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A cost-effective and efficacious influenza vaccine for use in commercial poultry farms would help protect against avian influenza
outbreaks. Current influenza vaccines for poultry are expensive and subtype specific, and therefore there is an urgent need to
develop a universal avian influenza vaccine. We have constructed a live bacterial vaccine against avian influenza by expressing a
conserved peptide from the ectodomain of M2 antigen (M2e) on the surface of Lactococcus lactis (LL). Chickens were vaccinated
intranasally with the lactococcal vaccine (LL-M2e) or subcutaneously with keyhole-limpet-hemocyanin conjugated M2e (KLH-
M2e). Vaccinated and nonvaccinated birds were challenged with high pathogenic avian influenza virus A subtype H5N2. Birds
vaccinated with LL-M2e or KLH-M2e had median survival times of 5.5 and 6.0 days, respectively, which were significantly longer
than non-vaccinated birds (3.5 days). Birds vaccinated subcutaneously with KLH-M2e had a lower mean viral burden than either
of the other two groups. However, there was a significant correlation between the time of survival and M2e-specific serum IgG.
The results of these trials show that birds in both vaccinated groups had significantly (𝑃 < 0.05) higher median survival times than
non-vaccinated birds and that this protection could be due to M2e-specific serum IgG.

1. Introduction

The US Poultry industry annually produces over 43 billion
pounds of high-quality broiler chickens and turkeys and over
90 billion eggs, which in 2010 had a market value of $34.7
billion [1, 2]. Avian diseases are a constant threat to the
industry. Viruses are of particular concern because antibiotics
cannot control them, although vaccines can control some
avian viral infections. Avian vaccines are an important
component of protecting the value of commercial poultry.
However, many commercial birds are not vaccinated because
of the cost, labor, and difficulty in differentiating infected
from vaccinated animals.

Avian influenza virus is an important concern to the
poultry industry both in the USA and worldwide. It is

highly contagious and causes two levels of disease [3]. Low
pathogenic strains cause a disease that is seldom fatal but
results in slower growth and lower egg production.Thehighly
pathogenic form of the disease results in systemic morbidity
and a high mortality rate (90–100%). Highly pathogenic
avian influenza (HPAI) is a significant public health concern
because of recent highly pathogenic H5N1 avian influenza
outbreaks causing human deaths in Asia, Europe, Middle
East, and Africa. According to the world health organization
(WHO) update, since 2003 until February 2013, there were
620 confirmed cases of human infection with H5N1, of
which 367 died due to disease complications. Although
there are avian influenza vaccines approved in the USA for
use in commercial poultry, they are subtype specific and
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M2e sequence from A/chicken/Pennsylvania/1370/1983/H5N2:

S L L T E V E T L T R N G W E C K C S D S S D
TCA TTA CTT ACA GAA GTT GAA ACT TTA ACA CGT AAT GGT TGG GAA TGT AAA TGT TCA GAT TCT AGT GAT

(a)

TCATTACTTACAGAAGTTGAAACTTTAACACGTAATGGTTGGGAATGTAAATGTTCAGATTCTAGTGAT

AGTTTGTTAACAGAAGTTGAAACTTTGACACGTAATGGTTGGGAATGTAAATGTAGTGATTCATCTGAT

TCATTACTTACTGAAGTTGAAACATTAACTCGTAATGGATGGGAATGTAAATGTTCAGATTCTAGTGAT

TCTCTTTTGACAGAAGTTGAAACTCTTACACGTAATGGTTGGGAATGTAAATGTTCTGATAGTTCAGAT

AGTTTGTTAACTGAAGTTGAAACATTGACTCGTAATGGATGGGAATGTAAATGTAGTGATTCATCTGAT

TCATTACTTACAGAAGTTGAAACTTTAACACGTAATGGTTGGGAATGTAAATGTTCAGATTCTAGTGAT

TCTCTTTTGACTGAAGTTGAAACACTTACTCGTAATGGATGGGAATGTAAATGTTCTGATAGTTCAGAT

AGTTTGTTAACAGAAGTTGAAACTTTGACACGTAATGGTTGGGAATGTAAATGTAGTGATTCATCTGAT

TCATTACTTACTGAAGTTGAAACATTAACTCGTAATGGTTGGGAATGTAAATGTTCAGATTCTAGTGAT

Coding region of 10xM2e used for expression in L. lactis:

TCCGGATTC

GGATCCGGA

(b)

Figure 1: Coding region of 10xM2e used for expression in L. lactis. (a) Protein and nucleic acid sequence of M2e from
A/chicken/Pennsylvania/1370/1983/H5N2 is shown. (b) Nucleic acid sequence of coding region of 10xM2e used for expression in L. lactis is
shown.The bases in italics were added to the ends of the coding region for 10xM2e. BspE1 sites (underlined) were used to clone the sequence
in-frame into the unique BspE1 site in pip.

costly to administer because they require parenteral delivery
(intramuscular or subcutaneous).

Lactococcus lactis (LL) is a nonpathogenic, Gram-positive
bacterium that is being developed as a delivery vehicle for
vaccines. Various heterologous bacterial and viral antigens
have been expressed from L. lactis, and antigen-specific
immune responses have been reported [4–12]. The efficacy
of lactococcal vaccines has been validated in many reports
that have shown protection from infectious challenge of
vaccinated animals [4, 12–15]. In mammals, L. lactis does
not colonize the oral cavity or gastrointestinal tract but
remains metabolically active and survives passage after oral
administration [16–19]. It is thought that noncolonizing bac-
teria may be preferred over commensal bacteria for vaccine
delivery because they may avoid antigen tolerance [20]. Little
is known about L. lactis in chickens, but the closely related
Streptococcus genus is abundant in chicken gastrointestinal
contents [21, 22].

The M2 protein of avian influenza virus is one of three
proteins with domains exposed outside the virus particle.The
ectodomain of M2 (M2e) includes a peptide region that is
conserved among all subtypes and therefore has been a main
focus for the development of a universal influenza vaccine. In
the intact virion, M2e is not the dominant immunogen [23–
26]. However, antibodies to theM2e peptide increase survival
and reduce disease upon infectious challenge in mice and
chicken [27–32].

In this report, live L. lactis that expresses M2e (LL-
M2e) or keyhole-limpet-hemocyanin- (KLH-) conjugated
M2e (KLH-M2e) was used to vaccinate chickens. Immune
responses were measured, and the vaccinated and nonvac-
cinated birds were challenged with highly pathogenic avian
influenza virus. The results of these trials show that birds in
both vaccinated groups had significantly (𝑃 < 0.05) higher
median survival times than nonvaccinated birds and that this
protection could be due to M2e-specific serum IgG.

2. Material and Methods

2.1. Vaccine Construction. DNA encoding (Figure 1) 10 tan-
dem copies (10xM2e) of M2e (SLLTEVETLTRNGWECKCS-
DSSD) was prepared commercially (Blue Heron Biotechnol-
ogy) using codons preferred by L. lactis. BspE1 restriction
sites were included at each end for cloning. 10xM2e was
cloned into the lactococcal expression vector pP16pip as
described [8] using standardmethods, creating pBG-10xM2e,
and transformed [33] into the plasmid-free strain L. lactis
LM2301 [34].

2.2. Polyclonal Antiserum. M2e peptide was prepared com-
mercially (Global Peptide Services) and covalently linked
to keyhole limpet hemocyanin (KLH) using a commercial
kit according to the manufacturer’s instructions (Thermo-
Fisher Scientific). Polyclonal antiserum was prepared by
injecting subcutaneously New Zealand white rabbits with
50𝜇g (M2e-equivalent) conjugate (KLH-M2e) mixed with
adjuvant (TiterMax). M2e-specific titer was measured by
ELISA as described [35].

2.3. L. lactis Surface Expression of M2e. M2e expression
was measured using a modification of the indirect cellular
ELISA [35]. Exponential phase cultures of L. lactis (pBG-
10xM2e) were centrifuged (5,000 ×g, 5min), washed, and
resuspended in PBS to a final cell optical density (600 nm)
= 1.0. Serial 1 : 2 dilutions of washed cells were added to
a 96-well microtiter plate. Plates were further processed as
described using polyclonal rabbit anti-M2e serumandpreim-
mune serum, goat-anti-rabbit IgG-horseradish peroxidase
conjugate (Santa Cruz Biotechnology), and chemilumines-
cent substrate (Thermo-Fisher Scientific). Plates were read in
a Tecan Infinite F500 plate reader.

2.4. Virus Stocks. Highly Pathogenic Avian influenza A/
chicken/Pennsylvania/1370/1983 (H5N2) virus was obtained
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from United States Department of Agriculture. Viral stocks
were grown in day 10 embryonated chicken eggs for 3–5 days.
Allantoic fluid was collected, tested by hemagglutination
assay [36], and stored at−85∘C. Egg infectious dose (50%)was
calculated by the formula of Reed and Muench [37].

2.5. Serum and Fecal Analysis. Serum and fecal samples were
analyzed for M2e antibodies by ELISA [35] using microtiter
plates coated with 2𝜇g/mL M2e peptide. A standard curve
was included on each plate by making a serial dilution of
chicken IgG (Rockland).The plates were developed with goat
antichicken IgG-horseradish peroxidase conjugate (Bethyl
Laboratories) and chemiluminescent substrate (Thermo-
Fisher Scientific). Luminescent signal was converted to IgG
concentration by extrapolation from the graph of lumi-
nescence versus IgG concentration of the standards, and
corrected for sample dilution. Each sample was analyzed at
three dilutions in duplicate.

2.6. Cell-Mediated Immune Response. A lymphocyte prolif-
eration assay was performed as described [38]. Peripheral
lymphocytes were isolated from blood collected 14 days
after the final vaccination, stained with carboxyfluorescein
diacetate succinimidyl ester, and stimulated for 72 h at 39∘C
with 20𝜇g/mL M2e peptide, 20𝜇g/mL nonspecific peptide,
or 10 𝜇g/mL concanavalin A (Sigma). Stimulated and non-
stimulated lymphocytes were stainedwithmouse antichicken
CD4-R-phycoerythrin clone CT-4 (Thermo-Fisher Scien-
tific) and analyzed by flow cytometry on a Cytomics FC 500
instrument (Becton Dickinson) and FlowJo software (Tree
Star).

2.7. Vaccination and Challenge. Two groups of six seventeen-
day-old Neo Brown chickens were vaccinated intranasally on
three consecutive days with 4 × 1010 cfu LL-M2e in 100 𝜇L
PBS. The regimen was repeated 2 and 4 weeks later. Six
seventeen-day-oldNeo Brown chickens were each vaccinated
subcutaneously on the back of the neck with a 1 : 1 mixture
of Titermax Gold adjuvant and 50 𝜇g M2e equivalent KLH-
M2e conjugate in a total volume of 400 𝜇L.The subcutaneous
vaccination was repeated 2 and 4 weeks later. A negative
control group of six seventeen-day-old Neo Brown chickens
was not vaccinated. L. lactis control was not used in the exper-
iment because of two reasons: (1) previous data in our lab
[8, 14] and previous publications have suggested that L. lactis
does not elicit acquired immune response [4–15], and (2) the
HEPA-filtered primary containment cage within the animal
biosafety laboratory-3+ (ABSL-3+) could accommodate only
12 birds at a time and it was decided by investigators and
Oregon State ethical committee members to use vaccinated
and nonvaccinated groups only. Serum was collected before
vaccination and 1 week after the last vaccination. Fecal
samples were collected before and after vaccination, mixed
with 0.3mL 0.5% bovine serum albumin, 0.02% NaN

3
, and

1x protease inhibitor (Boehringer Mannheim) in PBS, and
stored at −20∘C until assayed.

Birds were challenged intranasally 2 weeks after vacci-
nation with 1 × 104 egg infectious dose of highly pathogenic

avian influenza virus A/chicken/Pennsylvania/1370/1983
(H5N2) in 100 𝜇L PBS using a micropipettor to deliver the
virus into the nasal opening. Tracheal swabs were collected
prior to infection and on day 3 after infection. Body weight
and cloacal temperature were recorded daily.

2.8. Tracheal Swab Analysis. Tracheal swabs were collected
by inserting a calcium alginate fiber-tipped applicator swab
(Fisher Scientific) into the trachea and moving the swab 10
times up and down about 1 cm. The swab was immediately
placed in 1mLminimal essentialmedium (Life Technologies)
plus streptomycin (100𝜇g/mL), penicillin (100 units/mL),
and amphotericin B (0.25 𝜇g/mL) and stored at −80∘C. Viral
content of the tracheal swabs was assessed by plaque assay.
Briefly, the swabs were thawed and mixed by vortexing. A
1 : 10 dilution series of each sample was prepared in PBS and
then added to tissue cultures of Madin-Darby canine kidney
cells (MDCK). After 72 h at 37∘C + 5% CO

2
, plates were fixed

with formalin and stained with crystal violet, and plaques
were counted.

2.9. Statistical Analysis. Data were analyzed using GraphPad
software, Prism 4.0, and InStat 3.0. Serummeans and tracheal
plaques were compared using two-tailed, unpaired Student’s
t-test with Welch’s correction. Correlation analysis between
serum response and survival was done using Pearson’s analy-
sis (two-tailed), and a line was plotted using linear regression
analysis. Survival was analyzed by the method of Kaplan and
Meier using the logrank test. Temperature and weight change
was analyzed using nonparametric ANOVA (Kruskal-Wallis
test).

2.10. Animals. All procedures using animals complied with
all state and federal laws and were approved by the Oregon
State University Institutional Animal Care and Use Com-
mittee (approval number 3682). All experiments involving
high pathogenic avian influenza virus were conducted in
CDC/APHIS-USDA approved ABSL-3+ high containment
facility at VMAIL, Oregon State University.

3. Results

3.1. Vaccine Design and Construction. The M2e sequence
from HPAI strain A/Chicken/Pennsylvania/1370/1983/H5N2
was selected for construction of the vaccine (Figure 1). Ten
tandem repeats of the coding region for the M2e were cloned
in-frame into the coding region for a surface protein from L.
lactis.The genetic fusionwas cloned into an expression vector
with a strong promoter for L. lactis and transformed into L.
lactis (LL-M2e).

3.2. Expression of M2e. Expression of M2e protein on the
surface of LL-M2e was measured by ELISA assay using
preimmune and rabbit polyclonal anti-M2e antibodies. The
results show that the level of expression of M2e was propor-
tional to the amount of LL-M2e bound to the ELISA plate
(Figure 2). Preimmune serum did not show any signal. The
expression ofM2e protein on the surface of LL vector with no
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Figure 2: Expression of M2e from L. lactis. A 1/2 serial dilution
of LL-M2e washed cells was bound to a 96-well microtiter plate
and analyzed by ELISA. Cell surface-bound M2e was detected by
adding a constant amount/well of preimmune () or postimmune
(◼) rabbit polyclonal M2e antiserum. Expression of M2e protein on
the surface of LL vector with no M2e gene was not detected using
preimmune and polyclonal antibodies (data not shown). The signal
was developedwith secondary antibody anti-rabbit IgG-horseradish
peroxidase conjugate and chemiluminescent substrate. Error bars
indicate standard deviation. Three independent experiments were
conducted (𝑛 = 3).

M2e gene was not detected using preimmune and polyclonal
antibodies suggesting that the antibody specific to M2e is
not binding to any protein from the LL vector with no M2e
gene (data not shown). Three independent experiments were
conducted.

3.3. Immune Response. Intranasal vaccination with LL-M2e
was tested in 12 chickens. In addition, another group of 6
chickens was vaccinated subcutaneously with M2e peptide
conjugated to keyhole limpet hemocyanin (KLH-M2e). Six
birds were nonvaccinated, which formed a negative control
group. One week after the final dose of vaccine, blood was
collected, and the M2e-specific serum IgG response was
measured by ELISA.

The results indicate that 8 of 12 birds vaccinated with
LL-M2e had a measurable humoral response, and the group
mean was significantly (𝑃 < 0.05) higher than that of the
nonvaccinated group (Figure 3). All birds vaccinated with
KLH-M2e had a measurable M2e-specific response that was
significantly (𝑃 < 0.05) higher than responses in either of the
other groups. None of the birds in the nonvaccinated group
showed an M2e-specific humoral response.

3.4. Infectious Challenge. Two weeks after the final dose of
vaccine, the vaccinated (LL-M2e and KLH-M2e vaccina-
tion groups) and nonvaccinated chickens were challenged
with the highly pathogenic strain A/chicken/Pennsylva-
nia/1370/H5N2.

LL-M2e KLH-M2e Non-vacc
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Figure 3: Serum response. Serum was collected 1 week after
final vaccination and analyzed for M2e-specific serum IgG by
ELISA using microtiter plates coated with 2 𝜇g/mL M2e peptide.
The plates were developed with goat antichicken IgG-horseradish
peroxidase conjugate and chemiluminescent substrate. Luminescent
signal from each sample was converted to concentration of chicken
IgG by extrapolation from the graph of luminescence versus IgG
concentration of the standards and corrected for sample dilution.
Each sample was analyzed at two or three different dilutions, and
each dilution was analyzed in duplicate. Group mean M2e-specific
IgG concentration is shown.

Body temperature was monitored, and the results show
that all groups responded similarly (Figure 4(a)). Tempera-
tures rose with an average of 1.04∘C from day 0 to day 3
and then declined with an average of 1.38∘C by day 10 after
infection. There was no statistically significant difference in
temperatures among all groups at any time after infection.

Weight decreased to a maximum loss of between 18 and
22% over the first 7 to 9 days and then gradually increased
(Figure 4(b)).Therewas no statistical difference inweight loss
among the groups at any time after infection.

Viral burden in tracheal swabs was measured 3 days after
infection (Figure 4(c)). Mean tracheal burden varied among
groups from 101 to 104 pfu/mL, and there was a significantly
(𝑃 < 0.05) lower mean value for birds vaccinated with
KLH-M2e than either of the other two groups. There was
no significant (𝑃 > 0.05) difference between the group
vaccinated with LL-M2e and the nonvaccinated group.

Birds in both vaccinated groups had significantly (𝑃 <
0.05) higher median survival times than nonvaccinated birds
(Figure 4(d)). Birds vaccinated with LL-M2e or KLH-M2e
had median survival times of 5.5 and 6.0 days, respectively.
Nonvaccinated birds had a median survival time of 3.5 days.
Two of 12 birds from the LL-M2e group survived and 2 of 6
birds from the KLH-M2e group survived, whereas none of
the six nonvaccinated birds survived. There was no statistical
difference in survival between the two vaccinated groups.

An analysis of M2e-specific serum IgG as a function of
survival showed a significant (𝑃 < 0.01, 𝑅2 = 0.9197)
correlation for the group vaccinated with LL-M2e (Figure 5).
An analysis of the group vaccinated with KLH-M2e showed
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Figure 4: Weight loss, body temperature, tracheal burden, and survival. Groups of vaccinated (intranasal LL-M2e (◼), subcutaneous KLH-
M2e ()) or nonvaccinated (e) birdswere challengedwith high pathogenic avian influenzaH5N2 (A/chicken/Pennsylvania/1370/1983).𝑛 = 12
(LL-M2e), 𝑛 = 6 (KLH-M2e and nonvaccinated). Error bars indicate standard deviation. (a) Body temperature was measured for each bird,
and the group mean is shown. (b) Weight loss for each bird was calculated as a difference compared to day 0, and the group mean is shown.
(c) Tracheal swabs were collected 3 days after infection and analyzed for viral plaques. (d) Survival was monitored for 10 days after infection.

a similar trend, but the correlation was not statistically
significant (𝑃 > 0.05, data not shown).

Although there was a correlation between M2e-specific
serum response and survival in the group vaccinatedwith LL-
M2e, additional immune responses were analyzed. CD4+ T
lymphocytes from 6 LL-M2e-vaccinated birds were analyzed
for M2e-specific proliferation. In addition, fecal samples for
detection of IgAwere collected 2 weeks after final vaccination
and just prior to infection. In all of the birds tested, M2e-
specific CD4+ lymphocyte response or fecal IgA was below
a threshold limit of our assay in vaccinated birds (data not
shown).

4. Discussion

The ectodomain of the M2 protein is an attractive choice for
a cross-subtype vaccine. Its amino acid sequence is not only
highly conserved, but also nonglycosylated, which is essential

for antigens expressed from bacteria. Although M2e is only
weakly antigenic in the context of an infection or whole virus
vaccine, antibodies against M2e reduce infection and protect
against viral replication and death, at least in mammalian
models [25, 28–32, 39].

The strategy of using M2e as a vaccine is different from
the conventional one currently used for human seasonal
vaccines. Current vaccines and natural infection induce a
humoral response to two immunodominant viral surface
antigens, hemagglutinin (HA) and neuraminidase (NA).
However, HA and NA undergo intense selective pressure due
to the host immune response and are constantly changing.
The use ofM2e as antigen would avoid the problem of genetic
drift and shift that characterizes both HA and NA because
M2e is genetically stable. Even under prolonged selective
pressure, only a single amino acid (proline to leucine or
histidine at position 9) has been found to change in M2e
[40]. It is likely that the genetic drift in the highly conserved
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Figure 5: Correlation analysis. M2e-specific serum IgG from birds
vaccinated with LL-M2e (𝑛 = 12) was plotted as a function of
survival following infectious challenge. The line represents a linear
regression analysis.

M2e would be low [26, 41], which suggests that M2e vaccines
would be universally effective against many subtypes and
would not require seasonal modification like the current
influenza vaccines.

L. lactis has been used as a vaccine delivery vehicle for
various types of antigens, including those from bacteria and
viruses [7, 13, 25, 42, 43]. Our expression system in L. lactis
has been used previously to display an antigen (M6c) from
Streptococcus pyogenes [8]. Mice vaccinated intranasally with
the L. lactis-M6c developed a significant humoral response to
M6c that correlatedwith protection from infectious challenge
[14].

In the present report, we have similarly expressed 10
tandem copies of M2e on the surface of L. lactis and mea-
sured immune responses. Most of the vaccinated chickens
developed an M2e-specific serum IgG response. The lack
of robust M2e-specific fecal IgA or CD4+ T lymphocyte
response could be due to differential processing of antigen by
the immune system, which needs to be explored further.This
indicates that LL-M2e inducedmainly humoral response, but
less significant cellular response.

The infectious challenge results show that chickens vacci-
nated intranasallywith LL-M2e or vaccinated subcutaneously
with KLH-M2e survived infectious challenge longer than
nonvaccinated birds. Birds vaccinated with LL-M2e or KLH-
M2e had median survival times of 5.5 and 6.0 days, respec-
tively. Nonvaccinated birds had a median survival time of
3.5 days. Two of 12 birds from the LL-M2e group survived
and 2 of 6 birds from the KLH-M2e group survived, whereas
none of the six nonvaccinated birds survived. Birds in both
vaccinated groups had significantly (𝑃 < 0.05) highermedian
survival times than nonvaccinated birds.

Weight loss or body temperature did not differ much
among treatment groups, and therefore we believe that

apparently these measures of health were not predictive of
survival.

Viral burden was also measured. Previous experiments
(not shown) indicated that viral burden in the tracheal swabs
peaked at day 3 after infection. Birds vaccinated subcuta-
neously with KLH-M2e had a lower mean viral burden than
either of the other two groups. Perhaps this is a reflection of
the higher M2e-specific serum IgG. We found no statistical
significance in the amount of virus in tracheal swabs at day
3 after infection between birds vaccinated with LL-M2e and
nonvaccinated birds.

An analysis of our data showed that protection may be
due to M2e-specific serum IgG. Birds with higher M2e-
specific IgG tended to survive longer. Previous studies present
conflicting results on the mechanism of protection provided
by M2e vaccines. Some studies show that antibodies to
M2e provide protection [32, 44, 45]. Another study showed
no correlation between M2e-specific titer and protection
from infectious challenge [46]. Some reports show that M2e
vaccines can induce an M2e-specific CD4+ T-cell response
that may contribute to protection [47, 48]. Still other reports
suggest that M2e-specific antibodies may bind to infected
cells and direct natural killer T cells, macrophages, or other
host immune cells to kill the infected cell [26, 49–51]. A
recent article by El Bakkouri et al. [52] has suggested that
alveolarmacrophages andFc receptor-dependent elimination
of influenza A virus-infected cells are essential for immune
protection by anti-M2e IgG. Our results are consistent with
a mechanism of protection that depends on an M2e-specific
serum IgG response.

5. Conclusion

In conclusion, the data show that intranasal vaccination
of chickens with LL-M2e or subcutaneous vaccination of
chickens with KLH-M2e provided a significant increase in
survival compared to nonvaccinated birds. Survival and
protection could be due to serumM2e-specific IgG response
to the vaccine.
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