as

supp v(2j ξ2
ξ1

− ℓ) ⊂
{
(λ, θ, ϕ) : 2−j(ℓ1 − 1) ≤ tan θ ≤ 2−j(ℓ1 + 1)

}
,

supp v(2j ξ3
ξ1

− ℓ) ⊂
{
(λ, θ, ϕ) : 2−j(ℓ2 − 1) ≤ cotϕ

cos θ
≤ 2−j(ℓ2 + 1)

}
.

Notice that |θ| ≤ π
4 , so that 1 ≤ | cos θ| ≤

√
2
2 .

Since λ2 = ξ21 + ξ22 + ξ23 = ξ21 (1 + (tan θ)2 + (cotϕ)2

(cos θ)2 ) and |ℓ1| ≤ |ℓ2| ≤ 2j , it is easy to verify that

22j−4 ≤ |λ| ≤ 22j+2.

Thus, using the fact that tanϕ ≥ 2−j cos θ (ℓ2 − 1), it follows that the support of the function Γj,ℓ, given by
(4.4), the set:

Uj,ℓ = {(λ, θ, ϕ) : 22j−4 ≤ |λ| ≤ 22j+2, tan−1(2−j(ℓ1 − 1)) ≤ θ ≤ tan−1(2−j(ℓ1 + 1)),

cot−1(2−j(ℓ2 − 1)) ≤ ϕ ≤ cot−1(2−j(ℓ2 + 1))}. (4.25)
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When (λ, θ, ϕ) is contained in the set Uj,ℓ, the variables θ and ϕ are contained in intervals of length
C 2−j , which, in the following, will be denoted by Iθ and Iϕ, respectively. Hence, from (4.19), it follows that
ϕ′ is contained in an interval Iϕ′ of length C 2−j . Furthermore, if (λ, θ, ϕ) ∈ Uj,ℓ and | sinϕ′| ≥ 21−j , then
2j | sinϕ′| is equivalent to |ℓ2|, so that ℓ2 ̸= 0.

Let ξ1 = r sin θ′ cosϕ′, ξ2 = −r cos θ′, ξ3 = −r sin θ′ sinϕ′. A direct computation shows that the
Jacobian of (ξ1, ξ2, ξ3) with respect to (r, θ′, ϕ′) is −r2 sin2 θ′. It follows that∫

R̂3

|f̂(ξ)|2 |Γj,ℓ(ξ)|2 dξ ≤
∫
Uj,ℓ

|f̂(ξ)|2 dξ

≤
∫
Iϕ′

∫ 22j+4

22j−2

∫ 2π

0

|f̂(r, θ′, ϕ′)|2r2 sin2 θ′ dr dϕ′

≤ C 24j
∫
Iϕ′

∫ 22j+4

22j−2

∫ 2π

0

|f̂(r, θ′, ϕ′)ξ)|2 dθ′ dr dϕ′ (4.26)

We can now use the estimates from Propositions 4.2, 4.3 and 4.5 to complete the proof. Namely, in the
non-intersection case, inequality (4.12) gives that∫

R̂3

|f̂(ξ)|2 |Γj,ℓ(ξ)|2 dξ ≤ C 2−9j . (4.27)

For the intersection case, with the assumption that | sinϕ′| ≤ 21−j , Proposition 4.3 gives that∫
R̂3

|f̂(ξ)|2 |Γj,ℓ(ξ)|2 dξ ≤ C 2−4j

Finally, for the intersection case, with the assumption that | sinϕ′| ≥ 21−j , inequality (4.24) yields∫
R̂3

|f̂(ξ)|2 |Γj,ℓ(ξ)|2 dξ ≤ C 2−8j

∫
Iϕ′

| sinϕ′|−5 dϕ′

≤ C 2−4j |ℓ2|−5.

Since |ℓ2| ≤ 2j , the proof of Theorem 4.1 is completed by combining the three inequalities given above. �
Before proving Theorem 3.3, we need some additional estimates involving the derivatives of the surface

fragment.

Let m = (m1,m2,m3) and, let us adopt the usual multi-index notation where |m| = m1 + m2 + m3,

xm = xm1
1 xm2

2 xm3
3 and ∂m

∂ξm f̂ = ∂m1

∂ξ
m1
1

∂m2

∂ξ
m2
2

∂m3

∂ξ
m3
3

f̂(ξ). For a surface fragment f , we may rewrite xmf(x) as

xmf(x) = 2−j|m|fm(x),

where fm(x) = g(x)(2jx)m w(2jx)χ[x1≥E(x2,x3)](x) is another surface fragment. Since the Fourier transform

of xmf(x) is im ∂m

∂ξm f̂ , the inequalities (4.5) and (4.27) imply the following estimates:∫
R̂3

| ∂
m

∂ξm
f̂(ξ)|2 |Γj,ℓ(ξ)|2 dξ ≤ C 2−j|m| 2−4j(1 + |ℓ2|)−5, if there is an intersection,∫

R̂3

| ∂
m

∂ξm
f̂(ξ)|2 |Γj,ℓ(ξ)|2 dξ ≤ C 2−j|m| 2−9j , if there is no intersection.

Notice that, for the non-intersection case, the estimate 2−j|m|2−9j is the best possible one. However, for the
intersection case, the estimate 2−j|m|2−4j(1 + |ℓ2|)−5 can be improved if m1 > 0. The reason is that, on the
surface, |x1| = |Ej(x2, x3)| ≤ C 2−j . Indeed, using the argument of Proposition 4.5 for the surface fragment
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Fm(x) (recall that Fm(x) = fm(2−jx)), if the derivatives don’t involve x1, then one obtains the additional
factor 2−jm1 . On the other hand, when one takes one derivative with respect to xm1

1 , this only produces
a factor 2−j(m1−1). However, in this last case, one can compute one additional derivative with respect to
the the remaining function in the expression of Fm(x) so that the missing factor 2−j can be compensated,
thanks to Plancherel theorem and the observation that, in the Fourier domain, the domain is restricted to
the region where 2j−1 ≤ |ξ| ≤ 2j+2. Indeed this is the key idea in the proof of Lemma 6.2 in [2] (and hence
in the proof of Proposition 4.5).

Using these observations, we obtain the following refinement of Proposition 4.5 valid for Fm(x), in the
case where m1 = 2. The behavior for other values of m1 is similar.

Proposition 4.6. The ray transform of Fm is twice differentiable as a function of s and w and admits
the decomposition

(PF (ϕ′, s, w))ss (ϕ
′, s, w) + (PF (ϕ′, s, w))sw (ϕ′, s, w) + (PF (ϕ′, s, w))ww (ϕ′, s, w)

= F 0(ϕ′, s, w) + F 1(ϕ′, s, w) + F 2(ϕ′, s, w) + F 3(ϕ′, s, w),

where, for q = (q1, q2) and |q| = q1 + q2, we have that

∥F 0(ϕ′, s, w)∥2 ≤ C 2−2jm12−2j | sinϕ′|−5,

∥
(
F 1(ϕ′, s, w)

)
s
∥2 + ∥

(
F 1(ϕ′, s, w)

)
w
∥2 ≤ C2−2jm1 | sinϕ′|−5,∑

|q|=2

∥
(
F 2(ϕ′, s, w)

)
sq1wq2

∥2 ≤ C2−2j(m1−1)| sinϕ′|−5,

∑
|q|=3

∥
(
F 3(ϕ′, s, w)

)
sq1wq2

∥2 ≤ C2−2j(m1−2)| sinϕ′|−5.

Using the assumptions on the supports of W and v and the assumption that |ℓ1| ≤ |ℓ2|, one can easily
verify the following inequality (see the proof of Lemma 2.5 in [14] for a similar argument):

| ∂
m

∂ξm
Γj,ℓ(ξ)| ≤ Cm 2−m1j2−|m|j(1 + |ℓ2|)m1 .

Since the sets Uj,ℓ1,ℓ2 and Uj,ℓ1′ ,ℓ2 are essentially disjoint for ℓ1 ̸= ℓ1′ (that is, each point lies in a finite
number of sets Uj,ℓ1,ℓ2), using the last inequality we obtain that

|ℓ2|∑
ℓ1=−|ℓ2|

| ∂
m

∂ξm
Γj,ℓ(ξ)| ≤ Cm 2−m1j2−|m|j(1 + |ℓ2|)m1 . (4.28)

Notice that, even for |ℓ2| = 2j , the above estimate is uniform for all ξ in the interior of P1. Exactly the same
type of estimate holds for the corresponding functions defined in the other pyramidal regions. Due to the
regularity of the shearlet construction, this estimate also holds for the boundary shearlet elements, which
are piecewise defined.

Finally, letting mf = (mf1,mf2,mf3), mγ = (mγ1,mγ2,mγ3), using Proposition 4.6 and inequal-
ity (4.28) we obtain:

|ℓ2|∑
ℓ1=−|ℓ2|

∫
R̂3

| ∂
mf

∂ξmf
f̂(ξ)|2 | ∂

mγ

∂ξmγ
Γj,ℓ(ξ)|2 dξ

≤ C 2−2j|mf |
(
2−2jmf12−4j (1 + |ℓ2|)−5 + 2−9j

)
2−mγ1j2−|mγ |j (1 + |ℓ2|)mγ1 . (4.29)

Let L be the differential operator defined by:

L =

(
I −

(
22j

2π (1 + |ℓ2|)

)2
∂2

∂ξ21

) (
I −

(
2j

2π

)2
∂2

∂ξ22

) (
I −

(
2j

2π

)2
∂2

∂ξ23

)
. (4.30)
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From inequality (4.29), a routine calculation gives the following theorem which extends the result in Theo-
rem 4.1 (again using the fact that |ℓ2| ≤ 2j).

Theorem 4.7. Let f be the surface fragment given by expression (4.1) and Γj,ℓ be given by (4.4). Then,
for j ≥ 0 and −2j ≤ ℓ2 ≤ 2j, the following estimate holds:

|ℓ2|∑
ℓ1=−|ℓ2|

∫
R̂3

∣∣∣L(f̂(ξ) Γj,ℓ(ξ)
)∣∣∣2 dξ ≤ C 2−4j (1 + |ℓ2|)−5.

It is clear that the same type of result will hold for functions defined on the other pyramidal regions. In
particular, for

Γ
(2)
j,ℓ (ξ) =W

(
2−2j ξ

)
v

(
2j
ξ1
ξ2

− ℓ1

)
v

(
2j
ξ3
ξ2

− ℓ2

)
,

which is supported in the region P2, one obtains the following analogue of the estimate from Theorem 4.7:

|ℓ2|∑
ℓ1=−|ℓ2|

∫
R̂3

∣∣∣L2

(
f̂(ξ) Γ

(2)
j,ℓ (ξ)

)∣∣∣2 dξ ≤ C 2−4j (1 + |ℓ2|)−5,

where

L2 =

(
I −

(
22j

2π (1 + |ℓ2|)

)2
∂2

∂ξ22

) (
1−

(
2j

2π

)2
∂2

∂ξ21

) (
1−

(
2j

2π

)2
∂2

∂ξ23

)
.

A similar result holds for the region P3.
In the following section, the estimates above will be used to analyze the shearlet coefficients ⟨f, ψ̃µ⟩. In

particular, the result of Theorem 4.7 relates directly to the analysis of the interior shearlets in P1. As shown
above, the interior shearlets associated with the other pyramidal regions can be handled in a very similar
way. For the boundary shearlets, the situation is as follows. Consider, for example, the boundary shearlets
corresponding to the boundary of P1 and P2. In this case, we define (for both regions where the shearlets
are piecewise defined) the differential operator

L1,2 =

(
I −

(
2j

2π

)2
∂2

∂ξ21

) (
I −

(
2j

2π

)2
∂2

∂ξ22

) (
I −

(
2j

2π

)2
∂2

∂ξ23

)
.

Since ℓ2 = ±2j for the boundary shearlets, it follows that the operator L1,2 is equivalent to L1 on P1 and
to L2 on P2, so that the analysis of the boundary shearlets is equivalent to the interiors ones. Thus, in the
following section, it will be sufficient to consider the interior shearlets associated with P1 only.

4.4. Proof of Theorem 3.3. Using the preparatory work from the previous sections, we are now ready
to prove Theorem 3.3.

Fix j ≥ 0 and, for simplicity of notation, let f = fQ. As discussed above, it will be sufficient to consider
the system interior shearlets in the pyramidal region P1 only.

For µ ∈ Mj , the shearlet coefficients of f associated with the interior shearlets in P1 can be expressed
as

⟨f, ψ̃µ⟩ = ⟨f, ψ(1)
j,ℓ,k⟩ = | detA(1)|−j/2

∫
R̂2

f̂(ξ) Γj,ℓ(ξ) e
2πiξA−j

(1)
B

[−ℓ]

(1)
k
dξ,

where Γj,ℓ is given by (4.4). By the equivalent definition of weak ℓ1 norm, the theorem is proved provided
we show that

#{µ ∈Mj :
∣∣∣⟨f, ψ̃µ⟩

∣∣∣ > ϵ} ≤ C 2−2j ϵ−1. (4.31)
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Observe that

ξA−j
(1)B

[−ℓ]
(1) k =

(
ξ1 ξ2 ξ3

)2−2j 0 0
0 2−j 0
0 0 2−j

1 −ℓ1 −ℓ2
0 1 0
0 1 1

k1k2
k3


= (k1 − k2ℓ1 − k3ℓ2) 2

−2jξ1 + k22
−jξ2 + k32

−jξ3. (4.32)

Let L be the second order differential operator defined by (4.30). It is easy to check that

L
(
e
2πiξA−j

(1)
B

[−ℓ]

(1)
k
)
=


(
1 + ( |ℓ2|

(1+|ℓ2|) )
2( k1

|ℓ2| −
k2ℓ1
|ℓ2| ± k3)

2
)
(1 + k22)(1 + k23) e

2πiξA−j
(1)

B
[−ℓ]

(1)
k

if ℓ2 ̸= 0

(1 + k21)(1 + k22)(1 + k23) e
2πiξA−j

(1)
B

[−ℓ]

(1)
k

if ℓ2 = 0,

(4.33)
where we have ±k3 depending on whether ℓ2 is positive or negative. Using integration by parts, we have:

⟨f, ψ̃µ⟩ = | detA(1)|−j/2

∫
R̂3

L
(
f̂(ξ) Γj,ℓ(ξ)

)
L−1

(
e
2πiξA−j

(1)
B

[−ℓ]

(1)
k
)
dξ.

To analyze this quantity, we will consider separately the case ℓ ̸= 0 and ℓ = 0.
Case 1: ℓ2 ̸= 0. In this case, using (4.33), we have that

L−1
(
e
2πiξA−j

(1)
B

[−ℓ]

(1)
k
)
= G(k, ℓ)−1 e

2πiξA−j
(1)

B
[−ℓ]

(1)
k
, (4.34)

where G(k, ℓ) =
(
1 + ( |ℓ2|

(1+|ℓ2|) )
2( k1

|ℓ2| −
k2ℓ1
|ℓ2| ± k3)

2
)
(1 + k22)(1 + k23). Thus, we have that

⟨f, ψ̃µ⟩ = | detA(1)|−j/2G(k, ℓ)−1

∫
R̂3

L
(
f̂(ξ) Γj,ℓ(ξ)

)
e
2πiξA−j

(1)
B

[−ℓ]

(1)
k
dξ,

or, equivalently, that

G(k, ℓ) ⟨f, ψ̃µ⟩ = | detA(1)|−j/2

∫
R̂3

L
(
f̂(ξ) Γj,ℓ(ξ)

)
e
2πiξA−j

(1)
B

[−ℓ]

(1)
k
dξ.

Let K = (K1,K2,K3) ∈ Z3 and define RK = {k = (k1, k2, k3) ∈ Z3 : k1

|ℓ2| ∈ [K1,K1 + 1], −k2ℓ1
|ℓ2| ∈

[K2,K2+1], k3 = K3}. Since, for j, ℓ fixed, the set {| detA(1)|−j/2 e
2πiξA−j

(1)
B

[−ℓ]

(1)
k
: k ∈ Z3} is an orthonormal

basis for the L2 functions on [−1
2 ,

1
2 ]A

j
(1)B

[ℓ]
(1), and the function Γj,ℓ(ξ) is supported on this set, then

∑
k∈RK

G(k, ℓ)2 |⟨f, ψ̃µ⟩|2 ≤
∫
R̂3

∣∣∣L(f̂(ξ) Γj,ℓ(ξ)
)∣∣∣2 dξ.

This implies that

|ℓ2|∑
ℓ1=−|ℓ2|

∑
k∈RK

G(k, ℓ)2 |⟨f, ψ̃µ⟩|2 ≤
|ℓ2|∑

ℓ1=−|ℓ2|

∫
R̂3

∣∣∣L(f̂(ξ) Γj,ℓ(ξ)
)∣∣∣2 dξ.

From the definition of RK , it follows that

|ℓ2|∑
ℓ1=−|ℓ2|

∑
k∈RK

|⟨f, ψ̃µ⟩|2 ≤ C
(
1 + (K1 −K2 ±K3)

2
)−2

(1+K2
2 )

−2(1+K2
3 )

−2

|ℓ2|∑
ℓ1=−|ℓ2|

∫
R̂3

∣∣∣L(f̂(ξ) Γj,ℓ(ξ)
)∣∣∣2 dξ.
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Thus, by Theorem 4.7, we have that

|ℓ2|∑
ℓ1=−|ℓ2|

∑
k∈RK

|⟨f, ψ̃µ⟩|2 ≤ C L−2
K 2−4j(1 + |ℓ2|)−5, (4.35)

where LK =
(
1 + (K1 −K2 ±K3)

2
)
(1 +K2

2 )(1 +K2
3 ).

For j, ℓ fixed, let Nj,ℓ,K(ϵ) = #{k ∈ RK : |⟨f, ψ(1)
j,ℓ,k⟩| > ϵ}. Since |ℓ1| ≤ |ℓ2|, it is clear that Nj,ℓ,K(ϵ) ≤

C (1+ |ℓ2|)2 (C is independent of ℓ1) and, hence,
∑|ℓ2|

ℓ1=−|ℓ2|Nj,ℓ,K(ϵ) ≤ C (1+ |ℓ2|)3. Using the new notation,

from (4.35) we have that

|ℓ2|∑
ℓ1=−|ℓ2|

Nj,ℓ,K(ϵ) ≤ C L−2
K 2−4j ϵ−2(1 + |ℓ2|)−5.

This implies that

|ℓ2|∑
ℓ1=−|ℓ2|

Nj,ℓ,K(ϵ) ≤ C min
(
(|ℓ2|+ 1)3, L−2

K 2−4j ϵ−2(1 + |ℓ2|)−5
)
. (4.36)

Using (4.36) we will now show that:

2j∑
ℓ2=−2j

|ℓ2|∑
ℓ1=−|ℓ2|

Nj,ℓ,K(ϵ) ≤ C L−1
K 2−2j ϵ−1. (4.37)

In fact, let ℓ∗2 be defined by (ℓ∗2 + 1)3 = L−2
K 2−4j ϵ−2(1 + ℓ∗2)

−5. That is, (ℓ∗2 + 1)4 = L−1
K 2−2j ϵ−1. Then

2j∑
ℓ2=−2j

|ℓ2|∑
ℓ1=−|ℓ2|

Nj,ℓ,K(ϵ) ≤
∑

|ℓ2|≤(ℓ∗2+1)

|ℓ2|∑
ℓ1=−|ℓ2|

Nj,ℓ,K(ϵ) +
∑

|ℓ2|>(ℓ∗2+1)

|ℓ2|∑
ℓ1=−|ℓ2|

Nj,ℓ,K(ϵ)

≤
∑

|ℓ2|≤(ℓ∗2+1)

(|ℓ2|+ 1)3 +
∑

|ℓ2|>(ℓ∗2+1)

L−2
K 2−4j ϵ−2(1 + |ℓ2|)−5

≤ Cℓ∗2 + 1)4 + CL−2
K 2−4j ϵ−2(1 + ℓ∗2)

−4 ≤ C (ℓ∗2 + 1)4,

which gives (4.37).
Since

∑
K∈Z3 L

−1
K <∞, using (4.37) we then have that

#{µ ∈Mj : |⟨f, ψ̃µ⟩| > ϵ} ≤
∑
K∈Z3

2j∑
ℓ2=−2j

|ℓ2|∑
ℓ1=−|ℓ2|

Nj,ℓ,K(ϵ) ≤ C 2−2j ϵ−1
∑
K∈Z3

L−1
K ≤ C 2−2j ϵ−1,

and, thus, (4.31) holds.
Case 2: ℓ2 = 0. In this case, we also have ℓ1 = 0. It follows that

L−1
(
e
2πiξA−j

(1)
k
)
= (1 + k21)

−1(1 + k22)
−1(1 + k23)

−1 e
2πiξA−j

(1)
k
.

Let Lk = (1 + k21) (1 + k22) (1 + k23). It is clear that also in this case
∑

k∈Z3 L
−1
k <∞. We have

⟨f, ψ(1)
j,0,k⟩ = | detA(1)|−j/2L−1

k

∫
R̂3

L
(
f̂(ξ) Γj,ℓ(ξ)

)
e
2πiξA−j

(1)
k
dξ,
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or, equivalently, that

⟨f, ψ(1)
j,0,k⟩Lk = | detA(1)|−j/2

∫
R̂3

L
(
f̂(ξ) Γj,ℓ(ξ)

)
e
2πiξA−j

(1)
k
dξ,

It follows that ∑
k∈Z3

L2
k |⟨f, ψ

(1)
j,0,k⟩|

2 =

∫
R̂3

∣∣∣L(f̂(ξ) Γj,ℓ(ξ)
)∣∣∣2 dξ ≤ C2−4j .

In particular, for each k ∈ Z3, we have |⟨f, ψ(1)
j,0,k⟩| ≤ C L−1

k 2−2j and hence
∑
k ∈ Z3|⟨f, ψ(1)

j,0,k⟩| ≤ C 2−2j ,

or ∥⟨f, ψ(1)
j,0,k⟩∥l1 ≤ C 2−2j which implies ∥⟨f, ψ(1)

j,0,k⟩∥wl1 ≤ C 2−2j .
This completes the proof of the theorem. �
4.5. Remark on the proof of Theorem 3.3. In the proof of Theorem 3.3, it was assumed that

the boundary surface contains the origin and has normal direction (1, 0, 0) at the origin. In general one can
“transform” any given surface into the above special case by using a combination of translation and rotation.
Obviously the translation has no impact on the proof which was given above. It only remains to explain the
effect of rotations, since the shearlet system is not invariant with respect to rotations.

As in the proof of Theorem 4.1, let us consider ξ = (ξ1, ξ2, ξ3) ∈ P1. Recall that the support of the
function Γj,ℓ, given by (4.4), is contained in a set Uj,ℓ which, using spherical coordinates, is given by:

Uj,ℓ = {(λ, θ, ϕ) : 22j−4 ≤ |λ| ≤ 22j+2, tan−1(2−j(ℓ1 − 1)) ≤ θ ≤ tan−1(2−j(ℓ1 + 1)),

cot−1(2−j(ℓ2 − 1)) ≤ ϕ ≤ cot−1(2−j(ℓ2 + 1))}.
Also, as in the proof of Theorem 4.1, for the special case considered, we notice that there are positive

C1, C2 such that, on the set Uj,ℓ, we have C12
−j ≤ |θ| ≤ C22

−j , C12
−j ≤ |ϕ| ≤ C22

−j and C12
−j |ℓ2| ≤

| cosϕ| ≤ C22
−j |ℓ2| for all large j and all |ℓ2| ≤ 2j (recall that |ϕ − π

2 | ≤
π
4 ). Let θ′ and ϕ′ be the angles

derived from the ray transform. In the proof of Proposition 4.3, we obtain the following identities.

sin θ′ cosϕ′ = cos θ sinϕ,

cos θ′ = sin θ sinϕ,

− sin θ′ sinϕ′ = cosϕ.

Next, we deduced that | sinϕ′| is equivalent to | cosϕ| on Uj,ℓ and the rest of the proof (for the special case)
follows from there.

In spherical coordinates, a rotation can be realized by the mapping (λ, θ, ϕ) → (λ, θ−θ0, ϕ−ϕ0), where θ0
and ϕ0 are the two rotation angles. Let Γ0

j,ℓ(ξ), U
0
j,ℓ and f̂

0 be the images of Γj,ℓ(ξ), Uj,ℓ and f̂ , respectively,
under the rotation by θ0 and ϕ0. Then we have

U0
j,ℓ = {(λ, θ, ϕ) : 22j−4 ≤ |λ| ≤ 22j+2, tan−1(2−j(ℓ1 − 1)) ≤ θ − θ0 ≤ tan−1(2−j(ℓ1 + 1)),

cot−1(2−j(ℓ2 − 1)) ≤ ϕ− ϕ0 ≤ cot−1(2−j(ℓ2 + 1))}.
Now one can adapt the ray transform to the rotation angles by letting

sin θ′ cosϕ′ = cos(θ − θ0) sin(ϕ− ϕ0),

cos θ′ = sin(θ − θ0) sin(ϕ− ϕ0),

− sin θ′ sinϕ′ = cos(ϕ− ϕ0).

It follows that | sinϕ′| is equivalent to | cos(ϕ−ϕ0)|. On U0
j,ℓ, we have C12

−j |ℓ2| ≤ | cos(ϕ−ϕ0)| ≤ C22
−j |ℓ2|.

Hence it follows that ∫
R̂3

|f̂0(ξ)|2 |Γ0
j,ℓ(ξ)|2 dξ ≤ C 2−4j(1 + |ℓ2|)−5.

The rest of the argument is exactly the same as in the proof of Theorem 3.3, where f̂(ξ) and Γj,ℓ(ξ) are

replaced by f̂0(ξ) and Γ0
j,ℓ(ξ).
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4.6. Analysis of the coarse scale. At the beginning of Section 4.1, we assumed that the scale
parameter j is large enough, i.e., j > j0 for some j0 > 0. The situation where j ≤ j0 is much simpler. In
fact, if fQ is an edge fragment, then a trivial estimate shows that

∥fQ∥2 =

(∫
suppwQ

|fQ(x)|2 dx

)1/2

≤ C |suppwQ|1/2 = C 2−
3
2 j .

It follows that ∥⟨fQ, ψµ⟩∥ℓ2 ≤ C ∥fQ∥2 ≤ C 2−
3
2 j . To deduce an ℓ1 type estimate, we notice that

∥⟨fQ, ψ̃µ⟩∥ℓp ≤ N
1
p−

1
2 ∥⟨fQ, ψ̃µ⟩∥ℓ2 ,

is valid for any sequence {⟨fQ, ψµ⟩} of N elements. Since, at scale 2−j , there are about 22j shearlet elements
in Q0

j , it follows that

∥⟨fQ, ψ̃µ⟩∥ℓ1 ≤ C 2j 2−
3
2 j = C 2−

1
2 j .

This satisfies Theorem 3.3 for j ≤ j0.

4.7. Proof of Theorem 3.4. The proof of Theorem 3.4 follows essentially the idea from the 2-
dimensional case in [14]. We start by proving the following lemmata which will be useful in the following.

Lemma 4.8. Let f = g wQ, where g ∈ E2(A) and Q ∈ Q1
j and Uj,ℓ be given by (4.25). Then∫

Uj,ℓ

|f̂(ξ)|2 dξ ≤ C 2−11j . (4.38)

Proof. The following proof adapts [14, Lemma 2.6].
The function f belongs to C2

c (R3) and its second partial derivative with respect to x1 is

∂2f

∂x21
=
∂2g

∂x21
wQ + 2

∂ g

∂x1

∂ wQ

∂x1
+ f

∂2wQ

∂x21
:= h1 + h2 + h3.

Using the fact that wQ is supported in a square of sidelength 2 · 2−j , we have∫
R̂3

|ĥ1(ξ)|2 dξ =
∫
R3

|h1(x)|2 dx ≤ C 2−3j .

Next, observe that ∥ ∂
∂x1

h2∥∞ ≤ C 22j . Using again the condition on the support of wQ it follows that∫
R̂3

|2πξ1 ĥ2(ξ)|2 dξ =
∫
R3

∣∣∣∣ ∂∂x1h2(x)
∣∣∣∣2 dx ≤ C 2j ,

and thus, for ξ ∈ Uj,ℓ (hence ξ1 ≈ 22j), ∫
Uj,ℓ

|ĥ2(ξ)|2 dξ ≤ C 2−3j .

Finally, observing that ∥ ∂2

∂x2
1
h3∥∞ ≤ C 24j , it follows that

∫
R̂3 |ĥ3(ξ)|2 dξ ≤ C 25j and, thus,∫

Uj,ℓ

|ĥ3(ξ)|2 dξ ≤ C 2−3j .

Since −(2π)2 ξ21 f̂(ξ) = ĥ1(ξ) + ĥ2(ξ) + ĥ3(ξ), it follows from the estimates above that∫
Uj,ℓ

|f̂(ξ)|2 dξ ≤ C 2−11j .
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This completes the proof.
Lemma 4.9. Let m = (m1,m2,m3) ∈ N×N×N, ξ = (ξ1, ξ2, ξ3) ∈ R̂3 and Γj,ℓ be given by (4.4), where

ℓ = (ℓ1, ℓ2). Then

2j∑
ℓ1=−2j

2j∑
ℓ2=−2j

∣∣∣∣ ∂m∂ξm Γj,ℓ1,ℓ2(ξ)

∣∣∣∣2 ≤ Cm 2−2|m|j ,

where Cm is independent of j and ξ and |m| = m1 +m2 +m3.
Proof. Observe that Uj,ℓ ∩ Uj,ℓ+ℓ′ = ∅, whenever |ℓ′1| ≥ 3 or |ℓ′2| ≥ 3. Since |ℓ1|, |ℓ2| ≤ 2j , the lemma

then follows from (4.28).
Lemma 4.10. Let f = g wQ, where g ∈ E2(A) and Q ∈ Q1

j and set

T =

(
I − 2j

(2π)2
∆

)
, (4.39)

where ∆ = ∂2

∂ξ21
+ ∂2

∂ξ22
+ ∂2

∂ξ22
. Then

∫
R̂3

2j∑
ℓ1=−2j

2j∑
ℓ2=−2j

∣∣∣T 2
(
f̂ Γj,ℓ1,ℓ2

)
(ξ)
∣∣∣2 dξ ≤ C 2−11j .

Proof. Observe that, for N ∈ N,

∆N
(
f̂ Γj,ℓ

)
=

∑
|α|+|β|=2N

Cα,β

(
∂α

∂ξα
f̂

) (
∂β

∂ξβ
Γj,ℓ

)
,

where α = (α1, α2, α3), β = (β1, β2, β3), and αi, βi ∈ N. Also notice that, by Lemma 4.9, we have that

∫
R̂3

2j∑
ℓ1,ℓ2=−2j

∣∣∣∣ ∂α∂ξα f̂(ξ)
∣∣∣∣2 ∣∣∣∣ ∂β∂ξβ Γj,ℓ(ξ)

∣∣∣∣2 dξ ≤ Cβ 2
−2|β|j

∫
Uj,ℓ

∣∣∣∣ ∂α∂ξα f̂(ξ)
∣∣∣∣2 dξ.

Recall that f(x) is of the form g(x)w(2jx). It follows that xα f(x) = 2−j|α| g(x)wα(2
jx), where wα(x) =

xαw(x). By Lemma 4.8, g(x)wα(2
jx) obeys the estimate (4.38). Thus, observing that ∂α

∂ξα f̂(ξ) is the Fourier

transform of (−2πix)αf(x), we have that∫
Uj,ℓ

∣∣∣∣ ∂α∂ξα f̂(ξ)
∣∣∣∣2 dξ ≤ Cα 2−2j|α| 2−11j .

Combining the estimates above we have that, for each α, β with |α|+ |β| = 2N ,

∫
R̂3

2j∑
ℓ2=−2j

2j∑
ℓ1=−2j

∣∣∣∣ ∂α∂ξα f̂(ξ)
∣∣∣∣2 ∣∣∣∣ ∂β∂ξβ Γj,ℓ(ξ)

∣∣∣∣2 dξ ≤ Cα,β 2
−11j 2−4jN . (4.40)

Since T 2 = 1− 2 2j

(2π)2 ∆+ 22j

(2π)4 ∆
2, the lemma now follows from (4.40) and Lemma 4.9.

We can now prove Theorem 3.4.
Proof of Theorem 3.4.
As in the arguments above, it is sufficient to consider the system interior shearlets in the pyramidal

region P1.
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For T given by (4.39) and ℓ = (ℓ1, ℓ2), a direct computation gives that

T
(
e
2πiξA−j

(1)
B

−[ℓ]

(1)
k
)
=
(
1 + 2−2j(k1 − k2 ℓ1 − k3 ℓ2)

2 + k22 + k23
)
e
2πiξA−j

(1)
B

−[ℓ]

(1)
k
. (4.41)

Hence,

T 2
(
e
2πiξA−j

(1)
B

−[ℓ]

(1)
k
)
=
(
1 + 2−2j(k1 − k2 ℓ1 − k3 ℓ2)

2 + k22 + k23
)2
e
2πiξA−j

(1)
B

−[ℓ]

(1)
k
. (4.42)

Fix j ≥ 0 and let f = fQ, with Q ∈ Q1
j . Then, using integration by parts as in the proof of Theorem 3.3,

from (4.42) it follows that

⟨f, ψ̃µ⟩ = | detA(1)|−j
(
1 + 2−2j(k1 − k2 ℓ1 − k3 ℓ2)

2 + k22 + k23
)−2

∫
R̂2

T 2
(
f̂(ξ) Γj,ℓ(ξ)

)
e
2πiξA−j

(1)
B

−[ℓ]

(1)
k
dξ.

Let K = (K1,K2,K3) ∈ Z3 and RK be the set

RK = {(k1, k2, k2) ∈ Z3 : k2 = K2, k3 = K3, 2
−j(k1 −K2ℓ1 −K3ℓ2) ∈ [K1,K1 + 1]}.

Observe that, for each K and each fixed ℓ, there are only 1 + 2j choices for k1 in RK . In fact, RK =
{k1 : 2jK1 ≤ k1 − K2ℓ1 − K3ℓ2 ≤ 2j(K1 + 1)}. Hence the number of terms in RK is bounded by 1 + 2j .
Also notice that, as in the proof of Theorem 3.3, we can take advantage of the fact that, for j, ℓ fixed, the

set {| detA(1)|−j/2e
2πiA−j

(1)
B

[ℓ]

(1)
k
: k ∈ Z3} is an orthonormal basis for the L2 functions supported in the set

[−1
2 ,

1
2 ]

3Aj
(1)B

[ℓ]
(1). Thus, using this observation and the fact that the function Γj,ℓ is supported on the set

[−1
2 ,

1
2 ]

3Aj
(1)B

[ℓ]
(1), we have that

∑
k∈RK

|⟨f, ψ̃µ⟩|2 ≤ C
(
1 +K2

1 +K2
2 +K2

3

)−4
∫
R̂3

∣∣∣T 2
(
f̂ Γj,ℓ

)
(ξ)
∣∣∣2 dξ.

From this inequality, using Lemma 4.10, we have that

2j∑
ℓ2=−2j

2j∑
ℓ1=−2j

∑
k∈RK

|⟨f, ψ̃µ⟩|2 ≤ C (1 +K2)−4

∫
R̂2

2j∑
ℓ2=−2j

2j∑
ℓ1=−2j

∣∣∣T 2
(
f̂ Γj,ℓ

)
(ξ)
∣∣∣2 dξ

≤ C (1 +K2)−4 2−11j . (4.43)

For any N ∈ N, the Hölder inequality yields:

N∑
m=1

|am| ≤

(
N∑

m=1

|am|2
) 1

2

N
1
2 . (4.44)

Since the cardinality of RK is bounded by 1 + 2j , it follows from (4.43) and (4.44) that

2j∑
ℓ2=−2j

2j∑
ℓ1=−2j

∑
k∈RK

|⟨f, ψ̃µ⟩| ≤ C
(
23j
) 1

2 (1 +K2)−2 2−
11
2 j ≤ C 2−4j .

Thus, for f = fQ, with Q ∈ Q1
j , we have that:∑

µ∈Mj

|⟨f, ψ̃µ⟩| ≤ C 2−4j .
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5. Discussion and Extensions. In this section, we collect some observations which are relevant to
the results discussed in the paper. In Sec. 5.1, we extend to 3D the result of Donoho about the optimal
degree of sparsity for the representation of piecewise smooth functions. This shows that, in a certain sense,
N−1 is the optimal approximation error rate that can be achieved for functions in E2(A). Next, in Sec. 5.2,
we discuss the extension of the results presented in this paper to the more general setting where the surfaces
of discontinuities are allowed to be piecewise smooth.

5.1. Optimal Approximation Rates. In [9], Donoho investigates the problem of finding an optimal
dictionary for spaces of synthetic images that can provide a simplified model of natural images. In particular,
the class of Star-Shaped Images Cα(R2) ⊂ L2(R2) is introduced, whose elements are defined as characteristic
functions of star-shaped sets with Cα(R2) smooth boundaries. The approach developed in [9] considers
adaptive decompositions in an overcomplete (possibly uncountable) dictionary Φ = {ϕi : i ∈ I} ⊂ L2(R2) of
the form

f =
∑
i∈If

ci(f)ϕi, (5.1)

where {ϕi : i ∈ If} is a countable normalized subset of Φ, which depends on f , in general. To avoid situations
which are computationally unfeasible, the selection of If in I is required to satisfy a polynomial depth search
constraint. That is, the i-th term in the expansion is selected according to the selection function σ(i, f)
which obeys σ(i, f) ≤ p(i), for a fixed polynomial p(i). The sparsity of the expansion (5.1) is measured in
terms of the quasi-norm ∥c(f)∥wℓp , where c(f) = (ci(f)), with the optimal degree of sparsity being associated
with the smallest p such that ∥c(f)∥wℓp is bounded. The main result in [9] is that the optimal degree of
sparsity for the class Cα(R2) is p0 = 2/(α+ 1). That is, no representation system satisfying the polynomial
depth search constraint can provide approximations for Cα(R2) with the coefficients ∥c(f)∥wℓp < ∞, for
p < p0. Hence, if we have that ∥c(f)∥wℓp0 <∞, denoting by |c(f)|m the m-th largest entry in the coefficient
sequence (|c(f)|), there is a constant C > 0 such that

sup
f∈Cα

|c(f)|m ≤ Cm−α+1
2 , (5.2)

and no decay rate faster than m−α+1
2 is possible. As a consequence, if Φ is an optimal dictionary for Cα(R2)

and is also a Parseval frame, then, from (5.2) it follows that

∥f − fN∥2 ≤
∑
m>N

|c(f)|2m ≤ C
∑
m>N

m−(α+1) ≤ C N−α.

If, in addition, we have that Φ is a Riesz basis, then we can conclude that

∥f − fN∥2 ≈ C N−α,

so that in this case O(N−α) is truly the optimal decay rate. If Φ is only a Parseval frame but not a Riesz basis,
even though one cannot ensure that O(N−α) is truly the optimal decay rate, yet no better approximation
can be achieved under the procedure described above. In this weaker sense, as it is used in [2], the rate
O(N−α) is identified as the optimal approximation rate for functions in Cα(R2). When α = 2, this gives the
optimal approximation rate which was mentioned in the introduction and which is nearly achieved by 2D
shearlet and curvelet approximations (cf. eq. (1.1)).

The result about the optimal degree of sparsity in Cα(R2) from [9] follows from an information theoretic
argument which leads to determine the values p such that Cα(R2) contains a copy of ℓp0. By definition, a
function class F is said to contain a copy of ℓp0 if F contains embedded orthogonal hypercubes of dimension
M(∆) and side ∆, and if, for some sequence (∆k) → 0, there is a constant C > 0 such that

M(∆k) ≥ C∆−p
k , k = k0, k0 + 1, . . . ...



Optimally Sparse Representations of 3D Data using Parseval Frames of Shearlets 29

Thus, to extend the result about the optimal degree of sparsity p0 to 3D, it is sufficient to extend Thm. 3
in [9] by proving the following result.3

Theorem 5.1. The class C2(R3) contains a copy of ℓp0 for p = 1.
Here C2(R3) ⊂ L2(R3) is the class Star-Shaped 3D Images, whose elements are the characteristic func-

tions of 3-dimensional star-shaped sets with C2 smooth boundaries. It is clear that the class E2(A) of
piecewise smooth function of 3 variables considered in this paper contains the class C2(R3). Hence, Theo-
rem 5.1 shows that no representation system satisfying the polynomial depth search constraint can provide
approximations for C2(R3) with the coefficients ∥c(f)∥wℓp <∞, for p < 1, where p0 = 1 is the optimal degree
of sparsity. From that it follows that if we have that ∥c(f)∥wℓ1 < ∞, then there is a constant C > 0 such
that

sup
f∈C2

|c(f)|m ≤ Cm−1,

and no decay rate faster than m−1 is possible. Using the same argument as above we conclude that, if fN
is the best N term approximation to f ∈ C2(R3) using a Parseval frame, then

∥f − fN∥2 ≤ C
∑
m>N

m−2 ≤ C N−1.

This shows that, in the weaker sense described above, N−1 is the optimal error approximation rate, as it
was indicated in the Sec. 1.

Proof of Theorem 5.1. Our proof follows very closely the proof of Thm. 3 in [9]. We will mainly
emphasize the modifications needed for D = 3 and refer to [9] for more detail about the argument.

Let g be a smooth and nonnegative bivariate function with compact support in [0, 2π]× [0, π]. For scalars
A and m(A, δ) to be determined, let

gi,j,m(t1, t2) = Am−2g(mt1 − 2πi,mt2 − πj), i, j = 0, 1, . . . ,m− 1.

Notice that ∥gi,j,m∥C2 = A ∥g∥C2 and ∥gi,j,m∥L1 = Am−4∥g∥L1 . We introduce a spherical coordinates
(ρ, θ, ϕ) with origin in ( 12 ,

1
2 ,

1
2 ). For ρ0 = 1

4 , set

ψi,j,m = χ{ρ≤ρ0} − χ{ρ≤gi,j,m+ρ0}, , i, j = 0, 1, . . . ,m− 1.

Hence, we define the radius functions

rξ =
1

4
+

m∑
i,j=1

ξi,j gi,j,m, ξi,j ∈ {0, 1}

and the corresponding functions

fξ = χ{ρ≤ρ0} +
m∑

i,j=1

ξi,j ψi,j,m, ξi,j ∈ {0, 1}.

Similar to the 2D argument, the functions ψi,j,m are bulges around the sphere of radius ρ0 and have disjoint
support; each fξ is the indicator function of the the sphere of radius ρ0 plus some addition bulges. Using
the fact that g is bounded and nonnegative, a direct calculation shows that

∥ψi,j,m∥2L2 ≃ ∥gi,j,m∥L1 = Am−4∥g∥L1 ,

3For simplicity, we consider only the case α = 2, which is what is needed in this paper. A similar proof works with Cα(R3)
and yields p = 4/(α+ 2).
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and, for each radius function rξ,

∥rξ∥C2 ≤ ∥gi,j,m∥C2 = A ∥g∥C2 .

Hence, as in [9], the hypercube embedding is achieved whenever A ≤ C/∥g∥C2 .
Now, whenever A ≤ C/∥g∥C2 , the sidelength ∆ = ∥ψi,j,m∥L2 of the hypercubes satisfies:

∥ψi,j,m∥2L2 = ∆2 ≃ ∥gi,j,m∥L1 = Am−4∥g∥L1 ≤ Cm−4 ∥g∥L1

∥g∥C2

.

Hence, setting

m(δ) = ⌊
(
δ2

C

∥g∥C2

∥g∥L1

)− 1
4

⌋, A(δ, C) = δ2m4/∥g∥L1 ,

it follows that A ≤ C/∥g∥C2 and ∆ ≃ δ, which shows that the hypercube embedding is satisfied with
sidelength ∆ ≃ δ and dimension M = m2(δ). The dimension of the hypercube obeys

M = m2(δ) ≥ K C1/2 δ−1,

for all 0 < δ < δ0, where δ0 is the solution of(
δ20
C

∥g∥C2

∥g∥L1

)−1/2

, K =
1

2

(
∥g∥C2

∥g∥L1

)−1/2

.

Since ∆ ≃ δ, it follows by the observations above that there is a c > 0 such that M(∆k) ≥ c∆−1
k , for a

sequence (∆k) → 0.

5.2. Extensions and Modified Construction. There is an alternative construction of 3D smooth
Parseval frames of shearlets which was found by the authors during the revision of the manuscript and will
be briefly sketched below. Similar to Sec. 2, whose notation we adopt here, we consider three systems of
shearlets associated with the pyramidal regions Pd, d = 1, 2, 3. In this case, however, we consider affine-like
systems of the form

{ψ(d)
j,ℓ,k = | detA(d)|j/2 ψ(d)(B

[ℓ]
(d)A

j
(d)x− k) : j ≥ 0,−2j ≤ ℓ1, ℓ2 ≤ 2j , k ∈ Z3}, (5.3)

where

ψ̂(d)(ξ1, ξ2, ξ3) = U(ξd)V(d)(ξ1, ξ2, ξ3),

and U ∈ C∞
c (R) has support in [−1

2 ,−
1
16 ]∪[

1
16 ,

1
2 ] and it satisfies

∑
j≥0 |U(2−2jξd)|2 = 1, for |ξd| ≥ 1

8 . Notice
that the functions (5.3) have exactly the same frequency support as the functions (2.7). Similar to Sec. 2,
the issue is how to combine the three systems of shearlets (5.3) for d = 1, 2, 3 in order to obtain a Parseval
frame. If we directly combine these three systems, in the Fourier domain, each ξ is covered exactly by two

directional windows Vj,ℓ,d(ξ) = V(d)(ξA
−j
(d)B

−[ℓ]
(d) ) and the sum of the squares of such windows is exactly one,

except for the windows overlapping the boundaries of the pyramidal regions. To enforce the partition of
unity and obtain a Parseval frame, we borrow the following clever idea from [35]. We redefine the directional
windows as

Ṽj,ℓ,d(ξ) =
Vj,ℓ,d(ξ)√∑
ℓ′,d′ V 2

j,ℓ′,d′(ξ)
.

Due to the properties of V , the denominator of this expression is 1 for all indices ℓ such that Ṽj,ℓ,d is
supported away from the boundary surfaces of the pyramidal regions; for ℓ corresponding to the boundaries,



Optimally Sparse Representations of 3D Data using Parseval Frames of Shearlets 31

the sum at the denominator reduces to a sum of the few terms having support near the boundary regions.
This construction ensures that we obtain a smooth partition of unity and that the resulting Parseval frame
of shearlets is a smooth Parseval frame of L2(R3). Since frequency support and regularity conditions are the
same as those of the shearlet system from Sec. 2, it is clear that the sparsity result discussed in this paper
carries over to this modified Parseval frame of shearlets. It is also clear that a similar construction can be
used to obtain a smooth Parseval frame of shearlets for L2(R2) as it is needed to derive the 2D sparsity
result presented in [14].

Finally, it useful to make a comment about potential extensions of our result to more general objects.
We have shown that the Parseval frame of 3D shearlets provides (nearly) optimally sparse approximations
for C2 regular functions of 3 variables containing discontinuities along along C2 boundaries. This class of
functions provides a simplified model for many objects typically found in applications. However, for a more
realistic model one should consider the situation of piecewise smooth boundaries. Based on our previous
work in the 2-dimensional case and preliminary observations, we expect that Theorem 3.2 can be extended
to the situation where the surfaces of discontinuity are not simply C2 but piecewise C2. This extension goes
beyond the scope of this paper and will be addressed elsewhere.
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