
BearWorks BearWorks 

MSU Graduate Theses 

Fall 2007 

Nutrient Concentrations at Baseflow Conditions in the Upper Nutrient Concentrations at Baseflow Conditions in the Upper 

White River Basin, Southwest Missouri and Northwest Arkansas White River Basin, Southwest Missouri and Northwest Arkansas 

Gopala G. Borchelt 

As with any intellectual project, the content and views expressed in this thesis may be 

considered objectionable by some readers. However, this student-scholar’s work has been 

judged to have academic value by the student’s thesis committee members trained in the 

discipline. The content and views expressed in this thesis are those of the student-scholar and 

are not endorsed by Missouri State University, its Graduate College, or its employees. 

Follow this and additional works at: https://bearworks.missouristate.edu/theses 

 Part of the Hydrology Commons, and the Water Resource Management Commons 

Recommended Citation Recommended Citation 
Borchelt, Gopala G., "Nutrient Concentrations at Baseflow Conditions in the Upper White River Basin, 
Southwest Missouri and Northwest Arkansas" (2007). MSU Graduate Theses. 2137. 
https://bearworks.missouristate.edu/theses/2137 

This article or document was made available through BearWorks, the institutional repository of Missouri State 
University. The work contained in it may be protected by copyright and require permission of the copyright holder 
for reuse or redistribution. 
For more information, please contact bearworks@missouristate.edu. 

https://bearworks.missouristate.edu/
https://bearworks.missouristate.edu/theses
https://bearworks.missouristate.edu/theses?utm_source=bearworks.missouristate.edu%2Ftheses%2F2137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1054?utm_source=bearworks.missouristate.edu%2Ftheses%2F2137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1057?utm_source=bearworks.missouristate.edu%2Ftheses%2F2137&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bearworks.missouristate.edu/theses/2137?utm_source=bearworks.missouristate.edu%2Ftheses%2F2137&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bearworks@missouristate.edu


NUTRIENT CONCENTRATIONS AT BASEFLOW CONDITIONS  

 

IN THE UPPER WHITE RIVER BASIN, SOUTHWEST MISSOURI  

 

AND NORTHWEST ARKANSAS 

 

 

 

A Thesis 

Presented to 

The Graduate College of 

Missouri State University 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Master of Science, Geospatial Science 

 

 

By 

Gopala G. Borchelt 

December 2007 

 

 

 



 ii 

NUTRIENT CONCENTRATIONS AT BASEFLOW CONDITIONS IN THE  

UPPER WHITE RIVER BASIN, SOUTHWEST MISSOURI AND NORTHWEST  

ARKANSAS 

Geography, Geology, and Planning 

Missouri State University, December 2007 

Master of Science, Geospatial Sciences 

Gopala G. Borchelt 

 

ABSTRACT: 

 

     The Upper White River Basin (UWRB) is becoming increasingly vulnerable to water 

quality degradation from urban/population growth and increased agricultural production. 

This study examines the relationships among nutrient levels, water chemistry and 

watershed characteristics of 19 watersheds in the UWRB. Water samples were collected 

during baseflow conditions each month for one year at USGS continuous-flow gage 

stations. Watershed characteristics evaluated were land use, geology, drainage area, flow 

discharge, and wastewater treatment plant discharge (WTP). Measured chemical water 

quality indicators include total nitrogen (TN), total phosphorus (TP), specific 

conductivity, turbidity, pH and dissolved oxygen. Rapidly expanding urban areas are 

associated with relatively high nutrient concentrations at baseflow such as found in the 

James River Basin, where mean levels range from 0.9 to 11.7 mg/L for TN and 18 to 175 

µg/L for TP. Nutrient concentrations have a strong positive correlation to specific WTP 

discharge (gal/day/km²). Non-point source-affected watersheds with no or only slight 

WTP inputs show a negative relationship between percent forest cover and nutrient 

concentrations. Higher nutrient concentrations are found in watersheds with less than 

50% forest in non-point source watersheds, although these nutrient levels remain below 

the James River recommended Total Maximum Daily Load (< 75 µg/L TP and < 1.5 

mg/L TN). Agricultural watersheds (>50% ag land) in karst limestone plain areas also 

show elevated nutrient concentrations ranging from 0.4 to 5.2 mg/L for TN and 9 to 103 

µg/L for TP. 
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CHAPTER 1: INTRODUCTION 

 

 

 Runoff from urban land use, agricultural land use and discharge from wastewater 

treatment plants cause excessive nutrient loading of many lakes, streams and aquifer 

systems in the United States (Edwards et. al. 1996; Jordan et. al. 1997; Petersen et. al. 

1998; Turner and Rabalais 2003; Dupré and Robertson 2004). Sources of nutrients 

include wastewater treatment plant (WTP) effluent, industrial wastewater, urban run-off, 

soil erosion, septic tank effluent, run-off from confined animal feeding operations and 

run-off from agricultural fields (Petersen et. al. 1998). Excessive nutrient loading causes 

eutrophication of lakes and streams through overproduction of algae. Increased nutrient 

and algae concentration can lead to other water quality problems. Decaying algae 

decreases dissolved oxygen in the water and may cause streams to become unable to 

support fish and other aquatic life (Turner and Rabalais 2003; Lunetta et. al. 2005; Thorp 

et. al. 2005). Ammonia, a form of nitrogen, is also released from decaying algae and, in 

excessive amounts, causes tissue damage to fish (USEPA 1999; McNair and Fraser 

2003).   

Suspended algae, soil erosion and other contaminants add turbidity to water which 

then captures more solar radiation and increases water temperature. Aquatic organisms 

that have adapted to clear cool springs and rivers may not be able to survive when oxygen 

levels are depleted, temperature is increased and water chemistry is altered. Only tolerant 

species will thrive in streams disturbed by excessive nutrient loading, causing a reduction 

in aquatic biodiversity (Turner and Rabalais 2003). In general, the public’s perception of 

water quality is based on water clarity. Clarity may be measured by the ability to clearly 

see the stream or lake bottom through the water column. Unsightly masses of suspended 



 2 

or attached algae in a eutrophic stream may emit an unpleasant odor from decaying 

vegetation and have greenish or brownish tint making them unattractive for recreational 

use. The large densities of algae in drinking water sources increases removal costs for 

consumption and may cause water to acquire an undesirable odor and taste (Peterson 

1998). With increased human population/development and it’s associated excessive 

nutrient loading, eutrophication from excessive algal growth is becoming a major water 

quality problem throughout worldwide water resources (USEPA 1999; Schueler and 

Holland 2000; Turner and Rabalais 2003; McNair and Chow-Fraser 2003). 

This study focuses on determining the levels and distribution of nutrient 

concentrations in surface water throughout the Upper White River Basin (UWRB) 

watershed. This watershed drains approximately 15,636 square kilometers in southwest 

Missouri and northwest Arkansas, part of the Ozarks Plateau physiographic region 

(MORAP, 2004). The basin is a major drainage system in the Ozarks region and is 

characteristic of rivers draining other karst areas with its many deep valleys, broad 

hilltops and highly weathered limestone bluffs and bedrock formations. Weathered karst 

geology is highly porous containing many caves, sinks, and subterranean channels which 

convent flow directly from surface run-off into ground water stores through a system of 

highly dynamic hydrological networks (Langer, 2002; Matĕjíček et al., 2003). The 

―Swiss cheese-like‖ structure of the karst terrain was formed when rainwater and surface 

run-off eroded the carbonate rock over millions of years and dissolved channels in the 

primarily limestone and dolomite formations. This formed conduits deep into the layers 

of bedrock creating complex subterranean water networks (Langer 2002).  
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Surface released contaminants can move down through sinkholes and karst 

fractures quickly entering groundwater and reemerging at spring outlets. The karst 

geological structure of the Ozarks and the UWRB therefore makes this region extremely 

vulnerable to infiltration of contaminants associated with surface run-off (MODNR  

2001; USEPA 2004). The UWRB watershed has one of the fastest growing populations 

in the nation, having increased by 30% in the last decade (MODOC, 2001). There are 

concerns over the effects of urban and suburban development on the water quality in the 

UWRB since water quality has long been central to this region’s economy and natural 

attractions. The four major impoundments, Beaver, Table Rock, Taneycomo, and Bull 

Shoals Lakes draw millions of tourists and visitors to the UWRB while dams produce 

electricity and provide a drinking water supply. The UWRB is also one of the best fishing 

destinations in the nation with many species of bass, crappie, catfish, trout and sunfish 

(MODOC 2001).  

Scenic landscapes, lakes and the many clear, spring-fed streams have made the 

UWRB a popular family vacation and retirement destination. A consequence of the 

region’s natural attraction has been its rapidly increasing population, rural development 

and expansion of metropolitan areas including Springfield, Nixa, Ozark, Branson, Eureka 

Springs, and Fayetteville. Also increasing is the associated pollution from human 

activities such as lawn fertilizer, construction erosion, pet wastes, septic seepage and 

impervious run-off (Meals and Budd, 1998). In addition to urban growth, agriculture 

production has increased in the UWRB (MODNR, 2001; USEPA, 2004). Nutrient 

sources from agriculture including wastewater run-off from confined animal feeding 

operations and poultry litter fertilizer on pastures and direct deposition of animal manure 
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into streams and rivers. The Ozarks region has become the second largest poultry 

producer in the U.S. generating over one billion birds per year (USDA (a), 2004). This 

industry provides an inexpensive, abundant source of fertilizer from poultry litter. 

Nutrient-rich litter is spread on pastures to enhance the production capacity of relatively 

poor Ozarks soils (Edwards et. al., 1996). Increased pasture production has expanded 

cattle production in the basin. Missouri ranks 6
th

 in U. S. cattle production and second for 

its number of small (100 animals or less) farm beef/cow operations. Greene, Lawrence 

and Barry counties in the UWRB are among the top ten beef cow counties in Missouri 

(Olson et. al. 2004). Arkansas ranks second behind the state of Georgia for poultry broiler 

production with much of this occurring in northwest Arkansas, the UWRB (USDA (b) 

2004). Overuse of abundant manure fertilizers is affecting streams in the UWRB, 

especially those with large areas of pastures and in the poultry producing counties of 

northwest Arkansas (Edwards et. al. 1996).  

Previous water quality studies on the UWRB have generally been limited to a 

single sub-watershed or stream such as the James River, Kings River, or other tributary in 

the UWRB and have not provided data on basin-wide nutrient status. This project seeks 

to provide a basin-wide analysis of nutrient concentrations through sampling during 

baseflow conditions in the UWRB. Nutrient results of this analysis will be compared to 

land use and other variables to obtain a better understanding of how watershed 

characteristics are related to water quality and nutrients. This information will provide a 

baseline for further, in-depth investigations and support water quality management 

programs in the Upper White River Basin.  

 



 5 

Research Questions 

 This study begins to fill gaps in the knowledge about nutrient levels occurring in 

streams during baseflow conditions in the UWRB. There are three main questions that 

this study seeks to address: 

 1) What are the baseflow nutrient levels in watersheds throughout the UWRB? 

Base-flow is the low-flow, non-flooded state of the stream where changes in stream 

chemistry and dissolved compounds are related primarily to ground water sources, point 

source inputs and residual non-point source contributions. Water quality variations at 

baseflow tend to be gradual, thus allowing for comparable sampling.  

 2) How does water quality compare between the different sample watersheds? 

Nutrient concentrations are controlled by many factors including point-source discharge, 

land use, stream size and geology (Fitzpatrick et. al. 1998; Lent et al. 1998; Binkley et al. 

2004). This study investigates the role of these factors in influencing nutrient 

concentrations throughout the UWRB. 

3) How do varying physical watershed characteristics and chemical water 

properties correlate with nutrient concentrations? Watershed characteristics such as the 

percentage of different land use types and predominant geological formations were 

examined to discover any relationships between these characteristics and water nutrient 

concentrations. Water chemistry including pH, DO, specific conductance, temperature 

and turbidity are compared to nutrient concentrations to examine their relationships. 
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Purpose and Objectives 

This study evaluated nutrient concentrations in watersheds of the UWRB and 

examined effects of drainage basin characteristics on these concentrations. The status of 

nutrients in the UWRB and the various roles of land use, geology and other watershed 

factors influencing nutrient concentrations must be understood in order to implement 

effective water quality management programs. The primary objectives of this thesis 

research are: 

1. Quantify baseflow concentrations of Total Nitrogen (TN), Total 

  Phosphorus (TP) and water chemistry of 19 sample watersheds in the 

UWRB.   

No previous studies have sought to determine nutrient concentrations throughout 

the UWRB during baseflow conditions. There have been projects that have focused on 

one or a few sub-watersheds in the UWRB such as the James or the Kings River 

watersheds, but these have not provided data on the nutrient status throughout the Basin.  

2. Develop a Geographic Information System (GIS) with land use, geology,  

wastewater treatment plants, hydrology  and other spatial data for the    

UWRB. 

Currently most spatial data is divided by political boundaries including state, 

county and regional boundaries. The UWRB watershed lays roughly half in the state of 

Arkansas and half in Missouri. This study uses GIS and spatial data to piece together a 

single dataset that spans both Missouri and Arkansas sides of the Basin.  
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3. Examine relationships between water quality and drainage basin 

characteristics in the 19 sample watersheds of the UWRB.  

           Correlation between drainage basin and chemical factors within a watershed and 

the nutrient concentrations sampled in the watershed may provide data to aid 

management efforts to reduce nutrient contribution from land use practices associated 

with high nutrient levels.  

 

Hypotheses 

From previous studies and reasoning, this study suggests the following three hypotheses:  

1) Nutrient trends among watersheds are dominated by point-sources such as 

WTP effluent due to baseflow sampling conditions.  

2) It will be difficult to distinguish between point-source effects and land use 

effects on nutrient loading for watersheds receiving WTP effluent since these 

basins also contain a higher percentage of urban land use. 

3) Non-point source dominated watersheds will have less correlation among 

water quality variables than those affected by point-sources since point-source 

influenced watershed have common factors (wastewater effluent) influencing 

water chemistry. 

Nutrient concentrations are expected to show a relationship to land use/land cover types 

within the drainage area. Urban or agricultural areas are expected to have higher nutrient 

concentrations than rural and forested watersheds due to TN being very mobile in the 

environment and TP being associated with soil disturbance on the landscape. However, 

since water sampling for this project was conducted at baseflow conditions, it is probable 
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that the influence of run-off from non-point sources will be lessened while the effects of 

point-sources actively discharging into streams will have a greater measurable impact on 

the watersheds receiving these discharges (Petersen et. al. 1998; Baginska et al. 2003).  

Streams receiving high volumes of wastewater treatment plant effluent will have higher 

concentrations of nutrients than streams that do not have major sources of effluent. These 

streams will also have a larger percentage of urban/developed land use. This may present 

a problem when interpreting the relationships between land use and water quality. 

Watersheds with major effluent sources are more likely to be located in areas of higher 

urban land use. High nutrient concentrations from base-flow sampling in these 

watersheds may appear to be related with the high urban and agricultural land use but 

may be the result of the large point-source discharge. On the other hand, some point 

sources may be located in watersheds that have little urban or agricultural land use and 

may therefore deviate from the expected low nutrient concentrations.  

Non-point watersheds may exhibit less correlation among water quality indicators 

due to variations in landscape, hydrology and watershed influences. In watersheds 

containing large areas of urban development and agriculture, water quality may be highly 

variable due to flashy hydrology in these impervious or less pervious watersheds. At 

baseflow conditions the stream may be still be affected by nutrients moving through the 

system from the previous storm event. In the non-point source dominated watersheds, 

there is less expected variability in discharge making the water quality variables more 

constant within a particular non-point sample watershed. Each stream has a different 

shape, drainage area, land use and other factors that influence water chemistry which may 

cause non-point watersheds to exhibit less common water quality characteristics. 
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Background 

 

 Many research projects have studied the effects of land use, watershed 

physiography and hydrology on water quality in streams (Stark et al. 1999; Turner and 

Rabalais 2003; Matĕjíček et al. 2003). This section discusses previous studies that 

examined watershed factors associated with increased nutrient concentrations. Studies 

that deal with spatial information such as drainage area and variations in water chemistry 

through a watershed have often found geographical Information Systems (GIS) to be a 

useful tool  to enhance understanding of these spatial relationships.  

It is well known that forms of nitrogen and phosphorus occur naturally in streams 

and vary from one geographical region to another (Clark et al. 2000; Binkley et al. 2004). 

Natural sources include soil erosion, wildlife fecal matter and decomposition of organic 

material such as fallen leaves (Benfield 1996; USEPA 1999; Clark et al. 2000; Binkley et 

al. 2004). Nitrogen and phosphorus are major plant nutrients essential for growth of 

biofilms and aquatic vegetation and form the basis of aquatic food chains (Benfield et. al. 

1996; Graca et. al. 2001). Natural concentrations of nitrogen in undisturbed forested 

streams are low due to a high removal rate by vegetation and lack of excessive inputs. 

Naturally occurring nitrogen typically averages 0.68 mg/L for combined nitrate, 

dissolved organic nitrogen and ammonium. Phosphorus levels are also low in forest 

streams and are generally less than 30 µg/L for combined inorganic and dissolved organic 

phosphorus. Variations in nutrient levels for undisturbed streams are associated with 

ecological region, atmospheric deposition, vegetative species and other inherent 

watershed characteristics such as geology, geography and land cover (Binkley et. al. 

2004).  



 10 

Excessive nutrient loading in streams occurs in association with large areas of 

urban and agricultural development (Jordan et. al. 1997; Meals and Budd 1998). Nutrient 

loading may be caused by point-sources such as WTP effluent which is a result of the 

human fecal matter that contains nutrients as byproducts of the digestive process.  Towns 

with municipal infrastructure usually have WTP which is often a major source of nutrient 

loading.  Another nutrient contributor is non-point source pollution (NSP) (Jordan et. al. 

1997; USEPA 1999; Miller 2006). NSP is cause by run-off and leaching of broad areas of 

urban and agricultural land including fertilized fields, construction sites and impervious 

surface (Miller et al. 1997; Brezonik and Stadelmann 2002). Fertilizers containing high 

amounts of N and P can be washed off of agricultural fields and into streams by 

precipitation. Manure fertilizer is often applied at rates that exceed plant phosphorus 

requirements in order to increase nitrogen application to crops which need 10 parts 

nitrogen to 1 part phosphorus or to dispose of manure (Mallarino et al. 2004). Excess 

nutrients leach into nearby groundwater and streams.  

Studies have found that nutrients in agricultural watersheds may be measurably 

lower during summer than in winter due to plant assimilation, aquatic uptake and less 

run-off from precipitation (Boyd 1996; Winter and Dillon 2005).  Better practices on 

quantity and timing of fertilization and alternative waste disposal methods can help 

protect water quality (Edwards et al. 1996). These practices include maintenance of 

vegetative buffers around streams which can dramatically decrease nutrient loading from 

fertilization (Winter and Dillon 2005).  Vegetative buffers can assimilate a large amount 

of nutrient-rich run-off from agriculture fields or from urban storm water run-off before it 

reaches surface waters in addition to stabilizing stream banks against erosion.  
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Impervious surfaces including roads, parking lots, building tops, and some lawns 

and sidewalks collect nutrients and other contaminants from vehicles, yard waste, soil 

erosion, fertilizer and animal waste. All of this non-point source contamination is washed 

by precipitation run-off into nearby streams which makes towns and urban areas one of 

the largest contributors to nutrient pollution. Another NSP is on-site septic tanks. Septic 

tanks are often used as a means of wastewater treatment in rural areas that do not have 

municipal sewers. Wastewater treatment depends on the ability of soil to absorb effluent. 

Large numbers of septic systems in shallow soil with poor absorption can release nutrient 

pollution into the watershed (Aley and Thompson 2002; Wernick et. al. 1998). Point 

source pollution is addressed by the National Pollution Discharge Elimination System 

(NPDES), established in section 402 of the Clean Water Act (CWA), through use of 

permits and limitations. Under the NPDES program, permits are required for discharge of 

pollutants from most point sources (USEPA 1999). Point sources are arguably easier to 

control due to their being easily identifiable and monitored at an end-of-pipe location. 

Tools for controlling non-point source pollution can also be found under the CWA in 

section 319. This section provides assistance to states, local governments, environmental 

organizations and educational institutions along with many other programs for addressing 

a wide variety of non-point source water quality issues (USEPA 2007).  

Geology and Land Use. Geology plays a significant role in how anthropogenic 

activities affect nutrient loading in streams. The nature of the geological formations and 

structure underlying a watershed influence nutrient mobility, filtration and transport 

(Jordan et al. 1997; Panfil and Jacobson 2001; Vesper and White 2003). In regions with 

karst geology the effects of human disturbance may not only influence watersheds 
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draining the pollution source, but also the surrounding watersheds. Shallow karst aquifer 

systems act as sinks for nutrients and then redistribute them into surrounding watershed 

basins through springs and cave systems (Wernick et. al. 1998; Meals and Bud 1998; 

Dupré and Robertson 2004). According to a study by Miller et al. (1997) karst watersheds 

containing agricultural land use can have higher total nitrogen (TN) concentrations than 

watersheds without karst terrain but also containing agricultural fields. The highly 

weathered, fractured bedrock of the karst region does not provide adequate filtration of 

nitrogen which leaches into streams and quickly effects the water quality in these regions. 

The U. S. Geological Survey’s assessment of water quality in the Ozarks found that 

nitrogen concentrations were high in streams draining urban areas with WTP effluent 

(Peterson 1998). Wastewater treatment plants are located in urban areas so the high 

nutrient concentrations may actually be caused as much by the land use in these karst 

watersheds.  

Total phosphorus (TP) levels have often been correlated to the proportion of 

agricultural land-use in a watershed regardless of geology type (Jordan et al. 1997). This 

is due to phosphorus transport being closely related to sediment transport. Row-crop 

cultivation on floodplains, removal of riparian vegetation and excessive grazing are all 

practices that increase the sediment delivery to streams as well as loading of phosphorus 

attached to this sediment. Soil absorbency and landscape topography can influence 

nutrient loading as well. In the sub-basins of the Quabbin Reservoir, Massachusetts, 

waters sampled in low-lying wetlands contained higher levels of TP, while streams with 

elevated, well-drained soils contained higher amounts of TN (Lent et al. 1998). The 

mobility of nitrogen allows it to leach through the soil into groundwater or streams, while 
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in low-lying, lentic systems, such as wetlands, nitrogen is easily converted to gas or used 

by aquatic plants (Lent et al. 1998). Nitrogen therefore may not remain in stagnant water 

bodies for long while phosphorus may concentrate in sediment and become re-suspended 

in the water (Lent et al. 1998; Turner and Rabalais 2003). Due to the known impacts of 

land use upon nutrient concentrations, especially in karst systems, land use planning for 

conservation is important to water quality protection.  

GIS in Water Quality Studies. Geographic Information Systems (GIS) is an 

important tool that is used to describe the spatial distribution and variation of watershed 

features essential to water quality studies. GIS has been used by planners, decision-

makers at all levels of government, researchers, developers and the general community 

for water quality protection efforts. Developing regions of the nation have found this data 

management tool extremely valuable for precise analysis and effective distribution of 

spatial data (USEPA 2004). A recent study by the USEPA utilized GIS and a 

combination of existing water quality data from USGS stations, land use data and 

knowledge of the relationships between water quality and land use to develop a model of 

watershed vulnerability throughout the UWRB (Lopez et. al. 2006). The USEPA study 

was the first broad-scale model of water quality vulnerability by distribution of potential 

water quality drivers including development and forest areas. This GIS database allowed 

the USEPA study to produce prediction maps of sub-watersheds that were likely to be 

vulnerable to water quality degradation. A GIS database was used in a study by Greene 

and Cruise (1995) to quantify the volume of run-off from a given storm event in an 

urbanized watershed near Baton Rouge, Louisiana. Surface data on slope, land use, 

impervious and pervious areas and soils were compiled into a GIS database and used to 
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model storm run-off in the watershed. Huang et. al. (2003) also used GIS-based modeling 

of the Malian River Basin, China to analyze hydrological processes and run-off impacts 

on erosion.  Watershed information including land use, stream discharge, numbers of 

septic systems precipitation and point-source discharge has been often used in GIS 

models to estimate non-point nutrient loads to watersheds (Meals and Bud 1998; Stark et. 

al. 1999). GIS databases facilitate the organization and study of interrelationships 

between watershed data and water quality variables through an integrated approach that is 

well suited to the complex nature of watershed processes. However, Lent et al. (1998) 

and Brezonik (2002) suggest that for large drainage basins effective water quality 

analysis may require division of the large watershed into numerous smaller watersheds. 

Lent et. al. (1998) reasoned that hydrologic and geologic components may differ 

considerably from one region of a large watershed to another and may confound 

application of a single model or management strategy.  
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Benefits of this Study 

This study includes the entire Upper White River Basin of southwest Missouri 

and northwest Arkansas in an evaluation of basin-wide nutrient status. This study is 

intended to be a baseline analysis that will provide a snap-shot view of the status of 

nutrients at baseflow conditions in the UWRB watershed. The advantage to the baseflow 

sampling done in this study is that water quality characteristics can more accurately be 

compared among watersheds. The USEPA study on the UWRB watersheds produced a 

prediction model of sub-watershed vulnerability (Lopez, 2006). This study further 

examines the water quality status of the UWRB watersheds through regular sampling and 

comparison of relatively undisturbed watersheds to the more urbanized and populated 

watersheds. Basin-wide nutrient analysis can help set a baseline for further monitoring 

and future studies. Results of this analysis will provide data to help guide monitoring and 

watershed protection efforts for the UWRB. As population in this watershed continues to 

increase, adding to the demands on its water resources, knowledge of the factors that 

control nutrient loading as well as the affects of land use practices on water quality is 

essential to aid in water quality conservation practices and management strategies.    
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CHAPTER 2: STUDY AREA 

 

 

The Upper White River Basin watershed drains a large portion of the Ozarks 

plateau in southwest Missouri and northwest Arkansas encompassing portions of 9 

Arkansas counties and 10 Missouri counties. The UWRB consists of three 8-digit 

hydrologic unit codes (HUC): Beaver Lake watershed (11010001), James River 

watershed (11010002) and Bull Shoals Lake watershed (11010003) (Figure 2.1). This 

chapter describes the size, location, climate, hydrology, geology, and land uses 

throughout the UWRB. The 19 watersheds selected in this study are located at existing 

USGS stations throughout the basin (Table 2.1). 

 

Figure 2.1: UWRB reference map: Location of the UWRB in Missouri and Arkansas  
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Table 2.1: USGS gages: hydrologic unit, site number, name and sample site label of each 

USGS gage used as a sampling site in this study (USGS 2005)  

 
8 digit  

HUC  

number 

USGS 

site number 
USGS gage name 

1st year 

In 

 operation 

Site name  

for this study  

11010002 7052000 

 
Wilson Creek at Springfield, MO 1933 WC-Springfield (1) 

11010002 7052100 Wilson Creek near Springfield, MO 1972 WC-above SWTP (2) 

11010002 7052152 Wilson Creek Below Springfield, MO 1967 WC-at SWTP (3) 

11010002 7052250 James River near Boaz, MO 1972 JR-Boaz (4) 

11010002 7052345 Finley Creek below Riverdale, MO 2002 Finley R (5) 

11010002 7052500 James River at Galena, MO 1922 JR-Galena (6) 

10010001 7053400 Table Rock Lake near Branson, MO 1974 WR-below TR Dam (7) 

11010003 7053810 Bull Creek near Walnut Shade, MO 1995 Bull Ck (8) 

11010003 7054080 Beaver Creek at Bradleyville, MO 1994 Beaver Ck (9) 

11010002 7050700 James River near Springfield, MO 1956 JR-above Springfield (10) 

11010002 7050690 Pearson Creek near Springfield, MO 1999 Pearson Ck (11) 

11010001 7053207 Long Creek at Denver 1996 Long Ck (12) 

11010001 7053250 Yocum Creek near Oak Grove, AR 1993 Yocum Ck (13) 

11010001 7050500 Kings River near Berryville, AR 1939 Kings R (14) 

11010001 7049000 War Eagle Creek near Hindsville, AR 1952 War Eagle Ck (15) 

11010001 7048800 Richland Creek at Goshen, AR 1999 Richland Ck (16) 

11010001 7048600 White River near Fayetteville, AR 1974 White R-Fayetteville (17) 

11010001 7048550 West Fork White River E Fayetteville, AR 2001 West Fork White (18) 

11010003 7054410 Bear Creek near Omaha, AR 1994 Bear Ck (19) 

 

 

The UWRB drains a large portion of the Ozarks ecoregion that encompasses over 

15,636 km² (6,037 square miles or 3,863,844 acres) (MORAP 2004). Ten Missouri 

counties including Barry, Christian, Douglas, Greene, Lawrence, Ozark, Stone, Taney, 

Webster and Wright and nine Arkansas counties including Baxter, Benton, Boone, 

Carroll, Franklin, Madison, Marion, Newton, and Washington are included in the UWRB 

(Figure 2.1). Major population centers include Springfield, Fayetteville, Springdale, 

Ozark, Nixa, Branson, and Berryville. From 1990 to 2005 the population of most 

Southwest Missouri counties increased by 30% to 60% while average population growth 

for the entire state during this time was 13% (U.S. Census 2006).  
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Besides the main town centers, a large portion of the population growth and 

development is taking place in rural areas around the lakes and scenic waterways in the 

basin as inhabitants seek these areas to build retirement and recreation homes. Much of 

this new population is moving into rural developments that use on-site septic systems to 

treat wastewater. Many of these systems fail to adequately treat the wastewater due to 

lack of filtering soils or lack of maintenance by property owners. Failing septic systems 

are considered a non-point source of nutrients and can add significant nutrient 

contamination to surface and ground water (Wernick et. al. 1998).  

Originating from the western end of the Boston Mountain uplands in northwestern 

Arkansas, the White River forms a 6
th

 order stream as it flows north toward Missouri into 

Beaver Lake. The river eventually becomes an 8
th

 order stream and enters Table Rock, 

Taneycomo and Bull Shoals Lake systems. These lakes provide water and electric power 

to the region’s population. The UWRB is home to many sports fish species. These 

include smallmouth bass, largemouth bass, spotted bass, white crappie, Ozark bass, 

channel catfish, brown trout and rainbow trout (MODOC 2001). The abundance of many 

of these species has given the watershed a reputation as one of the best fishing regions in 

the country. The dams have also provided ideal locations for cold-water fisheries which 

thrive in the cool water emanating from below the dams. Among some of the endangered 

aquatic species in this watershed are Ozark cavefish, checkered madtom, Ozark shiner, 

several species of darters, the Salem Cave crayfish and the Meek’s crayfish (MODOC 

2001).  
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Geology 

Geology in the UWRB is typical of the Ozarks characterized by karst features 

such as sinkholes, caves, bedrock fractures and loosing streams. This allows direct 

linkage from surface waters to groundwater without filtration (Langer 2002). Karst 

terrain is formed over time by the erosion and weathering of limestone and dolomite 

bedrock as slightly acidic rainwater creates channels, caverns and sinkholes into this 

material. The weathered carbonate rock forms residual soils containing resistant cherts 

and clay. Erosion of the residual soil accounts for the tumbled gravels found in 

streambeds of the region. The headwaters of the White River are composed of coarser 

stones and boulders of limestone and sandstone in confined valleys where many 

riverbanks in northwestern Arkansas are composed of layers of shale, a feature of the 

Boston Mountain uplands. Figure 2.2 shows the predominantly carbonate geology of the 

UWRB with large areas of shale in the southern headwaters region of the White River.  

The landscape, topography and soils in the basin are typical of the Ozarks.  Slopes 

can be 5 to 90 degrees and tend to be steeper in areas close to creeks or water bodies 

where bedrock bluffs are exposed. Soils on the broad ridge tops are relatively deep with 

thin silt-loams over clayey residuum on limestone, shale and sandstone bedrock. Soils 

often contain a moderate amount of cherty rock fragments and support a variety of oak 

and hickory trees. Soils on slopes are thin and poor, supporting mainly smaller oaks, 

smoke-bush and cedar. Creek-bottom soils are gravelly in the upper reaches and become 

deeper silt loams in the lower reaches of streams. These areas contain sycamore, willow 

and other bottom-land vegetation. The majority of the streams in the basin are 

characterized by a shallow bottom composed of bedrock rock and gravel.  
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Climate 

The climate of the UWRB is temperate with mild winters and warm summers. 

The thirty-year mean temperature for the region is approximately 14 Cº.  Average 

seasonal temperatures in the study area rangees from 13 to 18 Cº in the spring, 24 to 26 

Cº in the summer, 13 to 16 Cº in the fall and 5 to 18 Cº in the winter (NOAA 2006). The 

northern section of the UWRB receives an average annual precipitation of 107 

centimeters while the southern areas of the basin receive 120 centimeters per year. 

Rainfall throughout the region averages 109 centimeters (43 inches) per year (MODOC 

2001).The majority of precipitation occurs from March to June (NOAA 2006).   

 

Hydrology 

Originating in the Boston Mountain uplands of Arkansas, the White River flows 

approximately 3,000 kilometers as it makes its way north into Missouri and south again 

to the Bull Shoals reservoir in Arkansas. At its origin, the White River is at an elevation 

of approximately 675 meters and by the time it flows over Bull Shoals dam its elevation 

has dropped to 160 meters (NED 1999). The UWRB contains 18 major tributaries with 

approximately 7,300 kilometers of flowing streams and many ephemeral streams where 

most or all flow drops below the surface into underground channels during dry periods 

(USGS 1993).  Table 2.2 shows the sampling sites and their drainage area size. Figure 2.3 

shows the locations of the sites along the major tributaries of the White River in both 

Missouri and Arkansas.  
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Figure 2.2: Surficial Bedrock map.  General bedrock types in the Upper White River 

Basin (Arkansas Archaeological Survey 1989; MODNR 1979) 
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Table 2.2: Sampling sites: Site labels, elevation, drainage area size and location of each 

USGS gage/sampling site used in this study 

 

Sampling Sites Elevation 

(m) 

Drainage 

area (km²) 

County State 

WC-Springfield (1) 366 51 Greene MO 
WC-above SWTP (2) 350 92 Greene MO 
WC-at SWTP (3) 344 132 Greene MO 
JR-Boaz (4) 316 1199 Christian MO 
Finley R (5) 347 665 Christian MO 
JR-Galena (6) 281 2567 Stone MO 
WR-below TR Dam (7) 212 10394 Taney MO 
Bull Ck (8) 217 503 Taney MO 
Beaver Ck (9) 245 771 Taney MO 
JR-above Springfield (10) 348 633 Greene MO 
Pearson Ck (11) 366 56 Greene MO 
Long Ck (12) 305 265 Carroll AR 
Yocum Ck (13) 305 117 Carroll AR 
Kings R (14) 294 1374 Carroll AR 
War Eagle Ck (15) 356 685 Madison AR 
Richland Ck (16) 351 361 Washington AR 
White R-Fayetteville (17) 347 1039 Washington AR 
West Fork White (18) 351 325 Washington AR 
Bear Ck (19) 305 344 Marion AR 

 

Land Use 

The majority of the land within the UWRB is privately owned. There are also 

several thousand acres of National Forest including portions of Mark Twain National 

Forest and Ozark National Forest. Land use includes urban development, poultry 

production, agricultural pasture, crops and forest (Figure 2.4). Agriculture, including 

pasture and confined animal feeding operations, make up a large portion of the UWRB 

watershed and its economy.  Farming in the UWRB includes beef and dairy cattle 

pastures, hog and poultry production, fruit crops, corn, and feed and forage crops.  Urban 

areas in the UWRB are largely centered on Springfield, Springdale, Fayetteville and 

Branson. Springdale and Fayetteville largely drain into the Elk and Spring Rivers to the 

west of the UWRB.  
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Figure 2.3: Hydrology and sample site map. Sampling sites, streams and lakes in the 

UWRB watershed, Missouri and Arkansas 
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Figure 2.4: Land use classification map. Land use in the Upper White River Basin  
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Individual Sampling Sites 

James River Basin Watershed (HUC 11010002). Three sampling locations are 

in the Wilson Creek watershed which drains the Springfield, MO area. WC-Springfield 

(1), WC-above SWTP (2) and WC-at SWTP (3) are located at USGS gages 07052000, 

07052100 and 07052152 and are dominated by urban land use (Figure 2.5). Agricultural 

land use in these watersheds increases outside of the city limits in surrounding rural 

areas. However, population growth around Springfield is transforming much of the 

farmland into residential subdivisions and urban industrial areas to meet the housing and 

shopping needs of the expanding city. The WC-Springfield (1) sample site is located 

beneath the bridge at Scenic Ave. (Figure 2.6). The drainage area of this site is the 

smallest of all the sites sampled in this study with approximately 52 km² (MORAP 2004).  

WC-Springfield (1) sampling site was always very slow-moving at base-flow 

conditions during the sampling period. This reach was approximately 25 meters across at 

bank-full level with some areas of bank erosion and incision. The channel at this site 

showed evidence of human disturbance from trash dumping, construction materials 

dumping and flood control structures such as boulders and concrete. Gravely substrate 

was mixed with pieces of concrete and large cobbles that had been torn from widening 

banks during rain events. There was also a large amount of woody debris and plastic trash 

in the streambed and on trees farther up on the banks, indicating flash flooding and 

rapidly receding storm waters characteristic of this highly impervious watershed. 

Downstream of WC-Springfield (1) at County Road 156 is the location of sample site 

WC-above SWTP (2) (Figure 2.7). This site encompasses the watershed of WC-

Springfield (1) at 92 km². 
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Figure 2.5: Springfield urban map. Extent of urban land use in Wilson Creek and Pearson 

Creek basins  

 

 

 

Figure 2.6: WC-Springfield (1). Scenic Ave. Springfield, MO (November 12, 2005) 
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There are pastures on both sides of this reach and cattle use the stream as a drinking 

source. Cattle have also caused loss of vegetation on the banks which show evidence of 

severe scouring and soil erosion. Baseflow discharge during the sampling period was 

very low and completely swallowed up just below the USGS gage where fractured 

bedrock allowed stream flow to enter below the surface of the streambed in a feature 

known as a swallow hole or karst fracture. The stream was completely dry during the 

September 2005 sampling run when there had been no rain in this region for over a 

month.  Due to the extremely flashy hydrology of Wilson Creek, large tree trunks move 

down the channel during storm events and can be seen clogging the channel (Figure 2.7). 

Located downstream of the WC-Springfield (1) and WC-above SWTP (2) is WC-

at SWTP (3) near Brookline, Missouri. This drainage basin is 132 km² but the sample site 

receives most of its baseflow discharge from the Springfield Southwest Wastewater 

Treatment Plant, an average of 39 million gallons of effluent per day (SWTP 2006). 

Stream levels are therefore relatively constant at base-flow conditions. Water samples 

were taken on the downstream side of the Farm Road 168 Bridge (Figure 2.8). Again, 

there was evidence of very high water levels during storm events. Large woody debris, 

trash, tires and other objects were scattered on the banks as high up as the aging stone 

wall supporting the bridge. Gravel substrate was clean indicating that there is not a large 

community of attached algae in this reach which is severely affected by flashy storm 

events as run-off from urban areas upstream flushes quickly downstream.  
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Figure 2.7: WC-above SWTP (2). Site at County Road 156 near Springfield, Missouri 

(February 5, 2006) 

 

Figure 2.8: WC-at SWTP (3). Site off West Farm Road 168 (November 12, 2005) 
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James River-Boaz (4) is located a USGS gage number 07052250 and drains 

nearly 1,200 km² of area including Wilson Creek, Pearson Creek and the upper James 

River watersheds. This watershed receives effluent from the Springfield WTP and from 

Nixa and Rogersville WTPs. This sample site is surrounded by farmland made up of 

cattle pastures. There are also many construction projects ongoing in the Boaz area where 

more homes and subdivisions are being built to accommodate the growing population of 

Springfield. Figure 2.9 shows the shallow, wide channel of the James Rive at Boaz. 

Substrate in this reach is made up of small to mid-sized gravel which provide attachment 

surface for the prolific growth of algae in the sun-lit, high-nutrient water. Sycamore trees 

lean into the open space of the river as soil is scoured out of the banks, removing support 

at the root zone.  

 

Figure 2.9: James R-Boaz (4). Photo was taken looking upstream from the bridge at West 

Big Bend Road (November 12, 2005) 
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 Finley Ck (5) at the Riverdale Road Bridge (USGS gage 07052345) has a 

drainage area of 665 km² (Figure 2.10). It is dominated by agricultural land use, mainly 

cattle pastures, and also has some urban area and forest land. Geology is similar to the 

James River watershed, made up of predominantly carbonate bedrock with varying soils 

from clayey in the uplands to gravel and organic soils in the bottomland areas. This 

watershed is affected by the 5 wastewater treatment facilities located near the towns of 

Nixa, Ozark, Sparta, Fordland and Seymour. The nearest of these municipal facilities is 

located 7 km upstream of the sampling point. Combined discharge is 1.5 million gallons 

of effluent per day.  As with many of the cattle operation near streams in rural areas 

Finley Creek is used as a water source for livestock which are allowed access to the 

stream. This site also had signs of illegal dumping of appliances, tires and deceased 

animals.  

 

 

  Figure 2.10: Finley Ck (5). Site at Riverdale Road Bridge (February 12, 2006) 
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James River-Galena (6) sampling site is at USGS gage 07052500 and is the 

largest of the watersheds in this study. It encompasses Wilson Creek, Finley Creek, 

Pearson Creek and the upper and middle James River watershed. This basin is over 2,560 

km² and approximately 1/3 forest area with much of the remaining areas made up of 

grassland/pastures and urban areas. James R-Galena receives the wastewater effluent 

from Springfield, Nixa, Ozark, Rogersville, Crane, Seymour, Fordland, Hurley, Sparta 

and Cleaver as well as the Galena WTP just upstream of the sample site. Figure 2.11 

shows the accumulation of algae in the slower moving portions of the river. Attached 

algae as well as floating algal masses were abundant during the sampling period and 

during all seasons. Figure 2.12 shows the same location as that in Figure 2.11 later in the 

winter season of the sampling year. Attached algae on the streambed also covered the 

majority of the base-flow channel in late winter and early spring months (Figure 2.13).  

 

Figure 2.11: Algae in the James River. Galena, Missouri (November 12, 2005) 
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Figure 2.12: Floating algae in the James River. Galena, Missouri (February 5, 2006) 

 

 

 

 

Figure 2.13: Attached algae: James River-Galena (6), Missouri (February 5, 2006) 
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James R-above Springfield (10) is located in the upper reach of the river just 

above the USGS gage 07050700 near East Kinser Road (Figure 2.14). This watershed 

drains the headwaters of the James River and Pearson Creek watershed covering 633 

km². Land use includes pastures, forest and developing urban areas, particularly near 

Springfield. The expanding cities threaten this watershed with more non-point sources of 

nutrient pollution from urban growth. Stream flow at the JR-above Springfield (10), is 

slow-moving at baseflow due to low gradient. Yard wastes, grass clippings, pet litter, 

trash, animal carcasses and fish cleaning wastes are thrown into the river all along this 

reach creating an undesirable odor and reduced aesthetic value of the river at this site. 

 

 

Figure 2.14: James R-above Springfield (10) (November 12, 2005) 
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Pearson Creek is also heavily impacted by construction and development on the 

northeast side of Springfield (Figure 2.11). The drainage area is nearly 57 km² and has a 

large amount of urban impervious area especially in the southwest area of the watershed 

in Springfield. Northeast areas are predominantly pastures where cattle often use the 

creek as a water source. The fence in Figure 2.15 was rebuilt along the edge of the 

pasture to prevent cattle from moving down stream but allow access to the water. The 

USGS gage located on Farm Road 148 Bridge was removed in September, 2005 and the 

bridge was rebuilt. The construction process introduced more sediment to the stream at 

this location and Figure 2.15 shows the newly seeded stream bank which continues along 

the water’s edge. Several sinkholes within the city of Springfield to the west have been 

dye traced and shown to drain into the Pearson Creek basin (Aley and Thompson 2002). 

 

 

Figure 2.15: Pearson Creek (11). Stream bank at edge of new Farm Road 148 Bridge 

(February 5, 2006) 
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Bull Shoals Basin Watershed (HUC 11010003). Bull Shoals Basin is the area 

that encompasses the UWRB tributaries east of the James River Basin, generally flowing 

parallel to the James River and watersheds that flow north out of Arkansas into Bull 

Shoals and Taneycomo Lakes (Figures 2.1 and 2.2). This study sampled 4 sites in the 

Bull Shoals Basin. Bull Creek (8) and Beaver Creek (9) were in streams that flowed 

south, located east of the James River Basin in Missouri. Bear Creek (19) flows north 

from Arkansas into Bull Shoals Lake while White River-below Table Rock Dam (7) is a 

lake sampling site.  

Bull Creek (8) at USGS gage 07053810 is one of the least developed stream 

reaches in this study. A beaver dam shown in Figures 2.16 and 2.17 is one of the non-

human developments found in this watershed. Many bass, perch and other fish species 

are visible in the pools along this stream. The drainage area is approximately 500 km² in 

size and is dominated by forest with only a small area of urban. This watershed is 

threatened by rapid expansion due to its proximity to Highway 65, connecting the area to 

Springfield and Branson, MO. Beaver Creek (9) basin contains more pasture than Bull 

Creek watershed and supports a large number of beef cattle operations. The basin is 770 

km² in size and receives effluent from Ava, MO WTP. The water sampling location at 

Beaver Creek (9) is at USGS gage 07054080 (Figure 2.18). Also visible in Figure 2.18 is 

the large gravel bar filling up a portion of the streambed. Gravel mining has been taking 

place in this area as evident by the tire marks from hauling trucks. Geology types in the 

Bull Creek and Beaver Creek basins are similar to those found in the James River 

watershed, mainly carbonate limestone and dolomite, with Beaver Creek watershed 

containing some sandstone formations. 



 36 

 

Figure 2.16: Bull Creek (8). USGS gage site with beaver dam (November 12, 2005) 

 

 

Figure 2.17: Beaver dam. Bull Creek (8) (November 12, 2005) 
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Figure 2.18: Beaver Creek (9). Site at Bradleyville, Missouri (February 5, 2006) 

 

The Bear Creek sample site at USGS gage 07054410 is off the Highway 14 bridge  near 

Omaha, AR (Figure 2.19). This location has also been used as a dump for old furniture, 

appliances and animal carcasses during the hunting season. The highest nutrient readings 

for this stream were from samples collected during the fall, 2005 hunting season when 

the creek was used as a dump for deer carcasses (Figure 2.20). The Bear Creek watershed 

reaches into the dolomite formations (33% of the drainage area) characteristic of the 

northern and eastern portions of the UWRB. Geology in this watershed is also composed 

of 49% limestone and 18% sandstone. Land use is primarily forested (65%) and 

pasture/grasslands (31%) with just over 1% urban area.  
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Figure 2.19: Bear Creek (19). Site at Highway 14 Omaha, AR (November 13, 2005) 

 

 

Figure 2.20: Deer carcass. Bear Creek during the fall hunting season which coincided 

with higher nutrient readings in the water samples (November 13, 2005) 
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White River-below TR Dam (7) (USGS gage 07053400) is distinct from other 

sampled sites in this study due to its being taken from a reservoir rather than a stream 

(Figure 2.21). Nutrients, the main focus of this study, behave differently in these lentic 

systems than in flowing or lotic systems. Phosphorus is often associated with turbidity 

and sediment particles which will settle out in a reservoir while in a stream they are 

moved with the current. Nitrates are also less variable in reservoirs and may also be 

converted through respiration of aquatic organisms or through chemical denitrification in 

the oxygen-poor sediment zone or deeper regions of the reservoir. The UWRB watershed 

above Table Rock Dam is over 10,390 km² and encompasses the Beaver Lake watershed 

and the James River watershed.  

Table Rock Lake watershed contains more than half forest area with intensive 

agricultural operations and grazing in the open grasslands and in the poultry producing 

regions of northwestern Arkansas. Often the flood plains are used as pasture in the James 

River Basin region as shown in Figure 2.22 where cattle graze near Wilson Creek. The 

Cities of Springfield and Fayetteville are the major urban centers, but there are also 

numerous towns and communities that add to the overall percentage of urban land use in 

the watershed. Beaver and Table Rock Lakes have a large amount of development around 

their shores from construction of vacation homes, condos and resorts near the water. This 

corridor of development around the lakes is increasing the overall urban land use area in 

this watershed. Figure 2.23 shows the numbers of municipal wastewater plants in the 

UWRB and also shows many communities around the lakes that do not have municipal 

plants. These communities rely on septic systems or neighborhood wastewater plants to 

treat their sewage.  
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Figure 2.21: White River-below Table Rock Dam (7) (November 12, 2005) 

 

 

Figure 2.22: Cattle in the flood plain. Near Wilson Creek in the UWRB watershed 
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Figure 2.23: Municipal WTP map. Wastewater treatment plants in the Upper White River 

Basin (data from the Missouri Department of Natural Resources and the Arkansas 

Department of Environmental Quality). Circles indicate relative volume of discharge. 
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Beaver Lake Basin Watershed (HUC 11010001).  Beaver Lake Basin watershed 

consists of the headwaters of the White River, Beaver reservoir and all of the tributaries 

to the White River and Table Rock above Table Rock Dam excluding the James River 

Basin. Arkansas tributaries flow from the Boston uplands northward into the White 

River. The headwaters of the White River originate from the shale bedrock in the Boston 

uplands and flow north into Beaver reservoir, Table Rock reservoir and eventually 

southward again into Bull Shoals. The Yocum Creek tributary does not contain a 

significant amount of shale bedrock since this stream originates outside of the Boston 

shale uplift. Kings River, War Eagle Creek, Richland Creek and the two forks of the 

Upper White River contain shale bedrock in their headwaters reaches and limestone 

bedrock in lower reaches. Kings River watershed also contains sandstone formations in 

the mid reaches of its drainage area.  

Long Creek (12) at USGS gage 07053207 is slow-moving and relatively deep 

(Figure 2.24).  The banks are lined with river cane, a prolific bottomland species, which 

helps hold erodeable, sandy soils. Long Creek basin drains karst limestone and some 

shale bedrock. The shale formations extend throughout much of the headwaters. Urban 

areas make up a small portion of this 265 km² watershed, while limestone quarries and 

road construction sites cover a significant area, 2%.  Poultry is a major farm product in 

this region and pastures are often fertilized with litter, to boost forage production and 

provide for poultry litter disposal (Figure 2.25). This practice, with its associated strong 

odor, was observed on several occasions while sampling in the Long Creek watershed.   
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Figure 2.24: Long Creek (12). Site near Denver, Arkansas (November 13, 2005) 

 

 

 

Figure 2.25: Poultry houses near Long Creek. (February 6, 2006) 
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Yocum Creek (13) is located off of the gravel County Road 614 at USGS gage 

07053250 (Figure 2.26). This reach is relatively fast moving at baseflow and is composed 

mainly of deep gravel sediments with the deepest pools reaching bedrock. The drainage 

basin for this site is 117 km² and contains mostly pasture land with scattered forest 

mainly on the steep slopes. Urban areas are small and include the towns of Oak Grove 

and Green Forest. Yocum Creek watershed also contains a relatively large amount of 

barren area from the many quarries mining the limestone bedrock for construction and 

development throughout the UWRB watershed. As in the Long Creek watershed, poultry 

and cattle operations are a major industry in the Yocum Creek watershed.  

 

 

Figure 2.26: Yocum Creek (13). Near Oak Grove, Arkansas at County Rd. 614, (February 

6, 2006) 
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The Kings River watershed is more than 1,370 km² in size and the second largest 

watershed in this study, after the James River Basin. Kings River (14) is located on State 

Highway 143 at the USGS gage station 07050500 (Figure 2.27). The majority of this 

watershed is forested with the Ozark National forest covering some of the headwaters 

region of the river.  Remaining land use is pasture and some urban. Berryville WTP is a 

point source discharging 2.4 million gallons per day into Kings River. As with the other 

watersheds in this region of the UWRB, northwestern Arkansas, Kings River watershed 

sustains a large poultry industry which produces tons of litter often used as fertilizer on 

cattle pastures.   

 

 

Figure 2.27: Kings River (14). Site at Highway 143 near Berryville, Arkansas 

(November 13, 2005) 
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War Eagle Ck (15) sample site is downstream of  USGS gage station 07049000  

and has a watershed of 685 km². This sample site was accessible from State Highway 45 

(Figure 2.28). The drainage area contains mostly forest in the headwaters and cattle 

pastures in the flat bottom lands. Poultry production and cattle farming are also major 

industries in the War Eagle Creek watershed which is located west of Kings River 

watershed. A typical poultry operation in the War Eagle Creek area is seen in Figure 

2.29. War Eagle Creek watershed also receives WTP effluent from Huntsville 

municipality which discharges approximately 2 million gallons per day. War Eagle Creek 

(15) has a forked streambed around the Hwy 45 bridge supports with large tree trunks 

and woody debris caught against the supports indicating very powerful storm water flows 

(Figure 2.28). The left bank at this reach was steeply incised from erosion and mass 

wasting. The right bank had depositions of fine and coarse gravels.  

 

 

Figure 2.28: War Eagle Creek (15). Site at Hwy 45, Arkansas (November 13, 2005) 
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Figure 2.29: Poultry houses near War Eagle Creek. (February 6, 2006) 

 

The Richland Ck (16) sampling site had a similar appearance to the Long Creek sampling 

location with thick stands of river cane on both sides of the stream and nearly stagnant 

water during base-flow conditions (Figure 2.30). This sampling location is on Highway 

45 near Goshen, AR at the USGS gage 07058800. The streambed is composed of 

smoothed limestone bedrock with thick colonies of slippery, attached alga and biofilms 

completely covering the surface. Land use in the Richland Creek watershed is mainly 

forest with areas of grassland/pasture and some urban areas closer to Fayetteville, AR. 

The geology type changes throughout the watershed similar to War Eagle Creek where 

shale bedrock makes up the headwaters and limestone is predominant in the downstream 

reaches.  This watershed is threatened by increasing confined animal, agricultural 

operations and urban growth from the nearby city of Fayetteville, AR.  
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Figure 2.30: Richland Ck (16). Site near Goshen, Arkansas (February 6, 2005) 

 

The headwaters of the White River originate in the Ozark National Forest and flow past 

the Cities of Fayetteville and Springdale which are located on the southwestern edge of 

the UWRB watershed. The White River-Fayetteville (17) sampling site is at the East 

Wyman Road Bridge at USGS gage 07048600 (Figure 2.31). The watershed area is 

approximately 1,038 km² in size. In the lower reaches where the landscape flattens into 

wide valleys and broad ridges, intensive agricultural operations dominated by cattle 

grazing, poultry farms and confined hog operations occupy much of the bottomland 

areas. Land use is primarily forested and agriculture but contains an increasing amount of 

urban residential area from the spreading suburbs of Fayetteville, AR. The water in this 

reach is slow-moving and very turbid. Similar to the James River near Springfield, the 

White River is used as trash dump by the local population for old appliances, tires and 
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batteries (Figure 2.32). The West Fork of the White River passes closer to the town of 

Fayetteville and drains an area over 325 km². This watershed is encompassed by the 

White River-Fayetteville (17) watershed. West Fork White River (18) is located off of the 

gravel Harvey Dowell Road at the USGS stations 07048550 (Figure 2.33). Urban land 

use increases in this watershed to approximately 11% due to its vicinity to Fayetteville, 

Arkansas. Forest areas still cover 70% of this watershed and the remainder is 

grassland/pasture (18%) and barren/transitional areas (1.4%). This stream is also littered 

with trash from local dumping.  

 

 

Figure 2.31: White River-Fayetteville (17). Site near Fayetteville, Arkansas off of 

Wyman Road (February 6, 2006) 
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Figure 2.32: Trash thrown in White River. White River-Fayetteville (17) (February 6, 

2006) 

 

 

Figure 2.33: West Fork White River (18). Site near Fayetteville showing the USGS gage 

sensors extending into the water on the right (November 13, 2005) 
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CHAPTER 3: METHODOLOGY 

 

 

This section describes the research design and methods used to collect and 

analyze data for this study. Studying the relationships between watershed characteristics 

and nutrient concentrations from the 19 selected sites required extensive field sampling, 

laboratory analysis, geographic information systems (GIS) development and statistical 

analysis. The field sampling methods and laboratory procedures used in this study 

followed Standard Operating Procedures (SOPs) approved by the United States 

Environmental Protection Agency. Field collection was done using a multi-probe water 

quality meter, by collecting grab samples, collecting duplicate and blank samples, 

measuring stage, and by taking field notes at each sampling site.  

Laboratory methods included preparation of standards for quality control and 

sample analysis to estimate Total Nitrogen (TN) and Total Phosphorus (TP) 

concentrations. Geographic information processing was very intensive for this project 

and involved gathering spatial data layers from various sources, integrating these layers 

across states and county boundaries to cover the study area, and extracting quantitative 

information from these spatial layers. Microsoft Excel software was used to tabulate data 

and study relationships between watershed characteristics, water chemistry and nutrient 

concentrations. The Standard Operating Procedures (SOPs) used in this study are 

available online at www.oewri.missouristate.edu. 

 

 

 

 

http://www.oewri.missouristate.edu/
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Field Methods 

Nineteen sampling sites were established across the Upper White River Basin at 

existing USGS gages along the main stem and 9 major tributaries of the White River 

(Figure 2.3). The GPS location coordinates for these sites are available at the USGS 

water quality website (http://mo.water.usgs.gov/). Eight sample sites were located in the 

James River arm of the UWRB including: (1) three sites on Wilson Creek, a tributary of 

the James River draining Springfield: (2) one site on Pearson Creek: (3) one on Finley 

Creek: and (4) three sites in the main channel of the James River. One sample site each 

was located on Beaver and Bull Creeks, major tributaries that flow south into the White 

River from Missouri. Tributaries that flowed northward from Arkansas included  Bear 

Creek, Long Creek, Yocum Creek, Kings River, War Eagle Creek, Richland Creek, West 

Fork of the White River and the White River near Fayetteville, Arkansas. In total, 11 sites 

were sampled in Missouri and 8 sites were sampled in the Arkansas portion of the 

watershed (Figure 2.3). 

Sample sites were numbered by chronology of sample collection. Water samples 

were collected from sites 1 through 11 creating a travel loop from Missouri State 

University through the Missouri sites and back to Springfield on one day of sample 

collection.  Sites 12 through 19 were collected on the second day of sampling after taking 

highway 65 south from Springfield into Arkansas. Weekends were chosen for sampling 

in order to keep sampling times for all sites as close together as possible since this 

presented more free time from work and class schedules. Water sampling was conducted 

within the first half of each month for one year form March, 2005 to February, 2006. This 

http://mo.water.usgs.gov/
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yielded 12 monthly datasets of water chemistry and nutrients for each site. Laboratory 

analysis was performed within 28 days of sampling as required by quality control.  

Sample Collection. Five hundred milliliter (mL) sample bottles were cleaned 

before each sampling run with an acid wash of 2% diluted hydrochloric acid and properly 

labeled with the site name, date and sample type (Figure 3.1). Water samples were 

collected as grab samples at a wadeable depth at each stream site. Using this method, the 

sample bottle was rinsed three times in the stream to remove any cleaner or acid wash 

solution. The bottle was then inserted into the water at approximately 1/3 of the stream 

depth below the surface and orientated into the stream flow. Care was taken not to collect 

sediments that had been disturbed while wading into the stream. The sample bottle was 

held in the water until approximately 80% of the bottle was full and then quickly 

removed and capped. This prevented sediment and dissolved solids carried in the flow 

from accumulating in the bottle beyond what was present in the average unit of water.  

 

 

Figure 3.1: Labeled sample bottles. Containers used for water quality grab sampling  
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Quality Control. Duplicate samples were taken for two different sites on each 

sampling date. These sites were split between Missouri and Arkansas sites. Collection of 

duplicate samples is used to compare and confirm nutrient readings taken during analysis. 

Field blank samples were prepared at the same place and time as duplicate samples. This 

was done by using a container of deionized water brought from MSU Geomorphology 

Laboratory, which was poured into appropriately labeled bottles while at the field site. 

Field blank samples were used to check for contamination introduced into the water 

samples through collection error. All samples, duplicates and blanks were preserved from 

further biological and chemical activity by lowering the pH to approximately 2 using 

drops of sulfuric acid and pH paper. Samples were transferred to an ice cooler while in 

the field and stored in a refrigerator at the Geomorphology Laboratory prior to analysis.   

Water chemistry measurements including pH, water temperature, turbidity, 

dissolved oxygen (mg/L), total dissolved solids (g/L) and conductivity (µS/cm) were 

collected using a Horiba U-22 Multi-Parameter probe (Figure 3.2). The U-22 is a 

handheld instrument with a digital readout screen that shows the values of simultaneously 

collected water chemistry variables by the submersible probe. The U-22 probe was 

orientated into the water flow, submerged, and all parameters were recorded in a field 

book and saved in the memory of the unit.  Data from the U-22 was downloaded to a 

computer upon returning to the laboratory. The Horiba U-22 system is accurate to within 

± 0.3º C for water Temperature, ± 1 percent for conductivity, ± 0.1 mg/L for dissolved 

oxygen, ± 0.05 for pH and ± 5 percent for turbidity. The Horiba U-22 was calibrated 

before field sampling using standard solutions provided by the manufacturer.  
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Figure 3.2: Horiba U-22. Unit displays digital readout screen (left) and probe (right) 

 

 

 

Stream Stage Measurements. Metered stadia rods were used to measure water 

depth at each sampling site. On the first sampling run in March, 2005 an in-stream 

location with a stationary bottom was established from which to measure water depth. At 

many sites, the footers of bridges presented a stationary location from which stage was 

measured. Chosen stage recording locations were noted and stream depth was taken from 

the same location for each sampling run.  Using USGS real-time data (website at 

www.usgs.org) the antecedent major stream flow events before each sampling date were 

examined for each site in order to examine the possible lingering effects of recent high 

flow events.   
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Laboratory Methods 

       Water samples were tested for TN and TP concentrations using a persulfate 

digestion and spectrophotometer procedure. All laboratory methods used in this study 

followed procedures accepted by the EPA for the Total Maximum Daily Load (TMDL) 

study on the James River watershed. These methods area described in the Standard 

Operating Procedure (SOP) for Total Nitrogen Version 1 and the SOP for Total 

Phosphorus Version 1 prepared by Dr. Biagioni of the MSU Chemistry Department 

(Appendix C).  

     Total Nitrogen (TN). The analysis method for Total Nitrogen (TN) was based on 

the persulfate oxidizing and digestion procedure described by Crumpton et. al. (1991). 

This method measures all forms of nitrogen (TN) present in a sample by converting all 

forms to inorganic nitrate and then deriving the concentrations of this compound. This 

method is becoming more readily accepted than the older, TKN or Kjeldal nitrogen 

digestion process which not only uses more toxic acids and chemicals but has a tendency 

to be less accurate. This inaccuracy is due to the Kjeldal digestion method measuring TN 

by addition of measurements of both the TKN nitrogen and NO3/NO2 (nitrate/nitrite) 

nitrogen present in a sample. However, during the Kjeldal digestion some of the nitrogen 

is converted to NO3 so that nitrogen is double counted causing an overestimation of the 

amount of TN (Patton and Kryskalla 2003).  Total Nitrogen concentrations for this water 

quality study were measured using an alkaline persulfate digestion and second-derivative 

spectroscopy (Patton and Kryskalla, 2003). It is a measure of all forms of nitrogen 

present in a sample. Water samples were first neutralized having been previously 

preserved with sulfuric acid upon collection. Samples were neutralized using NaOH 
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(sodium hydroxide) up to between pH 6 and 8. Ten milliliters of each sample was then 

combined with an alkaline persulfate oxidizing solution (digestion reagent) and heated to 

120º C in an autoclave. This process quantitatively converted most of the organic 

nitrogen compounds into nitrate, an inorganic nitrogen form. The digested samples were 

then acidified again using hydrochloric acid to break down any remaining solids from the 

digestion process into solution. A spectrophotometer which had first been calibrated with 

known concentrations of standard reagents through digestion procedure was used to 

detect the absorbance of nitrate molecules in the water samples measured at three 

wavelengths; 230, 225 and 220 nm. The second derivative was then calculated to obtain 

concentrations of TN in water samples based on the absorbance. The established 

detection limit for this method is a minimum of 0.1 mg TN/L with the upper range of 5 

mg TN/L which can be extended for some samples that have higher TN concentrations by 

dilution with deionized water.   

      Total Phosphorus (TP). Analysis for concentration of total phosphorus was 

performed by acid persulfate digestion. This method measured the amount of 

orthophosphate in a water sample after all forms of phosphorus had been quantitatively 

converted to this form (Patton and Kryskalla 2003). Neutralized samples were combined 

with 0.2 mL sulfuric acid and 0.08g ammonium persulfate and heated to 120 C° for 

digestion to convert phosphorus to orthophosphate. The samples were then returned to 

neutral using NaOH and phenolthaline as an indicator of acidity.  A combined molybdate 

solution (sulfuric acid, ascorbic acid, antimony potassium and ammonium molybdate) 

was added to the water samples, six standard solutions and three blanks which were used 

to calibrate the spectrophotometer. The molybdate solution caused samples to show a 
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blue color proportionate to the phosphorus concentration in the sample when analyzed at 

880 nanometer wavelengths. Absorbance readings from the spectrophotometer at the 880 

nanometer wavelength were entered into an Excel spreadsheet and concentrations of TP 

were calculated using the standard calibration. Quality control procedures used in this 

study are outlined in the Quality Assurance Project Plan for this work and approved by 

the EPA (Appendix C). This includes preparation of laboratory standard solutions of 

known concentrations for instrument accuracy assessment. Laboratory blank samples 

were prepared for both the TN and TP methods to ensure that contamination was not 

being introduced through human error during laboratory procedures. At least one quality 

control check, one laboratory blank, one matrix spike, one laboratory duplicate, one field 

duplicate and one field blank were analyzed for every ten samples. 

        Upon completion of laboratory analysis, the method detection limits for this 

study were calculated using the standard deviation of the laboratory blank standards 

multiplied by 3. Table 3.1 shows the method detection limits for TN and TP analysis on 

each set of monthly samples. The overall detection limits for TN and TP in this study was 

also calculated from the standard deviation of all of the blank standard samples. This 

detection limit was used as the standard from which to compare all other nutrient 

concentration values. According to the SOPs for TN and TP analysis (Appendix C) the 

Method Detection Limit (MDL) is calculated to establish the method’s ability to detect 

the analyte. This is performed by carrying through 7 or more separately prepared reagent 

blank solutions through all of the analysis preparation, digestion and spectrophotometer 

procedures. 
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Table 3.1 Method detection limits (MDL). Detection limits for the laboratory procedures 

are shown for each sample analysis date. Method detection limits were calculated as 3x 

the standard deviation of the blank laboratory standards. 

 

Sampling Date TN mg/L TP µ/L 

       March-2005 0.06 2 

       April-2005 0.00 0 

       May-2005 0.05 6 

       June-2005 0.04 3 

       July-2005 0.00 1 

       August-2005 0.05 7 

       September-2005 0.00 1 

       October-2005 0.16 1 

       November-2005 0.03 2 

       December-2005 0.17 1 

       January-2006 0.00 0 

       February-2006 0.01 1 

Method Detection Limit 0.1 4 

 

 

This study used 12 separately prepared sets of reagent blanks for both the TN and 

TP detection limits. The MDL was then calculated as 3 × standard deviation of all of the 

blanks.  MDL values for this study are 0.1 mg/L TN and 4 µg/L TP.  Detection limit for 

field sampling was also calculated as 3x the standard deviation of the blank field samples 

(0.3 mg/L for TN and 7 µg/L for TP). Field sample detection limits indicate that some of 

the field sampling may have additional nutrients from sampling error or the deionized 

water used for blank field samples. The general rule while examining the data from this 

study has therefore been to look at trends in data rather than pinpoint particular data 

values especially when these are extremely low.  
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  GIS Data Compilation 

           A Geographic Information System (GIS) was produced and used in this study to 

display and quantify spatial data including watershed characteristics. All GIS data 

compilation was performed using the ArcGIS suite of mapping software and ArcInfo 

licensed to the MSU Spatial Analysis Laboratory. Most of the spatial data layers were 

downloaded from the Missouri Spatial Data Information Service (MSDIS at 

http://msdis.missouri.edu) which is a web-based distribution center for spatial data 

created by Missouri Resources Assessment Partnership, the USGS, MODNR and others. 

University of Arkansas Center for Advanced Spatial Technologies (CAST) was another 

source of spatial data that was downloaded through Geostor clearinghouse website at 

http://www.geostor.arkansas.gov. Other datasets were extracted from original GIS layers 

or produced by manually digitizing or plotting GPS coordinates. Datasets were collected 

on both the Missouri and Arkansas portions of the UWRB and often did not match well 

across state boundaries. Data used in this project included land use, geology, elevation, 

National Pollution Discharge Elimination Systems (NPDES) point sources, river and 

stream networks, sub-watershed boundaries, political boundaries and sampling locations.  

  Sampling locations were plotted using a table of the GPS coordinates which 

were obtained directly from the USGS real-time stations and water quality website 

(http://waterdata.usgs.gov/mo/nwis/rt). Land use data from 2004 for Missouri and 

Arkansas was downloaded from the MSDIS and CAST web servers, respectively. These 

data were produced using high-resolution satellite imagery of the states and extensive 

field verification of land use classification (Blodgett 2005; Gorham 2005). However, the 

original land use datasets did not match across state boundaries due to different 

http://msdis.missouri.edu/
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classification systems and a different number of classes between the two states. Arkansas 

data had 15 classes with more agricultural distinctions while Missouri land use data 

contained 13 classes with more distinction between different levels of urban land use. In 

order to match the project study area across state boundaries, the land use classifications 

for both states were simplified to produce eight basic classes that were consistent across 

both states. The accuracy of this reclassification was tested by how well the two state 

land use datasets matched across the state boundary lines when combined. The eight 

classes, urban impervious, urban residential, barren, cropland, grasslands, forest, 

scrublands/young forest and open water were quantified by each sub-watershed in this 

study as percentage of total land use.  

Through examination of land use data and preliminary data exploration even the 

eight simplified classes of land use presented redundant relationships. A study by 

Baginska et. al. (2003) about the role of land use resolution on nutrient concentrations 

found that only four or five major land use categories were required to estimate potential 

nutrient inputs from land use within a watershed basin. In order to cut down on the 

excessive amount of land use data processing, as well as reduce redundancy, the eight 

classes were further summarized into 1) ―urban‖ (including both urban categories), 2) 

―barren/transitional‖, 3) ―agricultural‖ (including both grasslands and croplands) and 4) 

―forested‖ (forest and scrubland/young forest). Since the Land use data was based upon 

2003-2004 aerial imagery, the assumption in using this data set was that the amount of 

change in land use was not significant enough to measurably alter the conclusions 

obtained when used at the large scale of this study. 
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           Geology data used for this project was also obtained from MSDIS and Geostor. 

This information consisted of bedrock types, their attributed classification and extent. As 

with the land use data, state geology classifications for Arkansas did not match the 

geology classifications for Missouri. While this data matched visually in the ArcGIS 

mapping software, the attribute information associated with the geology layers was 

inconsistent from one state to the other. Again, the classification scheme was simplified 

and the data attributes were interpreted as belonging to one of several predominant 

bedrock types including limestone, dolomite, shale and sandstone. Elevation data from 

MSDIS and CAST which were used as digital elevation models (DEM) were created by 

the USGS Eros Data Center’s National Elevation Dataset (NED, 1999). This information 

was available by county and was created using stereo pairs of aerial photographs. All of 

the counties of the UWRB in Missouri were combined with the Arkansas counties to 

form a continuous surface. This digital elevation model had a resolution of 30 meters to 

each pixel. Based on sampling point locations and elevation data, ArcHydro analysis 

software was used to delineate the 19 watersheds within the UWRB study area.  

 Using watershed boundaries, land area in square kilometers, percentage of land use 

class and percentage of geology type were calculated for each watershed. Arkansas 

Department of Environmental Quality (ADEQ) and the Missouri Department of Natural 

Resources (MODNR) provided the National Pollution Discharge Elimination Systems 

(NPDES) data on wastewater treatment plants and discharge volumes. Additional spatial 

data including river and stream networks, roads and political boundaries were obtained 

from the USDA Spatial Data Gateway, the USGS National Hydrology Dataset, MSDIS, 

and the University of Arkansas CAST (USGS 1993; Blodgett 2005; USDA/NRCS 2005).  
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Least Squares Linear Regression Analysis 

         A commonly used correlation equation is Least Squares Linear Regression. It is 

designated by the letter "R²" which represents the degree of correlation between 

variables. It ranges from 0 to 1with a higher R² value indicating a stronger correlation 

between the variables, one or more being the predictor variables and the other predicted. 

This value is interpreted in the following manner: an R² value of 0.4 indicates that the 

predictor variable (y) account for 40% of the variability in the predicted value (x).  This 

leaves 60% of the residual variability not accounted for by the equation or not explained. 

Ideally, the equation should explain most if not all of the variability in the x variables 

which in this study are the nutrients concentrations. The R² value is therefore an indicator 

of how well the model fits the data (e.g., R² close to 1.0 indicates that the model has 

accounted for all of the variation between the specified variables) (Fox 1997).  

The performance or significance of the regression is indicated by the p-value, a 

measure of the probability of non-correlation or no relationship between the variables in 

the regression equation. A low p-value (< 0.05) therefore indicates that the correlation is 

significant. However, a strong significant correlation does not necessarily indicate a 

cause and effect relationship. The relationship between variables can also be due to a 

common causative factor or a coincidental common trend. Least Squares Linear 

Regression analysis was performed to examine relationships between water quality and 

watershed variables in this study. 
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 Data Management  

         All data collected from field sampling, Horiba U-22 unit, GIS spatial analysis and 

laboratory analysis was entered into Microsoft Excel spreadsheets. Water quality data 

was entered into the spreadsheet and stored by site. Spatial data for each watershed 

obtained from GIS was also compiled in a spreadsheet by site for comparison to water 

quality data. Data exploration and verification was performed to ensure that all data 

entered into the excel spreadsheets and all calculations, dates and parameters were 

compiled correctly. This required comparison of field notes to digital data, formula 

verification etc. Water quality and geospatial data for this study are available on the 

Ozarks Environmental and Water Resources Institute (OEWRI) website at 

www.oewri.missouristate.edu. 

http://www.oewri.missouristate.edu/
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CHAPTER 4: RESULTS & DISCUSSION 

 

 

This chapter presents the results of a one-year water quality study to evaluate 

relationships between nutrient (TN and TP) concentrations and watershed characteristics 

in 19 watersheds of the Upper White River Basin. Watershed characteristics include land 

use, bedrock, wastewater treatment plant discharge, and stream discharge (Q). Water 

quality parameters evaluated in this study are conductivity, turbidity, dissolved oxygen 

(DO) and water temperature. Results are divided into 11 sections: 1) GIS data analysis 

results 2) water quality at each site, 3) watershed classification by pollution source, 4) 

spatial trends in water quality, 5) seasonal trends in water quality, 6) hydrologic 

influence, 7) correlation among water quality indicators 8) bedrock influence, 9) 

wastewater treatment plant influence, 10) land use influence and 11) water chemistry and 

nutrients in the UWRB watershed. A description of future work that will further improve 

our understanding of water quality in the UWRB is also presented in this chapter. All 

data gathered in this study are contained in Appendix-A, water chemistry data and 

Appendix-B, GIS maps.   

 

GIS Data Analysis Results 

The general distribution of geology types was based on shape files obtained from Missouri 

Spatial Data Information Service (MSDIS) and Geostor spatial data clearinghouses at 

(http://msdisweb.missouri.edu & http://www.cast.uark.edu/). Data was produced from geological 

maps of Missouri and Arkansas. Table 4.1 shows percentage of bedrock types that make up the 

drainage area geology for each sampling site. Thirteen sites have primarily limestone and dolomite 

bedrock, located in the middle and northern portions of the UWRB. Three watersheds have mixed 

http://msdisweb.missouri.edu/datasearch/ThemeList.jsp
http://www.cast.uark.edu/cast/research/lulc/index.html
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carbonate and shale bedrock types, Kings River, Long Creek and War Eagle Creek watersheds. 

Headwaters of these streams emanate from the Boston Mountain shale. The headwaters of the 

White River and Richland Creek watershed have predominantly shale bedrock. Land use data 

obtained from the Missouri Resources Assessment Partnership (MORAP) and Center for 

Advanced Spatial Technologies (CAST) for 2004 was simplified and quantified for each of the 19 

sample watersheds (Table 4.2). Urban land use is approximately 4% of the UWRB watershed. With 

rapidly growing urban areas, this percentage is expected to increase while agricultural areas 

around towns are being reduced.  Watersheds draining Springfield, Ozark, Branson and 

Fayetteville have a greater percentage of urban land use while sub-watersheds around these areas 

contain higher percentages of grassland/pasture land use. The predominant agriculture involves 

cattle operations in the Missouri portion of the watershed and poultry production in the Arkansas 

portion of the watershed. There is also a large amount of urban area developing around the lakes 

which is made up of resorts, retirement communities and condominiums, a reaction to the booming 

tourist industry.  As expected, forested watersheds are predominant in the rural areas farther from 

major population centers and in areas near national forests.   

 

Water Quality at Each Sample Site 

Nutrients and water chemistry from each of the 19 sample sites throughout the 

UWRB are presented in this section. Data is divided into the three major Hydrologic Unit 

Codes (HUC) that make up the UWRB, the James River Basin, Bull Shoals Basin and 

Beaver Lake Basin (see Figure 2.1 in chapter 2).  

Table 4.1: Geology by site. Percentage of general geology type by sample drainage area. 

 

Site  Dolomite Limestone Sandstone Shale 

WC-Springfield (1) 0 100 0 0 
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WC-above SWTP (2) 0 100 0 0 
WC-at SWTP (3) 0 100 0 0 
JR-Boaz (4) 31 64 5 0 
Finley R (5) 34 66 0 0 
JR-Galena (6) 34 60 6 0 
WR-below TR Dam (7) 28 51 5 16 
Bull Ck (8) 44 56 0 0 
Beaver Ck (9) 52 44 5 0 
JR-above Springfield (10) 38 62 0 0 
Pearson Ck (11) 0 100 0 0 
Long Ck (12) 0 53 0 47 
Yocum Ck (13) 23 76 0 1 
Kings R (14) 17 42 14 26 
War Eagle Ck (15) 0 44 0 56 
Richland Ck (16) 0 35 0 65 
White R-Fayetteville (17) 0 36 0 64 
West Fork White (18) 0 38 0 62 
Bear Ck (19) 33 49 18 0 

 

Table 4.2: Land use by site. Percent of land use in drainage basin area of each water 

sampling site. 

 

Site ID Urban  Barren Agriculture Forest  
WC-Springfield (1) 87 0 8 4 

WC-above SWTP (2) 71 0 20 9 

WC-at SWTP (3) 67 1 24 9 

JR-Boaz (4) 17 1 56 25 

Finley R (5) 5 1 63 31 

JR-Galena (6) 10 1 60 29 

WR-below TR Dam (7) 4 1 36 56 

Bull Ck (8) 2 1 24 73 

Beaver Ck (9) 1 1 47 50 

JR-above Springfield (10) 5 1 59 35 

Pearson Ck (11) 18 1 66 15 

Long Ck (12) 1 1 31 66 

Yocum Ck (13) 3 2 65 29 

Kings R (14) 1 2 22 75 

War Eagle Ck (15) 1 2 27 70 

Richland Ck (16) 1 1 26 72 

White R-Fayetteville (17) 4 1 15 79 

West Fork White (18) 11 1 18 70 

Bear Ck (19) 1 2 31 65 

James River Basin (HUC 11010002). The James River Basin is a major tributary 

of the UWRB which flows south into Table Rock Lake. This watershed is approximately 

3768 km² in size. Portions of seven counties (Stone, Christian, Barry, Lawrence, Greene, 
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Webster, and Douglas) drain into the James River.  There are approximately 465 

kilometers of streams with permanent flow, 119 kilometers of intermittent streams, and 

numerous losing streams within the James River Basin (MODOC 2001; MODNR 2001).  

This watershed encompasses most of the metropolitan area of Springfield and many 

rapidly growing communities such as Ozark and Nixa. Tourism also has a major impact 

on local economy of the James River Basin where tributaries are used for floating, 

swimming, and fishing and camping. Many streams in the James River Basin including 

Wilson Creek are loosing streams where all of the surface flow of the stream enters 

subsurface channels and cracks in the limestone bedrock. During baseflow conditions, 

streams are fed by springs and ground water flow as it emerges from the karst aquifer. 

James River sites are influenced by many point and non-point sources of water pollution 

and also by stormwater run-off from impervious area. Streams show the affects of flashy 

high water from storm events where precipitation rapidly flows into streams draining 

extensive impervious areas causing massive bank erosion.  

Water quality is also affected by developed areas where nutrient loading is 

generally higher than that of non-developed areas. Data from the Lakes of Missouri 

Volunteers Program (LMVP) shows that nutrient pollution from populated areas near the 

headwaters around Springfield is flushed downstream feeding excessive algal growth and 

eutrophication. James River has therefore been listed according to the Clean Water Act, 

section 303(d) as impaired due to nutrients. A Total Maximum Daily Load (TMDL) for 

nutrient concentrations in the James River was developed through examination of the 

relationships between excessive algal growth and nutrient concentrations in the river 

(MODNR 2001). The James River TMDL states that TP concentrations should not 
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exceed 75 µg/L and the TN concentrations should stay below 1.5 mg/L in order to keep 

algal growth at acceptable levels, between 100-200 mg/m² (MODNR 2001).  

Wilson Creek drains a major portion of Springfield, MO and is 50% urban and 

less than 20% forest. Springfield’s Southwest Wastewater Treatment plant (SWTP) 

discharges more than 30 million gallons of effluent per day into Wilson Creek greatly 

affecting water quality below the plant. The first two sample sites, WC-Springfield (1) 

and WC-above SWTP (2) are located 6 km apart and are upstream of the SWTP. Water 

quality is similar at these sites with TN concentrations at 1.4 mg/L and 1.2 mg/L and 

average TP at 56 µg/L and 59 µg/L respectively (Table 4.3). Downstream of the plant, 

WC-at SWTP (3) yielded the highest average TN concentrations (11.7 mg/L) and second 

highest average TP of all sample sites in this study (175 µg/L). These nutrient levels 

exceed James River TMDL limits. In addition to increased nutrient concentrations, WC-

at SWTP (3) also has water chemistry typical of wastewater treatment plant (WTP) 

discharge. Average water temperature at WC-at SWTP (3) is 19° C while the average 

water temperature at WC-above SWTP (2) is 14° C. The higher water temperature below 

the WTP outflow is caused by controls at the plant during the bio-treatment process. WC-

at SWTP (3) has average DO concentrations of 16 mg/L, a result of effluent being 

oxygenated at the plant before release, while WC-above SWTP (2) has 10 mg/L DO. 

Residual salts from household and industrial wastes remaining in wastewater effluent 

also cause higher conductivity below the SWTP than at other sites (Table 4.3).  

Table 4.3: Water quality indicators for the James River Basin. Summary of sample data 

by site (complete data tables in Appendix A). *Underlined nutrient values exceed James 

River TMDL limits of 75 µg/L TP and 1.5 mg/L TN. ^dl = below method detection limits 

(0.1 mg/L TN and 4 µg/L TP). 

 

Site  Value TN TP pH 
Conduc- 

tivity Turbidity DO Temp Depth Q 
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  mg/L µg/L  mS/sec NTU Mg/L C° m m³/sec 

WC  Mean 1.4 56 7 729 17 9 14 0.43 0.4 

Springfield (1) Min 0.8 ^dl 7 314 6 5 3 0.07 0.04 

 Max 2.5 194 8 999 61 14 23 1.14 2.92 

 Median 1.2 37 7 743 8 8 16 0.4 0.08 

           

WC-above  Mean 1.2 59 8 607 24 10 14 0.23 0.55 

SWTP (2) Min 0.6 2 7 266 6 0 4 0.01 0 

 Max 2.3 186 9 900 78 18 24 0.85 1.61 

 Median 0.9 38 8 666 10 9 12 0.15 0 

           

WC-at  Mean 11.7 175 8 1045 14 16 19 0.52 1.28 

SWTP (3) Min 2.5 35 7 562 0 10 13 0.42 0.71 

 Max 17.7 325 8 1520 32 22 23 0.95 3.54 

 Median 12 175 8 975 17 16 20 0.48 1.03 

           

JR-Boaz (4) Mean 6.3 125 8 778 18 11 17 0.47 4.94 

 Min 1.6 12 7 497 3 8 3 0.34 1.44 

 Max 14.6 327 8 1110 55 17 28 0.95 19.74 

 Median 5.2 103 8 840 12 10 17 0.41 2.51 

           

JR-above  Mean 0.9 18 8 518 15 11 15 0.73 1.32 

Springfield (10) Min 0.5 2 8 323 1 7 4 0.36 0.16 

 Max 1.1 36 9 666 68 16 25 1.51 7.08 

 Median 1 18 8 549 9 10 16 0.53 0.44 

      

JR-Galena (6)                                                          Mean 2.8 56 8 617 14 11 17 0.48 11.87 

 Min 1.1 4 8 331 2 7 2 0.1 3.31 

 Max 6.6 125 9 969 63 17 29 1.68 59.18 

 Median 2.2 56 8 594 5 10 17 0.15 4.66 

           

Pearson C (11) Mean 2.2 45 8 589 31 11 15 0.56 0.21 

 Min 1.7 1 7 415 0 7 7 0.24 0.03 

 Max 2.8 310 9 771 155 17 24 0.93 0.82 

 Median 2.1 24 8 581 14 10 16 0.56 0.11 

           

Finley R (5) Mean 1.1 28 8 502 19 11 15 0.4 2.53 

 Min 0.6 dl 8 317 0 9 3 0.23 0.47 

 Max 1.5 51 9 687 93 16 27 0.87 11.67 

 Median 1.1 28 8 490 11 10 13 0.28 0.68 

 

 

Two sample sites located along the James River further show the strong influence 

of wastewater effluent from the Springfield WTP. JR-above Springfield (10) is upstream 

of the Wilson Creek confluence and has average TN of 0.9 mg/L and TP of 18 µg/L.  
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James River-Boaz (4), below the confluence with Wilson Creek at has much higher 

average nutrient concentrations at 6.2 mg/L TN and 125 µg/L TP. Further downstream in 

the James River, JR-Galena (6) also had elevated levels of nutrients compared to JR-

above Springfield (10) with mean of 2.8 mg/L TN and 56 µg/L TP (Table 4.3).  The 

Galena WTP discharges approximately 35,000 gallons per day just upstream of this 

location, a much smaller plant than SWTP (MODNR 2004; SWTP 2006). The influence 

of the SWTP on Wilson Creek extends to Galena but is diluted by 4 to 5 times when it 

reaches JR-Galena (6). Dilution causes nutrient levels at JR-Galena (6) to be significantly 

lower than those found 47 kilometers upstream at JR-Boaz (4). Deposition of phosphorus 

as it sorbs with sediments and is taken up by aquatic plants decreases TP loading in 

downstream reaches. Total N is diluted with increased discharge and also removed from 

the water by aquatic organisms and plants as the river flows downstream, but this nutrient 

is not as dramatically reduced in the JR-Galena (6) samples as TP since it is more mobile 

(Benfield 1996; USEPA 1999).  

Total P and TN levels at JR-Galena (6) can be compared to nutrient 

concentrations sampled by the Lakes of Missouri Volunteers Program (LMVP) in 2005 at 

a site approximately 18 kilometers downstream of JR-Galena (6). LMVP data shows 

average TP at 76 µg/L, slightly higher than baseflow average found in this study (Thorpe 

et. al 2006). LMVP values represent all water levels sampled during the warm season, 

from spring to fall including low and high flows. High stream discharge may contain 

higher nutrient concentrations than baseflow, especially during the first flush of run-off 

from land use sources. Nutrients may also become diluted with further run-off in the 

latter part of storm events as streams levels have raised, but contamination from the land 
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use is dissipated down stream (Petersen et. al. 1998). Baseflow influenced by point 

sources such as WTP may also have high nutrient loading due to more concentrated 

point-source effluent. The LMVP TP data was from the 2005 warm season which did not 

have many run-off events due to this year being very dry. The few high-flow samples 

captured by the LMVP volunteers may have been very high in nutrient loading from a 

build-up of land use sources causing this data to have a higher average.  

Data from LMVP for the James River downstream of Galena showed average TN 

values around 1.3 mg/L in 2005, lower than JR-Galena (6) values (2.8 mg/L). The LMVP 

site in the James River is in the transition zone from James River to Table Rock Lake 

reservoir. Slower current at the LMVP site allows nitrogen in the water to be quickly 

assimilated by algae and other organisms, lowering TN in this part of the river. In 

addition, LMVP data collectors often work more during the summer months when the 

assimilation of TN by aquatic organisms is high. Total N levels tend to be higher at 

baseflow and then decrease with dilution during higher Q, the opposite of TP. 

Finley Creek and Pearson Creek are tributaries of the James River that contain 

major construction and development south and east of Springfield, MO. Pearson Ck (11) 

is 56 km² in size and contains 18% urban area and 15% forest. Finley Ck (5) watershed is 

larger, with an area of 665 km² that is 5% urban and 31% forest (Table 4.2). Pearson Ck 

(11) samples average 2.2 mg/L TN and 45 µg/L TP while Finley Ck (5) samples 

contained approximately half of these levels (1 mg/L TN and 28 µg/L TP). Pearson Creek 

as no WTP while there are 5 WTP in the Finley Creek watershed which discharge a 

combined 1.5 million gallons of effluent daily. The closest of these is 7 miles upstream of 

the sample site at Nixa. However, Finley Creek basin with its 5 WTP is not affected as 
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severely as the smaller Pearson Creek basin with its larger percentage of urban area or 

Wilson Creek with the much larger SWTP.  Besides drainage basin sources of nutrient 

loading, Pearson Creek also receives drainage from distant sink holes within the city of 

Springfield, outside of its surface drainage (Aley and Thompson 2002). This adds 

nutrients from parts of Springfield to the Pearson Creek watershed that is not reflected in 

the topographic drainage basin. Independence of the subterranean drainage system from 

surface drainage is a common characteristic of karst landscapes in the Ozarks further 

complicating relationships between water quality and drainage basin factors.  

Comparison of nutrient concentrations showed that there were several sites which 

had samples below method detection limits. Method detection limits were calculated to 

show the lower limit beyond which the laboratory analysis was unreliable due to 

limitations of the analysis process. This limit was 0.1 mg/L TN and 4 µg/L TP. Samples 

that read below method detection limits were few and were simply included in the 

equations, graphs and tables as the original analysis values. 
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 Bull Shoals Basin, Missouri and Arkansas (HUC 11010003). Bull Shoals Basin 

encompasses the UWRB tributaries east of the James River Basin that flow south into 

Taneycomo and Bull Shoals Lakes. The watersheds that flow north out of Arkansas into 

Bull Shoals Lake and Taneycomo Lake are also part of this basin. Bull Shoals Basin is 

downstream of the James River Basin (HUC 11010002) and the Beaver Lake Basin 

(HUC 11010001). This study sampled 4 sites in the Bull Shoals Basin; Bull Ck (8), 

Beaver Ck (9), Bear Ck (19) and White River-below Table Rock Dam (7), a lake site. 

Watershed characteristics in the Bull Shoals Basin are similar to that of the James River 

Basin with karst carbonate bedrock, primarily forest land use and generally less urban 

area than James River Basin watersheds.  

Bull Ck (8), with a drainage basin of 503 km², has 2% urban area and 72% forest 

(Table 4.2). This site produced low nutrient concentrations with average TN at 0.4 mg/L. 

Similarly, five samples out of the twelve taken at Bull Ck (8) had TP concentrations that 

dipped below sample and method detection limits (4 µg/L) with average TP 

concentrations only 6 µg/L (Table 4.4). East of Bull Creek watershed is the Beaver Creek 

basin where TN concentrations were found to be similar. This watershed is larger than 

Bull Ck (8), 771 km², with 2% urban area but only 50% forest. Open grassland and 

pasture areas make up the remaining watershed area (Table 4.2). The Beaver Ck (9) 

samples also had slightly higher average TP (10 µg/L) than those at Bull Ck (8). Bear Ck 

(19) watershed is 344 km² with less than 2% urban and 65% forest. Many poultry farms 

dot the landscape in this basin as this is a major agricultural industry in the Arkansas 

portion of the UWRB (Figure 4.2). Bear Ck (19) samples generally had low TN with 

values below 1 mg/L except for the June sample which was 2.8 mg/L and a high spike in 



 75 

the November sample, over 13 mg/L. The high TN spike in November may have been 

from the deer hunting season when butchered deer carcasses had been thrown into the 

water near this site. Total P concentrations were 10 µg/L, equal to those at Beaver Ck (9) 

(Table 4.4). White River-below Table Rock Dam (7) sample site is unique since it is the 

only lake site in this study. These samples are colder water drained through the power 

plant from the lower depths of Table Rock Lake. Water temperatures average 7° C below 

those at the other sites. Average nutrient levels were 0.9 mg/L TN and 11 µg/L TP.  

 

Table 4.4: Water quality indicators for Bull Shoals Basin. Summary of sample data by 

site (complete data tables in Appendix A) ^dl = below method detection limits (0.1 mg/L 

TN and 4 µg/L TP) *Underlined nutrient values exceed James River TMDL limits of 75 

µg/L TP and 1.5 mg/L TN.  

 

Site  Value TN TP pH 
Conduc- 

tivity Turbidity DO Temp Depth Q 

  mg/L µg/L  mS/sec NTU Mg/L C° m m³/sec 

Bull Ck (8) Mean 0.4 6 8 494 8 10 17 0.83 1.41 

 Min 0.1 ^dl 8 415 0 6 3 0.64 0.04 

 Max 1.1 11 9 685 34 15 28 1.22 6.51 

 Median 0.2 7 8 486 5 9 19 0.73 0.28 

           

Beaver Ck (9) Mean 0.4 10 8 531 10 11 17 0.5 3.38 

 Min 0.1 dl 8 468 1 9 4 0.24 0.71 

 Max 0.9 25 9 656 25 16 29 1.22 17.61 

 Median 0.4 9 8 528 7 10 17 0.42 1.33 

           

White River Mean 0.9 11 8 352 23 10 9 0.71 67.08 

below TR Dam Min 0.5 4 7 287 3 5 7 0.36 25.57 

(7) Max 1.1 25 9 444 72 15 11 1.67 121.14 

 Median 0.9 10 8 330 13 9 9 0.49 61.76 

           

Bear Ck (19) Mean 1.8 10 8.0 486 11 10 18 0.33 1.11 

 Min 0.08 dl 6.8 420 0 7 7 0.20 0.11 

 Max 13.84 36 8.5 607 52 13 30 0.54 6.12 

 Median 0.54 6 8.1 488 5 10 19 0.32 0.28 
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Beaver Reservoir Basin, Arkansas (HUC 11010001). Beaver Reservoir watersheds 

consists of the headwaters of the White River, Beaver Lake, Table Rock Lake and all of 

the tributaries of the White River above Table Rock Dam excluding the James River 

Basin. Geology in these watersheds are similar with bedrock in headwater reaches 

consisting primarily of shale, transitioning to karst limestone/dolomite in the middle and 

lower reaches as streams flow toward the main stem of the White River (Table 4.1). 

Predominant land covers are forest and agricultural pastures with the headwaters and 

elevated topography mainly forested and wide river valleys or bottom lands often used as 

pasture for livestock. Long Creek (12) watershed, west of Bear Creek basin, also contains 

a large poultry farming industry. The numbers of these farms are indicated on the map in 

Figure 4.2. On average, each poultry house produces over 100 tons of litter (poultry fecal 

matter mixed with straw or other organic material) annually (Chaubey et. al. 2000). 

Nutrient-rich poultry litter is applied to many of the agricultural pastures and fields in this 

region. Excessive land application of litter may occur due to the need for disposal of the 

excessive amount of litter generated (Edwards et. al. 1996; Mallarino et. al. 2004).

 Although land application is seen as a solution to litter disposal, over-application 

or application before a rainfall event can increase nutrient loading into streams through 

storm water run-off, leaching and erosion. The high nutrient values found at Long Ck 

(12) and Yocum Ck (13) may be indicators of the impact that this practice can have on 

nutrient loading in the watershed. Samples from Long Ck (12) had average TP of 178 

µg/L, the highest average TP out of all 19 sample sites. This site also had elevated TN 

concentrations with an average of 1.7 mg/L. TP concentrations greatly increased at the 

Long Ck (12) site during the latter part of the sampling year from November 2005 to 
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February 2006 (Appendix A). This may have been due to fall litter applications on 

pastures or the end of the growing season when vegetation is least available to assimilate 

TP (Edwards et. al. 1996). Agricultural land use is approximately 31% of this watershed 

(Table 4.2). Due to the significant increase in TP concentrations at this site and not at 

other sites with similar land use, another source of nutrients in addition to agricultural 

litter applications is suspected. Some local inhabitants near Long Creek have alluded to 

the recent construction of a poultry processing plant in the Long Ck watershed as a 

source of nutrient loading, but this has not been confirmed. Another possible nutrient 

source is extensive highway construction on U.S. Highway 65 where this road is being 

changed from two lanes to a four lane highway. This section is on the eastern edge of the 

Long Ck basin and runs 7 miles south from the Arkansas-Missouri border. Much of the 

road clearing for this construction is upstream of the sample site and was ongoing 

throughout the latter part of the sample period. Figure 4.1 shows extensive road 

construction and clearing on the right side of the image near U. S. Highway 65.   

 

 

Figure 4.1: Highway construction in Long Creek (12) watershed. Imagery by Google 

Earth shows U.S Highway 65 construction zone on edge of Long Creek drainage basin  
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West of Long Ck is the Yocum Ck watershed which has similar land and 

agriculture to Long Creek. Average TN at Yocum Ck (13) was much higher than at Long 

Ck (12) at 4 mg/L. Total P was significantly lower at only 35 µg/L (Table 4.5). One 

apparent difference between the Long Ck (12) and Yocum Ck (13) is  stream bed 

material and water clarty. Long Ck was turbid with sandy banks, dark soils and silty 

sediment deposit on the streambed. Yocum Ck, however, contained massive gravel bars, 

clear water and banks of reddish clay and silt overlying embedded chert gravel deposits 

more typical of Ozarks streams. Another factor determining differences in nutrient 

concentrations may be drainage basin size. Long Ck drainage basin is 265 km² while the 

Yocum Ck (13) basin is 117 km². The larger area of the Long Ck (12) watershed creates a 

larger stream making it more likely to contain higher amounts of dissolved and 

suspended solids compared to Yocum Ck with its lower discharge (Vannote et. al. 1980).  

Yocum Ck (13) watershed also contains 65% pasture land use compared to the 

31% pasture area in Long Ck (12). This makes Yocum Ck (13) the highest in percentage 

of agricultural land use which may also increase the risk of N leaching from litter applied 

to pastures (Table 4.3). The Yocum Ck (13) drainage area is less than 30% forest while 

Long Ck (12) is 66% forested (Table 4.2). Increased forest area is associated with lower 

TN concentrations (Boyd 1996; Binkley et. al. 2004). Nitrogen is more readily dissolved 

in water and can move downstream quickly with the flow of Yocum Ck (13) while in the 

slow-moving water at Long Ck (12) nitrogen has more opportunity to be taken up by 

aquatic plants and organisms. Differences in stream channel composition, land use, 

drainage basin size and discharge may therefore explain differences in nutrient 

concentrations between the sample sites at Long and Yocum Creeks.  
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Table 4.5: Water quality indicators for Beaver Reservoir Basin. Summary of sample data 

by site (complete data tables in Appendix A). ^dl = below method detection limits (0.1 

mg/L TN and 4 µg/L TP) *Underlined nutrient values exceed James River TMDL limits 

of 75 µg/L TP and 1.5 mg/L TN.  

 

 

   Site  Value TN TP pH 
Conduc- 

tivity Turbidity DO Temp Depth Q 

  mg/L µg/L  mS/sec NTU Mg/L C° m m³/sec 

Long Ck (12) Mean 1.66 178 7.8 475 21 10 16 0.68 0.92 

 Min 1.18 14 7.3 404 5 6 6 0.61 0.31 

 Max 2.45 592 8.2 593 96 15 23 0.79 3.79 

 Median 1.45 88 7.7 425 9 10 16 0.69 0.47 

           

Yocum Ck (13) Mean 4.3 35 8.1 451 18 11 16 1.07 0.42 

 Min 1.28 ^dl 7.8 326 3 8 4 1.00 0.1 

 Max 17.43 65 8.6 519 82 15 28 1.15 2.27 

 Median 2.9 36 8.0 457 7 10 16 1.07 0.11 

           

Kings R (14) Mean 0.38 77 8.4 402 20 11 18 0.55 4.82 

 Min 0.3 dl 8.0 276 3 8 4 0.24 0.51 

 Max 0.76 161 8.8 533 83 17 31 1.32 19.85 

 Median 0.3 87 8.4 405 12 10 18 0.34 1.23 

           

War Eagle Ck  Mean 0.98 40 8.1 351 23 10 17 0.28 2.29 

(15) Min 0.38 dl 7.7 181 6 7 5 0.10 0.31 

 Max 1.4 99 8.6 563 88 16 28 0.82 11.52 

 Median 1.02 36 8.0 332 14 10 18 0.15 0.54 

           

Richland Ck  Mean 0.41 12 8.4 288 20 11 19 0.27 3.39 

(16) Min dl dl 7.9 148 3 9 5 0.05 0.03 

 Max 0.96 24 9.1 445 78 18 32 0.76 16.32 

 Median 0.3 13 8.5 272 12 11 18 0.14 0.72 

      

White R-                                                          Mean 0.42 18 8.0 264 26 10 18 0.66 1.11 

Fayetteville  Min 0.12 dl 7.4 123 11 5 4 0.14 0.04 

(17) Max 0.87 39 8.3 486 101 15 30 1.15 5.18 

 Median 0.41 17 8.0 281 20 10 20 0.61 0.16 

           

West Fork- Mean 0.47 20 7.6 355 31 9 18 0.44 3.74 

White R (18) Min 0.19 dl 6.6 207 9 5 5 0.08 0.03 

 Max 0.92 48 8.3 646 96 15 32 1.26 19.14 

 Median 0.4 19 7.7 362 18 9 19 0.25 0.23 
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Kings R (14) drainage basin is the largest White River tributary in Arkansas with  

over 1,370 km². This watershed is 75% forest with headwaters located in the Ozarks 

National Forest. Average TN at Kings R (14) was 0.4 mg/L and average TP was slightly 

higher than Yocum Ck (13) at 75 µg/L (Table 4.5). Berryville WTP is located nearly 23 

kilometers upstream of the sample site. Phosphorus levels may be affected at baseflow 

from the WTP discharge and sediment carried in this large stream. Non-point source 

nutrients may also affect this watershed from poultry litter applications (Figure 4.2).  

War Eagle Ck (15) drainage basin ranks third in size for the Arkansas sites. This 

watershed receives the Huntsville WTP effluent located 26 kilometers upstream of the 

sample site. Average TN was 1 mg/L and TP was around 40 µg/L at this site. As seen in 

Figure 4.2, both War Eagle Creek and neighboring Richland Creek basin contain large 

numbers of poultry barns, as do the watershed farther west near Fayetteville, AR. Both of 

these streams had very low flow throughout the sampling period. The extremely shallow 

and low discharge at Richland Ck (16) allowed for very little transport of nutrients. 

Average TN concentrations were 0.4 mg/L and average TP was 12 µg/L, much lower 

than most other Arkansas sample sites. Most of the TP may bind to sediments and settle 

out of the almost stagnant water.  

White R-Fayetteville (17) is located on the main channel of the White River, 

approximately 1 mile downstream of Lake Sequoya reservoir and the confluence of the 

eastern and western branches of the White River. Lakes often act as detention basins for 

nutrients and sediment (Segarra-Garcia and Loganathan 1992; Meals and Budd 1998). 

Lake Sequoya may act as a detention basin for nutrients flowing into this watershed from 
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Figure 4.2: Poultry farms in the UWRB. Individual poultry houses in northwest Arkansas 

and poultry farms in southwest Missouri (data provided by the University of Arkansas 

CAST 2005 and Missouri Department of Natural Resources NPDES Permits) 
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the cattle and poultry producing areas and the urban growth in the basin, lessening 

nutrient impacts during baseflow conditions at this site. White River-Fayetteville (17) 

samples had TN concentrations below 1 mg/L for all sampling dates and TP did not 

exceed 39 µg/L with an average of 18 µg/L. West Fork-WR (18) is approximately 1.5 

miles upstream of the confluence of the West Fork of the White River with the main stem 

of the White River. Due to its proximity to the City of Fayetteville, AR West Fork of the 

White River watershed contains more urban land use (11%) but also has more forest than 

most other Arkansas watersheds. The small WTP for the town of West Fork, Arkansas 

discharges 100,000 gallons per day into the watershed. However, the Fayetteville WTP, 

which discharges 12 million gallons per day, is located downstream of the White River-

Fayetteville (17) and West Fork-WR (18) thus adding no point source nutrient inputs to 

the samples from this plant. West Fork-WR (18) also has a large pool just upstream 

containing masses of aquatic and semi-aquatic plants. Nutrient values sampled at the 

West Fork-WR (18) were below 1 mg/L TN for all dates and TP did not exceed 50 µg/L 

with an average of 20 µg/L (Table 4.5).  Low baseflow discharge combined with the 

detention of nutrient-rich sediments in upstream pools or reservoirs may lessen non-point 

nutrient loading from urban/agricultural areas in the white River sites near Fayetteville.  
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 Watershed Classification by Pollution Source 

 

In order to examine landscape and watershed factors that may be affecting 

nutrient loading/water quality in the UWRB, the 19 sample watersheds were ranked into 

groups of high disturbance, elevated disturbance and low disturbance watersheds. This 

section describes the ranking procedure and landscape characteristics used to classify the 

watersheds. Table 4.6 shows the ranking database with parameters including, land use , 

geology and specific wastewater treatment plant discharge (SWD) which is the WTP 

effluent discharge per day per km² in the drainage basin. Ranking was based primarily on 

percentage of urban and forest land, but was also influenced by agricultural land use 

SWD.   

Ranking of watersheds based on land use is common in scientific studies on 

nutrient loading and watershed factors (Jordon et. al. 1997; Miller et. al. 1997; Lent et. al. 

1998; Meals and Budd 1998; Ourso and Fernzel 2002; Mytyk and Delfino 2004). 

Baseflow samples such as those taken in this study are composed of the ground water and 

delayed surface drainage, not directly linked to precipitation-induced surface run-off 

(Aley and Thompson 2002).  In the karst hydrology of the Ozarks, there is a potential for 

significant storage of nutrients and contaminants that have been washed with run-off into 

streams, and sink holes during precipitation. Stored nutrients may be later released as 

baseflow discharge through springs (Miller et. al. 1997; Petersen et. al 1998; Lunetta et. 

al. 2005). Baseflow sampling can therefore be highly affected by land use. Confined 

animal feeding operations (CAFOs), primarily poultry, are shown in the ranking database 

for comparison. However, numbers of poultry farms may not indicate CAFO disturbance 

since nutrient sources from these is litter which can be transported to other watersheds.  
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Table 4.6: Ranking system database. Summary of nutrients, land use, bedrock, SWD, and 

CAFO by site.  

 
Site ID Ad 

km² 

TN 

mg/L 

TP 

ug/L 

Urban 

per/Ad 

Ag 

per/Ad 

Forest 

per/Ad 

Carbonate 

per/Ad 
SWD 

gal/day/km² 

CAFOs 

per/Ad 

WC-Springfield (1) 51 1.2 37 87% 8% 4% 100% 0 0 

WC-above SWTP (2) 92 0.9 38 71% 20% 9% 100% 0 0 

WC-at SWTP (3) 132 12.0 175 67% 24% 9% 100% 228,383 0 

JR-Boaz (4) 1,199 5.2 103 17% 56% 25% 95% 25,292 0 

Finley R (5) 665 1.1 28 5% 63% 31% 100% 1,243 0 

JR-Galena (6) 2,567 2.2 56 10% 60% 29% 94% 12,505 3 

WR-below TR Dam (7) 10,394 0.2 7 4% 36% 56% 79% 0 24 

Bull Ck (8) 503 0.2 7 2% 24% 73% 100% 0 0 

Beaver Ck (9) 771 0.4 9 1% 47% 50% 95% 583 0 

JR-above Springfield (10) 633 1.0 18 5% 59% 35% 100% 131 0 

Pearson Ck (11) 56 2.1 24 18% 66% 15% 100% 0 0 

Long Ck (12) 265 1.5 88 1% 31% 66% 53% 0 54 

Yocum Ck (13) 117 2.9 36 3% 65% 29% 99% 0 90 

Kings R (14) 1,374 0.3 87 1% 22% 75% 59% 1,782 424 

War Eagle Ck (15) 685 1.0 36 1% 27% 70% 44% 2,920 383 

Richland Ck (16) 361 0.3 13 1% 26% 72% 35% 0 268 

White R-Fayetteville (17) 1,039 0.4 17 4% 15% 79% 36% 96 600 

West Fork White (18) 325 0.4 19 11% 18% 70% 38% 308 152 

Bear Ck (19) 344 0.5 6 1% 31% 65% 82% 0 60 

 
 

Table 4.7 shows land use ranking categories used to classify watersheds into three 

basic categories disturbance. As shown, land use of more than 15% urban area and less 

than 20% forest gas been categorized as a high disturbance indicator. Similarly, low 

disturbance indicators are rank less than 5% urban and more than 65%  forest area. High 

disturbance criteria includes >50% agricultural land use while low disturbance ranking is 

<30% agriculture. The elevated (moderate) disturbance criteria rank primarily between 

the high disturbance and low disturbance indicators for most land use parameters. Only 

three land use categories are used for watershed ranking because many watersheds have 

similar percentages of land use. More than these three categories would unnecessarily 

complicate the ranking by creating categories containing only one or two watersheds.  
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Water quality was also compared to land use ranking by creating Table 4.8 which 

shows low, moderate, high and very high categories for median nutrient concentrations. 

Table 4.8 also shows the TMDL comparison to each of these categories. Low and 

moderate TN and TP categories are below TMDL levels while the high and very high 

nutrient rankings are at or above TMDL levels. These tables (Table 4.7 and 4.8) are 

followed up by Table 4.9 which shows the ranking for each sample watershed by land use 

percentages and SWD as well as a comparison to median nutrient rankings. Since land 

use and water quality are related there is a common relationship or variation between  

nutrient concentration ranking and watershed ranking.  

The drainage basins of all three Wilson Creek sites contain a high amount of 

urban area and low percentage of forest. These sites therefore were ranked as high 

disturbance watersheds due to non-point or land use influence. Wilson Ck-at SWTP (3) 

contains additional high disturbance indicator, high point-source or SWD. Wilson Creek 

water quality ranking also showed that median nutrient concentrations are moderate to 

very high, supporting the ranking of these watersheds disturbance areas. The moderate 

nutrient ranking for both Wilson Creek sites above the SWTP is probably caused by 

baseflow sampling which did not capture urban run-off, but sampled the low discharge of 

the stream when many sediments and nutrients had settled out of the almost stagnant 

water. The influence of the SWTP point-source during baseflow is evident in the very 

high nutrient ranking of watersheds affected by this point-source. JR-Boaz (4) has 

moderate forest and urban area in its drainage basin, but also was ranked high disturbance 

due to point-source influence. This site was also ranked as very high nutrient for 

concentrations.  
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Table 4.7: Watershed ranking matrix. Categories used for ranking include land use and 

SWD in the watershed.  

 

Watershed factor High disturbance Elevated disturbance 
Low 

disturbance 

Forest Land use < 20% 20-65% > 65% 

Urban Land use > 15% 5-15% <5% 

SWD 
> 1,500   

(gal/ per day/km²) 

600-1,500  

(gal/ per day/km²) 

< 600  

(gal/per day/km²) 

Agricultural Land 

use   
> 50%  30-50% <30% 

*Urban Land use > 50% 5-50% <5% 

 

*urban land use categories for watersheds without WTP discharge 

 

 

 

Table 4.8: Water quality ranking matrix. Categories used for ranking sites based on 

relative nutrient concentrations and TMDL comparison 

 

Comparison to  

TMDL 
Ranking  

Water quality limits 

Median TP µg/L Median TN mg/L 

Below TMDL 
Low < 20  < 0.5 

Moderate   > 20 -  60 > 0.5 – 1.2 

~ At TMDL High 60 - 100 1.2 - 2 

Above TMDL   Very high  > 100 > 2 
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Table 4.9: Watershed ranking and water quality comparison. High disturbance, elevated 

disturbance and low disturbance watersheds based on percent land use and also showing 

SWD ranking and ranking of nutrient concentrations from Table 4.8 for comparison  

 

       Land Use Ranking  Nutrient  ranking 

High disturbance  (High Ag or Urban/Low Forest) TP TN 

Land use based   

 WC-Springfield (1) Mod Mod 

 

 

WC-above SWTP (2) 

Pearson Creek (11)   ^Ag 

Mod Mod 

Mod V high 

Point source    

 
WC-at SWTP (3) *H 

JR-Boaz (4)  H, Ag 

V high V high 

V high V high 

Elevated disturbance  (moderate forest)   

   

Land use based   

 Yocum Creek (13) Ag Mod V high 

Point source    

 JR-Galena (6)  H, Ag Mod (close) V high 

 War Eagle Creek (15) H Mod Mod  

 Finley Creek (5) *M (close), Ag Mod Mod 

 Kings River (14) H High Low  

 JR-above Springfield (10) *L,  Ag Low  Mod 

 Beaver Creek (9) L Low  Low  

       Low disturbance  (high forest)   

   

Land use based (+/-)   

 Long Creek (12)  High High 

 Bear Creek (19) Low  Low (close) 

 Bull Creek (8) Low  Low 

 Richland Creek (16) Low  Low  

Point source    

 West Fork White River (18) L Low (close)  Low (close) 

 White River-Fayetteville (17) L Low  Low  

 White River-below TR Dam (7) M Low Low 

 

*Point Source loading factor, (SWD) shown as high (H) moderate (M) and low (L) 

symbols) based on the categories in Table 4.7.  ^Ag = > 50% agriculture (crop and 

pasture/grassland). Close = the value used in this ranking is nearly in the next category 

higher, such as the low (close) = almost moderate.  
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Pearson Creek (11) has low forest area, moderate urban area, but also has a high 

percentage of agricultural land. This site was ranked under high disturbance watersheds 

by non-point source and has a moderate to high nutrient ranking. Pearson Creek (11) may 

be affected during baseflow by spring discharge and concentration of volatile nitrogen.  

All 5 of the high disturbance watersheds were within the James River Basin and in 

smaller tributaries that drain Springfield, MO. The main stem of the James River shows 

some of the eutrophic effects of development in the basin with the large algal blooms 

which can be seen in the wide sun-lighted streambed at Galena, Missouri (Figures 4.3 and 

4.4).  JR-Galena (6) has medium percentage of forest and urban land use as do JR-above 

Springfield (10) and Finley Ck (5). These watersheds also have high percentages of 

agricultural land use and moderate to high SWD so these sites were ranked under the 

elevated disturbance category. 

 

 
 

Figure 4.3: Channel covered with algae. James River (Galena, MO February 5, 2006) 
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The JR-Galena (6) site has very high median TN concentrations, indicating that 

during baseflow conditions this nutrient is dissolved in the water and carried down stream 

from sources upstream. However, TP sorbs to sediments which settle out of the stream at 

baseflow and therefore ranked as moderate at this site. Finley Ck (5) ranked as elevated 

disturbance watershed from agricultural land use and SWD and had low to moderate 

nutrient concentrations. Yocum Ck (13) was another elevated disturbance site because 

this watershed contains one of the highest percentages of agricultural land.  It is also 

ranked near the high end of the elevated disturbance category for forest land use (29%). 

Again, the Yocum Ck (13) had very high TN levels and moderate TP concentrations. 

Other watersheds ranked in the elevated disturbance category included Kings R (14) and 

War Eagle Ck (15) which had high SWD and moderate agricultural land use. Beaver Ck 

(9) also had elevated disturbance from moderate agricultural forest land use area. 

 

 

Figure 4.4: Strands of attached algae. James River (Galena, MO February 5, 2006) 
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Watersheds ranked under the elevated disturbance category generally have 

moderate to high SWD and agricultural land use. Agricultural land in this study consists 

mainly of open pastures and a small percentage of crop fields. These areas have are 

potential nutrient sources of erosion, fertilizer and manure run-off. High agricultural 

watersheds therefore rank under the elevated disturbance category similar to the 

urbanized watersheds ranking mainly as high disturbance or the very rural, forested 

basins ranking as low disturbance.  In addition, the water quality ranking for these 

watersheds showed a trend of high to moderate TN and TP concentrations. The high TP 

ranking for Kings River (14) may be from the Berryville WTP upstream. Beaver Ck (9) 

was low in nutrient concentration which may have been a factor of the very dry sampling 

yesr which especially affected this watershed. This can be seen in Figure 4.23.  

Ranking of low disturbance watersheds included Bull Ck (8), Long Ck (12), Bear 

Ck (19), Richland Ck (16), WR below TRD (7), WR-Fayetteville (17), and West Fork-

WR (18). These sites all have a high percentage of forest (65%- 79%) and low percentage 

of urban area except West Fork-WR (18) which has elevated urban area (18%). These 

watersheds, with the exception of White River sites near Fayetteville have a moderate 

percentage of agricultural land use. White R-Fayetteville (17) and West Fork-WR (18) 

contain little pasture land, but have some SWD effects. All low disturbance sites have 

low nutrients with the exception Long Ck (12) which ranked as low disturbance site by 

land use, but has a high ranking for nutrient concentrations. Major land use changes due 

to road construction were occurring in the eastern part of this watershed during the 

sampling period and may account for high nutrient concentrations.  
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Spatial Trends in Water Quality 

Figures 4.5 through 4.12 summarize water quality indicator values for UWRB 

sample sites by location in the three 8-digit HUC boundaries. James River TMDL levels 

for nutrients are indicated for sites in the James River Basin while the mean nutrient 

values for low disturbance sites are indicated for Bull Shoals and Beaver Lake Basin 

sites. Low disturbance sites are those ranked according to Table 4.9 and generally have 

little or no point-source (SWD). Bear Ck (19) and Long Ck (12) were excluded from the 

low disturbance reference sites due to the several high spikes in nutrient values found at 

these sites, evidence of occasional high non-point nutrient loading. The 5 reference sites 

used to calculate average low nutrient levels are Bull Ck (8), Bear Ck (9), Richland Ck 

(16), WR-Fayetteville (17) and West Fork-WR (18). Hyphens are used in the graphs 

(Figures 4.5 though 4.12) to show the level of the 3
rd

 highest sample value at each site. 

This helps to identify sites where one or two samples had very high values compared to 

the remainder of the samples, indicating a spike not representative of the usual state of 

the water quality. 

Several sample sites have large variation between the high and low nutrient 

values. These sites are WC-at SWTP (3), JR-Boaz (4) and JR-Galena (6) and Yocum 

Creek (13).  In addition to these, WC-Springfield (1), WC-above SWTP (2), Pearson Ck 

(11), Long Ck (12), Kings River (14) and War Eagle Ck (15) have a high variation in TP 

values. Bear Ck (19) and Yocum Ck (13) have a high variation in TN values. All of these 

sites exceed James River TMDL nutrient levels either for average concentrations or 

occasional high values.  
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Figure 4.5: Total P values by site and HUC region. A summary of the TP values for each 

site is shown with maximum and minimum values indicated as vertical bars around the 

mean (dots). Hyphens mark 3
rd

 highest sampled value. * LD =  5 least disturbed sites  
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Figure 4.6: Total N values by site and region. Vertical lines represent maximum and 

minimum values while hyphens mark 3
rd

 highest sampled value.  * LD = low disturbance 

sites  
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Specific discharge (SQ), calculated as mean sample Q in liters per day/km², 

varied throughout the 19 watersheds, especially in those with high percentages of urban 

or agricultural land use (Figure 4.7). High SQ variation is seen in the Wilson Creek sites, 

Beaver Ck (9), Richland Ck (16) and West Fork-WR (18). The variation was, however, 

largely caused by one or two sampling dates as evident by the location of the mean values 

near the low end of the variation indicator lines (Figure 4.7). Smaller drainage basins also 

have more variability in stream levels than the large watersheds. This is caused by the 

larger watersheds having more sources, including springs, tributaries and runoff, which 

add constant flow to the stream. Small creeks in the Ozarks, especially ones that rely on 

surface drainage of semi-impervious urban and agricultural areas can sometimes dry up 

on the surface and appear to hold no water at all, a characterization of the WC-above 

SWTP (2) site. These same streams suddenly flash flood with a local rain storm event.  
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Figure 4.7: Specific discharge by site. Vertical lines show max/min values, hyphens mark 

3
rd

 highest value, and horizontal line is overall average SQ (3.8 liters/sec/km²/). 
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Specific conductivity is more variable in the James River Basin sites, especially in the 

point-source influenced sites (Figure 4.8). The James River sites have higher overall 

conductivity while sites near the headwaters of the White River have lower SC. Urban 

land use may cause the increase in SC at West Fork-WR (18) by loading more salts and 

sediments from impervious areas. Turbidity was highest in the Pearson Ck (11) samples 

(Figure 4.9). This was probably caused by construction of a new bridge at this site where 

soil disturbance stirred up the fine clay which was then suspended in the water. Other 

than Pearson Creek, there is a slight increase in turbidity at the Beaver Lake Basin sites 

closer to the headwaters of the White River. There is a decrease in average turbidity at 

Bull Shoals Basin sites excluding WR-below Table Rock Dam (7).  
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Figure 4.8: Specific conductivity by site. Vertical lines show max/min values while 

hyphens mark 3
rd

 highest value.  Horizontal line is overall average SC (0.49 mS/sec) 
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Figure 4.9: Turbidity (NTU) by site. Vertical lines represent max/min values while 

hyphens mark 3
rd

 highest sampled value.  Horizontal line is overall average turbidity. 

 

 

Temperature variations, shown in Figure 4.10, are similar throughout much of the 

UWRB. The high temperatures in the summer months drive the maximum values up. As 

expected, the White R-below Table Rock Dam (7) has the lowest temperatures due to the 

cool, deep water from Table Rock Lake flowing through the dam. WC-at SWTP (3) has 

the highest average temperature with the majority of its flow made up of WTP effluent 

that has been warmed up during the treatment process. There is also a slight trend from 

cooler water temperatures in the James River Basin to warmer temperatures in the Beaver 

Lake Basin. This may simply reflect the fact that James River watersheds are farther 

north than Beaver Lake watersheds and have slightly cooler annual climates.  Dissolved 

oxygen is similar throughout the UWRB watersheds, again with the exception of WC-at 

SWTP (3) where DO is artificially elevated (Figure 4.11). Abundance of nutrients and 

bacteria in Wilson Creek quickly use up DO in these urban areas causing levels to drop. 
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Figure 4.10: Water temperature by site. Vertical lines show max/min values, hyphens 

mark 3
rd

 highest value, and horizontal line is overall average temp (16.7 C°). 
 

Five out of the 8 sample sites that show mean DO values below the overall average DO 

level are affected by urban areas. However, the majority of the sample values are well 

above the DO limits for supporting aquatic life in streams in Missouri, which is 5 mg/L. 

Only Wilson Ck-above SWTP (2) and Wilson Ck-at SWTP (3) had samples that drop 

below this limit. Average pH is highly variable among sample sites and also drops where 

there is a high percentage of urban or agricultural land use.  This may be caused by the 

increase in organic waste material such as animal and human byproducts being added to 

the water in these areas causing release of acids from the decaying organic material.  The 

buffer created by carbonate bedrock is approximately a pH of 8.2, shown on Figure 4.12. 

This buffer helps the water in carbonate regions like the Ozarks absorb some of the 

acidity from organic material. This characteristic causes all of the average sample values 

to be above the neutral pH (7), which makes them slightly alkaline.  
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Figure 4.11: DO by site. Vertical lines show max /min values, hyphens mark 3
rd

 highest 

value and horizontal line is overall average DO (10.5 mg/L). 
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Figure 4.12: pH by site. Vertical lines show max/min values, hyphens mark 3
rd

 highest 

value and horizontal line is overall median pH (8.0).  
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Seasonal Trends in Water Quality 

Nutrient concentrations have often been found to relate with seasonal patterns 

(Boyd 1997; Binkley et. al. 2004). Seasonal changes that affect water chemistry include 

precipitation frequency, temperature and vegetation growth cycles.  Drainage basin size 

may also affect seasonal patterns (Sphar and Wynn 1997; Brezonik and Stadelmann 

2002). To show the correlation between water quality indicators and seasons, the three 

highest values were selected out of all 12 samples for each site. These values were then 

plotted by month creating a total of 57 high values spread out according to the month in 

which they occurred (Figures 4.13 through 4.16). The three lowest sample values were 

also selected and plotted for each water quality parameter. 

The highest TP concentrations are often associated with late summer and fall 

(Figure 4.13).  Low stream flow during late summer and fall may increase WTP effluent 

volume in the stream which is high in phosphorus. Additionally, high temperatures in the 

late summer and early fall combined with low water levels and less stream flow may 

induce the release of phosphorus stored in stream sediment (USEPA 1999). Many low TP 

samples occurred in late winter and early spring, possibly reflecting dilution of nutrient 

concentrations during the high-precipitation period of the year. High TN concentrations 

of often occurred during the winter and early spring from January to March with several 

high samples in July (Figure 4.13). High TN in late winter and early spring may be due to 

less up-take by plants since most vegetation is dormant during this period. Run-off 

increases from rainfall during early spring and may also affect TN loading. Low TN 

values occurred more often in September to December. This may be caused by less 

consumption of TN by aquatic and terrestrial plants combined with a less run-off inputs. 
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Figure 4.13: Seasonal high and low nutrient concentrations. Addition of the three highest 

sample concentrations for each site are shown by month above the 0 line. Addition of the 

three lowest sample concentrations by site are shown by month below the 0 line for 

comparison.  
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High sample values for turbidity and SC occurred most frequently in the fall and 

winter seasons, September through January (Figure 4.14). The February sample was 

taken on the 5
th

 and 6
th

 and second of this month. The winter and early spring is when 

leaves dropped from the fall senescence are beginning to break down in the water. The 

added tannins and decaying leaf matter increases turbidity in the water. During the 

summer months, pools and runs along rivers and streams may become striated with 

warmer water near the top and cooler water closer to the bottom of the channel. The 

change in air temperature from the warm summers to cooler winter also causes the 

striated water to mix up and reincorporate some of the sediments from the streambed into 

the water column. Some of the high values in turbidity found in the warm seasons are 

probably due to excessive algae growth or soil disturbance from construction near the 

stream. Many low turbidity values occurred in November, possibly also related to the 

lower stream discharge.  

Specific conductivity sample values are often highest during the November 

through January also possibly related to low stream discharge (Figure 4.16). The lower 

stream flow during this period may have allowed dissolved minerals, salts and limestone 

in the water to concentrate and cause increased conductivity. The months with the lowest 

SC, March- May, were also the months with the highest stream discharge. The dilution of 

minerals and other conducting dissolved solids by the increased precipitation and run-off 

also may be the reason for low SC in the early spring. 
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Figure 4.14: Three highest and three lowest turbidity and SC. Addition of the three 

highest sample concentrations for each site are shown by month above the 0 line. 

Addition of the three lowest sample concentrations by site are shown by month below the 

0 line for comparison.  
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June through September is the warmest time of the year in the Ozarks as shown 

by the number of high water temperatures sampled during these months (Figure 4.15). 

Water temperatures gradually heat up, becoming warmest around August, and then 

quickly decline as the season progresses. Seasonal high DO reflects the water 

temperature changes. Since lower water temperatures are able to absorb more dissolved 

oxygen, the high DO samples tend to be during the cooler moths of March, December 

and January when colder water temperatures prevail. High DO samples in March are 

generally found in the southern portions of the UWRB in the Arkansas watersheds that 

are less affected by urban growth. High DO is also found in Wilson Creek near 

Springfield where it is added to the SWTP effluent. High DO samples in December and 

January are generally found in the northern watersheds of the UWRB including the James 

River and Bull and Beaver Creeks.  

Sixteen out of 19 samples had high stream discharge (Q) values in March-May 

(Figure 4.16). The March-May samples were collected only a week after a rainfall event 

for most sites, making these samples most likely to contain higher Q. April though June 

also historically receives the most rainfall out of the year (MODOC 2001). The Low Q 

samples occurred most frequently in the late summer and during winter months when 

rainfall was less frequent. High and low pH values showed a pattern of high values in the 

early part of the year and gradually decreasing pH as the year progressed (Figure 4.16). 

The stream Q may have had an effect on this water quality parameter since higher Q in 

the beginning of the year may have increased mineral and salts inputs from run-off and 

diluted the acidic, organic material. 
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Figure 4.15: Seasonal high and low DO and stream temperature. Addition of the three 

highest sample concentrations for each site are shown by month above the 0 line. 

Addition of the three lowest sample concentrations by site are shown by month below the 

0 line for comparison.  
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Figure 4.16: Seasonal high and low stream discharge and pH. Addition of the three 

highest sample concentrations for each site are shown by month above the 0 line. 

Addition of the three lowest sample concentrations by site are shown by month below the 

0 line for comparison.  
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The pH seasonal pattern may also reflect the dilution of the WTP discharge 

during the high rainfall season and an increase in WTP effluent volume with lower 

stream flow later part in the year. The increased WTP volume in the stream contains 

more organic matter and acidic material that could lower the pH levels. Low pH in 

November and December may affect SC through increased potential for dissolved solids 

(Figure 4.14). Seasonal water quality trends were also examined by watershed drainage 

basin size to determine if there were any marked differences between seasonal high and 

low water quality indicators among different sized sample watersheds. Water quality 

parameters showed similar patterns throughout watersheds indicating that different 

watershed sizes did not greatly affect the basic water quality seasonal patterns.  

Two notable water sampling sites that showed a sharp change in water quality 

throughout the sampling year were Pearson Ck (11) and Long Ck (12). Nutrient levels, 

especially TP, and turbidity increased dramatically in Long Creek (12) in the latter half of 

the sampling year from September 2005 to February 2006 (Figure 4.17). This may be 

attributed to major land disturbance for the construction of Highway 65 on the eastern 

edge of the watershed or to excessive fall manure applications entering the water. The 

sampling period also had several precipitation events that saw a rise in discharge levels of 

Long Creek (Figure 4.21) after a long dry period. Runoff carrying the built-up nutrients 

on the soil from lack of lush vegetation or from cattle using the stream as a drinking 

source during this dry period may have affected baseflow sampling at this site. Pearson 

Ck (11) was affected by bridge construction in September, 2005 which may have also 

increased the TP loading for this month (Figure 4.18). Turbidity also increased in the 

later part of the sampling year, possibly due to the disturbed soil from construction.  
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Figure 4.17: Long Ck (12) data profile. Sample TN, TP and turbidity by month showing 

higher concentrations after September, 2005  
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Figure 4.18: Pearson Ck (11) data profile. Sample TN, TP and turbidity by month 

showing a gradual decrease in TN during summer and a high TP spike in September with 

a gradual increase in turbidity late in the sampling year 
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Hydrological Influence 

 

The sampling design for this study collected samples at only baseflow conditions 

for all sites and all sample dates in order to facilitate accurate comparisons among 

watersheds. Since hydrological conditions are known to influence water chemistry and 

nutrient concentrations within the watershed, this variable was examined to assess 

sampling consistency. Due to the large size of the URWB (15,636 km²) and variations in 

climate and rainfall throughout the seasons, consistency of sampling was sometimes 

difficult to achieve.  

The correlation of stream discharge (Q) versus drainage basin size shows that 

there is a (Figures 4.19 through 4.21). There are a few outliers in the graphs of mean 

sample Q versus Ad and max sample Q versus Ad which are caused by a few sample sites 

that have comparatively high maximum discharges for their drainage basin sizes or vise 

versa. But general trends shows a positive relationship between increased watershed size 

and increases in stream sample Q. Mean USGS record Q is on a scale from 

approximately 0 to 15 m³/sec for long term discharge (Figure 4.19). Mean sample Q is 

lower than mean annual USGS gage records with a scale of only 0 to 6 m³/sec throughout 

the 19 UWRB sample sites (Figure 4.20). This shows that average, long term USGS Q 

which includes both high and low flow measurements is overall higher than average 

sample Q taken at baseflow conditions. Maximum sample Q, however, ranges from 0.8 to 

20 m³/sec (Figure 4.21). High maximum sample Q may capture samples from the 

seasonal rise in baseflow. This is especially possible during the early spring months 

(March-June) when rain fall is more frequent. As shown earlier in Figure 4.16, this period 

contained the highest measured discharge for each sample site.  
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Figure 4.19: Mean USGS gage record discharge versus Ad. Table Rock Lake Dam (7) site 

excluded as a lake site.  
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Figure 4.20: Mean sample discharge versus Ad. The general trend is shown while the 

outlying watersheds are labeled and indicated by lighter points. Table Rock Dam (7) was 

excluded as a lake site.  
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One condition of the few higher Q samples collected in this study is that they may 

contain lower concentrations of nutrients due to dilution from the higher overall stream 

flow, especially in watersheds that are highly affected by WTP effluent. Forested 

watersheds may contain higher nutrient concentrations with high-flow samples as run-off 

from the land carries more nutrients into the stream, compared to the spring-fed water 

sources during actual baseflow conditions (Miller et. al. 1997). Baseflow changes 

throughout the year can be seen in the hydrographs of various watersheds (Figures 4.22 

through 4.27). Hydrological profiles of the WC-at Springfield (1), Long Ck (12) and 

West Fork-WR (18) show a high amount of variation in baseflow levels. High sample Q 

in March may therefore result from higher stream levels even during baseflow for this 

time of year.  
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Figure 4.21: Maximum sampled discharge over Ad. The general trend is shown while the 

outlying watersheds are labeled and indicated by lighter points. Table Rock Dam (7) was 

excluded as a lake site.  
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Hydrology at Wilson Ck-Springfield (1)
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Figure 4.22: Log scale hydrological profile of WC-Springfield (1).Small dots indicate 

days along the profile while large dots indicate day of sample collection.  
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Figure 4.23: Hydrological profile of the sampling year at Long Ck (12). Small dots 

indicate days along the profile while large dots indicate day of sample collection.  
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Larger streams (> 500 km²) show slightly less short term variation in the hydrological 

profile than smaller streams. However, similar to smaller watersheds, high baseflow in 

the spring is still evident in the large streams (Figures 4.25 to 4.27). To further examine 

stream Q conditions, antecedent rainfall events are shown for various regions of the 

UWRB (Figure 4.28). This data is presented as the average number of days in a given 

region since rainfall occurred before each sample date. The April sample had the shortest 

antecedent period before a sample was taken for most watershed regions. Seasonal high 

nutrient concentrations, shown in the previous section in Figure 4.13, also roughly reflect 

the difference in antecedent days before sampling. Total N in Figure 4.13 had several 

high sample values during the early part of the year which generally has less antecedent 

days between rainfall and sampling.   

Hydrology at West Fork-WR (18) 
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Figure 4.24: Hydrological profile of the sampling year at West Fork-WR (18). Small dots 

indicate days along the profile while large dots indicate day of sample collection. Breaks 

in the profile are where no data from the USGS gage was available. 
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Hydrology at Bull Ck (8)
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Figure 4.25: Hydrological profile of the sampling year at Bull Ck (8). Small dots indicate 

days along the profile while large dots indicate day of sample collection.  
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Figure 4.26: Hydrological profile of the sampling year at Kings R (14). Small dots 

indicate days along the profile while large dots indicate day of sample collection.  
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Hydrology at James R-Galena (6)
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Figure 4.27: Hydrological profile of the sampling year at JR-Galena (6). Small dots 

indicate days along the profile while large dots indicate day of sample collection.  
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Figure 4.28: Antecedent rainfall events before sampling. Average number of days by 

region is shown for each sample date (1
st
 sample March, 2005, 12

th
 sample Feb, 2006).  
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Correlation Among Water Quality Indicators 

Median values for water quality indicators were used in the analysis for this study 

instead of mean values to help reduce the effects of a few extreme high or low samples. 

However, to show that there is minimal difference between the mean and median sample 

values, the mean and median are correlated and compared to the line of equal value. The 

following plots, Figures 4.29 through 4.32 show the mean-to-median correlation for TP, 

TN, SC and turbidity. Since there is little variation among pH, water temperature and 

DO, these plots are not shown. Diagonal lines across the plot from the 0 point to the 

upper right corner indicate where the data points would fall if the mean and median 

values are exactly equal. The turbidity plot shows that mean values are almost all greater 

than median values which could be caused by the high turbidity at many sites in the fall 

and winter (Figure 4.32). But this should not affect correlation greatly since almost all 

data points, except WC-at SWTP (3)  have a deviate similarly from the one-to-one line.  

 

 
 

Figure 4.29: Correlation between mean and median TN values. The one-to-one line 

indicates where data points would fall if both mean and median were exactly the same.  
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Figure 4.30: Correlation between mean and median TP values. The one-to-one line 

indicates where data points would fall if both mean and median were exactly the same.  

 

 

 

Figure 4.31: Correlation between mean and median SC values. The one-to-one line 

indicates where data points would fall if both mean and median were exactly the same.  
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Figure 4.32: Correlation between mean and median turbidity values. The one-to-one line 

indicates where data points would fall if both mean and median were equal. Mean is 

greater for most sites as this also averages the very high values for many sites in the fall 

and winter seasons.  

 

 

Pearson correlation matrices show the correlation among water quality variables and 

watershed factors including percentage of land use, SWD, carbonate bedrock, drainage 

basin size, and elevation at the sample site. Pearson correlation helps indicate whether 

there is a similarity in variations between two variables which can be investigated further 

to determine if it is a true cause and effect relationship or simply a similar pattern of 

change between unrelated data. Correlation matrices are shown for three groups of 

sample sites: (1) all of the sample sites (Table 4.10), (2) only sites that have WTP 

discharge (Table 4.11) and (3) sites with little point source influence (Table 4.12). Bold 

values in the matrix are those correlations that are statistically significant with a p-value 

of 0.05 or less, but this does not necessarily indicate a cause-and effect-relationship.  
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Table 4.10: Correlation matrix for all sites. Correlation between water quality and 

watershed variables shown as r values, an indicator of the strength and direction (positive 

or negative) of correlation. Bold = statistically significant (p-value is </= 0.05)  

 
  All Sites                  

Pearson Correlation Matrix TN TP pH SC Turbidity DO Temp SQ 

  TN (mg/L) 1         

  TP (µ/L) 0.84 1        

  pH -0.46 -0.38 1       

  SC(mS/cm) 0.76 0.66 -0.46 1      

  TURB(NTU) 0.26 0.23 -0.37 -0.14 1     

  DO(mg/L) 0.83 0.66 -0.13 0.44 0.27 1    

  Temp 0.18 0.20 0.07 0.00 0.15 0.27 1   

  SQ (liters/day/km
2
) 0.33 0.22 -0.38 0.15 0.32 0.27 0.12 1 

  %Urban  0.45 0.39 -0.66 0.71 0.08 0.19 -0.12 0.34 

  % Agriculture 0.10 -0.06 0.28 0.13 -0.30 0.11 -0.28 -0.33 

  %Forest -0.46 -0.24 0.43 -0.65 0.08 -0.20 0.64 -0.17 

  % carbonate 0.34 0.12 -0.11 0.70 -0.54 0.16 -0.37 -0.20 

  SWD gal/day/km
2
 0.93 0.78 -0.42 0.64 0.32 0.90 0.25 0.42 

  Km² in watershed -0.10 -0.15 0.16 -0.25 0.06 -0.12 -0.60 0.07 

  Elevation (m) 0.16 0.16 -0.46 0.17 0.46 0.12 0.18 0.17 

 

 

 

Table 4.11: Correlation matrix for WTP influenced sites. Correlation between water 

quality and watershed variables shown as r values indicating the strength and direction 

(positive or negative) of correlation. Bold = statistically significant (p-value is </= 0.05) 

 
  WTP Sites                 

Pearson Correlation Matrix TN  TP pH SC Turbidity DO  Temp SQ 

  TN (mg/L) 1         

  TP (µ/L) 0.90 1        

  pH -0.60 -0.38 1       

  SC(mS/cm) 0.88 0.81 -0.32 1      

  TURB(NTU) 0.20 0.15 -0.72 -0.18 1     

  DO(mg/L) 0.87 0.77 -0.46 0.71 0.14 1    

  Temp 0.26 0.38 -0.20 0.20 0.35 0.27 1   

  SQ (liters/day/km
2
) 0.43 0.32 -0.67 0.28 0.33 0.32 0.10 1 

  %Urban  0.97 0.85 -0.69 0.81 0.31 0.90 0.36 0.55 

  % Agriculture -0.06 -0.14 0.42 0.33 -0.82 -0.11 -0.48 -0.33 

  %Forest -0.55 -0.32 0.20 -0.59 0.32 -0.43 0.60 -0.26 

  % carbonate 0.43 0.31 0.13 0.70 -0.66 0.44 -0.38 -0.04 

  SWD gal/day/km
2
 0.96 0.84 -0.64 0.75 0.30 0.95 0.30 0.50 

  Km² in watershed -0.18 -0.27 0.15 -0.29 -0.10 -0.24 -0.77 0.07 

  Elevation (m) 0.20 0.20 -0.51 0.11 0.47 0.17 0.53 -0.01 
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Table 4.12: Correlation matrix for non-point influenced sites. Correlation between water 

quality and watershed variables, r values, an indicator of the strength and direction 

(positive or negative) of correlation. Bold = statistically significant (p-value is </= 0.05) 

 
  Non-point Sites                 

Pearson Correlation Matrix TN  TP pH SC Turbidity DO  Temp SQ 

  TN (mg/L) 1               

  TP (µ/L) 0.48 1        

  pH -0.37 -0.55 1       

  SC(mS/cm) 0.31 0.19 -0.45 1      

  TURB(NTU) -0.12 -0.02 -0.22 -0.50 1     

  DO(mg/L) 0.17 -0.20 0.73 -0.45 0.01 1    

  Temp -0.49 -0.51 0.31 -0.73 0.27 0.12 1   

  SQ (liters/day/km
2
) -0.21 -0.07 -0.24 -0.16 0.26 -0.26 0.19 1 

  %Urban  0.10 0.22 -0.59 0.75 -0.05 -0.65 -0.62 0.19 

  % Agriculture 0.65 -0.03 0.25 0.09 -0.21 0.66 -0.22 -0.36 

  %Forest -0.59 -0.21 0.45 -0.85 0.21 0.20 0.82 0.06 

  % carbonate 0.40 -0.09 -0.04 0.83 -0.67 -0.11 -0.57 -0.41 

  SWD gal/day/km
2
 -0.35 -0.31 0.18 -0.10 0.14 0.13 0.24 0.20 

  Km² in watershed -0.57 -0.41 0.48 -0.52 0.26 0.29 0.57 -0.34 

  Elevation (m) 0.22 0.17 -0.50 0.07 0.59 -0.09 -0.28 0.31 

 

 

Nutrients appear to correlate with SC and DO for all sites and SWD sites (Tables 

4.10 and 4.11). Specific conductivity and DO are also correlation with SWD which may 

indicate that the nutrient correlations to these water chemistry variables is being 

controlled by WTP effluent. Both SC and DO are highly modified by SWD effluent since 

it is contains high concentrations of suspended and dissolved solids, a controlling factor 

in SC, and is injected with DO as part of the treatment. The correlation of nutrients versus 

these two water quality indicators (SC and DO) does not appear in the matrix with only 

the non-point sites (Table 4.12) confirming the influence of WTP effluent on this 

apparent relationship. Nutrients correlation to SWD is further discussed in the section on 

WTP influence (page 127 and 128). Nutrients show a correlation with percent urban area 

in the SWD site matrix, a result that is again probably influenced by the WTP effluent 

being associated with urban areas. For non-point influenced correlations (Table 4.12) TN 
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is correlated with percent forest area which is a relationship often found in land 

use/nutrient studies (Jordan et al. 1997; Miller et al. 1997; Peterson 1998; Miller 2006). 

TN is also correlated with percent agricultural area. This is further discussed in the 

section on land use influence (pages 129 to 140). Sample pH is negatively correlated with 

percent urban area in all three matrices indicating a drop in pH from increased organic 

matter emanating from these areas or the SWD associated with them. For the non-point 

sites there is a positive relationship between pH and DO (Table 4.12).  This correlation 

points to a common causative factor instead of a cause and effect relationship since DO is 

not directly dependent on acidity or alkalinity of the water which is measured by pH. The 

correlation line between these two parameters is shown in Figure 4.33. One explanation 

for this correlation is that increased dissolved organic matter from human or animal 

waste, leaf and vegetation break-down or other organic inputs can increase bacterial 

metabolism and respiration, decreasing DO. Organic matter also releases humic acids 

which can affect and lower the pH.  

Specific conductivity is correlated with land use in all three matrices. It shows a 

positive correlation with urban land use in all matrices (Tables 4.10 through 4.12). Since 

SWD is associated with urban areas, the SC to percent urban correlation may again be 

related to WTP effects. In the correlation matrix with only the non-point sites (Table 

4.12), SC has a negative correlation with percent forest where the SC value decreases 

with increased forest area (Figure 4.34). This may be a result of spatial autocorrelation 

rather than cause-and-effect. In the section on bedrock influence (pages 123 to 126), it is 

shown that forest is also negatively related to percentage of carbonate bedrock. All 

matrices show a positive relationship between SC and percent carbonate bedrock.  
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Figure 4.33: Relationship between DO and pH (non-point influenced sites only)  
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Figure 4.34: Relationship between SC and percent forest land use (non-point influenced 

sites only)  
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The relationship between SC and forest may therefore be a result of the carbonate 

bedrock’s negative spatial relationship to percent forest area. This is probable since the 

least percentage of carbonate bedrock in the UWRB, the White River headwaters, are 

also the most forested watersheds. Turbidity also has a negative correlation with percent 

carbonate bedrock in the non-point watershed matrix. This is further discussed in the 

section on bedrock influence (pages 123 to 126).  

Stream temperature has a positive relationship to forest area. As shown in the 

Land Use Influence section in Figure 4.42, this relationship is probably caused by cooler 

water in the spring-fed streams that flow through the less forested, limestone plains areas 

in the northern portion of the UWRB watershed rather than an actual forest effect on 

temperature. Average maximum and minimum temperatures in Springfield, MO are 89° 

F and 21.8° F respectively while the average for Fayetteville, AR are 89° F and 24.2° F.  

The slightly more moderate temperature in the southern portion of the UWRB may cause 

an apparent correlation between water temperature and the higher percent forest in these 

watersheds. Finally, no statistically significant trends were found for specific discharge 

(SQ) to nutrients or watershed variables in non-point source influenced watersheds. 

Correlations between nutrient and other water quality indicators are difficult to predict in 

baseflow samples due to the variety of factors that influence each other water chemistry 

variable. Baseflow samples are not amplified by higher flows so much of the regression 

analysis plots or Pearson Correlation matrices showed that the majority of the 

relationship was being defined by WTP influenced sites such as WC-at SWTP (3) and 

JR-Boaz (4). These high-WTP discharge sites were therefore removed from the analysis 

when looking at land use affects on water quality (pages 129 to 140). 
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Bedrock Influence 

Correlations between percent carbonate bedrock in the sample watershed and 

water quality indicators are examined to determine the influence of bedrock types on 

water quality.  Geology or bedrock type is known to play a role in water chemistry and 

nutrient loading (Spahr and Wynn 1997; Vesper and White 2003; Lunetta et. al. 2005). 

The Ozarks region is known for karst, carbonate bedrock which offers little or no 

filtration of storm run-off and wastewater. Ground water, spring discharge and WTP 

effluent contribute to baseflow in these regions. Karst features such as sinkholes and 

caves are common in the carbonate bedrocks of the UWRB closer to the main channel of 

the White river and throughout the James River Basin (Table 4.1). Shale, the predominant 

bedrock type in the Boston Mountain uplifts in the headwaters of the White River, is 

resistant to surface-to-ground-water interaction (MODOC 2001).  

 Correlation between percent carbonate bedrock and median nutrient values was 

not significant since bedrock does not independently affect nutrient loading, but its 

impact is influenced by land use and other point and non-point sources. The generalized 

nature of the bedrock data probably also affects its performance as a predictor of water 

quality. There is, however, a significant relationship between SC and bedrock type which 

is an expected correlation since the SC is determined by the concentration of dissolved 

salts or solids in the water (Figure 4.35). Dissolution of carbonate rock adds dissolved 

solids and ions to the water, increasing its potential conductivity. Also, more population 

lives on the carbonate limestone plains areas of the watershed such as Springfield, 

Branson, Ozark, Nixa and Berryville. More population in the carbonate areas adds salts 

and pollution to streams of which may increase the conductivity of the water in this area.  
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Given the relationship between SC and carbonate bedrock, a correlation between 

carbonate bedrock and turbidity was expected since turbidity may be caused by 

suspended solid particles in the water (Figure 4.36). The influence of WC-at SWTP (3) 

and Pearson Ck (11) were removed from both graphs due to these sites being influence 

by unique circumstances not shared by other sample watersheds. WC-at SWTP (3) is 

influenced by SWTP effluent and Pearson Ck (11) had construction site disturbance 

which both greatly affect SC and turbidity.  The six sites with the lowest turbidity also 

have a high percentage of carbonate bedrock (Figure 4.36). Similarly, four of the sites 

with the highest turbidity also have a low percentage of carbonate bedrock, or high 

percentage of shale/sandstone bedrock. Simply by looking at these two groups of 

characteristics, it is clear that there is a relationship between bedrock type and turbidity.  

Shale bedrock may be more erodeable than carbonate bedrock which has more 

tendency to become dissolved rather than erode into small suspended particles. The 

weaker shale bedrock is creates erodeable soils which, on the steeper slopes of the Boston 

Mountains, may erode and enter streams at a faster rate. The scatter or standard error 

(3.4) in the regression equation between carbonate bedrock versus turbidity may be 

accounted for by the fact that not all turbidity is a measure of the suspended solids from 

geological factors, but is also made up of algal cells, organic matter and chemical 

pollutants. Taking into account the general nature of geological data used in this study, 

the relationships between SC, turbidity and carbonate bedrock may be viewed as 

indicators of the importance of geological factors on these water quality indicators.  

 

 



 124 

 
 

Figure 4.35: Specific conductivity versus percent carbonate bedrock. WC-at SWTP (3) 

and JR-Boaz (4), have high SC due to increased salts and dissolved solids from WTP 

effluent. 

 

 

 
 

Figure 4.36: Turbidity versus percent carbonate bedrock.  WC-at SWWTP (3) and 

Pearson Ck (11), lighter points, are excluded from the equation. 



 125 

Wastewater Treatment Plant Influence  

The WTP affects on nutrient loading and water quality indicators was examined 

by regression of SWD in gallons/day/km² versus these indicators. Correlation was studied 

for all sites that had any amount of SWD or those with a WTP in their drainage basin. 

Three water quality indicators, TP, TN and SC showed a positive relationship to SWD 

(Figure 4.37). As discussed earlier in the section on correlation among water quality 

indicators, other water chemistry variables including pH, DO and water temperature 

show correlation to SWD. Regression of these indicators versus SWD, however, 

confirmed that the majority of the correlation is from a single sample site (WC-below 

SWTP 3).  However, nutrient and SC correlations show a consistent increase in 

concentration with increases in SWD (Figure 4.37).   

The positive correlation between TP concentrations and SWD is indicated by the 

trend line for this variable which shows that with increases in SWD there is an increase in 

median TP concentrations in the streams affected by these point sources. Correlation 

between SWD and median TN is strongest for watersheds that have more than 10,000 

gallons of effluent per km² per day, WC-at SWTP (3), JR-Boaz (4) and JR-Galena (6). 

Correlation statistics, R² and p-value, also indicate that the log-scale relationship is 

significant even with the few data points used in this correlation. Median SC versus SWD 

shows a positive but weaker trend line and a less significant R² value of 0.58.  The 

horizontal trend lines for sites with low SWD correlated with TN and SC indicate that 

these water quality indicators are not strongly affected by smaller volumes of WTP 

effluent during baseflow conditions. Median TN, SC and TP concentrations are expected 

to increase with higher SWD (specific wastewater treatment plant discharge). 
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Figure 4.37: TP, TN and SC versus SWD. Correlation of median nutrient and SC values 

with SWD for all watersheds with wastewater point-source discharge. Relationship is 

log-linear for TP and log-log for TN and SC. 
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Land use Influence 

Previous studies show that there is a link between land use and water quality in 

the watershed (Dupré and Robertson 2004; Jordan et. al 1997; Boyd 1996; Edwards et. al 

1996). Rainfall on various land areas comes in contact with vegetation, soils, and human 

structures and acquires many contaminants including applied or available nutrients which 

are washed into the nearby streams. In examining relationships between land use and 

water quality, this study correlated percentages of agriculture, forest and urban land use 

to nutrients and the other water quality indicators for the watersheds without major WTP 

effluent inputs (< 600 gal/day/km²). Sites that were ranked medium and high for SWD, 

shown on Table 4.7, were excluded from this analysis. WR-below Table Rock Dam (7) 

was also removed since this is not a stream site.  

Correlation of TP versus land use indicates a negative relationship between this 

nutrient and percentage of forest area (Figure 4.38). Forest and vegetative areas help to 

hold the soil in place and prevent erosion, a major source of TP in streams. This 

relationship is therefore plausible. Long Ck (12) is again a far outlier in the data plot. 

This is may caused by the increase in non-point phosphorus loading in the Long Creek 

watershed from agricultural practices or the construction erosion on the U. S. highway 65 

at the eastern rim of the basin (Figure 4.17). In addition, the Long Creek watershed 

contains the highest percentage of barren (quarry, construction site, gravel areas) at 2.5% 

which, while it does not encompass a large area, may have a significant impact on 

nutrient loading (Langer 2002). Correlation of TP to urban land use is mostly defined by 

a few highly urban sites including WC-Springfield (1) and WC-above SWTP (2). Again, 

Long Ck (12) was a far outlier while Yocum Ck (13) was a lesser outlier (Figure 4.39).  
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Figure 4.38: Correlation of TP and percent forest. Moderate to high SWD sites are 

excluded to look at land use influence. Long Ck (12) is the outlier and not included in the 

general trend. A = high agriculture in the watershed and W = low SWD influence. 

 

 

 
 

Figure 4.39: Correlation of TP and percent urban land use. Moderate to high SWD sites 

are excluded and Long Ck (12) is an outlier. 
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A correlation between percent forest versus carbonate bedrock and the relative TP 

concentrations for non-point watersheds are shown in Figure 4.40. This relationship can 

be broken into 3 distinct groups: (A) the high forest/low carbonate region, (B) the low 

forest/high carbonate region and group (C) the high forest/ high carbonate region. There 

are high TP values in group A and group C, but lower TP in group B, shown by the 

different sized spheres. Group A, high forest/low carbonate (high shale), may have higher 

TP inputs from organic matter or soil erosion due to weaker soil types. Group C, high 

carbonate/low forest, may also receive more TP inputs form soil erosion with less forest 

cover. The lowest TP values also occur in the sites with more than 50% forest area. Long 

Ck (12) is again the outlier having nearly equal percentages of both carbonate and shale 

bedrock and the highest median TP concentration.  

 

 

Figure 4.40: Multivariate correlation of forest, carbonate and TP. Circle sizes represent 

relative concentrations of median TP. 
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Median TN concentration showed a negative relationship to percent forest land 

use (Figure 4.41). However, in the initial analysis of this relationship, data from Yocum 

Ck (13) deviated most significantly from the general trend line. This was probably caused 

by the much higher TN concentrations found at this site compared to other non-point sites 

(Figure 4.18). In order to look at the majority of the TN-to-forest correlation trend, the 

influence of The Yocum Ck (13) site was removed form the TN equation. The location of 

Yocum Ck (13) data is shown in relation to the other data points in Figure 4.41 while not 

included in the equation.  

A question when examining the correlation between land use and water quality is 

how to remove the influence of bedrock in order to accurately capture the land use 

influence. Since the water quality indicators such as turbidity and SC are related to 

carbonate bedrock (Figures 4.35 and 4.36) and bedrock varies in a similar pattern with 

forest land use (Figure 4.42), the relationships between land use and water quality may be 

capturing some of the bedrock influence through spatial autocorrelation which occurs 

when two unrelated variables have a similar spatial pattern causing them to show an 

apparent correlation. Since forest areas dominate the Boston Mountains portion of the 

watershed, shale bedrock is positively correlated with forest land use although shale 

bedrock does not cause the increased forests. The relationship between TN and forest 

land use may be influenced by this nutrient’s correlation with carbonate bedrock. A look 

at the relationship between forest, carbonate bedrock and TN concentrations offers some 

further insight into this possibility. Figure 4.43 shows percent forest area versus 

carbonate bedrock with the corresponding relative TN concentrations indicated by sphere 

sizes for all non-point watersheds.  There is not a significant difference between TN 
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concentrations in watersheds draining carbonate areas (group B) and those draining shale 

areas (group A). These groups of sites range from very low to high in overall percentage 

of carbonate bedrock. Both of these groups are also high in percentage of forest land use. 

This may be an indication that the carbonate bedrock has less influence on TN levels than 

suspected. Group C, with less than 50% forest area, has a definite TN increase in all sites 

in this region. High forest areas have an increase in uptake by vegetation as well as low 

nutrient input from this type of land use. A missing group of samples for more accurate 

comparison are those with low forest and low carbonate bedrock. However, it appears 

that changes in forest land use have more influence on TN than carbonate bedrock.  

The positive correlation between TN and agricultural land use (Figure 4.44) is 

expected because TN has often been associated with agricultural land use in studies 

(Boyd 1996; Edwards et. al 1996; Clark et. al 2000). This association has also been 

shown to increase in karst areas such as the eroded limestone bedrock (Miller et. al. 

1997). Among the non-point source watersheds, there was not a significant relationship 

or pattern found between urban land use and median TN levels. This may be due to the 

fact that nitrogen is a very mobile nutrient and may move long distances downstream or 

be quickly taken up by aquatic organisms in the few non-point sites that contain large 

urban areas. Nitrogen produced from the urban landscape is often quickly released from 

impervious areas at brief intervals during rain events. It is then flushed downstream and 

any remaining concentration is used up by local organisms, causing a drop in the TN 

concentration at baseflow conditions. Flushing of nutrients out of the upstream urban 

areas and subsequent increase in concentration downstream has been shown in data 

gathered by LMVP (2006).  
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Figure 4.41: Correlation of TN and percent forest. Moderate to high SWD sites are 

excluded to look at non-point source relationships. Yocum Ck (13) is not included in the 

equation which shows a general negative trend between TN and percent forest.  

 

 

 

Figure 4.42: Correlation of percent carbonate bedrock and percent forest. Moderate to 

high SWD sites are excluded. 
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Figure 4.43: Multivariate correlation of forest, carbonate and TN. Circle sizes represent 

relative concentrations of median TN. 

 

 
 

Figure 4.44: Correlation of TN and percent agriculture. Moderate to high SWD sites are 

excluded to look at non-point source relationships.  
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The correlation of stream temperature to forest land use yielded a positive 

relationship indicating that with increased forest area there was also an increase in 

temperature in the stream sample (Figure 4.45). Streams in forest areas are generally 

cooler in temperature than open grasslands, fields or urban areas. The positive 

relationship between forest area and stream temperature may be the fact that  northern 

part of the UWRB contains more carbonate bedrock which allows circulation of cooler 

groundwater and surface water through sink holes and springs. The watersheds in the 

southern, forested portion of the UWRB are emanating from the Boston Mountain shale 

beds may have less groundwater interaction and more warm surface water inputs. 

Another cause for the positive relationship between stream temperature and forest area is 

that the southern, mostly forested portion of the UWRB watershed has an average 

warmer climate.  

Specific conductivity is negatively related to percentage of forest land use (Figure 

4.46). A logical explanation for this relationship is that with higher percentages of forest 

land use, there is less erosion of the soil, a major contributor to suspended solids and 

minerals in the water. With less suspended and dissolved solids, the water has less 

conductivity, since this property relies on the amount of dissolved and suspended mineral 

and salts in the water. However, as show earlier in Figure 4.35, SC is correlated to 

percent carbonate bedrock, so the relationship between SC and percent forest land use 

may be a result of heavily forested watersheds being located in the less carbonate portion 

of the UWRB.  
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Figure 4.45: Correlation of stream temperature and percent forest. Sites on the lower left 

side of the graph are generally around Springfield, while sites at the upper right end of 

the trend line are around Fayetteville. Moderate to high SWD sites are excluded. 

 

 

Figure 4.46: Correlation of SC and percent forest. Moderate to high SWD sites are 

excluded. 
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Figures 4.47 and 4.48 show the comparison between mean USGS stream gage SQ 

(specific discharge) and the sample SQ as it relates to percent forest and carbonate in the 

drainage area. The USGS SQ does not show much difference between the sites, probably 

the result of USGS values being an average of all stream discharge levels. The sample 

SQ, a measure of median baseflow discharge divided by Ad, shows a greater variation in 

stream discharge levels. The three sites with overall highest SQ are WC-Springfield (1), 

West Fork-WR (18) and Richland Ck (16). All of these sites has smaller drainage basins, 

less than 400 km
2
, which may cause the SQ values to be higher even though all of these 

sites had very low discharge during baseflow conditions.  

 

 

Figure 4.47: Multivariate correlation of forest, carbonate and mean USGS SQ. Circle 

sizes represent USGS mean specific discharge values. 
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Figure 4.48: Multivariate correlation of forest, carbonate and mean sample SQ. Circle 

sizes represent mean sampled specific discharge values. 
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Water Chemistry and Nutrients in the UWRB Watershed 

               Nutrient concentrations during baseflow throughout the 19 sample watersheds 

of the UWRB are variable and may not be fully explained by watershed characteristics. 

This study found that there are several factors that contribute to the level of nutrient 

concentrations at sample sites including seasonal changes, specific wastewater discharge 

(SWD) and percentages of forest, agriculture and urban land use. Seasonal patterns are 

seen among all of the water quality parameters. Nutrient concentrations show a pattern of 

increased concentration in the fall and early spring months when vegetation is dormant or 

higher stream discharge occurs. Many high-TN samples occurred during the early spring 

season when many streams had higher discharge than other seasons. This was possibly 

due to a residual supply of non-point pollution flushed into the channel during storms. 

                Specific stream discharge (SQ) did not relate to nutrients directly through linear 

correlation, but may have been overshadowed by more baseflow sample effects such as 

point-source discharge from wastewater treatment plants. Besides the seasonal trends, 

SWD is the predominant factor controlling baseflow nutrient levels in watersheds that 

receive a moderate to high amount of WTP effluent (Table 4.7). These sites show a 

positive relationship between nutrients and SWD values (Figure 4.37). With WTP 

affected sites removed, percent forest and urban land use are the predominant watershed 

characteristics relating to TP loading. Percent forest and agricultural land use are related 

to TN loading in these watersheds. Sites with high percent forest and low percent 

carbonate bedrock have generally moderate to low nutrient levels. Sites with high forest 

area as well as high percentage of carbonate also have moderate to low nutrient levels 

while sites with low forest and high carbonate bedrock may have some of the highest 
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nutrient levels. The shale/sandstone bedrock areas may supply higher TP loads compared 

to limestone plateau areas with similar forest area, but this bedrock type does not appear 

to affect TN loading. The sub-watersheds that have a high percent carbonate bedrock and 

low forested area not only have the highest nutrient concentrations, but also contain the 

largest urban areas and receive the most WTP effluent throughout the UWRB watershed. 

These sites include the Wilson Creek sites, the James River below Springfield at JR-Boaz 

(4) and JR-Galena (6) and the Pearson and Finley Creeks. Another area of the UWRB 

watershed with high nutrient loading is the Long Creek and Yocum Creek region. Long 

Creek (12) had high TP levels that may have been caused by additional construction 

erosion during the sampling period (September 2005 to February 2006). The high TN 

loading in Yocum Creek may have been from large percentage of agricultural pastures in 

this watershed or the dairy and poultry operations along this creek.  

                 Several factors involved in performing this study may have an affect on the 

results. This study was designed to take grab samples and multi-parameter samples for 

basic water chemistry data during baseflow conditions at the 19 sample sites. These 

sample sites are dispersed throughout the UWRB watershed and must be visited within 

the shortest possible in order to collect consistent and comparable samples. Due to 

driving time, collection time and placement of the sample sites across the UWRB, it was 

not feasible to collect all 19 samples in a single day. Rather, the samples were collected 

in two consecutive days, the first in the Missouri side and the other in the Arkansas side 

of the UWRB. In addition, samples were not collected at the same time of day since 

collection was performed at different watersheds at different times. This may affect water 

quality since water temperatures, dissolved oxygen and pH may rise and fall through the 
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day’s progression due to solar radiation, vegetative uptake and algal photosynthesis. Grab 

samples were preserved with sulfuric acid and cooled to prevent metabolism or digestion 

of nutrient ions until analysis could be performed. This method allowed samples to be 

stored for up to 28 days after collection.  All analysis was performed within the 28 day 

period, but 4 out of the 12 sample collections were delayed longer than 20 days before 

being analyzed. This delay, however, showed no sign of affecting nutrient concentrations 

when compared to other samples.   

             The large size of the UWRB (15,636 km²) also has different climates and weather 

patterns, with generally warmer and drier conditions in the southern portion and cooler 

and wetter conditions in the northern areas.  Consistent sampling is therefore a 

challenging task. Antecedent rainfall events were varied in different regions of the 

watershed and some falling limb sampling may have occurred in the watersheds of the 

James River Basin and during the earlier part of the year. The falling limb may contain a 

high nitrogen concentration form run-off or may dilute the nutrient concentrations from 

point-sources. Drought conditions, such as those in the latter part of the summer of 2005, 

can cause nutrient loading from WTP sources to become more prominent, while at the 

same time lowering the land use effects.  

           Grab sampling done in this study is designed to collect a sample at a particular 

point in the stream. The error in this method is that in different areas of the stream 

channel water moves at different rates and may therefore contain varying amounts of 

suspended or dissolved chemicals. Integrated sampling across the stream channel may 

therefore have more accurately captured the full spectrum of water quality conditions 

present at the sample site. However, grab sampling may be sufficient at baseflow 
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conditions which are not as affected by land run-off and are typically characterized by 

slow-moving water that has released most of its suspended particles through settling and 

sedimentation. The channel at baseflow is also much shallower, inducing mixing at the 

riffles and providing little room for stratification. Another problem when comparing 

baseflow samples to land use variables is that baseflow nutrient loading is not directly 

connected with land use run-off. Baseflow in the streams of the Ozarks is fed by springs 

and groundwater discharge or by point-source discharge. While springs and groundwater 

are replenished through recharge of storm water from land use areas during rain events, 

these sources may not directly indicated the influence of local drainage areas on water 

quality since the karst hydrological networks are independent of the topographical 

drainage basin. 

 

Future Work 

            Baseflow sampling done in this study of the UWRB watersheds aims to quantify 

baseline water quality, particularly nutrients, in this watershed. This study, however, was 

performed during the short timeframe of one year, inherently limiting results to the 

particular weather patterns and hydrological condition of that particular period rather than 

painting an accurate picture of the long term stream conditions. Continued monitoring in 

the UWRB could provide new insight into the complex relationships between the 

drainage basin characteristics and water quality as well as expand upon the results of this 

study. In addition to long term sampling, three specific issues should be addressed in 

future work: (1) addition of storm event or high flow sampling, (2) improve upon the 

accuracy of  baseflow sampling when this is the target stream condition and (3) increase 
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sample frequency.  Addition of storm event sampling would improve the comparison of 

water quality to land use by sampling the direct run-off from the drainage areas. 

Baseflow sampling done in this study was mainly to keep sampling consistent across this 

large watershed. Land use effects, however, are largely dependent on precipitation run-

off sampling. WTP influence therefore showed a higher impact at the baseflow levels. 

There are major water chemistry and nutrient loading differences between storm water 

samples and baseflow samples.  

             When baseflow samples are the target, having accurate precipitation and weather 

data to help determine baseflow conditions is important. Some of the sampling early in 

the year may have captured the falling or rising limbs of storm water run-off due to more 

frequent rain events and the large and varied study area. It was sometimes difficult to get 

an accurate weather forecast for all areas of the UWRB watershed and its scattered 

stream sample sites were sometimes difficult to determine as true baseflow.  Finally, 

more frequent sampling would help pinpoint changes in water quality that may be more 

easily linked to land use practices or events that may not be captured in a monthly 

sampling. Additional data produced would also help build stronger relationships between 

stream characteristics and water quality variables by providing more data points. 

Additional sampling, frequency and accuracy would therefore help improve and extend 

this study to provide a clearer picture of the water quality status in the UWRB. 
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CHAPTER 5: CONCLUSIONS 

 

 

The Upper White River Basin watershed (UWRB), which encompasses over 

15,636 km², was sampled at 19 tributary sites (USGS gages) scattered throughout the 

basin to produce a dataset of water chemistry and nutrient concentrations. The sites were 

sampled once a month for one year from March 2005 to February 2006. Stream samples 

were taken during baseflow conditions to increase consistency and comparability of the 

dataset. A multi-parameter water quality sampler was use to collect water temperature, 

pH, dissolved oxygen (DO) specific conductivity (SC), and turbidity. Stage was 

measured at each site and stream discharge was obtained from the USGS Real-time water 

quality website (www.water.usgs.org). 

 A GIS database of land use, bedrock geology, drainage areas and wastewater 

treatment plan discharge (WTP) was used to obtain these watershed characteristics for 

each sample site. Laboratory analysis of grab samples resulted in 12 sets of total nitrogen 

(TN) and total phosphorus (TP) values for each site. Land use, geology and specific 

wastewater treatment plant discharge (SWD) were used to rank the 19 sites as highly 

disturbed, moderately disturbed and least disturbed. Seasonal influence and hydrology 

were also examined. Pearson’s Correlation and regression analysis was performed using 

to examine significant relationships between land use, bedrock, SWD and water quality. 

Five key conclusions of this study are as follows:  

1) Urban and agricultural watersheds on the karst limestone plateau such as 

those, draining Springfield Metropolitan areas generally have high nutrient levels. 

High nutrient concentrations are often associated with urban and developed areas. 

Nutrient levels at the James River sites below urban areas often exceeded TMDL limits 

http://www.water.usgs.org/


 144 

(Table 4.3) and all 4 watersheds classified as highly disturbed were located in this 

watershed (Table 4.7). The general public indicator of water quality, water clarity, has 

also been historically the lowest in the James River and the James River arm of Table 

Rock Lake.  

 2) Highest sampled TN levels were generally observed in the late winter and 

early spring while high TP samples were more frequent during the late fall and 

early winter. Late winter and early spring seasons in the Ozarks can have more 

precipitation than other times of the year leading to higher stream discharge (Figure 4.14 

and Figures 4.22 to 4.27). This time of year vegetation is dormant and does not assimilate 

as many nutrients from run-off or in the streams. Combined high run-off and less nutrient 

uptake by vegetation may cause increased nutrient loading. The added soil erosion 

following the long dry summer of 2005 may have also increased the TP loading in the 

late fall of that year.  

3) Specific wastewater discharge (SWD in gal/day/km²) is positively 

correlated with nutrient concentrations for watersheds receiving WTP effluent.  

The positive relationship between SWD and median sample nutrient levels is expected 

since WTP effluent contains a high concentration of both nitrogen and phosphorus. 

However, the strong relationship found in this broad, basin-wide study confirms that at 

baseflow conditions, SWD is an important control of nutrient concentrations in the 

UWRB watershed.  

4) Non-point source watershed correlations (< 600 gal/day/km² of SWD) 

show a negative relationship between percentage of forest and nutrient loading. 

Non-point influenced watersheds also show a positive relationship between TN and 
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percent agriculture and between TP and percent urban area.  When the strong WTP 

influence is removed from the regression and Pearson correlation, the influence of land 

use becomes more visible even for the baseflow samples taken in this study.   

5) James River TMDL values of 1.5 mg/L TN and 75 µg/L TP are generally 

exceeded in sampled watersheds with characteristics beyond the following 

thresholds:  

     > 600 (gal/day/km²) SWD 

         or  

>10% Urban land use/drainage area 

< 50% Forest land use/drainage area 

> 50% Agricultural land use in drainage area 

 

The one site that does not fit into these categories but has median nutrient loading above 

the James River TMDL levels is Long Creek (site 12) which also was an outlier in much 

of the correlation and regression analysis. This study showed that basin-wide nutrient 

analysis of the UWRB watershed can provide important information about water quality 

as it varies across this dynamic landscape. This data helps set a baseline for reference and 

comparisons to future water quality monitoring. In order to protect water resources, 

nutrient loading from wastewater discharges must be reduced to a minimum through 

sufficient and enforced regulations or alternative treatment options. Public education on 

better management practices as well as requirements by state, county and local 

development authorities to implement better water quality practices is essential for water 

quality preservation in the UWRB.  As population and demands on water resources 

increase, information about the nutrient status and effects from human activities, is 

essential to provide facts for water quality conservation and management policies.  
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APPENDIX A 

 

Water Quality Data 



 

1
5
3

 

Wilson Creek (1): Baseflow water quality data sampled at Scenic Avenue Springfield, MO.  

 
Sampling Collection  

TIME 

TN  

(mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp 

 (C°) 

Stage  

(m) 

Q 

 m³/s 

Ant  

Days DATE (mS/cm) (NTU) 

3/5/2005 11:03:32 2.45 16.83 7.41 0.73 7.20 13.05 9.17 0.07 0.18 10.00 

4/15/2005 11:46:54 1.95 23.29 7.72 0.76 7.80 11.97 15.05 0.12 0.31 4.00 

5/14/2005 13:46:14 0.98 60.24 7.79 0.31 12.00 8.71 19.47 1.14 2.92 18.00 

6/4/2005 13:31:50 1.21 29.63 7.96 1.08 17.70 13.67 23.12 0.50 0.10 21.00 

7/9/2005 10:36:36 1.12 97.33 7.77 0.76 5.50 6.14 22.33 0.39 0.05 26.00 

8/1/2005 10:12:38 1.10 42.79 7.44 0.68 7.10 4.51 22.86 0.40 0.04 5.00 

9/9/2005 11:29:12 0.91 79.15 7.61 0.70 6.80 6.01 21.40 0.40 0.04 19.00 

10/1/2005 12:00:50 1.76 194.19 7.38 0.72 31.30 7.65 16.39 0.50 0.07 16.00 

11/12/2005 10:25:14 0.82 30.96 7.43 0.87 5.80 5.19 11.87 0.46 0.91 13.00 

12/17/2005 10:33:50 1.27 74.75 6.50 0.99 6.20 11.51 2.51 0.39 0.06 32.00 

1/14/2006 11:25:58 1.23 0.00 7.10 0.70 44.50 7.75 3.94 0.49 0.08 4.00 

2/4/2006 11:11:58 1.54 21.63 7.03 0.78 61.10 8.90 4.10 0.32 0.06 7.00 

  Mean 1.36 55.88 7.43 0.76 17.75 8.76 14.35 0.43 0.40 14.58 

  Min 0.82 0.00 6.50 0.31 5.50 4.51 2.51 0.07 0.04 4.00 

  Max 2.45 194.19 7.96 1.08 61.10 13.67 23.12 1.14 2.92 32.00 

  Median 1.22 36.88 7.44 0.74 7.50 8.23 15.72 0.40 0.08 14.50 

  Std-dev 0.48 52.36 0.40 0.19 18.29 3.13 7.86 0.26 0.83 9.07 

  CV% 35 94 5 25 103 36 55 61 206 62 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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Wilson Creek above SWTP (2): Baseflow water quality data sampled at Farm Road 156 near Brookline, MO.  

 
Sampling Collection 

 TIME 

TN  

(mg/L) 

TP 

 (µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage  

(m) 

Q 

 m³/s 

Ant  

Days DATE (mS/cm) (NTU) 

3/5/2005 11:29:00 2.30 13.03 8.03 0.67 6.10 13.64 9.72 0.22 0.00 10.00 

4/15/2005 11:29:16 1.87 17.57 8.17 0.70 7.80 13.65 14.04 0.41 0.20 4.00 

5/14/2005 13:28:12 0.96 71.97 7.88 0.27 15.30 8.76 19.55 0.85 2.83 18.00 

6/4/2005 14:18:06 0.56 94.07 8.24 0.86 11.70 9.72 25.50 0.15 0.00 21.00 

7/9/2005 10:51:52 2.26 61.08 7.98 0.35 15.30 8.12 21.68 0.16 0.00 8.00 

8/1/2005 10:32:52 0.83 105.29 7.91 0.35 8.80 6.67 22.84 0.18 0.00 12.00 

9/9/2005 NS NS NS NS NS NS NS NS NS NS NS 

10/1/2005 12:24:06 0.55 31.22 8.19 0.66 19.50 9.54 19.21 0.15 0.00 16.00 

11/12/2005 10:48:28 0.68 185.96 7.34 0.90 6.70 0.00 10.62 0.01 0.31 13.00 

12/17/2005 10:50:16 0.77 37.61 6.60 0.90 6.40 17.59 3.87 0.10 0.00 32.00 

1/14/2006 11:43:20 1.12 1.54 7.91 0.72 30.30 7.75 4.35 0.13 0.00 4.00 

2/4/2006 11:32:42 0.88 31.97 8.22 0.30 77.90 11.09 4.12 0.12 0.00 7.00 

  Mean 1.16 59.21 7.86 0.61 18.71 9.68 14.14 0.23 0.30 13.18 

  Min 0.55 1.54 6.60 0.27 6.10 0.00 3.87 0.01 0.00 4.00 

  Max 2.30 185.96 8.24 0.90 77.90 17.59 25.50 0.85 2.83 32.00 

  Median 0.88 37.61 7.98 0.67 11.70 9.54 14.04 0.15 0.00 12.00 

  Std-dev 0.66 53.62 0.49 0.25 20.94 4.54 8.06 0.23 0.84 8.32 

  CV% 57 91 6 41 112 47 57 101 277 63 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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Wilson Creek below SWTP (3): Baseflow water quality data sampled at W Farm Road 168 near Battlefield, MO.  

 
Sampling Collection 

 TIME 

TN 

 (mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage 

 (m) 

Q 

 m³/s 

Ant  

Days DATE (mS/cm) (NTU) 

3/5/2005 11:52:50 12.40 123.72 7.40 0.96 4.00 21.68 13.44 0.49 1.33 6.00 

4/15/2005 11:05:02 2.49 80.07 7.40 0.84 18.40 16.97 15.18 0.51 1.87 3.00 

5/14/2005 13:04:24 12.93 250.59 7.34 0.56 25.10 18.50 18.81 0.62 3.54 18.00 

6/4/2005 14:49:16 7.47 325.19 8.18 0.47 18.50 10.07 25.13 0.48 1.10 21.00 

7/9/2005 11:11:58 21.30 206.08 7.59 1.15 4.90 14.25 22.63 0.45 1.02 32.00 

8/1/2005 11:01:40 17.67 223.86 7.49 0.96 16.90 15.26 23.23 0.42 1.05 12.00 

9/9/2005 12:47:04 10.67 156.15 8.10 1.00 12.20 16.06 23.30 0.45 1.08 25.00 

10/1/2005 12:42:48 13.98 193.44 7.85 1.10 16.80 14.04 23.18 0.48 0.91 16.00 

11/12/2005 11:16:42 6.81 264.89 7.51 1.52 0.00 15.06 20.27 0.48 0.96 13.00 

12/17/2005 11:03:26 8.00 137.96 6.70 1.23 0.30 19.99 15.06 0.47 0.93 32.00 

1/14/2006 11:56:22 11.50 34.75 7.65 1.25 31.80 15.89 14.76 0.48 0.71 4.00 

2/4/2006 11:48:26 15.90 99.97 7.27 0.90 29.00 16.26 14.75 0.46 0.91 7.00 

  Mean 11.76 174.72 7.54 0.99 14.83 16.17 19.15 0.48 1.28 15.75 

  Min 2.49 34.75 6.70 0.47 0.00 10.07 13.44 0.42 0.71 3.00 

  Max 21.30 325.19 8.18 1.52 31.80 21.68 25.13 0.62 3.54 32.00 

  Median 11.95 174.80 7.50 0.98 16.85 15.98 19.54 0.48 1.03 14.50 

  Std-dev 5.17 84.59 0.39 0.29 10.80 2.99 4.30 0.05 0.77 10.18 

  CV% 44 48 5 29 73 19 22 10 60 65 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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James River –Boaz (4): Baseflow water quality data sampled at West Big Bend Road near Boaz, MO.  

 
Sampling Collection  

TIME 

TN  

(mg/L) 

TP 

 (µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage 

 (m) 

Q 

m³/s 

Ant 

 Days DATE (mS/cm) (NTU) 

3/5/2005 13:02:22 2.37 35 8.42 0.60 5.60 16.97 13.33 0.54 9.94 9.00 

4/15/2005 10:20:20 1.61 43 7.79 0.50 19.00 9.76 15.25 0.95 19.74 3.00 

5/14/2005 11:14:48 4.21 172 7.88 0.61 31.20 8.70 20.41 0.52 9.37 32.00 

6/4/2005 15:28:46 4.45 202 8.40 0.56 11.30 10.61 26.88 0.41 2.61 21.00 

7/9/2005 18:19:30 14.58 327 8.24 0.92 9.30 9.03 28.06 0.36 2.04 6.00 

8/1/2005 11:49:16 5.23 237 7.87 0.95 11.70 7.78 25.54 0.34 1.44 12.00 

9/9/2005 13:23:04 4.12 185 8.10 0.50 2.80 9.23 24.07 0.35 1.64 18.00 

10/1/2005 13:36:28 5.10 116 8.22 0.83 23.70 9.15 18.52 0.49 2.41 3.00 

11/12/2005 12:09:26 9.37 90 7.91 1.11 6.90 9.24 12.87 0.38 2.24 11.00 

12/17/2005 11:35:56 8.75 33 7.90 0.90 10.50 15.62 3.39 0.37 1.87 32.00 

1/14/2006 12:35:22 7.35 12 8.20 1.00 23.70 9.76 5.56 0.41 2.86 4.00 

2/4/2006 12:25:06 7.84 51 7.42 0.85 55.20 10.75 6.74 0.47 3.14 7.00 

  Mean 6.25 125 8.03 0.78 17.58 10.55 16.72 0.47 4.94 13.17 

  Min 1.61 12 7.42 0.50 2.80 7.78 3.39 0.34 1.44 3.00 

  Max 14.58 327 8.42 1.11 55.20 16.97 28.06 0.95 19.74 32.00 

  Median 5.16 103 8.01 0.84 11.50 9.50 16.89 0.41 2.51 10.00 

  Std-dev 3.57 99 0.29 0.21 14.61 2.81 8.59 0.17 5.49 10.43 

  CV% 57 79 4 27 83 27 51 36 111 79 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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Finley Creek (5): Baseflow water quality data sampled at Riverdale Road near Nixa, MO. 

 
Sampling Collection  

TIME 

TN  

(mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage  

(m) 

Q 

m³/s 

Ant 

 Days DATE (mS/cm) (NTU) 

3/5/2005 13:30:02 1.50 8.21 8.33 0.41 3.10 16.11 10.75 0.79 6.46 21.00 

4/15/2005 9:48:34 1.07 14.00 7.98 0.38 11.20 10.71 12.56 0.87 11.67 3.00 

5/14/2005 10:40:02 1.05 47.48 7.86 0.39 12.60 8.60 18.07 0.78 6.32 18.00 

6/4/2005 16:16:02 0.56 36.67 7.94 0.32 93.10 11.64 8.54 0.32 1.23 21.00 

7/9/2005 18:45:18 1.02 25.67 8.02 0.50 6.50 9.15 27.11 0.25 0.49 6.00 

8/1/2005 12:30:26 1.09 29.57 7.87 0.49 10.50 9.58 26.20 0.25 0.54 12.00 

9/9/2005 14:00:28 0.69 50.65 8.61 0.68 0.00 10.57 26.32 0.23 0.50 18.00 

10/1/2005 14:32:28 0.97 39.37 8.20 0.48 17.90 8.86 19.73 0.30 0.86 3.00 

11/12/2005 13:05:58 1.24 43.82 7.69 0.61 2.70 9.01 13.31 0.27 0.81 11.00 

12/17/2005 12:11:24 1.01 17.61 8.30 0.69 2.20 16.21 3.10 0.23 0.51 32.00 

1/14/2006 13:03:50 1.37 -2.04 8.29 0.58 24.80 10.42 4.43 0.28 0.48 4.00 

2/4/2006 12:55:00 1.08 21.97 8.08 0.49 44.10 11.22 5.47 0.25 0.47 7.00 

  Mean 1.05 27.75 8.10 0.50 19.06 11.01 14.63 0.40 2.53 13.00 

  Min 0.56 -2.04 7.69 0.32 0.00 8.60 3.10 0.23 0.47 3.00 

  Max 1.50 50.65 8.61 0.69 93.10 16.21 27.11 0.87 11.67 32.00 

  Median 1.06 27.62 8.05 0.49 10.85 10.50 12.94 0.28 0.68 11.50 

  Std-dev 0.26 16.48 0.26 0.12 26.37 2.59 8.76 0.25 3.64 9.10 

  CV% 24 59 3 23 138 24 60 62 144 70 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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James River-Galena (6): Baseflow water quality data sampled at the Old Galena Bridge, Galena, MO.  

 
Sampling Collection  

TIME 

TN  

(mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage 

 (m) 

Q 

m³/s 

Ant  

Days DATE (mS/cm) (NTU) 

3/5/2005 14:09:56 2.02 10.97 8.62 0.46 5.30 16.28 12.09 1.40 27.92 21.00 

4/15/2005 9:13:46 1.50 35.43 7.94 0.43 13.60 8.57 13.64 1.68 59.18 2.00 

5/14/2005 9:58:10 2.38 62.66 7.79 0.49 3.90 6.52 20.62 1.15 17.36 31.00 

6/4/2005 18:33:24 1.40 91.11 8.31 0.53 6.70 8.85 25.59 0.43 5.83 20.00 

7/9/2005 19:19:10 2.09 91.08 8.38 0.59 2.70 10.72 28.91 0.20 4.59 7.00 

8/1/2005 13:07:50 4.72 124.57 8.36 0.73 2.70 10.05 28.27 0.13 3.71 3.00 

9/9/2005 14:44:42 2.57 93.15 7.88 0.33 62.90 9.83 26.54 0.13 3.31 16.00 

10/1/2005 15:56:40 2.93 81.59 8.53 0.61 18.10 9.76 20.71 0.16 4.73 15.00 

11/12/2005 13:46:54 2.02 50.25 8.22 0.80 2.60 11.59 12.79 0.11 3.45 11.00 

12/17/2005 12:43:14 1.06 6.89 8.70 0.97 2.10 16.86 2.24 0.12 3.37 32.00 

1/14/2006 13:39:16 6.57 4.04 8.71 0.88 4.20 11.82 5.22 0.10 3.85 4.00 

2/4/2006 13:37:06 3.89 20.63 8.64 0.60 46.20 12.09 6.75 0.13 5.10 5.00 

  Mean 2.76 56.03 8.34 0.62 14.25 11.08 16.95 0.48 11.87 13.92 

  Min 1.06 4.04 7.79 0.33 2.10 6.52 2.24 0.10 3.31 2.00 

  Max 6.57 124.57 8.71 0.97 62.90 16.86 28.91 1.68 59.18 32.00 

  Median 2.23 56.45 8.37 0.59 4.75 10.39 17.13 0.15 4.66 13.00 

  Std-dev 1.59 40.56 0.33 0.19 19.77 3.00 9.42 0.58 16.68 10.47 

  CV% 57 72 4 31 139 27 56 121 141 75 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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White River below Table Rock Dam (7): Water quality data sampled at the White River near Branson, MO.  

 
Sampling Collection  

TIME 

TN  

(mg/L) 

TP 

 (µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage 

 (m) 

Q 

m³/s DATE (mS/cm) (NTU) 

3/5/2005 15:12:58 0.76 9.24 8.03 0.32 20.50 14.57 7.44 1.54 117.77 

4/15/2005 8:26:20 0.69 7.21 7.90 0.32 11.40 8.57 8.21 1.67 121.14 

5/14/2005 9:09:40 0.99 12.31 7.23 0.32 8.40 9.23 8.50 1.30 100.24 

6/4/2005 19:16:56 0.67 7.04 8.22 0.44 4.60 8.75 7.32 0.62 86.17 

7/9/2005 20:00:38 1.13 14.00 8.02 0.35 71.80 12.78 9.38 0.54 79.52 

8/1/2005 14:08:32 1.13 13.14 7.81 0.32 71.60 9.54 9.17 0.54 62.31 

9/9/2005 15:56:50 1.03 10.15 8.04 0.44 3.30 8.73 9.46 0.42 61.20 

10/1/2005 16:50:24 0.99 8.63 7.83 0.32 25.50 7.85 10.51 0.43 52.12 

11/12/2005 14:49:00 0.82 12.04 7.59 0.36 4.20 5.00 10.40 0.40 46.23 

12/17/2005 13:45:54 0.48 8.32 8.50 0.41 3.10 12.13 9.48 0.37 26.22 

1/14/2006 14:32:06 0.53 4.39 8.56 0.34 14.10 12.09 10.10 0.38 25.57 

2/4/2006 14:45:26 1.00 24.63 8.56 0.29 32.80 12.29 9.70 0.36 26.51 

  Mean 0.85 10.93 8.02 0.35 22.61 10.13 9.14 0.71 67.08 

  Min 0.48 4.39 7.23 0.29 3.10 5.00 7.32 0.36 25.57 

  Max 1.13 24.63 8.56 0.44 71.80 14.57 10.51 1.67 121.14 

  Median 0.91 9.70 8.03 0.33 12.75 9.39 9.42 0.49 61.76 

  Std-dev 0.23 5.16 0.40 0.05 24.78 2.67 1.06 0.49 34.20 

  CV% 27 47 5 15 110 26 12 68 51 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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Bull Creek (8): Baseflow water quality data sampled at State Highway F near Walnut Shade, MO.  

 
Sampling Collection  

TIME 

TN  

(mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage 

 (m) 

Q 

m³/s 

Ant 

 Days DATE (mS/cm) (NTU) 

3/5/2005 15:45:48 0.60 2.34 8.27 0.43 4.40 13.88 11.33 1.15 4.16 9.00 

4/15/2005 15:39:56 0.14 0.43 8.35 0.45 10.60 13.91 15.60 1.22 6.51 8.00 

5/14/2005 17:10:28 0.48 10.93 8.26 0.42 4.40 9.46 22.60 1.04 2.55 26.00 

6/4/2005 10:49:44 0.11 0.00 7.93 0.49 11.00 6.44 22.05 0.64 0.62 20.00 

7/10/2005 10:29:08 0.64 8.17 7.94 0.49 4.60 8.12 25.42 0.65 0.26 11.00 

8/1/2005 14:39:28 0.31 10.64 7.94 0.43 3.40 7.86 28.27 0.83 0.15 21.00 

9/9/2005 16:48:30 0.16 11.15 8.35 0.49 8.00 8.74 26.73 0.87 0.04 12.00 

10/1/2005 17:27:00 0.22 3.07 8.24 0.46 15.40 8.64 22.93 0.71 0.13 2.00 

11/12/2005 15:37:00 0.15 7.39 7.91 0.57 0.10 8.41 12.64 0.71 0.25 13.00 

12/17/2005 14:12:10 0.23 7.25 8.50 0.69 2.00 14.70 2.96 0.70 0.25 32.00 

1/14/2006 15:13:16 0.17 0.82 8.52 0.52 2.70 10.41 6.24 0.67 0.31 4.00 

2/4/2006 15:15:38 1.09 11.30 8.30 0.51 33.90 11.54 6.82 0.75 1.64 5.00 

  Mean 0.36 6.13 8.21 0.49 8.38 10.18 16.97 0.83 1.41 13.58 

  Min 0.11 0.00 7.91 0.42 0.10 6.44 2.96 0.64 0.04 2.00 

  Max 1.09 11.30 8.52 0.69 33.90 14.70 28.27 1.22 6.51 32.00 

  Median 0.22 7.32 8.27 0.49 4.50 9.10 18.83 0.73 0.28 11.50 

  Std-dev 0.29 4.52 0.22 0.07 9.17 2.72 8.81 0.20 2.04 9.30 

  CV% 82 74 3 15 109 27 52 24 145 68 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data)
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Beaver Creek (9): Baseflow water quality data sampled at State Highway 76 near Bradleyville, MO.  

 
Sampling Collection  

TIME 

TN  

(mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage 

 (m) 

Q 

 m³/s 

Ant  

Days DATE (mS/cm) (NTU) 

3/5/2005 16:32:04 0.62 4.76 8.44 0.49 3.00 14.58 12.05 0.81 6.99 21.00 

4/15/2005 14:49:54 0.69 9.00 8.28 0.47 7.30 13.37 15.54 1.22 17.61 3.00 

5/14/2005 16:09:24 0.32 11.28 8.44 0.49 2.00 10.76 22.37 0.67 4.45 22.00 

6/4/2005 10:33:34 0.40 8.89 8.05 0.58 22.10 8.84 19.45 0.28 2.01 20.00 

7/10/2005 9:46:02 0.66 6.92 8.17 0.54 1.40 9.57 24.67 0.52 1.39 8.00 

8/1/2005 15:29:50 0.22 14.57 8.37 0.49 5.70 9.78 29.32 0.39 0.82 13.00 

9/9/2005 18:15:36 0.11 24.65 7.89 0.53 13.70 8.62 23.01 0.45 0.71 16.00 

10/1/2005 18:21:42 0.24 3.44 8.32 0.48 20.00 8.58 20.56 0.31 1.27 16.00 

11/12/2005 16:29:48 0.15 10.61 8.12 0.57 7.30 10.08 14.00 0.24 0.79 11.00 

12/17/2005 14:52:20 0.42 9.39 8.60 0.66 1.00 15.73 4.28 0.31 1.25 20.00 

1/14/2006 15:54:10 0.45 0.00 8.58 0.57 16.00 10.95 6.95 0.30 1.02 58.00 

2/4/2006 15:58:04 0.88 13.63 8.34 0.53 25.20 12.01 7.64 0.44 2.21 5.00 

  Mean 0.43 9.76 8.30 0.53 10.39 11.07 16.65 0.50 3.38 17.75 

  Min 0.11 0.00 7.89 0.47 1.00 8.58 4.28 0.24 0.71 3.00 

  Max 0.88 24.65 8.60 0.66 25.20 15.73 29.32 1.22 17.61 58.00 

  Median 0.41 9.20 8.33 0.53 7.30 10.42 17.50 0.42 1.33 16.00 

  Std-dev 0.24 6.27 0.21 0.06 8.67 2.38 7.86 0.29 4.85 14.17 

  CV% 56 64 3 10 83 22 47 58 144 80 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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James River-Springfield (10): Baseflow water quality data sampled at South Farm Road 193 east of Springfield, MO.  

 
Sampling DATE Collection 

Time 

TN 

 (mg/L) 

TP  

(µg/L) 

pH COND 

(mS/cm) 

TURB 

(NTU) 

DO 

(mg/L) 

Temp 

(C°) 

Stage  

(m) 

Q 

m³/s 

Ant  

Days 

3/5/2005 17:36:18 0.56 6.14 8.31 0.42 7.10 15.33 10.35 1.37 3.26 21.00 

4/15/2005 13:28:38 1.01 12.93 8.06 0.40 9.00 13.18 13.92 1.51 7.08 3.00 

5/14/2005 15:04:12 1.00 24.38 7.93 0.45 8.40 9.14 19.55 1.28 2.12 31.00 

6/4/2005 13:08:14 1.09 24.44 8.96 0.32 68.40 16.10 23.86 0.62 0.76 20.00 

7/9/2005 9:59:08 1.08 35.67 7.82 0.53 6.90 7.33 23.26 0.55 0.42 8.00 

8/1/2005 16:34:12 1.03 13.86 7.89 0.57 19.40 9.41 25.30 0.36 0.16 13.00 

9/9/2005 18:31:36 0.83 33.15 8.06 0.60 17.10 10.59 21.24 0.46 0.17 5.00 

10/2/2005 9:12:48 1.14 21.59 7.94 0.61 20.60 7.96 17.31 0.45 0.45 13.00 

11/12/2005 17:39:28 0.45 20.25 7.60 0.59 7.60 6.58 12.58 0.51 0.19 11.00 

12/17/2005 15:52:14 0.69 8.68 8.50 0.67 3.80 15.72 3.91 0.51 0.23 6.00 

1/14/2006 16:55:34 0.78 1.89 8.23 0.57 1.30 9.70 6.65 0.50 0.17 3.00 

2/4/2006 17:03:20 1.00 15.63 8.12 0.49 14.10 11.31 5.72 0.61 0.76 4.00 

 Mean 0.89 18.22 8.12 0.52 15.31 11.03 15.30 0.73 1.32 11.50 

 Min 0.45 1.89 7.60 0.32 1.30 6.58 3.91 0.36 0.16 3.00 

 Max 1.14 35.67 8.96 0.67 68.40 16.10 25.30 1.51 7.08 31.00 

 Median 1.00 17.94 8.06 0.55 8.70 10.15 15.62 0.53 0.44 9.50 

 Std-dev 0.22 10.34 0.36 0.10 17.79 3.33 7.53 0.41 2.05 8.70 

 CV% 25 57 4 20 116 30 49 56 156 76 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data)
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Pearson Creek (11): Baseflow water quality data sampled at Old State Highway D near Springfield, MO.  

 
Sampling Collection 

 TIME 

TN  

(mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage  

(m) 

Q 

m³/s 

Ant  

Days DATE (mS/cm) (NTU) 

3/5/2005 17:52:54 2.75 0.97 7.98 0.54 5.00 14.34 11.59 0.88 0.51 21.00 

4/15/2005 13:09:24 2.44 10.79 7.82 0.58 16.30 14.08 13.86 0.93 0.82 7.00 

5/14/2005 14:45:02 2.40 29.21 7.88 0.58 6.00 10.16 17.81 0.88 0.45 18.00 

6/4/2005 11:22:42 2.41 35.56 7.89 0.74 6.70 7.20 21.75 0.60 0.12 20.00 

7/9/2005 9:40:26 2.05 13.17 7.41 0.61 13.20 8.06 19.07 0.68 0.10 8.00 

8/1/2005 16:48:20 2.02 43.14 8.03 0.58 25.10 10.28 23.74 0.64 0.07 13.00 

9/10/2005 11:46:30 1.85 310.15 7.65 0.46 8.10 7.05 20.76 0.44 0.12 17.00 

10/2/2005 9:31:22 2.12 26.41 7.74 0.52 22.60 7.45 18.33 0.51 0.12 16.00 

11/12/2005 18:00:32 1.74 34.54 7.81 0.42 155.00 8.35 14.54 0.24 0.06 11.00 

12/17/2005 16:07:04 2.09 12.25 8.50 0.77 98.00 16.68 7.12 0.25 0.05 6.00 

1/14/2006 17:10:50 2.13 3.68 8.46 0.65 0.00 10.73 9.18 0.30 0.03 3.00 

2/4/2006 17:17:54 2.35 20.63 8.28 0.62 14.70 11.89 8.08 0.32 0.04 4.00 

  Mean 2.20 45.04 7.95 0.59 30.89 10.52 15.49 0.56 0.21 12.00 

  Min 1.74 0.97 7.41 0.42 0.00 7.05 7.12 0.24 0.03 3.00 

  Max 2.75 310.15 8.50 0.77 155.00 16.68 23.74 0.93 0.82 21.00 

  Median 2.12 23.52 7.89 0.58 13.95 10.22 16.18 0.56 0.11 12.00 

  Std-dev 0.28 84.53 0.32 0.10 46.85 3.17 5.60 0.25 0.25 6.37 

  CV% 13 188 4 17 152 30 36 46 120 53 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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Long Creek (12): Baseflow water quality data at County Road 90 near Denver, AR.  

 
Sampling Collection  

TIME 

TN  

(mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp 

 (C°) 

Stage  

(m) 

Q 

m³/s 

Ant 

 Days DATE (mS/cm) (NTU) 

3/6/2005 11:55:12 1.42 14.07 8.12 0.45 6.50 14.96 11.43 0.71 2.07 10.00 

4/16/2005 10:19:44 1.21 53.29 8.23 0.43 9.00 13.62 13.65 0.79 3.79 10.00 

5/15/2005 10:44:28 1.56 53.34 7.77 0.41 5.20 9.29 17.78 0.73 1.16 39.00 

6/5/2005 10:42:04 1.49 69.63 7.69 0.42 9.00 8.39 21.39 0.69 0.51 12.00 

7/10/2005 11:37:32 1.39 63.17 7.71 0.45 6.80 10.00 23.18 0.61 0.40 9.00 

8/2/2005 11:27:04 1.20 106.36 7.62 0.47 13.90 9.54 22.06 0.61 0.37 22.00 

9/10/2005 12:13:44 1.18 22.65 8.02 0.44 4.90 9.14 22.77 0.63 0.71 34.00 

10/2/2005 11:01:10 2.33 146.41 7.72 0.40 21.30 7.35 19.85 0.69 0.48 7.00 

11/13/2005 10:37:30 1.36 433.11 7.28 0.58 6.00 6.40 14.15 0.70 0.45 12.00 

12/18/2005 12:50:02 2.33 591.89 7.50 0.54 45.90 10.48 7.30 0.68 0.31 34.00 

1/15/2006 10:54:24 2.45 373.32 7.77 0.59 32.10 9.68 7.78 0.68 0.36 5.00 

2/5/2006 11:32:48 2.01 205.63 7.85 0.51 96.00 9.93 6.15 0.69 0.39 8.00 

  Mean 1.66 177.74 7.77 0.47 21.38 9.90 15.62 0.68 0.92 16.83 

  Min 1.18 14.07 7.28 0.40 4.90 6.40 6.15 0.61 0.31 5.00 

  Max 2.45 591.89 8.23 0.59 96.00 14.96 23.18 0.79 3.79 39.00 

  Median 1.45 87.99 7.75 0.45 9.00 9.61 15.97 0.69 0.47 11.00 

  Std-dev 0.48 187.92 0.26 0.07 26.72 2.37 6.39 0.05 1.04 12.15 

  CV% 29 106 3 14 125 24 41 7 113 72 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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Yocum Creek (13): Baseflow water quality data sampled at County Road 618 near Oak Grove, AR.  

 
Sampling Collection 

 TIME 

TN 

(mg/L) 

TP 

 (µg/L) 

pH COND TURB DO 

(mg/L) 

Temp 

 (C°) 

Stage  

(m) 

Q 

m³/s 

Ant 

 Days DATE (mS/cm) (NTU) 

3/6/2005 11:04:48 5.59 24.07 7.81 0.37 6.50 14.68 10.57 1.08 1.08 10.00 

4/16/2005 9:51:34 17.43 16.50 7.91 0.33 11.00 12.92 13.75 1.13 2.27 4.00 

5/15/2005 11:08:02 4.09 65.41 7.98 0.46 4.70 9.92 17.46 1.00 0.37 33.00 

6/5/2005 11:11:18 4.06 55.93 8.01 0.46 6.50 9.56 20.47 1.10 0.11 12.00 

7/10/2005 12:00:52 3.21 34.42 7.99 0.49 4.50 10.34 22.81 1.05 0.24 9.00 

8/2/2005 11:53:08 2.72 46.71 7.91 0.45 8.00 10.27 24.12 1.15 0.34 17.00 

9/10/2005 13:02:00 2.12 52.15 8.62 0.43 5.90 9.40 28.18 1.03 0.11 17.00 

10/2/2005 11:31:20 1.28 37.52 7.97 0.44 20.60 8.14 21.13 1.08 0.11 7.00 

11/13/2005 11:07:52 2.52 45.25 7.77 0.51 2.50 10.21 14.61 1.04 0.11 12.00 

12/18/2005 13:36:58 2.78 12.25 8.35 0.52 56.00 12.03 4.31 1.05 0.10 34.00 

1/15/2006 11:17:02 2.82 -0.25 8.18 0.51 8.30 11.63 7.47 1.11 0.11 5.00 

2/5/2006 12:02:18 2.99 29.30 8.19 0.46 82.40 12.32 6.77 1.06 0.11 8.00 

  Mean 4.30 34.94 8.06 0.45 18.08 10.95 15.97 1.07 0.42 14.00 

  Min 1.28 -0.25 7.77 0.33 2.50 8.14 4.31 1.00 0.10 4.00 

  Max 17.43 65.41 8.62 0.52 82.40 14.68 28.18 1.15 2.27 34.00 

  Median 2.90 35.97 7.99 0.46 7.25 10.31 16.04 1.07 0.11 11.00 

  Std-dev 4.28 19.45 0.24 0.06 24.96 1.81 7.63 0.04 0.64 9.97 

  CV% 99 56 3 13 138 17 48 4 154 71 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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Kings River (14): Baseflow water quality data sampled at State Highway 143 near Berryville, AR.  

 
Sampling Collection 

 TIME 

TN 

 (mg/L) 

TP 

 (µg/L) 

pH COND TURB DO 

(mg/L) 

Temp 

 (C°) 

Stage 

 (m) 

Q 

 m³/s 

Ant  

Days DATE (mS/cm) (NTU) 

3/6/2005 18:12:40 0.57 2.34 8.80 0.30 17.70 17.15 11.37 1.15 12.52 10.00 

4/16/2005 11:48:54 0.35 23.64 8.39 0.28 12.40 13.38 14.85 1.32 19.85 5.00 

5/15/2005 11:58:16 0.73 144.38 8.26 0.34 3.00 9.63 21.27 1.17 13.42 16.00 

6/5/2005 11:59:46 0.47 122.59 8.33 0.34 10.20 8.79 24.97 0.35 3.43 12.00 

7/10/2005 13:34:14 0.30 0.67 8.47 0.40 4.80 9.42 28.13 0.32 1.19 9.00 

8/2/2005 13:09:24 0.44 144.57 8.46 0.49 10.70 10.21 31.01 0.24 0.54 7.00 

9/10/2005 13:52:32 0.22 160.65 8.13 0.41 13.40 8.91 25.48 0.28 0.51 7.00 

10/2/2005 13:18:58 0.34 118.26 8.38 0.41 20.50 8.23 23.90 0.30 1.27 4.00 

11/13/2005 11:56:04 0.22 108.82 7.97 0.53 8.00 9.86 14.76 0.33 0.96 10.00 

12/18/2005 14:27:24 0.07 29.75 8.31 0.47 46.90 12.00 3.92 0.27 0.88 31.00 

1/15/2006 12:01:14 0.14 2.25 8.51 0.51 11.00 10.74 6.16 0.36 0.68 3.00 

2/5/2006 12:45:44 0.76 65.30 8.37 0.36 83.00 11.35 5.28 0.47 2.61 5.00 

  Mean 0.38 76.94 8.37 0.40 20.13 10.81 17.59 0.55 4.82 9.92 

  Min 0.07 0.67 7.97 0.28 3.00 8.23 3.92 0.24 0.51 3.00 

  Max 0.76 160.65 8.80 0.53 83.00 17.15 31.01 1.32 19.85 31.00 

  Median 0.34 87.06 8.38 0.40 11.70 10.04 18.06 0.34 1.23 8.00 

  Std-dev 0.22 62.60 0.20 0.08 22.82 2.48 9.46 0.41 6.58 7.60 

  CV% 57 81 2 21 113 23 54 75 136 77 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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War Eagle Creek (15): Baseflow water quality data sampled at State Highway 45 near Highlandville, AR.  

 
Sampling Collection 

 TIME 

TN 

 (mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage 

 (m) 

Q 

m³/s 

Ant 

 Days DATE (mS/cm) (NTU) 

3/6/2005 13:22:46 0.96 1.66 8.27 0.21 13.10 15.55 10.17 0.68 6.71 10.00 

4/16/2005 13:09:46 0.55 22.57 8.02 0.18 22.20 12.92 15.64 0.82 11.52 4.00 

5/15/2005 12:52:16 1.25 53.34 7.88 0.27 6.00 9.68 19.81 0.60 4.53 16.00 

6/5/2005 12:53:42 1.13 48.15 7.66 0.30 14.80 7.43 23.01 0.20 1.42 11.00 

7/10/2005 14:28:26 1.08 13.58 7.95 0.40 26.70 8.66 26.04 0.10 0.62 8.00 

8/2/2005 14:00:20 0.84 14.57 8.12 0.37 9.60 9.85 27.64 0.12 0.34 14.00 

9/10/2005 14:19:58 0.38 24.15 8.64 0.28 9.40 9.00 27.09 0.14 0.31 7.00 

10/2/2005 14:14:00 0.94 31.59 7.88 0.45 36.10 7.97 21.25 0.12 0.31 17.00 

11/13/2005 12:45:58 0.97 67.75 7.69 0.56 11.50 9.40 13.91 0.12 0.54 12.00 

12/18/2005 14:53:18 1.06 41.18 8.17 0.38 24.90 10.17 6.22 0.15 0.31 30.00 

1/15/2006 12:51:28 1.40 56.89 8.45 0.54 9.00 11.26 5.42 0.15 0.31 4.00 

2/5/2006 13:36:24 1.17 98.63 7.93 0.28 88.40 10.93 4.75 0.19 0.54 3.00 

  Mean 0.98 39.51 8.06 0.35 22.64 10.24 16.75 0.28 2.29 11.33 

  Min 0.38 1.66 7.66 0.18 6.00 7.43 4.75 0.10 0.31 3.00 

  Max 1.40 98.63 8.64 0.56 88.40 15.55 27.64 0.82 11.52 30.00 

  Median 1.02 36.39 7.99 0.33 13.95 9.77 17.73 0.15 0.54 10.50 

  Std-dev 0.29 27.26 0.29 0.12 22.59 2.24 8.62 0.26 3.55 7.50 

  CV% 29 69 4 34 100 22 51 91 155 66 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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Richland Creek (16):  Baseflow water quality data sampled at State Highway 45 near Goshen, AR.  

 
Sampling Collection 

 TIME 

TN  

(mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage  

(m) 

Q 

m³/s 

Ant  

Days DATE (mS/cm) (NTU) 

3/6/2005 14:51:34 0.65 0.97 9.14 0.17 5.00 17.59 13.07 0.69 10.11 10.00 

4/16/2005 13:46:16 0.36 7.21 8.61 0.15 15.30 13.40 17.44 0.76 16.32 5.00 

5/15/2005 13:23:42 0.89 14.38 8.32 0.24 7.50 11.71 19.33 0.66 6.59 16.00 

6/5/2005 13:25:44 0.57 3.70 8.30 0.24 8.30 9.97 25.21 0.24 3.29 12.00 

7/10/2005 15:05:18 0.20 17.33 8.44 0.31 10.60 10.86 29.94 0.20 1.40 9.00 

8/2/2005 14:28:06 0.50 12.79 8.52 0.27 11.60 10.89 32.23 0.05 0.65 9.00 

9/10/2005 14:40:30 0.19 23.65 8.79 0.25 23.10 9.05 25.71 0.13 0.60 6.00 

10/2/2005 15:30:24 0.21 12.33 8.59 0.28 23.40 9.55 26.67 0.11 0.20 15.00 

11/13/2005 13:20:30 0.25 15.61 7.91 0.39 2.80 10.43 16.99 0.11 0.30 13.00 

12/18/2005 15:16:14 0.07 10.11 8.08 0.45 38.50 9.85 4.56 0.12 0.40 8.00 

1/15/2006 13:15:58 0.08 4.75 8.48 0.38 12.50 11.05 8.63 0.07 0.03 5.00 

2/5/2006 14:03:22 0.96 15.97 8.00 0.36 78.10 11.00 6.00 0.15 0.78 8.00 

  Mean 0.41 11.57 8.43 0.29 19.73 11.28 18.82 0.27 3.39 9.67 

  Min 0.07 0.97 7.91 0.15 2.80 9.05 4.56 0.05 0.03 5.00 

  Max 0.96 23.65 9.14 0.45 78.10 17.59 32.23 0.76 16.32 16.00 

  Median 0.30 12.56 8.46 0.27 12.05 10.88 18.39 0.14 0.72 9.00 

  Std-dev 0.30 6.51 0.34 0.09 20.87 2.28 9.36 0.26 5.12 3.68 

  CV% 74 56 4 31 106 20 50 97 151 38 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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White River (17): baseflow water quality data sampled at Highway 90 near Fayetteville, AR.   

 
Sampling Collection  

TIME 

TN  

(mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp 

 (C°) 

Stage 

 (m) 

Q 

m³/s 

Ant  

Days DATE (mS/cm) (NTU) 

3/6/2005 15:13:56 0.43 2.34 8.15 0.14 16.80 14.69 11.20 1.04 2.29 11.00 

4/16/2005 14:11:50 0.36 7.21 7.92 0.12 19.10 12.08 16.87 1.15 5.18 10.00 

5/15/2005 13:43:28 0.42 16.79 7.89 0.14 10.50 8.98 22.71 1.07 3.09 16.00 

6/5/2005 13:47:40 0.22 3.33 7.94 0.20 23.90 8.62 25.28 0.70 1.50 7.00 

7/10/2005 15:39:24 0.41 31.50 8.34 0.26 13.10 10.41 27.86 0.14 0.04 9.00 

8/2/2005 14:59:00 0.56 19.57 8.23 0.30 20.20 9.82 29.08 0.45 0.14 9.00 

9/10/2005 14:51:44 0.12 31.15 7.69 0.33 13.60 6.77 30.49 0.45 0.16 5.00 

10/2/2005 15:53:48 0.54 15.67 7.97 0.30 38.00 8.38 24.02 0.40 0.11 3.00 

11/13/2005 13:45:42 0.41 24.18 7.41 0.37 12.10 5.43 15.12 0.60 0.16 13.00 

12/18/2005 15:24:18 0.35 17.25 8.08 0.49 28.40 10.34 4.19 0.61 0.08 10.00 

1/15/2006 13:36:08 0.31 13.32 8.33 0.38 21.00 9.87 7.16 0.60 0.08 3.00 

2/5/2006 14:28:18 0.87 38.97 8.13 0.14 101.00 10.87 7.15 0.68 0.51 7.00 

  Mean 0.42 18.44 8.01 0.26 26.48 9.69 18.43 0.66 1.11 8.58 

  Min 0.12 2.34 7.41 0.12 10.50 5.43 4.19 0.14 0.04 3.00 

  Max 0.87 38.97 8.34 0.49 101.00 14.69 30.49 1.15 5.18 16.00 

  Median 0.41 17.02 8.03 0.28 19.65 9.85 19.79 0.61 0.16 9.00 

  Std-dev 0.19 11.44 0.27 0.12 24.72 2.40 9.38 0.30 1.64 3.87 

  CV% 45 62 3 45 93 25 51 46 147 45 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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West Fork of the White River near Fayetteville (18). Baseflow water quality data.   

 
Sampling Collection  

TIME 

TN  

(mg/L) 

TP  

(µg/L) 

pH COND TURB DO 

(mg/L) 

Temp  

(C°) 

Stage 

 (m) 

Q 

 m³/s 

Ant  

Days DATE (mS/cm) (NTU) 

3/6/2005 15:33:10 0.64 0.62 7.92 0.22 14.50 14.62 11.44 1.01 9.00 10.00 

4/16/2005 14:24:48 0.35 9.00 7.96 0.21 24.90 12.21 17.08 1.26 19.14 5.00 

5/15/2005 13:52:40 0.92 17.48 7.70 0.22 17.80 8.88 21.31 1.09 11.89 5.00 

6/5/2005 13:59:06 0.23 13.70 7.82 0.26 35.60 7.86 24.60 0.30 3.51 13.00 

7/10/2005 15:49:48 0.54 28.58 7.62 0.40 8.60 8.18 27.85 0.11 0.16 9.00 

8/2/2005 15:09:30 0.38 19.57 7.61 0.44 13.80 8.54 29.89 0.18 0.12 9.00 

9/10/2005 15:20:14 0.37 48.15 7.46 0.24 12.30 6.48 32.41 0.08 0.14 5.00 

10/2/2005 16:06:02 0.60 20.48 7.49 0.32 32.30 5.42 23.32 0.24 0.03 3.00 

11/13/2005 14:03:54 0.25 26.68 7.17 0.40 9.40 4.53 14.84 0.25 0.25 13.00 

12/18/2005 10:21:26 0.19 12.96 6.56 0.65 87.00 9.68 5.07 0.25 0.14 3.00 

1/15/2006 13:51:42 0.23 13.68 8.28 0.50 18.10 9.85 6.61 0.23 0.20 2.00 

2/5/2006 14:39:54 0.89 25.63 7.88 0.40 95.90 10.99 5.60 0.26 0.28 7.00 

  Mean 0.47 19.71 7.62 0.36 30.85 8.94 18.34 0.44 3.74 7.00 

  Min 0.19 0.62 6.56 0.21 8.60 4.53 5.07 0.08 0.03 2.00 

  Max 0.92 48.15 8.28 0.65 95.90 14.62 32.41 1.26 19.14 13.00 

  Median 0.38 18.53 7.66 0.36 17.95 8.71 19.20 0.25 0.23 6.00 

  Std-dev 0.25 11.96 0.44 0.14 29.60 2.83 9.69 0.42 6.28 3.79 

  CV% 54 61 6 38 96 32 53 96 168 54 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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Bear Creek (19). At State Highway 14 near Omaha, AR. Baseflow Water Quality Data  

 
Sampling 

DATE 

Collection  

TIME 

TN 

 (mg/L) 

TP  

(µg/L) 

pH COND 

(mS/cm) 

TURB 

(NTU) 

DO 

(mg/L) 

Temp  

(C°) 

Stage 

 (m) 

Q 

m³/s 

Ant  

Days 

3/6/2005 19:32:04 0.98 0.28 8.24 0.49 4.70 13.48 12.08 0.42 2.80 10.00 

4/16/2005 16:27:08 0.89 3.64 8.27 0.49 6.30 12.14 17.99 0.54 6.12 4.00 

5/15/2005 19:01:20 0.70 5.76 8.28 0.46 2.70 9.92 20.02 0.37 1.95 16.00 

6/5/2005 14:54:09 2.84 25.93 7.67 0.53 10.20 7.41 19.74 0.42 0.62 10.00 

7/10/2005 17:38:56 0.38 14.00 8.14 0.46 1.90 8.77 27.09 0.28 0.24 9.00 

8/2/2005 16:55:04 0.33 5.29 8.13 0.42 3.60 9.51 30.13 0.22 0.34 5.00 

9/10/2005 18:46:08 0.08 35.65 7.94 0.43 4.60 8.53 26.95 0.20 0.11 16.00 

10/2/2005 17:57:26 0.26 3.81 8.23 0.43 17.00 8.81 24.63 0.30 0.12 7.00 

11/13/2005 17:23:14 13.84 12.04 8.01 0.51 1.60 10.00 16.19 0.29 0.28 12.00 

12/18/2005 12:23:22 0.23 5.82 6.84 0.61 52.00 9.56 7.76 0.31 0.18 20.00 

1/15/2006 16:54:04 0.20 1.54 8.46 0.52 0.00 11.50 8.23 0.32 0.23 2.00 

2/5/2006 18:02:34 0.93 11.63 8.13 0.49 29.00 11.30 6.81 0.32 0.28 6.00 

  Mean 1.80 10.45 8.03 0.49 11.13 10.08 18.14 0.33 1.11 9.75 

  Min 0.08 0.28 6.84 0.42 0.00 7.41 6.81 0.20 0.11 2.00 

  Max 13.84 35.65 8.46 0.61 52.00 13.48 30.13 0.54 6.12 20.00 

  Median 0.54 5.79 8.14 0.49 4.65 9.74 18.87 0.32 0.28 9.50 

  Std-dev 3.86 10.59 0.42 0.05 15.26 1.73 8.12 0.09 1.79 5.45 

  CV/% 214 101 5 11 137 17 45 28 162 56 

 

Std-dev = Standard deviation 

CV= coefficient of variation (the standard deviation divided by the mean) 

Ant Days = Days since the last peak in discharge or Q usually associated with the last rainfall event 

Q = Discharge of stream (on dates Q was unavailable from the USGS real-time, it was estimated using stage data) 
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Total Nitrogen (mg/L) 

 

Sites March April May Jun Jul  Aug Sept  Oct Nov Dec Jan Feb Mean Min Max Median Std-dev CV% 

WC-Springfield (1) 2.5 2.0 1.0 1.2 1.1 1.1 0.9 1.8 0.8 1.3 1.2 1.5 1.4 0.8 2.5 1.2 0.5 35.0 

WC-above SWTP (2) 2.3 1.9 1.0 0.6 2.3 0.8 NS 0.6 0.7 0.8 1.1 0.9 1.2 0.6 2.3 0.9 0.7 57.0 

WC-at SWTP (3) 12.4 2.5 12.9 12.3 15.9 17.7 10.7 14.0 6.8 8.0 11.5 15.9 11.7 2.5 17.7 12.4 4.3 37.0 

JR-Boaz (4) 2.4 1.6 4.2 4.5 14.6 5.2 4.1 5.1 9.4 8.8 7.4 7.8 6.3 1.6 14.6 5.2 3.6 57.0 

Finley R (5) 1.5 1.1 1.1 0.6 1.0 1.1 0.7 1.0 1.2 1.0 1.4 1.1 1.1 0.6 1.5 1.1 0.3 24.0 

JR-Galena (6) 2.0 1.5 2.4 1.4 2.1 4.7 2.6 2.9 2.0 1.1 6.6 3.9 2.8 1.1 6.6 2.2 1.6 57.0 

WR-below TR Dam (7) 0.8 0.7 1.0 0.7 1.1 1.1 1.0 1.0 0.8 0.5 0.5 1.0 0.9 0.5 1.1 0.9 0.2 27.0 

Bull Ck (8) 0.6 0.1 0.5 0.1 0.6 0.3 0.2 0.2 0.2 0.2 0.2 1.1 0.4 0.1 1.1 0.2 0.3 82.0 

Beaver Ck (9) 0.6 0.7 0.3 0.4 0.7 0.2 0.1 0.2 0.2 0.4 0.5 0.9 0.4 0.1 0.9 0.4 0.2 56.0 

JR-above Springfield (10) 0.6 1.0 1.0 1.1 1.1 1.0 0.8 1.1 0.5 0.7 0.8 1.0 0.9 0.5 1.1 1.0 0.2 25.0 

Pearson Ck (11) 2.8 2.4 2.4 2.4 2.1 2.0 1.9 2.1 1.7 2.1 2.1 2.4 2.2 1.7 2.8 2.1 0.3 13.0 

Long Ck (12) 1.4 1.2 1.6 1.5 1.4 1.2 1.2 2.3 1.4 2.3 2.5 2.0 1.7 1.2 2.5 1.5 0.5 29.0 

Yocum Ck (13) 5.6 17.4 4.1 4.1 3.2 2.7 2.1 1.3 2.5 2.8 2.8 3.0 4.3 1.3 17.4 2.9 4.3 99.0 

Kings R (14) 0.6 0.4 0.7 0.5 0.3 0.4 0.2 0.3 0.2 0.1 0.1 0.8 0.4 0.1 0.8 0.3 0.2 57.0 

War Eagle Ck (15) 1.0 0.6 1.3 1.1 1.1 0.8 0.4 0.9 1.0 1.1 1.4 1.2 1.0 0.4 1.4 1.0 0.3 29.0 

Richland Ck (16) 0.7 0.4 0.9 0.6 0.2 0.5 0.2 0.2 0.3 0.1 0.1 1.0 0.4 0.1 1.0 0.3 0.3 74.0 

White R-Fayetteville (17) 0.4 0.4 0.4 0.2 0.4 0.6 0.1 0.5 0.4 0.4 0.3 0.9 0.4 0.1 0.9 0.4 0.2 45.0 

West Fork White (18) 0.6 0.4 0.9 0.2 0.5 0.4 0.4 0.6 0.3 0.2 0.2 0.9 0.5 0.2 0.9 0.4 0.3 54.0 

Bear Ck (19) 1.0 0.9 0.7 2.8 0.4 0.3 0.1 0.3 13.8 0.2 0.2 0.9 1.8 0.1 13.8 0.5 3.9 214.0 
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Total Phosphorus (ug/L)  

 

Sites March April May Jun Jul  Aug Sept  Oct Nov Dec Jan Feb Mean Min Max Median Std-dev CV% 

WC-Springfield (1) 17 23 60 30 97 43 79 194 31 75 0 22 56 0 194 37 52 94 

WC-above SWTP (2) 13 18 72 94 61 105 NS 31 186 38 2 32 59 2 186 38 54 91 

WC-at SWTP (3) 124 80 251 325 206 224 156 193 265 138 35 100 175 35 325 175 85 48 

JR-Boaz (4) 35 43 172 202 327 237 185 116 90 33 12 51 125 12 327 103 99 79 

Finley R (5) 8 14 47 37 26 30 51 39 44 18 0 22 28 0 51 28 16 58 

JR-Galena (6) 11 35 63 91 91 125 93 82 50 7 4 21 56 4 125 56 41 72 

WR-below TR Dam (7) 9 7 12 7 14 13 10 9 12 8 4 25 11 4 25 10 5 48 

Bull Ck (8) 2 0 11 -3 8 11 11 3 7 7 1 11 6 -3 11 7 5 82 

Beaver Ck (9) 5 9 11 9 7 15 25 3 11 9 0 14 10 0 25 9 6 64 

JR-above Springfield (10) 6 13 24 24 36 14 33 22 20 9 2 16 18 2 36 18 10 57 

Pearson Ck (11) 1 11 29 36 13 43 310 26 35 12 4 21 45 1 310 24 84 188 

Long Ck (12) 14 53 53 70 63 106 23 146 433 592 373 206 178 14 592 88 188 106 

Yocum Ck (13) 24 17 65 56 34 47 52 38 45 12 0 29 35 0 65 36 19 56 

Kings R (14) 2 24 144 123 1 145 161 118 109 30 2 65 77 1 161 87 63 81 

War Eagle Ck (15) 2 23 53 48 14 15 24 32 68 41 57 99 40 2 99 36 27 69 

Richland Ck (16) 1 7 14 4 17 13 24 12 16 10 5 16 12 1 24 13 7 56 

White R-Fayetteville (17) 2 7 17 3 32 20 31 16 24 17 13 39 18 2 39 17 11 62 

West Fork White (18) 1 9 17 14 29 20 48 20 27 13 14 26 20 1 48 19 12 61 

Bear Ck (19) 0 4 6 26 14 5 36 4 12 6 2 12 10 0 36 6 11 101 
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pH  

 

Sites March April May Jun Jul  Aug Sept  Oct Nov Dec Jan Feb Mean Min Max Median Std-dev CV% 

WC-Springfield (1) 7.4 7.7 7.8 7.9 7.8 7.4 7.6 7.4 7.4 6.5 7.1 7.0 7.4 6.5 7.9 7.4 0.4 5.0 

WC-above SWTP (2) 8.0 8.2 7.9 9.0 8.0 7.9 7.7 8.2 7.3 6.6 7.9 8.2 7.9 6.6 9.0 8.0 0.6 7.0 

WC-at SWTP (3) 7.4 7.4 7.3 8.0 7.6 7.5 8.1 7.9 7.5 6.7 7.7 7.3 7.5 6.7 8.1 7.5 0.4 5.0 

JR-Boaz (4) 8.4 7.8 7.9 8.2 8.2 7.9 8.1 8.2 7.9 7.9 8.2 7.4 8.0 7.4 8.4 8.0 0.3 3.0 

Finley R (5) 8.3 8.0 7.9 8.2 8.0 7.9 8.6 8.2 7.7 8.3 8.3 8.1 8.1 7.7 8.6 8.1 0.3 3.0 

JR-Galena (6) 8.6 7.9 7.8 8.4 8.4 8.4 7.9 8.5 8.2 8.7 8.7 8.6 8.4 7.8 8.7 8.4 0.3 4.0 

WR-below TR Dam (7) 8.0 7.9 7.2 7.9 8.0 7.8 8.0 7.8 7.6 8.5 8.6 8.6 8.0 7.2 8.6 8.0 0.4 5.0 

Bull Ck (8) 8.3 8.4 8.3 8.3 7.9 7.9 8.4 8.2 7.9 8.5 8.5 8.3 8.2 7.9 8.5 8.3 0.2 3.0 

Beaver Ck (9) 8.4 8.3 8.4 8.2 8.2 8.4 7.9 8.3 8.1 8.6 8.6 8.3 8.3 7.9 8.6 8.3 0.2 2.0 

JR-above Springfield (10) 8.3 8.1 7.9 7.9 7.8 7.9 8.1 7.9 7.6 8.5 8.2 8.1 8.0 7.6 8.5 8.0 0.2 3.0 

Pearson Ck (11) 8.0 7.8 7.9 8.1 7.4 8.0 7.7 7.7 7.8 8.5 8.5 8.3 8.0 7.4 8.5 7.9 0.3 4.0 

Long Ck (12) 7.8 7.9 7.8 7.7 7.7 7.6 8.0 7.7 7.3 7.5 7.8 7.9 7.7 7.3 8.0 7.8 0.2 2.0 

Yocum Ck (13) 8.1 8.2 8.0 8.0 8.0 7.9 8.6 8.0 7.8 8.4 8.2 8.2 8.1 7.8 8.6 8.1 0.2 3.0 

Kings R (14) 8.3 8.4 8.3 8.3 8.5 8.5 8.1 8.4 8.0 8.3 8.5 8.4 8.3 8.0 8.5 8.4 0.2 2.0 

War Eagle Ck (15) 9.1 8.0 7.9 7.7 8.0 8.1 8.6 7.9 7.7 8.2 8.5 7.9 8.1 7.7 9.1 8.0 0.4 5.0 

Richland Ck (16) 8.2 8.6 8.3 8.3 8.4 8.5 8.8 8.6 7.9 8.1 8.5 8.0 8.4 7.9 8.8 8.4 0.3 3.0 

White R-Fayetteville (17) 7.9 7.9 7.9 7.9 8.3 8.2 7.7 8.0 7.4 8.1 8.3 8.1 8.0 7.4 8.3 8.0 0.3 3.0 

West Fork White (18) 8.8 8.0 7.7 7.8 7.6 7.6 7.5 7.5 7.2 6.6 8.3 7.9 7.7 6.6 8.8 7.7 0.6 7.0 

Bear Ck (19) 8.2 8.3 8.3 7.7 8.1 8.1 7.9 8.2 8.0 6.8 8.5 8.1 8.0 6.8 8.5 8.1 0.4 5.0 
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Specific Conductivity (mS/cm) 

 

Sites March April May Jun Jul  Aug Sept  Oct Nov Dec Jan Feb Mean Min Max Median Std-dev CV% 

WC-Springfield (1) 0.73 0.76 0.31 0.74 0.76 0.68 0.70 0.72 0.87 1.00 0.70 0.78 0.73 0.31 1.00 0.74 0.16 22 

WC-above SWTP (2) 0.67 0.70 0.27 0.32 0.35 0.35 1.15 0.66 0.90 0.90 0.72 0.30 0.61 0.27 1.15 0.67 0.29 48 

WC-at SWTP (3) 0.96 0.84 0.56 1.08 1.15 0.96 1.00 1.10 1.52 1.23 1.25 0.90 1.05 0.56 1.52 1.04 0.24 23 

JR-Boaz (4) 0.60 0.50 0.61 0.86 0.92 0.95 0.50 0.83 1.11 0.90 1.00 0.85 0.80 0.50 1.11 0.85 0.20 25 

Finley R (5) 0.41 0.38 0.39 0.47 0.50 0.49 0.68 0.48 0.61 0.69 0.58 0.49 0.51 0.38 0.69 0.49 0.10 20 

JR-Galena (6) 0.46 0.43 0.49 0.56 0.59 0.73 0.33 0.61 0.80 0.97 0.88 0.60 0.62 0.33 0.97 0.59 0.19 31 

WR-below TR Dam (7) 0.32 0.32 0.32 0.32 0.35 0.32 0.44 0.32 0.36 0.41 0.34 0.29 0.34 0.29 0.44 0.32 0.04 13 

Bull Ck (8) 0.43 0.45 0.42 0.53 0.49 0.43 0.49 0.46 0.57 0.69 0.52 0.51 0.50 0.42 0.69 0.49 0.07 15 

Beaver Ck (9) 0.49 0.47 0.49 0.44 0.54 0.49 0.53 0.48 0.57 0.66 0.57 0.53 0.52 0.44 0.66 0.51 0.06 11 

JR-above Springfield (10) 0.42 0.40 0.45 0.49 0.53 0.57 0.60 0.61 0.59 0.67 0.57 0.49 0.53 0.40 0.67 0.55 0.08 16 

Pearson Ck (11) 0.54 0.58 0.58 0.58 0.61 0.58 0.46 0.52 0.42 0.77 0.65 0.62 0.58 0.42 0.77 0.58 0.09 16 

Long Ck (12) 0.37 0.33 0.41 0.42 0.45 0.47 0.44 0.40 0.58 0.54 0.59 0.51 0.46 0.33 0.59 0.45 0.08 18 

Yocum Ck (13) 0.45 0.43 0.46 0.46 0.49 0.45 0.43 0.44 0.51 0.52 0.51 0.45 0.47 0.43 0.52 0.46 0.03 7 

Kings R (14) 0.21 0.28 0.34 0.34 0.40 0.49 0.41 0.41 0.53 0.47 0.51 0.36 0.40 0.21 0.53 0.40 0.10 25 

War Eagle Ck (15) 0.17 0.18 0.27 0.30 0.40 0.37 0.28 0.45 0.56 0.38 0.54 0.28 0.35 0.17 0.56 0.33 0.12 36 

Richland Ck (16) 0.14 0.15 0.24 0.24 0.31 0.27 0.25 0.28 0.39 0.45 0.38 0.36 0.29 0.14 0.45 0.27 0.09 33 

White R-Fayetteville (17) 0.22 0.12 0.14 0.20 0.26 0.30 0.33 0.30 0.37 0.49 0.38 0.14 0.27 0.12 0.49 0.28 0.11 41 

West Fork White (18) 0.30 0.21 0.22 0.26 0.40 0.44 0.24 0.32 0.40 0.65 0.50 0.40 0.36 0.21 0.65 0.36 0.13 36 

Bear Ck (19) 0.49 0.49 0.46 0.53 0.46 0.42 0.43 0.43 0.51 0.61 0.52 0.49 0.49 0.42 0.61 0.49 0.05 11 
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Turbidity (NTU) 

 

Sites March April May Jun Jul  Aug Sept  Oct Nov Dec Jan Feb Mean Min Max Median Std-dev CV% 

WC-Springfield (1) 7 8 12 7 6 7 7 31 6 6 45 61 17 6 61 7 19 110 

WC-above SWTP (2) 6 8 15 68 15 9 7 20 7 6 30 78 22 6 78 12 25 111 

WC-at SWTP (3) 4 9 25 18 5 17 12 17 0 0 32 29 14 0 32 15 11 77 

JR-Boaz (4) 6 19 31 12 9 12 3 24 7 11 24 55 18 3 55 12 15 83 

Finley R (5) 3 11 13 14 7 11 0 18 3 2 25 46 13 0 46 11 13 102 

JR-Galena (6) 5 14 4 11 3 3 63 18 3 2 4 46 15 2 63 5 20 134 

WR-below TR Dam (7) 21 11 8 93 72 72 3 26 4 3 14 33 30 3 93 17 31 104 

Bull Ck (8) 4 11 4 7 5 3 8 15 0 2 3 34 8 0 34 5 9 114 

Beaver Ck (9) 3 7 2 5 1 6 14 20 7 1 16 25 9 1 25 7 8 89 

JR-above Springfield (10) 7 9 8 11 7 19 17 21 8 4 1 14 11 1 21 9 6 58 

Pearson Ck (11) 5 16 6 22 13 25 8 23 155 98 0 15 32 0 155 16 46 144 

Long Ck (12) 7 11 5 9 7 14 5 21 6 46 32 96 22 5 96 10 27 124 

Yocum Ck (13) 7 9 5 7 5 8 6 21 3 56 8 82 18 3 82 7 25 140 

Kings R (14) 13 12 3 10 5 11 13 21 8 47 11 83 20 3 83 12 23 116 

War Eagle Ck (15) 5 22 6 15 27 10 9 36 12 25 9 88 22 5 88 13 23 105 

Richland Ck (16) 17 15 8 8 11 12 23 23 3 39 13 78 21 3 78 14 20 98 

White R-Fayetteville (17) 15 19 11 24 13 20 14 38 12 28 21 101 26 11 101 20 25 94 

West Fork White (18) 18 25 18 36 9 14 12 32 9 87 18 96 31 9 96 18 29 95 

Bear Ck (19) 5 6 3 10 2 4 5 17 2 52 0 29 11 0 52 5 15 137 
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Dissolved Oxygen (mg/L) 

 

Sites March April May Jun Jul  Aug Sept  Oct Nov Dec Jan Feb Mean Min Max Median Std-dev CV% 

WC-Springfield (1) 13 12 9 14 6 5 6 8 5 12 8 9 9 5 14 8 3 36 

WC-above SWTP (2) 14 14 9 10 8 7 0 10 0 18 8 11 9 0 18 9 5 58 

WC-at SWTP (3) 22 17 19 10 14 15 16 14 15 20 16 16 16 10 22 16 3 19 

JR-Boaz (4) 17 10 9 11 9 8 9 9 9 16 10 11 11 8 17 10 3 27 

Finley R (5) 16 11 9 12 9 10 11 9 9 16 10 11 11 9 16 11 3 24 

JR-Galena (6) 16 9 7 9 11 10 10 10 12 17 12 12 11 7 17 10 3 27 

WR-below TR Dam (7) 15 9 9 9 13 10 9 8 5 12 12 12 10 5 15 9 3 26 

Bull Ck (8) 14 14 9 6 8 8 9 9 8 15 10 12 10 6 15 9 3 27 

Beaver Ck (9) 15 13 11 9 10 10 9 9 10 16 11 12 11 9 16 10 2 22 

JR-above Springfield (10) 15 13 9 16 7 9 11 8 7 16 10 11 11 7 16 10 3 30 

Pearson Ck (11) 14 14 10 7 8 10 7 7 8 17 11 12 11 7 17 10 3 30 

Long Ck (12) 15 14 9 8 10 10 9 7 6 10 10 10 10 6 15 10 2 24 

Yocum Ck (13) 15 13 10 10 10 10 9 8 10 12 12 13 11 8 15 10 2 17 

Kings R (14) 17 13 10 9 9 10 9 8 10 12 11 11 11 8 17 10 2 23 

War Eagle Ck (15) 16 13 10 7 9 10 9 8 9 10 11 11 10 7 16 10 2 22 

Richland Ck (16) 18 13 12 10 11 11 9 10 10 10 11 11 11 9 18 11 2 20 

White R-Fayetteville (17) 15 12 9 9 10 10 7 8 5 10 10 11 10 5 15 10 2 25 

West Fork White (18) 15 12 9 8 8 9 6 5 5 10 10 11 9 5 15 9 3 32 

Bear Ck (19) 13 12 10 7 9 10 9 9 10 10 12 11 10 7 13 10 2 17 
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Water Temperature (C°) 

 

Sites March April May Jun Jul  Aug Sept  Oct Nov Dec Jan Feb Mean Min Max Median Std-dev CV% 

WC-Springfield (1) 9 15 19 22 22 23 21 16 12 3 4 4 14 3 23 16 8 54 

WC-above SWTP (2) 10 14 20 24 22 23 24 19 11 4 4 4 15 4 24 17 8 54 

WC-at SWTP (3) 13 15 19 23 23 23 23 23 20 15 15 15 19 13 23 20 4 21 

JR-Boaz (4) 13 15 20 26 28 26 24 19 13 3 6 7 17 3 28 17 8 51 

Finley R (5) 11 13 18 25 27 26 26 20 13 3 4 5 16 3 27 16 9 56 

JR-Galena (6) 12 14 21 27 29 28 10 21 13 2 5 7 16 2 29 13 9 59 

WR-below TR Dam (7) 7 8 9 9 9 9 27 11 10 9 10 10 11 7 27 9 5 48 

Bull Ck (8) 11 16 23 26 25 28 27 23 13 3 6 7 17 3 28 19 9 52 

Beaver Ck (9) 12 16 22 27 25 29 23 21 14 4 7 8 17 4 29 18 8 49 

JR-above Springfield (10) 10 14 20 22 23 25 21 17 13 4 7 6 15 4 25 16 7 49 

Pearson Ck (11) 12 14 18 19 19 24 21 18 15 7 9 8 15 7 24 16 5 35 

Long Ck (12) 11 14 18 21 23 22 23 20 14 7 8 6 16 6 23 16 6 41 

Yocum Ck (13) 11 14 17 20 23 24 28 21 15 4 7 7 16 4 28 16 8 47 

Kings R (14) 10 15 21 25 28 31 25 24 15 4 6 5 17 4 31 18 10 55 

War Eagle Ck (15) 13 16 20 23 26 28 27 21 14 6 5 5 17 5 28 18 8 50 

Richland Ck (16) 11 17 19 25 30 32 26 27 17 5 9 6 19 5 32 18 9 51 

White R-Fayetteville (17) 11 17 23 25 28 29 30 24 15 4 7 7 18 4 30 20 9 51 

West Fork White (18) 11 17 21 25 28 30 32 23 15 5 7 6 18 5 32 19 10 53 

Bear Ck (19) 12 18 20 20 27 30 27 25 16 8 8 7 18 7 30 19 8 45 
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Stage (Meters) 

 

Sites March April May Jun Jul  Aug Sept  Oct Nov Dec Jan Feb Mean Min Max Median Std-dev CV% 

WC-Springfield (1) 0.07 0.12 1.14 0.50 0.39 0.40 0.40 0.50 0.46 0.39 0.49 0.32 0.43 0.07 1.14 0.40 0.26 61 

WC-above SWTP (2) 0.22 0.41 0.85 0.15 0.16 0.18 NS 0.15 0.01 0.10 0.13 0.12 0.23 0.01 0.85 0.15 0.23 101 

WC-at SWTP (3) 0.49 0.51 0.62 0.48 0.45 0.42 0.45 0.48 0.48 0.47 0.48 0.46 0.48 0.42 0.62 0.48 0.05 10 

JR-Boaz (4) 0.54 0.95 0.52 0.41 0.36 0.34 0.35 0.49 0.38 0.37 0.41 0.47 0.47 0.34 0.95 0.41 0.17 36 

Finley R (5) 0.79 0.87 0.78 0.32 0.25 0.25 0.23 0.30 0.27 0.23 0.28 0.25 0.40 0.23 0.87 0.28 0.25 62 

JR-Galena (6) 1.40 1.68 1.15 0.43 0.20 0.13 0.13 0.16 0.11 0.12 0.1 0.13 0.48 0.10 1.68 0.15 0.58 121 

WR-below TR Dam (7) 1.54 1.67 1.30 0.62 0.54 0.54 0.42 0.43 0.40 0.37 0.38 0.36 0.71 0.36 1.67 0.49 0.49 68 

Bull Ck (8) 1.15 1.22 1.04 0.64 0.65 0.83 0.87 0.71 0.71 0.70 0.67 0.75 0.83 0.64 1.22 0.73 0.20 24 

Beaver Ck (9) 0.81 1.22 0.67 0.28 0.52 0.39 0.45 0.31 0.24 0.31 0.3 0.44 0.50 0.24 1.22 0.42 0.29 58 

JR-above Springfield (10) 1.37 1.51 1.28 0.62 0.55 0.36 0.46 0.45 0.51 0.51 0.5 0.61 0.73 0.36 1.51 0.53 0.41 56 

Pearson Ck (11) 0.88 0.93 0.88 0.60 0.68 0.64 0.44 0.51 0.24 0.25 0.3 0.32 0.56 0.24 0.93 0.56 0.25 46 

Long Ck (12) 0.71 0.79 0.73 0.69 0.61 0.61 0.63 0.69 0.70 0.68 0.68 0.69 0.68 0.61 0.79 0.69 0.05 7 

Yocum Ck (13) 1.08 1.13 1.00 1.10 1.05 1.15 1.03 1.08 1.04 1.05 1.11 1.06 1.07 1.00 1.15 1.07 0.04 4 

Kings R (14) 1.15 1.32 1.17 0.35 0.32 0.24 0.28 0.30 0.33 0.27 0.36 0.47 0.55 0.24 1.32 0.34 0.41 75 

War Eagle Ck (15) 0.68 0.82 0.60 0.20 0.10 0.12 0.14 0.12 0.12 0.15 0.15 0.19 0.28 0.10 0.82 0.15 0.26 91 

Richland Ck (16) 0.69 0.76 0.66 0.24 0.20 0.05 0.13 0.11 0.11 0.12 0.07 0.15 0.27 0.05 0.76 0.14 0.26 97 

White R-Fayetteville (17) 1.04 1.15 1.07 0.70 0.14 0.45 0.45 0.40 0.60 0.61 0.6 0.68 0.66 0.14 1.15 0.61 0.30 46 

West Fork White (18) 1.01 1.26 1.09 0.30 0.11 0.18 0.08 0.24 0.25 0.25 0.23 0.26 0.44 0.08 1.26 0.25 0.42 96 

Bear Ck (19) 0.42 0.54 0.37 0.42 0.28 0.22 0.20 0.30 0.29 0.31 0.32 0.32 0.33 0.20 0.54 0.32 0.09 28 
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Discharge (Q) m³/sec 

 
Sites March April May Jun Jul  Aug Sept  Oct Nov Dec Jan Feb Mean Min Max Median Std-dev CV% 

WC-Springfield (1) 0.18 0.31 2.92 0.10 0.05 0.04 0.04 0.07 0.91 0.06 0.08 0.06 0.40 0.04 2.92 0.08 0.83 206 

WC-above SWTP (2) 0.00 0.20 2.83 0.00 0.00 0.00 NS 0.00 0.31 0.00 0.00 0.00 0.30 0.00 2.83 0.00 0.84 277 

WC-at SWTP (3) 1.33 1.87 3.54 1.10 1.02 1.05 1.08 0.91 0.96 0.93 0.71 0.91 1.28 0.71 3.54 1.03 0.77 60 

JR-Boaz (4) 9.94 19.74 9.37 2.61 2.04 1.44 1.64 2.41 2.24 1.87 2.86 3.14 4.94 1.44 19.74 2.51 5.49 111 

Finley R (5) 6.46 11.67 6.32 1.23 0.49 0.54 0.50 0.86 0.81 0.51 0.48 0.47 2.53 0.47 11.67 0.68 3.64 144 

JR-Galena (6) 27.92 59.18 17.36 5.83 4.59 3.71 3.31 4.73 3.45 3.37 3.85 5.10 11.87 3.31 59.18 4.66 16.68 141 

WR-below TR Dam (7) 118 121 100 86 80 62 61 52 46 26 26 27 67 25 121 61 34 51 

Bull Ck (8) 4.16 6.51 2.55 0.62 0.26 0.15 0.04 0.13 0.25 0.25 0.31 1.64 1.41 0.04 6.51 0.28 2.04 145 

Beaver Ck (9) 6.99 17.61 4.45 2.01 1.39 0.82 0.71 1.27 0.79 1.25 1.02 2.21 3.38 0.71 17.61 1.33 4.85 144 

JR-above Sprgfld (10) 3.26 7.08 2.12 0.76 0.42 0.16 0.17 0.45 0.19 0.23 0.17 0.76 1.32 0.16 7.08 0.44 2.05 156 

Pearson Ck (11) 0.51 0.82 0.45 0.12 0.10 0.07 0.12 0.12 0.06 0.05 0.03 0.04 0.21 0.03 0.82 0.11 0.25 120 

Long Ck (12) 2.07 3.79 1.16 0.51 0.40 0.37 0.71 0.48 0.45 0.31 0.36 0.39 0.92 0.31 3.79 0.47 1.04 113 

Yocum Ck (13) 1.08 2.27 0.37 0.11 0.24 0.34 0.11 0.11 0.11 0.10 0.11 0.11 0.42 0.10 2.27 0.11 0.64 154 

Kings R (14) 12.52 19.85 13.42 3.43 1.19 0.54 0.51 1.27 0.96 0.88 0.68 2.61 4.82 0.51 19.85 1.23 6.58 136 

War Eagle Ck (15) 6.71 11.52 4.53 1.42 0.62 0.34 0.31 0.31 0.54 0.31 0.31 0.54 2.29 0.31 11.52 0.54 3.55 155 

Richland Ck (16) 10.11 16.32 6.59 3.29 1.40 0.65 0.60 0.20 0.30 0.40 0.03 0.78 3.39 0.03 16.32 0.72 5.12 151 

WR-Fayetteville (17) 2.29 5.18 3.09 1.50 0.04 0.14 0.16 0.11 0.16 0.08 0.08 0.51 1.11 0.04 5.18 0.16 1.64 147 

West Fork White (18) 9.00 19.14 11.89 3.51 0.16 0.12 0.14 0.03 0.25 0.14 0.20 0.28 3.74 0.03 19.14 0.23 6.28 168 

Bear Ck (19) 2.80 6.12 1.95 0.62 0.24 0.34 0.11 0.12 0.28 0.18 0.23 0.28 1.11 0.11 6.12 0.28 1.79 162 
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1.   Scope and Applicability 

 

 This procedure is intended to serve as a field reference guide for the collection of 

water quality samples from the sites of the Upper White River Basin project.  Water 

samples will be collected manually as grab samples on a bi-monthly basis and during 

base flow when possible.   

 

2.   Summary of Method 

 

 2.1Water samples will be collected at a wade able depth. A sample bottle is inserted into 

the water at 1/3 of the depth of the water. The bottle is orientated into the water flow, 

submerged, and a sample taken. Care is taken not to collect stirred up sediments that 

have been disturbed by the sampling personnel while entering the stream. The bottle 

is held in the water until approximately 80% of the bottle is full and then quickly 

removed and capped. This will prevent sediment and dissolved solids from 

accumulating in the bottle.  

 

3.   Health and Safety 

 

3.1 When wading in streams where water depths may be 1 meter deep or more, wear a 

life preserver and/or remove hip boots or chest waders.  Currents can force wading 

field workers into deep water and water-filled boots can make swimming difficult. 

 

3.2 When walking through densely vegetated areas along streams, be sure to look for and 

avoid toxic plants like poison ivy.  Be sure to wear appropriate insect repellent and 

protective clothing for protection from mosquitoes, chiggers, and ticks.  In addition, 

probe areas in your path with a walking stick to warn and disperse poisonous snakes 

like the cottonmouth and copperhead, which may inhabit riparian areas. 

 

3.3 Be sure to clean up with bacteria disinfectant soap and water after wading in streams.  

This is particularly important for streams that drain livestock areas, sewage treatment 

plant effluents, and other obvious pollution sources.  Under no circumstances should 

you drink the water from any stream. 

 

3.4 The concentrated hydrochloric acid is highly corrosive.  Use protective gloves during 

handling. 

 

4.   Personnel Qualifications 

 

 Water samples will be collected by Missouri State University (MSU) graduate 

students who have received appropriate training, prior coursework, and field 

experience regarding the collection of grab samples, and who are familiar with all of 

MSU’s sample handling and tagging procedures.   

5.   Equipment and Supplies 
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5.1 500 mL plastic sampling bottles and lids 

 

5.2 Field Book, Pen, and Permanent Marker  

 

5.3 Global Positioning System (GPS) 

 

5.4 Cooler with ice and bottle rack  

 

5.5 Concentrated H2SO4 in dropper bottle (Caution: highly corrosive.  Handle with 

gloves.) 

 

5.6 Protective Gloves 

 

5.7 Narrow range pH paper (i.e. pH 0  3) 

 

5.8 Glass or plastic stirring rods. 

  

6.   Procedure 

 

6.1 Pre-sampling Activities    

 

 Sample collection equipment and sample containers must be decontaminated.   

 

 Wash each sample container with a 2% (V:V) HCl wash (2ml hydrochloric acid 

and 100ml deionized water) prior to field work 

  

6.2 Planning 
 

The selection of the location for sampling is based on the locations of the USGS gage 

stations in the Upper White River watershed area. The sampling sites are all pre-

selected before field sampling is started.  

 

6.3 Water Sampling Activities 

 

 1.   Label all sample bottles with the project name and site numbers allowing two for 

duplicates and two for field blanks.   

  

2.   Select the appropriately labeled bottle for a particular site and proceed to enter the 

water.  

  

  3.   Rinse the sample bottle in the stream 2-3 times.  Submerge bottle to 1/3 of depth 

of stream.  

 

      4.   All samples should be taken from the flowing portion of the stream or if in a pool 
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at least one foot from shore and at least 6 inches below the surface. Since the sample 

bottle fills with water as a result of the hydrostatic pressure, it will continue to collect 

more suspended solids in the bottle than would normally be present if the sample 

bottle is held in the water after it is full. This sample will not be a representative 

sample and should be discarded.  Rinse the bottle out and try again.  A proper sample 

should occupy approximately 80% of the sample bottle.   

 

5.   To preserve the water sample for TN and TP analyses, add concentrated H2SO4 (4 

drops for each 500 mL water sample).  Check the pH of the water sample using 

narrow range pH paper.  The pH should be < 2.0.  Continue to add H2SO4 if the 

pH remains > 2.0. Sample preservation and holding times are illustrated in 

Appendix II. 

 

6. Each sample should be immediately sealed and appropriately labeled with the 

sample #  

( i.e. UWRB-1-06/20/05-NP).  Refer to the Data Records and Management 

section of this SOP for further information. Field notes should be recorded in a 

field book and copied to the standard data sheet located and stored in the 

geomorphology laboratory.  Place each sample bottle into a cooler.  Each sample 

should be kept above the ice, so that the sample is not submerged or altered in any 

way.  

 

7. Do not forget to sample for a Field Duplicate for each sample run.  Label these 

samples with the appropriate sample # (i.e. UWRB-1-06/20/05-1FD).  See below 

in the Data and Records Management section of this SOP for further information. 

   

6.4 Storage Activities 
 

1.   Once back at the geomorphology laboratory (Temple Hall room 125), transfer the 

sample bottles to the refrigerator.  Note any necessary information on the standard 

data sheet. 

 

2.  Transfer the samples to the refrigerator in the chemistry laboratory (located 

between rooms 422 and 432 of Temple Hall) when chemistry laboratory 

personnel are available to receive the samples.  Sign off on the samples on the 

Chain of Custody Records. 

 

 7. Data and Records Management 
 

1. The sample number consists of the site ID, the date, analyses abbreviation, 

duplicate, and filter number if applicable.  The Site ID is illustrated below. 
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Site ID Site Description 

WC-Springfield (1) Wilson Creek, Springfield 7052000 
WC-above SWTP (2) Wilson Creek, Springfield 7052100 
WC-at SWTP (3) Wilson Creek, Battlefield 7052160 
JR-Boaz (4) James River, Boaz 7052250 
Finley R (5) Finley Creek, Riverdale 7052345 
JR-Galena (6) James River, Galena 7052500 
WR-below TR Dam (7) Table Rock Dam, Branson 7053400 
Bull Ck (8) Bull Creek, Walnut Shade 7053810 
Beaver Ck (9) Beaver Creek, Bradleyville 7054080 
JR-above Springfield (10) James River, Springfield 7050700 
Pearson Ck (11) Pearson Creek, Springfield 7050690 
Long Ck (12) Long Creek, Denver 7053207 
Yocum Ck (13) Yocum Creek, Oak Grove 7053250 
Kings R (14) Kings River, Berryville 7050500 
War Eagle Ck (15) War Eagle Creek, Hindsville 7049000 
Richland Ck (16) Richland Creek, Goshen 7048800 
White R-Fayetteville (17) White River, Fayetteville 7048600 
West Fork White (18) West Fork W.R., Fayetteville 7648550 
Bear Ck (19) Bear Creek, Omaha 7054410 

 

2. The date should be that of when the sample was collected (mm/dd/yy).  The 

analyses abbreviations are NP = Nitrogen and Phosphorus.  The Field 

Duplicate and Field Blank will be indicated by either an ―fd‖ or ―fb‖. 

Definitions of the types of samples required in this study are available in the 

Standard Operating Procedure for Quality Assurance / Quality Control with 

General Environmental Sample Collection, Handling, and Analyses (SOP 

Ref:QA/QCE-D-1).   

 

 

Sample # 

WC-Springfield (1) 1/20/05-NPfd 

WC-Springfield (1) 1/20/05-NPfb 

 

8.  QA/QC 

 

1.   All sample bottles must be thoroughly cleaned in the laboratory prior to use.  The 

samples bottles used have been approved by the Environmental Protection 

Agency in past studies, but those bottles must be clean to obtain meaningful 

results.  The analysis of the Field Blanks will discover any problems associated 

with the decontaminating procedures. 
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2. Samples must be acidified for the nitrogen (N) and phosphorus (P) analyses. The 

pH must be < 2.0.   

 

3. Samples must be cooled immediately after collection to preserve and to retard 

chemical and biological activity. 

 

4.  The sample bottles should be labeled using the correct sample #.  The standard 

data sheet includes the sample #, site ID, date, and any other necessary 

information.  

   

5.   Holding times are the maximum times that samples may be held before analysis is 

completed and still be considered valid.  The sample collector must make sure 

that samples reach the laboratory as soon as possible after sampling so they can be 

analyzed before the holding time is exceeded.  The holding time for TN and TP 

analyses is 28 days. 

 

6.   Trip blanks are not necessary for the water-sampling portion of this project.  Two 

field blanks for each sample run is adequate.  Label the field blanks with the 

appropriate sample # (fb).  Remember that a field blank is an aliquot of deionized 

water treated as a sample in all aspects, including exposure to a sample bottle 

holding time, preservatives, and all pre-analysis treatments.   

 

7.  A field duplicate is required to determine the precision of the water-sampling 

portion of this project.  Two field duplicates, for the TN, TP (NP) for each sample 

run is adequate.  The field duplicate bottle should be labeled with the appropriate 

sample # (i.e. UWRB-1-01/20/05-Nfd).  Two samples are taken at the same time 

and placed under identical circumstances which are treated identically throughout 

the field and laboratory procedures.  

 

9.   References 

     

MDNR, Required/Recommended Containers, Volumes, Preservatives, Holding Times, and  

Special Sampling Considerations, SOP # MDNR-FSS-001, February 2, 1998. 

 Scientific Instruments, Inc., Model 5200, DH-48 Sediment Sampler User Instructions and 

Parts List, http://www.scientif.com, June 1, 2001. 
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Appendix I.  Standard Data Sheet for Water Sampling 

 

Sample # Site Name Stage (m) 
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Appendix II.  Parameters, Detection Limits, Accuracy, Precision Table 

Parameter # of  
Analyses 

SOP 
Reference 

Sample Preservation Holding 
Time   

Detection 
Limits 

Accuracy Precision 

     Req'd Req'd. Req'd. 

Total Nitrogen 216 W-D-1and 
TN-D-1 

cool, H2SO4  to 
pH<2.0 

28 days 0.1 mg TN/L 20% 20% 

Total 
Phosphorus 

216 W-D-1 and 
P-D-1 

cool, H2SO4  to 
pH<2.0 

28 days 0.1 mg TN/L 20% 20% 
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1. SCOPE AND APPLICABILITY 

 

 This Standard Operating Procedure provides the MSU laboratory personnel with 

guidance on the procedure for determining total phosphorus (TP) in surface water 

samples.  TP is a measure of the all forms of phosphorus, including organic 

phosphorus.  This method is not applicable to samples preserved with HgCl2.  The 

detection limit is  0.005 mg TP/L and the upper range 0.5 mg TP/L.  The upper range 

may be extended by sample dilution. 

 

 

2. PERSONAL QUALIFICATIONS 

 

2.1 Laboratory personnel shall have a working knowledge of the analysis procedures 

and will have at a minimum either attended the department-sponsored inspection 

and enforcement training or received training from an MSU employee 

knowledgeable of the proper sample analysis procedures. 

 

 

3. HEALTH AND SAFETY 

 

3.1 The analysis involves handling of freshwater samples that may contain live 

microorganisms and therefore pose some threat of infection.  Laboratory personnel 

who are routinely exposed to such water samples are encouraged to protect 

themselves from water borne illnesses by wearing clean disposable gloves and 

washing their hands frequently.  

 

3.2 The calibration standards, samples, and most reagents used in this method pose no 

unusual hazard to an analyst employing standard safety measures including 

protective clothing and safety goggles.  Care must be taken when handling 

concentrated sulfuric acid and sodium hydroxide. 

 

3.3 This procedure requires use of an autoclave or pressure cooker capable of heating 

samples to 120 C.  All safety directions for using these devices should be followed 

carefully. 

 

 

4. SUMMARY OF METHOD 

 

4.1 All forms of phosphorus, including organic phosphorus, are converted to 

orthophosphate by an acid-persulfate digestion.  The persulfate digestion procedure 

and phosphate determination follow EPA 365.2, with the size of the sample 

reduced.   

 

A 10-ml volume of a well-mixed water sample is combined with sulfuric acid and 

ammonium or potassium persulfate and heated to approximately 120  in an 
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autoclave or pressure cooker.  This quantitatively converts phosphorus compounds 

to orthophosphate.  The digested sample is then analyzed for orthophosphate based 

on its reaction with a combined reagent containing ammonium molybdate, 

antimony potassium tartrate, and ascorbic acid to form intensely-colored 

molybdenum blue. 

 

4.2 The desired performance criteria for this measurement are:   

   Detection limit: 0.005 mgTP/L 

   Precision:   20% 

   Accuracy:   20% 

   Minimum Quantification Interval:  0.001 mg TP/L 

 

4.3 According to EPA 365.2. the applicable range for the method is  0.01 mg TP/L  to 

0.5 mg TP/L and may be extended by dilution.  EPA 365.2 describes performance 

for undigested orthophosphate samples but not for digested samples. 

 

 

5. INTERFERENCES 

 

5.1 No interferences is normally observed for copper, iron, or silicate.  However, high 

concentrations of iron can cause precipitation of, and subsequent loss, of 

phosphorus.   

 

5.2 Arsenate may interfere when present at concentrations higher than phosphorus.   

 

5.3 Sample turbidity and natural color may interfere. Turbidity may be removed by 

centrifugation or filtration after digestion. 

 

5.4 Phosphate adsorbed on glass surfaces may affect measurements at low phosphate 

levels.  Use of acid-washed glassware dedicated to this analysis prevents this 

interference. 

 

5.5   A number of sources suggest that there is a problem with deposition of reaction 

products on cell windows.  Some methods incorporate a surfactant to minimize this 

effect. 

 

 

6. DEFINITIONS.  The definitions and purposes below are specific to this method, 

but have been conformed to common usage as much as possible. 

 

6.1 Analytical batch – The set of samples processed at the same time to a maximum of 

10 samples. 

 

6.2 Calibration blank – A sample of deionized water treated in the same manner as the 

calibration standards, but without the analyte. 
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6.3 Calibration standard  –  A solution prepared from the primary dilution standard 

solution or stock standard solutions. The calibration standards are used to calibrate 

the instrument response with respect to analyte concentration.  

6.4 Field blank (FMB) – An aliquot of deionized water treated as a sample in all 

aspects, including exposure to a sample bottle holding time, preservatives, and all 

pre-analysis treatments. The purpose is to determine if the field or sample 

transporting procedures and environments have contaminated the sample. 

 

6.5 Field duplicate  –  Two samples taken at the same time and place under identical 

circumstances which are treated identically throughout field and laboratory 

procedures. Analysis of field duplicates indicates the precision associated with 

sample collection, preservation, and storage, as well as with laboratory procedures. 

 

6.6 Laboratory reagent blank  –  An aliquot of deionized water treated as a sample in all 

aspects, except that it is not taken to the sampling site. The purpose is to determine 

if the if analytes or interferences are present in the laboratory environment, the 

reagents, or the apparatus. 

 

6.7 Laboratory control check (LCC) – A solution prepared in the laboratory by 

dissolving a known amount of one or more pure compounds in a known amount of 

reagent water. Its purpose is to assure that the results produced by the laboratory 

remain within the acceptable limits for precision and accuracy. (This should not be 

confused with a calibrating standard).   

 

6.8 Laboratory duplicate – Two aliquots of the same environmental sample treated 

identically throughout a laboratory analytical procedure. Analysis of laboratory 

duplicates indicates precision associated with laboratory procedures but not with 

sample collection, preservation, or storage procedures.  

 

6.9 Quality control check sample (QCC) – A sample containing analytes of interest at 

known concentrations (true values).  The quality control check sample is obtained 

for a source external to the laboratory or is prepared from standards obtained from a 

different source than the calibration standards. The purpose is to check laboratory 

performance using test materials that have been prepared independently from the 

normal preparation process. 

 

6.10 Method detection limit (MDL) – The lowest level at which an analyte can be 

detected with 99 percent confidence that the analyte concentration is greater than 

zero.  This is normally taken as three times the standard deviation of a series of 

measurements of blanks. 
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7.  EQUIPMENT AND SUPPLIES 

 

7.1 Balance – analytical, capable of accurately weighing to the nearest 0.0001 g. 

 

7.2 Glassware – Class A volumetric flasks and pipettes or plastic containers as required.  

Samples may be stored in plastic or glass. 

 

7.3 Glass culture tubes with linerless polypropylene caps, 20 mm OD  150 mm long.  

Clean before first use by heating to 120 C with digestion reagent.  Rinse with 6M 

HCl and deionized water between uses. 

 

7.4 Spectrophotometer:   A spectrophotometer capable of measurements at 650 or 880 

nm with a pathlength of 1.0 cm or longer is required.  Instruments currently 

available that meet these requirements are Spectronic Unicam 20 Genesys, Hitachi 

UV-2001 or Shimadzu UV-1600 or equivalent. 

 

7.5 Spectrophotometer cells:  Cells, including flow cells, with path lengths of 1.0 cm or 

longer, should be used.  This procedure will normally employ a flow cell with 5.0 

cm path length. 

 

7.6 Heating unit:  Use either an autoclave or pressure cooker capable of heating 

samples to 121 C (15 – 20 PSI). 

 

 

 

8.  REAGENTS AND STANDARDS 

 

8.1 Deionized water:  Use deionized water that has been purified with a 

Barnstead/Thermolyne purification system that includes ion exchange and organic 

purification cartridges.  Use this water for all procedures.  

 

8.2 Sulfuric acid, 5.4M (11N):  Cautiously add 310 ml concentrated sulfuric acid to an 

equal volume of water.  CAUTION:  This mixture will become very hot.  Dilute to 

1 L. 

 

8.3 Antimonyl potassium tartrate solution:  Dissolve 0.3 g K(SbO)C4H4O6 ½H2O 

(antimony potassium tartrate hemihydrate) in about 50 ml water and dilute to 100 

ml.  Store at 4 C in a dark bottle. 

 

8.4 Ammonium molybdate reagent:  Dissolve 4 g (NH4)6Mo7O24 4H2O in 100 ml 

deionized water.  Store at 4 C in a plastic bottle.  Note:  This solution (4% (w/v) 

ammonium molybdate) is commercially available. 

 

8.5 Ascorbic acid, 0.1M:  Dissolve 1.76 g ascorbic acid in deionized water and dilute to 

100 ml.  This solution is stable for approximately 1 week if stored at 4 C. 
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Max # 

samples 

g 

(NH4)2S2O8 

Vol 

(ml) 

40 3.2 10.0 

100 8.0 25.0 

200 16.0 50.0 

 

 

8.6 Combined reagent:  Mix the above reagents (8.2.1, 8.3– 8.5) in the following 

portions for 100 ml of the mixed reagent.  23 ml 11N H2SO4, 27 ml water, 5 ml 

antimony potassium tartrate (8.3), 15 ml ammonium molybdate (8.4), 30 ml 

ascorbic acid (8.5), and enough water to make 100 ml.    

 

8.6.1 Each solution should be at room temperature before mixing. 

 

8.6.2 Mix in the specified order and mix well after each addition.   

 

8.6.3 If turbidity forms in the combined reagent, shake and let stand for a few minutes 

until turbidity disappears before proceeding. 

 

8.6.4 The stability of the solution is limited.  It should be prepared fresh for each day’s 

run, and used for a maximum of 8 hours. 

 

8.7 Ammonium persulfate.  Use ACS reagent grade 

(NH4)2S2O8.  Dissolve in water at concentration of 

0.32 g per ml.  Prepare volume appropriate to the 

number of samples that will be run (at 0.25 ml per 

sample) – see table at right.  Prepare fresh daily.  

(0.25 ml = 0.08 g (NH4)2S2O8).   

 

8.8  Sodium hydroxide solution, 6M:  Dilute 31 ml 50% NaOH solution (commercially 

available) to 100 ml.  Store in plastic bottles. 

 

8.9  Sodium hydroxide solution, 1M:  Dilute 10 ml 6M NaOH (8.8) with 50 ml water. 

 

8.10 Phosphate stock solution (1.000 mg P/L):  This standard is commercially available.  

Alternately, dissolve 2.197 g anhydrous KH2PO4 and dilute to 500 ml in a 

volumetric flask.  1.00 ml = 0.100 mg PO4
3

 - P.  Two batches of stock solution are 

needed, using different sources of phosphate (e.g., different lot numbers from the 

same supplier or different suppliers).  Use one batch to prepare calibration standards 

and the other to produce quality control standards.   

 

8.11 Phosphate intermediate solution (10.0 mg P/L):  Dilute 5.00 ml of the phosphate 

stock solution (8.10) to 500.0 ml.    1.00 ml = 0.010 mg P. 
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8.12 Preparation of phosphate calibration and quality control standards:  Prepare 

standards according to the table below.  Use within 24 hours.  

 

Solution ml intermed. std. 

(8.11) 

Final ml Concentration Use 

RBL (deionized water) --- 0.000 mg PO4
3

-P/L Calibration blank 

TP-1 0.10 100.0 0.010 mg PO4
3

-P/L Calibration standard 

TP-2 0.20 100.0 0.020 mg PO4
3

-P/L Calibration standard 

TP-3 0.50 100.0 0.050 mg PO4
3

-P/L Calibration standard 

TP-4 1.00 100.0 0.100 mg PO4
3

-P/L Calibration standard 

TP-5 2.00 100.0 0.200 mg PO4
3

-P/L Calibration standard 

TP-6 5.00 100.0 0.500 mg PO4
3

-P/L Calibration standard 

LCC 5.00 250.0 0.200 mg PO4
3

-P/L Lab control check 

*QCC-
(low) 

2.00* 100.0 0.200 mg PO4
3

-P/L Quality control check 

RBL = Reagent Blank;  C = Calibration standard;  LCC = Laboratory Control Check;  QCC =  Quality 

Control  

* QCC solutions are prepared using alternate phosphate standard solution, i.e., not the same standard used 

to prepare the calibration standards. 
 

 

9.  PROCEDURE 
 

9.1 Preparation of matrix spike samples:  Prepare two matrix spike samples using 10-ml 

aliquots of a water sample (or a smaller aliquot diluted to 10 ml) from the same 

sample.  Spike each with 0.200 ml phosphate standard solution. (This should 

increase observed concentration by 0.200 mg/L.)  Carry each through the sample 

preparation and analysis procedure (9.3 and following). 

 

9.2 Preparation of samples and standards – digestion:  All samples and standards 

(including quality control solutions) should be processed in the same manner.  

 

9.2.1 Adjust the pH of a well-mixed sample to 6.0-8.0 using 6M NaOH and 1M H2SO4 or 

HCl.    

 

9.2.2Transfer 10 ml of a well-mixed sample (or an aliquot of sample diluted to 10 ml) to 

a screw-cap culture tube.   

 

9.2.3  Add 0.25 ml of the (NH4)2S2O8 solution (8.7) and 0.2 ml 5.4 M H2SO4 to each tube 

and mix. 

 

9.2.4 Cap tubes loosely.  – It is best to initially tighten the caps, invert the tubes a few 

times to ensure good mixing, and then unscrew the caps until the seal just becomes 

loose.   
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9.2.5 Place tubes in rack in either autoclave or pressure cooker. 

 

9.2.6 For autoclave, follow manufacturer’s directions and heat at 121 C for 30 minutes. 

 

9.2.7 For pressure cooker:  Add sufficient water to pressure cooker to bring water to a 

depth of at least 5 cm.  Heat the pressure cooker on a hotplate set to high until the 

water in the cooker is boiling, as evidenced by a steady stream of steam emerging 

from the pressure cooker’s vent.  Maintain constant boiling (adjusting heat as 

needed) for 30 minutes.  Allow pressure cooker to cool in air for about 30 minutes.  

After this initial cooling, it is normally possible to open the pressure cooker safely.   

 

9.2.8 Remove the tubes from the autoclave or pressure cooker and cool to 20 - 30 C.   

 

9.3  Neutralizing digested samples: 

 

9.3.1 Add 0.40 ml 6M NaOH and 1 drop phenolphthalein solution to each sample and 

mix.   Adjust the volume of 6M NaOH if appropriate. 

 

9.3.2 Add 6M NaOH until the solution just turns pink, and then add 5.4 M H2SO4 until 

the pink color just clears.   

 

9.4   Spectrophotometer setup:   

 

9.4.1 The spectrophotometer should be allowed to warm up at least 30 minutes prior to 

the start of measurements. 

 

9.4.2 Set the wavelength to 880 nm. 

 

9.4.3 The spectrophotometer should be set up with a holder appropriate to the size cell 

used (normally 5 cm cell).   

 

 

9.5 Color development and measurements: 

 

9.5.1 Add 1.5 ml mixed molybdate reagent solution and mix to the first ten tubes, noting 

time.   

 

9.5.2 Samples that appear turbid should be centrifuged or filtered. 

 

9.5.3 Just before starting measurements, add mixed molybdate reagent solution to the 

next ten tubes, again noting time.   

 

9.5.4  Add mixed molybdate reagent to other tubes to maintain an approximately 10 

minute interval between time of mixing and measurement. 
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9.6 Spectroscopic measurements:   

 

9.6.1 Zero the spectrometer using deionized water. 

 

9.6.2Start measurements approximately ten minutes after addition of the mixed reagent.  

 

9.6.3 Measurements may be continued up to thirty minutes past addition.   

 

 

10. QUALITY CONTROL 
 

10.1 Quality control program:  The minimum requirements of the quality control 

program for this analysis consist of an initial demonstration of laboratory capability, 

and the periodic analysis of laboratory reagent blanks and other laboratory solutions 

as a continuing check on performance. The laboratory must maintain performance 

records that define the quality of the data that are generated. 

 

10.1.1 Analyses of matrix spike and matrix spike duplicate samples are required to 

demonstrate method accuracy and precision and to monitor matrix interferences 

(interferences caused by the sample matrix). The procedure and QC criteria for 

spiking are described in Sections 9.1 and 10.4. 

 

10.1.2 Analyses of laboratory blanks are required to demonstrate freedom from 

contamination. 

 

10.1.3 The laboratory shall, on an ongoing basis, demonstrate through calibration 

verification and analysis of the ongoing precision and recovery sample that the 

analysis system is in control. 

 

10.1.4 The laboratory should maintain records to define the quality of data that is 

generated. 

 

 

10.2 Initial demonstration of performance.  The following must be satisfied before the 

analytical procedure may be used for samples and before a new analyst may analyze 

samples. 

 

10.2.1 Method Detection Limit (MDL) – To establish the ability to detect the analyte, 

the analyst shall determine the MDL by carrying through 7 or more separately 

prepared reagent blank solutions through the analytical procedure in Section 9.  

The average value, X, and the standard deviation of the values, s, shall be 

calculated.  The MDL is equal to 3s (3  standard deviation).  The MDL and 

average value, X, should both be less than or equal to 0.005 mg P/L. 

 



           Ref: TP-1 

           Date: 01/06 

           Page: 207 

 

207 

10.2.2 Initial Precision and Recovery  –  To establish the ability to generate acceptably 

precise and accurate results, the operator shall perform 10 replicates of a mid-

range standard (0.200 mg TP/L), according to the procedure in Section 9.  Using 

the results of the replicates compute the average value, S, and the standard 

deviation, s, for the analyte. The value of X should be within  10% of the true 

value.  The standard deviation should be less than or equal to 10% of the 

average value.   

 

 

10.3 The RBL, LCC, and QCC should be measured along with the standards at the start 

of the analytical cycle.  The criteria are as follows: 

 

Solution Acceptable range Comments 

RBL  0.005 mg TP/L ideally less than or equal to the required detection 

limit 

LCC 0.180 - 0.220 mg TP/L within  10% of the true value 

QCC 0.180 - 0.220 mg TP/L within  10% of the true value 

 

 

10.4 With each sample batch of ten samples, the following should also be run 

(acceptance criteria noted): 

 

Solution  

RBL Ideally < 0.001 mg TP/L 

LCC 0.180 - 0.220 mg TP/L 

Lab Duplicate greater of 20% or  0.005 mg TP/L 

Field Duplicate greater of 20% or  0.005 mg TP/L 

2 matrix spike solutions both 80% - 120% recovery  

 

 

 

11. CALCULATIONS. 

 

11.1 Calibration:  Obtain a standard curve by plotting absorbance of standards (including 

the reagent blank) versus concentration.  The data will be fit to a linear equation 

using a spreadsheet program such as Excel. 

 

11.2 Calculation of concentrations:  The concentration of each solution will be calculated 

based on the polynomial equation for the regression data.  The concentrations will 

represent the concentration of analyte in the 10-ml aliquot in (9.2.1). 
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11.3 Calculation of water sample concentrations, corrected for dilution:  For samples for 

which dilution was required, the concentration in the original water sample is 

calculated as: 

  

           10.0 ml    

   Csample  =  Canalysis  ———— 

            Valiquot 

 

where Csample is the concentration in the original water sample, Canalysis is the 

concentration of the solution as determined in (11.2), and Valiquot is the volume of 

the aliquot diluted to 10 ml in (9.2.1). 

 

11.4 Reporting results:  Results should be reported to 0.001 mg TP/L precision. 

 

11.5 The evaluation of MDL and precision require calculation of 

standard deviation.  Standard deviations should be calculated as 

indicated on the right,  where n = number of samples, x = 

concentration in each sample.  Note:  This is the sample standard 

deviation calculated by the STDEV function in Microsoft Excel. 

 

 

11.6 Calculation of recoveries:  Recovery of matrix spike solutions 

shall be calculated as indicated on the right, where S  =  

concentration observed for spiked sample, U  =  concentration 

observed for unspiked sample, and 0.200 is the concentration increase expected 

upon spiking.  Both S and U are concentrations based on (11.2), i.e., not adjusted 

for dilution of an aliquot.  The factor 1.02 corrects for the small volume change 

upon spiking. 

 

12.   POLLUTION PREVENTION:   
 

12.1 All wastes from these procedures shall be collected and disposed of according to 

existing waste policies within the MSU Chemistry Department. 

 

12.2 Volumes of reagents made should mirror the number of samples being analyzed. 

These adjustments should be made to reduce waste. 
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APPENDIX A:  Variations from EPA Method 365.2 
 

Sample size:  The volume of water sample is reduced from 50 ml to 10 ml and the 

amounts of sulfuric acid and (NH4)2S2O8 have been adjusted proportionately, as indicated 

in the table below.  

 

Changes: EPA 365.2 This Method 

Sample size: 50 ml 10 ml 

5.4M (11N) sulfuric acid added 

(ml): 

1.0 0.20 

Ammonium persulfate added (g): 0.4 0.080 

 

Note that a similar EPA digestion procedure (EPA 1987) employs a 10 ml sample. 

 

pH adjustment:  EPA 365.2 indicates that the pH of each digested sample and standard 

should be adjusted to 7.0  0.2 by addition of 1N NaOH.  The method employed 

here uses a less critical pH adjustment (9.3) that is, however, consistent with 

Standard Methods 4500-P B and E.  This variation is justified as follows: 

 

 It should be noted that precise adjustment of the pH of an unbuffered solution in this 

range is difficult – addition of 1 L (1/50 drop) 1N NaOH to 50 ml deionized water 

should increase the pH by more than one unit.   

 

 In addition, it is noteworthy that in the same step (8.1.4) in which the pH 7.0  0.2 

neutralization is specified, the method also states that if a sample is not clear after the 

neutralization step, 2-3 drops 11N H2SO4 should be added – enough acid to drop the 

pH below 2.0.  This suggests that precise pH adjustment is not really critical.   

 

 In addition, the combined reagent contains 2.5 N sulfuric acid.  Addition of 3 ml of 

this solution to 50 ml of a pH 7.0 sample (as specified in Method 365.2) results in a 

solution that is 0.141 N acid, so that the trace excesses of acid or base in samples 

ranging from pH 6.0 to 8.0 are insignificant.  

 

 Method 365.2 indicates that the pH should be adjusted using 1 N NaOH.  In the 

digestion step, 1.0 ml 11 N acid is added to a 50 ml sample (equivalent to 0.40 ml for 

a 20 ml sample).  Neutralization of this amount of acid with 1 N NaOH requires 11 

ml for a 50 ml sample (4.4 ml for a 20 ml sample).  This represents a very significant 

volume change.  In this method, the initial step of the neutralization is carried out 

using 6N NaOH, decreasing the required volume of base considerably. 

 

Addition of ammonium persulfate:  In the original method, ammonium persulfate is 

added as a solid using an appropriate size scoop.  As the sample volume is reduced 

from 50 ml to 10 ml, the amount of ammonium persulfate must be reduced from 

0.4g to 0.08 g.  However, it would be difficult to add 0.08 g using a scoop.  Instead, 
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ammonium persulfate is delivered as an aqueous solution (0.25 ml of 0.32 g/ml 

solution).  This provides the required amount very reproducibly. 

  

Preparation of combined reagent:  EPA 365.2 requires preparation of both 11 N and 5 N 

sulfuric acid, for digestion and combined reagent preparation, respectively.  In this 

method, 11 N sulfuric acid is used to prepare the mixed reagent, eliminating the 

need for the 5N sulfuric acid and reducing waste generation.   

 

Detection limits:  The desired detection limit for this method is < 0.005 mg TP/L.  

Method 365.2, an EPA method intended for measuring phosphorus in surface waters, 

does not specify a detection limit, though it does specify that the method is applicable to 

samples in the range of 0.01 to 0.5 mg P/L.   In the Precision and Accuracy section, 

reproducibility for a 0.029 mg P/L orthophosphate sample was 0.010 mg P/L, 

suggestion a detection limit substantially higher than 0.005 mg P/L.  Note that the 

performance data described for EPA 365.2 is based on undigested orthophosphate 

samples.   
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1. Scope and Applicability 
 This Standard Operating Procedure provides the MSU laboratory personnel with 

guidance on the procedure for determining total nitrogen (TN) in surface water 

samples.  TN is a measure of the all forms of nitrogen present in a sample.  This 

method may give poor recoveries for organic compounds which contain nitrogen-

nitrogen double bonds or terminal nitrogen groups (e.g., H-N=C).  As described here, 

the detection limit is  0.1 mg TN/L and the upper range 5 mg TN/L.  The upper 

range may be extended by sample dilution. 

 

2. Summary of Method 
2.1 The procedure outlined below follows that described by Crumpton, Isenhart, and 

Mitchel.   

A water sample is combined with an alkaline persulfate oxidizing solution and heated 

to approximately 120  in an autoclave or pressure cooker.  This quantitatively 

converts most nitrogen compounds to nitrate.  The digested sample is acidified with 

hydrochloric acid, and then its absorbance is measured at three wavelengths (230, 

225, and 220 nm).  The absorbance data are used to compute the second derivative at 

225 nm.  Comparison of the second derivative with that of similarly-treated standards 

allows estimation of total nitrogen. 

2.2 The desired performance criteria for this measurement are:   

   Detection limit:  0.1 mg TN/L 

   Precision:  ± 20% 

   Accuracy:  ± 20% 

   Minimum Quantification Interval:  0.1 mg TN/L 

The applicable range for the method is  0.1 mg TN/L  to 5 mg TN/L and may be 

extended by dilution. 

 

3. Definitions  The definitions and purposes below are specific to this method, but have  

 been conformed to common usage as much as possible. 

3.1 Analytical batch – Set of samples processed at the same time - max of 12 samples. 

3.2 Calibration blank – A sample of deionized water treated in the same manner as the 

calibration standards, without the analyte. 

3.3 Calibration standard  –  A solution prepared from the primary dilution standard 

solution or stock standard solutions. The calibration standards are used to calibrate 

the instrument response with respect to analyte concentration.  

3.4 Field blank (FMB) – An aliquot of deionized water treated as a sample in all aspects, 

including exposure to a sample bottle holding time, preservatives, and all pre-analysis 

treatments. The purpose is to determine if the field or sample transporting procedures 

and environments have contaminated the sample. 

3.5 Field duplicate  –  Two samples taken at the same time and place under identical 

circumstances which are treated identically throughout field and laboratory 

procedures. Analysis of field duplicates indicates the precision associated with 

sample collection, preservation, and storage, as well as with laboratory procedures. 

3.6 Laboratory reagent blank  (RBL) –  An aliquot of deionized water treated as a sample 

in all aspects, except that it is not taken to the sampling site. The purpose is to 
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determine if the if analytes or interferences are present in the laboratory environment, 

the reagents, or the apparatus. 

3.7 Laboratory control check sample (LCC) – A solution prepared in the laboratory by 

dissolving a known amount of one or more pure compounds in a known amount of 

reagent water. Its purpose is to assure that the results produced by the laboratory 

remain within the acceptable limits for precision and accuracy. (This should not be 

confused with a calibrating standard).   

3.8 Laboratory duplicate – Two aliquots of the same environmental sample treated 

identically throughout a laboratory analytical procedure. Analysis of laboratory 

duplicates indicates precision associated with laboratory procedures but not with 

sample collection, preservation, or storage procedures.  

3.9 Quality control check sample (QCC) –  A sample containing analytes of interest at 

known concentrations (true values).  The quality control check sample is obtained for 

a source external to the laboratory or is prepared from standards obtained from a 

different source than the calibration standards. The purpose is to check laboratory 

performance using test materials that have been prepared independently from the 

normal preparation process. 

3.10Method detection limit (MDL) -- The lowest level at which an analyte can be 

detected with 99 percent confidence that the analyte concentration is greater than 

zero.  

 

4.  Health and Safety 

4.1 The analysis involves handling of freshwater samples that may contain live 

microorganisms and therefore pose some threat of infection. Laboratory personnel 

who are routinely exposed  to such water samples are encouraged to protect 

themselves from water borne illnesses by  wearing clean disposable gloves and 

washing their hands frequently.  

4.2 The toxicity or carcinogenicity of each reagent used in this method has not been fully 

established. Each chemical should be regarded as a potential health hazard and 

exposure should be as low as reasonably achievable. Cautions are included for known 

extremely hazardous materials. 

4.3 Each laboratory is responsible for maintaining a current awareness file of the 

Occupational Health and Safety Act (OSHA) regulations regarding the safe handling 

of the chemicals specified in this method. A reference file of Material Safety Data 

sheets (MSDS) should be made available to all personnel involved in the chemical 

analysis. 

4.4 The following chemicals have the potential to be highly toxic or hazardous;  for 

detailed  explanations consult the MSDS. 

 Sodium hydroxide 

    Hydrochloric acid 

4.5 This procedure requires use of an autoclave or pressure cooker capable of heating 

samples to 120 C.  All safety directions for using these devices should be followed 

carefully. 
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5. Interferences 
5.1 Sample turbidity may interfere. Turbidity can be removed by filtration of the digested 

solution through a 0.45µm pore diameter membrane filter prior to analysis, or by 

centrifugation. 

5.3 Sample color that absorbs strongly around 225 nm (after digestion) interferes. 

 

6. Personnel Qualifications 
   Laboratory personnel shall have a working knowledge of the analysis procedures and 

will  have at a minimum either attended the department-sponsored inspection and 

enforcement training or received training from an MSU employee knowledgeable of 

the proper sample analysis procedures. 

 

7. Equipment and Supplies 

7.1 Balance -- analytical, capable of accurately weighing to the nearest 0.0001 g. 

7.2 Glassware -- Class A volumetric flasks and pipettes or plastic containers as required.  

Samples may be stored in plastic or glass. 

7.3 Glass culture tubes with linerless polypropylene caps, 20 mm OD × 150 mm long.  

Clean tubes before use by heating to 120 C with digestion reagent, or by soaking in 

5% HCl.  New tubes may be used without prior cleaning. 

7.6 Spectrophotometer:  Hitachi UV-2001 or Shimadzu UV-1600, or equivalent. 

7.7 Spectrophotometer cells:  1 cm or longer path length (flow cells may be used) 

7.8 Heating unit – Use one of the following: 

 Autoclave 

 Pressure cooker 

 

8. Reagents and Standards    
8.1 Deionized water:  Use deionized water that has been purified with a 

Barnstead/Thermolyne purification system (or equivalent) that includes ion exchange 

and organic purification cartridges.  Use this water for all procedures.  

 

8.2 6 M HCl  (6N HCl):  Add concentrated HCl to an equal volume of water with mixing. 

8.3 6 M NaOH:   Prepare by one of the following methods: 

1. Dissolve 240 g ACS reagent grade NaOH per liter of water. 

2. Dilute 320 ml 19 M NaOH (commercially available) per liter. 

8.4  Nitrate solutions:  Prepare two sets of the following, using different sources of 

potassium nitrate (e.g., different lot numbers from the same supplier or different 

suppliers).  Use one to prepare calibration standards and the other to produce quality 

control standards. 

1. Stock nitrate solution (1.00 mg N/ml):  Dry KNO3 in an oven (105 C) for 24 

hours.  Dissolve 7.218 g in water with 2 ml CHCl3 (preservative) and dilute to 1 

L.  This solution is stable for at least 6 months.  1.00 ml = 1.00 mg NO3 -N.  

Commercially prepared nitrate solutions may be purchased instead.   

2. Intermediate nitrate solution (0.10 mg N/ml):  Dilute 25.0 ml nitrate stock 

solution to 250 ml.  This solution is stable for six months.  1.00 ml = 0.100 mg 

NO3 -N. 
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8.5 Urea stock solution (1.00 mg Norg/ml) :  CO(NH2)2.  Dissolve 536 mg urea and dilute 

to 250.0 ml.  Store in refrigerator.  1.00 ml = 0.10 mg Norg.   

8.6 Urea intermediate standard solution (0.100 mg Norg/ml):  Dilute 10.0 ml urea stock 

solution to 100 ml with water.  Store in refrigerator.  Prepare monthly.  1.00 ml = 

0.100 mg Norg.   

8.7 Preparation of nitrate calibration and digestion efficiency standards:  Prepare 

standards according to the table below.  Prepare fresh daily.  
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Final ml Concentration Use 

RBL ----- 0.00 250.0 0.00 mg NO3 -N/L Calibration blank 

TN-1 

Intermediate 

nitrate 

standard 

solution 

(0.10 mg N/L) 

0.10 100.0 0.10 mg NO3 -N/L Calibration standard 

TN-2 0.20 100.0 0.20 mg NO3 -N/L Calibration standard 

TN-3 0.50 100.0 0.50 mg NO3 -N/L Calibration standard 

TN-4 1.00 100.0 1.00 mg NO3 -N/L Calibration standard 

TN-5 2.00 100.0 2.0 mg NO3 -N/L Calibration standard 

TN-6 5.00 100.0 5.0 mg NO3 -N/L Calibration standard 

LCC 1.00 100.0 1.0 mg NO3 -N/L Lab control check 

QCC 

Alternate 

intermediate nitrate 

standard* 

1.00 100.0 1.0 mg NO3 -N/L Quality control check 

DEC 
Urea intermediate 

standard 
2.0 100.0 2.0 mg Norg/L Digestion efficiency check 

RBL = Reagent Blank;  C = Calibration standard;  LCC = Laboratory Control Check;  

QCC =  Quality Control Check;  CE = Column Efficiency Check;  DEC = Digestion 

Efficiency Check  * Prepared using alternate nitrate standard solution, i.e., not the same 

standard used to prepare the calibration standards. 

 

8.8 Digestion reagent:  Dissolve 60.0 g potassium persulfate (K2S2O8, N < 0.001%) per 

liter of 1.5 M NaOH.  Prepare 1.5 M NaOH by diluting 80 ml 50% NaOH solution 

(commercially available;  N < 5 ppm) per liter of deionized water.  If the total 

nitrogen in a reagent blank is greater than 0.01 mg/L, recrystallize the potassium 

persulfate as follows: 

    Dissolve 75 g K2S2O4 (reagent grade, < 0.001% N) in 500 ml 60 C water.  Filter 

the solution rapidly through loosely packed Pyrex wool and cool in ice water to 

about 4 C while stirring continuously.  Collect the crystals by vacuum filtration 

on a sintered-glass filter and wash with small amounts of ice water.  Dry as 
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rapidly as possible in a vacuum over anhydrous calcium chloride.  Store in a 

vacuum desiccator over anhydrous calcium chloride. 

 

9. Procedure 
9.1 Preparation of matrix spike samples:   

1.  Prepare two matrix spike samples using 10-ml aliquots of water sample (or a 

smaller aliquot diluted to 10 ml) from the same sample.   

2.  Spike with 0.10 ml intermediate urea standard (0.10 mg Norg/L) solutions. This 

should increase observed concentration by 1.0 mg/L.)  Carry each through the 

sample preparation and analysis procedure (9.2 and following). 

 

9.2 Preparation of samples – digestion:  All samples and standards (including quality 

control solutions) should be processed in the same manner. 

1.  Transfer a portion of each well-mixed sample to a beaker or flask, and then add 

NaOH until the solution is just neutral (measure using litmus, pH paper, or a pH 

meter).   

2.  Combine 10 ml sample (or an aliquot of sample and enough water to equal 10 ml) 

and 1.5 ml digestion reagent in a culture tube and seal securely with 

polypropylene cap.  The analyst may determine an appropriate volume based on 

previous measurements at a site or other information, and then adjust the volume 

of sample used to minimize the need for later dilutions or reruns. 

3.  Place tubes in rack in either autoclave or pressure cooker. 

4.  For autoclave, follow manufacturer’s directions and heat at 120 C for 30 minutes. 

5.  For pressure cooker:  Add sufficient deionized water to pressure cooker to bring 

water to a depth of at least 5 cm.  Heat the pressure cooker on a hotplate set to 

high until the water in the cooker is boiling, as evidenced by a steady stream of 

steam emerging from the pressure cooker’s vent.  Maintain constant boiling 

(adjusting heat as needed) for 60 minutes.  Allow pressure cooker to cool in air 

for at least 30 minutes.  After this initial cooling, a stream of cold water from a 

faucet may be used to speed up the cooling process.  Do not open the cooker until 

it has cooled to near room temperature.   

6.  CAUTION:  The tubes may be under pressure.  Wearing of eye protection is 

essential.  Open each tube carefully to vent any pressure buildup.  (Note:  After 

the digestion procedure, many samples will contain some precipitate and/or will 

appear cloudy.  This normally clears up when acid is added in the next step.) 

7. 

9.3  Sample treatment:   

1.  Add 0.4 ml 6M HCl to each sample and stir.  (The light colored precipitate that 

forms during the digestion process will usually dissolve completely upon 

acidification.) 

2.  Filter turbid samples through a 0.45 µm membrane filter, or centrifuge. 

 

9.4 Spectroscopic measurements: 

1.  Allow spectrophotometer to warm up at least 15 minutes before starting data 

collection.   
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2. Use a 1-cm quartz (silica) cuvette for all measurements.  Other cell path lengths 

may be used.  A flow cell may be used to expedite measurements. 

3.  Run a baseline adjustment scan over the range of 230 – 220 nm (or wider), with 

deionized water in the cuvette that will be used for measurements. 

4.Set the spectrophotometer to take readings at 230, 225, and 220 nm.   

5.  Record absorption measurements of the following: 

a. Reagent blank 

b. Standards TN-1 and TN-2 (0.1 and 0.2 mg TN/L) 

c. Reagent blank 

d. Standards TN-3 and TN-4 (0.5 and 1.0 mg TN/L) 

e. Reagent blank 

f. Standards TN-5 and TN-6 (2.5 and 5.0 mg TN/L) 

g. Reagent blank 

6. Next, run the laboratory control standard check (LCC), quality control check 

(QCC), and digestion efficiency check (DEC). 

7. Run samples.  With every batch of 12 samples maximum, also run: 

a.  Laboratory control check (LCC) 

b.  Reagent blank (RBL) 

c. Two matrix spike samples from the same sample 

d. One laboratory duplicate. 

e. One field duplicate. 

8. Any samples for which the absorbance at 220 nm is greater than 1.0 should be 

diluted and rerun. 

9. The procedure described above may be implemented with a programmed method 

that provides data output in spreadsheet format.  A flow cell system may be used 

for spectrophotometric measurements. 

 

10. Calculations 
10.1 Calculation of second derivatives:  Carry out the computation, 4×(A230 + A220 - 

2×A235) (this is actually 100×second derivative) for each data set.  Note that the 

Hitachi UV-2001’s computational method for three wavelength photometric 

measurements is based on a parameter that is directly proportional to the second 

derivative, so that its results are equivalent to those described above. 

10.1 Calibration:  For each range of standards, obtain a standard curve by plotting the 

second derivatives of standards (including the reagent blank) versus concentration.  

Fit the data to a 2
nd

-order equation using a spreadsheet program such as Excel. It is 

most convenient to fit the data with the second derivative as ―x‖ and the 

concentration as ―y‖ to facilitate calculation of concentrations of samples from 

absorbance data.  Note that the Hitachi UV-2001’s computational program provides 

concentration output based on this type of calculation. 

10.2 Calculation of concentrations:  The concentration of each solution will be calculated 

based  on the 2
nd

-order equation for the regression data.  The concentrations will 

represent the concentration of analyte in the 10-ml aliquot in (9.2.1). 

10.3  Calculation of water sample concentrations, corrected for dilution:  For samples for 

which       dilution was required, the concentration in the original water sample is 

calculated as: 
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             10.0 ml    

   Csample  =  Canalysis × ———— 

              Valiquot 

where Csample is the concentration in the original water sample, Canalysis is the 

concentration of the solution as determined in (10.2), and Valiquot is the volume of the 

aliquot diluted to 10.0 ml in (9.2.1).  If additional dilution was carried out (e.g., for 

samples with A220 > 2.0), include an additional correction factor. 

10.4  Reporting results:  Results should be reported to 0.1 mg TN/L precision. 

 10.5 Standard Deviation: The evaluation of MDL and precision require calculation of 

standard    deviation.  Standard deviations should be calculated as: 

     ( x)
2
 

       x
2
 -  ——— 

       n         ½  
   
 

   s  =  { —————— } 

           n  1 

where n = number of samples, x = concentration in each sample.  Note:  This is the 

sample standard deviation calculated by the STDEV function in Microsoft Excel. 

10.6 Calculation of recoveries:  Recovery of matrix spike solutions shall be calculated as: 

     (S - U) 

   % recovery  =  ——— × 100% 

         T       

where S  =  observed for spiked sample, U  =  observed for unspiked sample, T  =  

spike value (normally 0.25 mg/L or 0.50 mg/L).  Both S and U are concentrations 

based on (10.2), i.e., not adjusted for dilution.  

 

11.  QA/QC 

 11.1Quality control program:  The minimum requirements of the quality control program 

for          this analysis consist of an initial demonstration of laboratory capability, and 

the periodic   analysis of laboratory reagent blanks and other laboratory solutions as a 

continuing check on   performance. The laboratory must maintain performance 

records that define the quality of   the data that are generated. 

 

 1. Analyses of matrix spike and matrix spike duplicate samples are required to 

demonstrate method accuracy and precision and to monitor matrix interferences 

(interferences caused by the sample matrix). The procedure and QC criteria for 

spiking are described in Sections 9.1, 10.6, 11.3, and 11.4. 

 2. Analyses of laboratory blanks are required to demonstrate freedom from 

contamination.   

 3. The laboratory shall, on an ongoing basis, demonstrate through calibration 

verification and analysis of the ongoing precision and recovery sample that the 

analysis system is in control. 

 4. The laboratory should maintain records to define the quality of data that is 

generated. 

 11.2  Initial demonstration of performance.  The following must be satisfied before the 

analytical      procedure may be used for samples and before a new analyst may 

analyze samples. 
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 1. Method Detection Limit (MDL) – To establish the ability to detect the analyte, the 

analyst shall determine the MDL by carrying through 7 or more separately 

prepared reagent blank solutions through the analytical procedure in Section 9.  

The average value, X, and the standard deviation of the values, s, shall be 

calculated.  The MDL is equal to 3s (3 × standard deviation).  The MDL and 

average value, X, must both be less than 0.10 mg N/L. 

 2. Initial Precision and Recovery  –  To establish the ability to generate acceptably 

precise and accurate results, the operator shall perform 10 replicates of a mid-

range standard (0.50 mg NO3 -N/L for low range, 1.0 for high range), according 

to the procedure in Section 9.  Using the results of the replicates compute the 

average value, X, and the standard deviation, s, for the analyte. The value of X 

should be within ± 20% of the true value.  The standard deviation should be less 

than or equal to 20% of the average value. 

 

 11.3 The RBL, LCC, QCC, CEC, and DE should be measured along with the standards at 

the start of the analytical cycle.  The criteria are as follows: 

 

Solution Acceptable range Comments 

RBL  0.10 mg TN/L less than or equal to the required detection limit 

LCC 0.80 - 1.20 mg TN/L within ± 20% of the true value 

QCC 0.80 - 1.20 mg TN/L within ± 20% of the true value 

DEC 2.0 – 3.0 mg TN/L corresponds to 80 – 120% efficiency for oxidation 

of urea to nitrate 

 

 11.4With each sample batch of twelve samples, the following should also be run 

(acceptance criteria noted): 

 

Solution  

RBL < 0.10 mg TN/L 

LCC 0.8 – 1.20 TN/L 

Lab Duplicate greater of ±20% or ± 0.20 mg TN/L 

Field Duplicate greater of ±20% or ± 0.20 mg TN/L 

2 matrix spike solutions both 80% - 120% recovery  

 

11.5 Calibration:  Calibration employs a quadratic equation to represent the relationship 

between the second derivative of absorbance observed for each standard and its 

concentration.  Based on this equation, the absorbance of each standard should 

predict the concentration of the standard to within ± 20% accuracy.   

 

12.  Pollution Prevention:  All wastes from these procedures shall be collected and 

disposed of according to existing waste policies within the MSU Chemistry 
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Department.  Volumes of reagents made should mirror the number of samples being 

analyzed. These adjustments should be made to reduce waste. 
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Appendix I:  Method Information. 
Method:  The Crumpton method was recommended by the Jones group at the University 

of Missouri.  The greatest potential for interference – high absorbance by organic matter 

– has not been observed in any of our samples. 

 

Digestion:   A variety of alkaline persulfate methods have been proposed (Crumpton 

(1992), EPA (1987), Standard Methods 4500-Norg D (1995), Ebina (1983)), differing in 

the concentrations of persulfate and hydroxide, and in the ratio of digestion reagent to 

sample.  We are following the procedure described by Crumpton, which is also employed 

by the Jones group at the University of Missouri.The EPA protocol (1987) did not 

include a standard to evaluate the efficiency of the persulfate digestion step.  Crumpton’s 

work employed urea for evaluating digestion efficiency.   

 

Nitrate determination – spectroscopic methods:   In Crumpton’s work, the calibration 

range was extended to 15 mg TN/L, corresponding to absorbance values greater than 5.0 

at 220 nm.  With conventional spectrophotometers, absorbance measurements are 

unreliable at such high absorbance values.   

 

Comments about the method: 

1. Our experience with this method has shown that the desired sensitivity and detection 

limit may be achieved using a 1-cm cell.   

2. Our calibration procedure calls for measurement of four reagent blanks rather than a 

single reagent blank.  This change makes the calibration at low concentrations more 

reliable.   

3. The spectrophotometer is zeroed with a reagent blank solution rather than deionized 

water.  This compensates for the influence of the digestion reagent on the 

background. 
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4. A plot of second derivative versus concentration over the concentration range 0 – 5 

mg TN is slightly curved.  Therefore, the data is fit to a 2
nd

 order (quadratic equation) 

rather than to a linear equation.   

 

II.  Method Performance Data 

1. Calibration data:  Right is a representative 

calibration curve for this method.  Note that this 

plot includes four replicates of the blank, which 

appear superimposed on this plot.  Over the 

range of calibration from 0 – 5 mg TN/L, slight 

curvature is observable.  The use of a second 

order (quadratic) data fit compensates for the 

nonlinearity. 

 

Note:  In the calibration procedure as 

implemented, the x- and y-axes are reversed so 

that in the regression equation, ―x‖ is the value of the second derivative and y is the 

concentration.  This facilitates the computations.  The quality of the fit is equivalent to 

that shown here. 

 

2. Laboratory control checks:  Measurement of 9 laboratory control checks (1.0 mg 

TN/L) over four dates yielded values in the range from 0.94 to 1.06 mg TN/L, with an 

average value of 0.98 mg TN/L and a standard deviation of 0.05 mg TN/L (5%). 

3. Quality control checks:  Measurement of 7 quality control checks (1.0 mg TN/L) over 

four dates yielded values in the range from 0.90 to 1.01 mg TN/L, with an average 

value of 0.96 mg TN/L and a standard deviation of 0.03 mg TN/L. 

4. Reagent blanks and detection limit:  Measurement of 9 digested reagent blanks over 

four dates yielded values in the range from –0.16 to 0.14 mg TN/L, with 7 of the nine 

in the range –0.05 to +0.05 mg TN/L.  Eliminating the two extreme values as outliers, 

the average value is –0.01 mg TN/L and a standard deviation of 0.036 mg TN/L, for a 

detection limit of 0.11 mg TN/L. 

5. Digestion efficiency:  Our measurements have shown that digestion of urea samples 

gives results within the acceptable range. 

6. Matrix spike recovery:  Measurement of eight spiked solutions (two duplicates of four 

different samples) yielded recoveries in the range of 82 – 110%, with an average value 

of 97%.  Recoveries for seven of the eight measurements fell between 90 – 110%. 

 

7. Field blanks:  Two field blanks yielded results of 0.04 and 0.05 mg TN/L. 

8. Laboratory duplicates:  Evaluation of five sets of laboratory duplicates found percent 

differences (difference/average as percentage) ranging from 0.9 to 10.2%, with an 

average value of 4.0%.  The largest difference corresponded to a sample taken under 

high flow conditions that contained high levels of sediment. 

9. Field duplicates:  Two sets of field duplicates had percent differences of 9 and 18%.  

The sample with the larger difference was taken under conditions of high flow. 
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