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Patterns of pollen and nectar 
foraging specialization by 
bumblebees over multiple 
timescales using RFID
Avery L. Russell1, Sarah J. Morrison2, Eleni H. Moschonas3 & Daniel R. Papaj3

The ecological success of social insects is frequently ascribed to improvements in task performance due 
to division of labour amongst workers. While much research has focused on improvements associated 
with lifetime task specialization, members of colonies can specialize on a given task over shorter time 
periods. Eusocial bees in particular must collect pollen and nectar rewards to survive, but most workers 
appear to mix collection of both rewards over their lifetimes. We asked whether bumblebees specialize 
over timescales shorter than their lifetime. We also explored factors that govern such patterns, 
and asked whether reward specialists made more foraging bouts than generalists. In particular, we 
described antennal morphology and size of all foragers in a single colony and related these factors to 
each forager’s complete foraging history, obtained using radio frequency identification (RFID). Only 
a small proportion of foragers were lifetime specialists; nevertheless, >50% of foragers specialized 
daily on a given reward. Contrary to expectations, daily and lifetime reward specialists were not better 
foragers (being neither larger nor making more bouts); larger bees with more antennal olfactory sensilla 
made more bouts, but were not more specialized. We discuss causes and functions of short and long-
term patterns of specialization for bumblebee colonies.

Task specialization is a hallmark of insect societies1,2. Eusocial bees, some of our most important pollinators, must 
engage in a variety of tasks over their lifetime, including nest construction, brood care, and foraging from flowers 
to feed themselves and their nest mates. Specialization on different foraging tasks in particular has been well 
studied (e.g., refs 3 and 4). Because switching between tasks can incur temporal, cognitive, and/or energetic costs, 
specialization is thought to maximize task efficiency3–6. For instance, bees often have to learn new nectar collec-
tion routines each time they shift to a new plant species3,7. Cognitive costs associated with learning and recalling 
such collection routines are thought to make it advantageous for foraging bees to specialize in the short term on a 
given plant species3–8. In addition, individuals can vary in their task performance as a result of fixed physiological 
or morphological differences; for example, honeybees vary in their sucrose sensitivity4,9. In fact, intrinsic differ-
ences among foragers are thought to explain lifetime patterns of specialization on the collection of nectar, water, 
and pollen in foraging honeybees9,10. These and other studies suggest that patterns of foraging task specialization 
by individual worker bees might differ when we examine the short term (e.g., hours or days) versus the long-term 
(e.g., lifetime). Yet almost no research has examined specialization by the same foragers over different timescales.

Patterns of foraging specialization over different timescales have important implications for how individuals 
and, for social bee species, colonies manage the collection of multiple floral rewards. The two most common floral 
rewards collected by bees are pollen and nectar11,12. Flowering plants offer pollen and nectar in all combinations 
and qualities. For instance, the flowers of some plant species offer pollen and nectar, only pollen, only nectar, 
or even vary the availability of one or the other reward over the floral lifecycle or as a result of prior collection. 
Thus a forager might not always be able to collect pollen and nectar on a single floral visit (e.g., refs 13 and 14). 
Further, collecting both rewards during a single foraging bout may not be efficient if, for instance, the bee has to 
travel far to collect both rewards. In addition, colony needs vary over lifetime. Bees rely on nectar as their primary 
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source of carbohydrates and pollen as their primary source of protein and lipids15,16. While worker bees primarily 
consume nectar, larvae consume prodigious amounts of pollen16,17. Changes in the amount of brood (e.g., ref. 18) 
and in storage of one or the other food type (e.g., refs 12, 17 and 19) can therefore change the relative need for 
each resource. Given the dynamic nature of the resource environment and nutrient demands of individuals and 
the colony, patterns of individual reward specialization (i.e., the ratio of pollen to nectar collection bouts a given 
forager makes) might be expected to change over time.

Apart from a relative dearth of information about patterns of reward specialization, we know even less about 
the mechanistic factors that govern reward specialization20. However, one body of literature ascribes variation 
in reward specialization to intrinsic individual differences in behaviour and sensory properties. According to 
the well-supported response threshold model (RTM), reward specialization arises as a result of interindividual 
variation in sensitivity to cues that stimulate nectar or pollen foraging (so called ‘response thresholds’9,10). In hon-
eybees, reward specialization and corresponding variation in response thresholds are associated, at least in part, 
with variation in sensory structures10. Specifically, differences in the number of antennal olfactory sensilla (i.e., 
sensilla placodea) correspond to differences in reward specialization, independent of variation in body size10. In 
particular, honeybee workers with low response thresholds (high sensitivity) typically forage for pollen, whereas 
workers with high response thresholds (low sensitivity) typically forage for nectar9,10.

In this study, we assessed patterns of individual reward specialization in bumblebees, and the possible role 
of sensory morphology in driving these patterns. Relative to other eusocial bee species, bumblebees (Bombus) 
exhibit considerable within-colony variation in body size (i.e., alloethism). Large body size is thought to be asso-
ciated with greater foraging efficiency; larger bees of a given species have better sensory systems for detecting and 
assessing flowers (e.g., allometric scaling results in bigger eyes and more antennal olfactory sensilla), can carry 
more nutrients before returning to the nest (e.g., bigger storage organs), and can forage further afield21–24. Yet any 
association between body size and reward specialization remains ambiguous. We predict that larger bumblebee 
workers, which should have low response thresholds due to greater numbers of antennal olfactory sensilla, will be 
more specialized on pollen. Alternatively, we might expect that specialists on either reward would be larger and 
thus more effective foragers; olfactory sensilla number might instead relate more strongly to the degree to which 
a forager is specialized on a given reward.

To test these hypotheses, we compiled a complete lifetime record of pollen and nectar foraging activity for 
every bumblebee forager (Bombus impatiens) in a single colony and related these patterns to the sensory mor-
phology and size of each forager. We used radio frequency identification (RFID) technology to track bees as they 
moved between foraging chambers that presented either only pollen or only nectar from artificial flowers. We 
measured antennal sensory morphology (sensilla placodea number or ‘pore plates’) and other morphological 
attributes (forewing length, head width, antennal length, and proboscis length) which might be associated with 
different patterns of reward specialization and foraging effort. This is the first study to our knowledge that exam-
ines patterns of reward specialization at multiple timescales and that connects them to forager size and sensory 
morphology.

Methods
Bees.  We used a single colony of Bombus impatiens in a study conducted between September 2013 and 
January 2014. The 4-week old colony was purchased from Koppert Biological Systems (Howell, MI, USA) and 
had 12 workers when it arrived. The colony was allowed to acclimate until new foragers began to eclose 23 days 
later, whereupon the colony was attached to the experimental foraging setup described below. During acclima-
tion, bees were trained to forage for pollen and nectar in a foraging arena (LxWxH 58 ×​ 73 ×​ 40 cm) that provided 
ad libitum honeybee-collected pollen (Koppert Biological Systems, MI, USA) and 1 M sucrose solution. A single 
feeder dispensed sucrose solution via braided cotton wicks (6 inch Braided Cotton Rolls, Richmond Dental) that 
extended into 40 dram vials through perforations made in the white plastic lids (BioQuip Products, Inc.) (Fig. 1e). 
Pollen was presented from a single custom-made feeder25 consisting of chenille fibres (white to the human eye), 
glued to the inside walls of 40 dram vials (BioQuip Products, Inc., USA)(Fig. 1f). Besides the natural scent and 
colour of the sucrose solution and pollen, neither feeder was scented or coloured. The experimental setup was 
maintained at 26° Celsius.

After the colony was attached to the experimental foraging setup bees that died were frozen at −​18 °C and 
stored in individually labelled BEEM capsules (Ted Pella, Inc.). Two dead bees were too damaged for use in 
subsequent morphological analyses. We did not check the parasite load of bees, which might have affected bee 
behaviour (e.g., ref. 26).

Experimental foraging setup.  An arena constructed of plywood (LxWxH 58 ×​ 73 ×​ 40 cm) was divided 
into two equal-sized foraging chambers (each LxWxH 58 ×​ 36 ×​ 40 cm) via a removable plywood wall (Fig. 1a). 
The floor and sides of the arena were painted grey. The arena had a clear acrylic ceiling and was lit from above by 
40 W 60 Hz fluorescent lights (Lithonia Lighting). The colony was kept dark while lights in the arenas were set to 
a 12:12 light:dark cycle.

One entrance hole was drilled through the outer wall of each foraging chamber (Fig. 1b). The colony box 
(accessible via a single hole) was joined to the foraging chambers by a branching tunnel with ends attached to 
each chamber (Fig. 1d). Two RFID readers (MAJA reader module 4.2, Microsensys GmbH, GE) were mounted 
in sequence on custom holders at the entrance of each foraging chamber (Fig. 1c). As bees moved through the 
paired readers, the identity of the chamber and direction of movement (into versus out of the chamber) was 
automatically recorded.

One chamber provided ad libitum honeybee-collected pollen and the other provided 1 M sucrose solution. 
Three feeders dispensed sucrose solution and three feeders dispensed pollen. Feeders were of the design pre-
viously described. Feeders were suspended 17 cm from the floor of the chamber (measured from the top of the 
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feeder) by way of custom-built holders (Fig. 1a). This design presented a more realistic foraging situation by 
preventing those bees that could not (or would not) fly from foraging.

Tagging procedure.  Unlabelled bees that left the colony box were tagged with 1.5 ×​ 1.0 ×​ 0.5 mm RFID 
transponders (mic3-tag 64 RO, Microsensys GmbH, GE). Each transponder (‘tag’) weighed 2.5 mg; approxi-
mately 2.6% of the weight of a bee (mean bee weight in mg for this colony ±​ SE: 95.5 ±​ 4.7), 4.9% of a nec-
tar load27, or 15% of a pollen load (A. Russell unpub. data). To find foragers that had not yet been tagged, we 
checked the foraging arena and tunnels every 15–60 minutes, 8 hours each day, 6 days a week (Monday-Saturday). 
Unlabelled foragers were briefly trapped in a part of the tunnel that had a removable bottom and thereby captured 
in 40 dram vials (BioQuip Products, Inc.). Foragers were immobilized in a Queen Marking Tool (The London 
Bee Company Ltd, Middlesex, UK) and a single tag glued to the dorsum of their thoraxes with a small amount of 
superglue. Shortly (<​1 minute) thereafter bees were individually placed into vials with pollen scent to calm them 
(this eliminated aggression by other bees to the newly-labelled bee; A. Russell pers. obs.), then transferred back 
into the colony after approximately 2 minutes.

Morphological measures.  On each bee we measured head width, forewing length, proboscis length, 
antennal flagellum length, and the 7th antennal flagellomere’s width and length, and number of pore plates. 
Measurements were done as follows. The head of each bee was first removed and photographed in frontal view at 
1.2X using a digital camera with a 5.2 mega pixel resolution (DCM500 Microscope CMOS Camera, Microscope 
Cameras), affixed within the ocular of a stereoscope. Next, the proboscis (proximal base of postmentum to distal 
tip of labellum), antennae (at the scape), and forewings (without damaging the basal articular sclerites) were 
removed. The antennae were flat-mounted and photographed at 2X via the digital camera setup. The proboscis 
and forewings were sealed between two clear transparencies (Staples Transparency Copy Film, Staples, Inc.) using 
mounting medium and then scanned at 2400dpi (Epson Perfection 3490 Photo, Epson America, Inc.). ImageJ 
(National Institutes of Health, Bethesda, MD, http://imagej.nih.gov/ij/) and a micrometre were used to make 
and calibrate all measures, respectively. Head widths were measured at their widest point. Forewing length was 
measured from the distal edge of the marginal cell (the distal-most leading vein at the point where R1 and R meet; 
Fig. 2a), to the base of the radius, at which point it meets the sclerite. Proboscis length was measured from prox-
imal base of prementum to distal tip of labellum (Fig. 2b). We measured the centre-line length of the antennal 
flagellum. In addition, the width and length of the 7th antennal segment were measured and the surface area of the 
structure calculated, assuming a cylinder.

To count sensilla, antennae were coated in a thin layer of clear nail polish (Hard as Nails, Sally Hansen) and 
suspended in air for 3 minutes to dry. Antennal casts were cut open lengthwise with a scalpel, making sure to cut 
only through the area of the antennae that exhibited hair plates (sensilla trichodea) and not pore plates (sensilla 
placodea) (Fig. 2c). Casts were peeled off and mounted flat between a slide and coverslip so that we could examine 
the complete surface of the antenna in one focal plane. We focused on the pore plates (sensilla placodea) because 

Figure 1.  Elements of the experimental foraging setup. (a) Forward view of the foraging arena with each 
foraging chamber in view. Four of the 6 custom-built copper feeder-holders can be seen. The red-dashed line 
indicates the location of the plywood wall separating the arena into two foraging chambers. The white triangles 
surround the chamber entrances. (b) Paired RFID reader holder and chamber entrance. (c) Paired RFID readers 
mounted on holder, joined to tunnel. (d) Paired RFID readers and forking tunnel setup. Purple ring attaches to a 
tunnel (not shown) that in turn connects to the colony box. (e) Nectar feeder. (f) Pollen feeder.

http://imagej.nih.gov/ij/
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of their established function in olfaction28 and because they differ between honeybee pollen and nectar foraging 
specialists10. Because our methodology did not produce intact casts for all antennal segments, we made drawings 
of the casts of antennal segment 7 (segments 8–10 were sometimes damaged) and all its pore plates at 10X mag-
nification, via a camera lucida mounted to a compound microscope (Leitz Laborlux). We focused on this distal 
segment because pore plates are more numerous on more distal antennal segments29 and differences amongst 
bees might therefore be more readily quantified. The pore plate density on the 7th segment was calculated using 
our ImageJ measurements.

There were small differences between forewings in a pair (<​3%) and between antennae in a pair (<​7%),  
but there was no overall bias across bees for one particular side for either forewings or antennae 
(Supplementary Materials); thus when left and right measures were available we always used the larger of the two.

Calculating the amount of brood.  The colony was photographed through the Plexiglas cover from 
above each day. We used a custom-built stand to hold the camera at constant height and location. Using ImageJ 
we traced the perimeter of the colony (the wax comb) and the perimeter of the brood cells (completely closed 
cells). ImageJ’s ‘area’ function was used to determine the percent of the colony’s surface composed of brood cells. 
Because young colonies tend to grow outward, on the surface of the nest box, rather than upward, as older colo-
nies tend to do (A. Russell pers. obs.), this measurement of brood is likely relatively accurate.

RFID data processing software.  Custom-written MATLAB R2013b software was used to process RFID 
data and extract foraging related parameters. Throughout this manuscript we define a ‘foraging bout’ (or ‘bout’) 
as a bee entering a foraging chamber and staying within it for more than 60 seconds, but less than 30 minutes (see 
Supplementary Materials for detailed information on scoring foraging bouts). For a subset of the data (days 1–5), 
98.6% of visits within the foraging chamber lasted less than 30 minutes (mean bout duration in minutes ±​ SE: 
6.98 ±​ 0.15). Additionally, we visually confirmed for 1 hour of observations for each of 5 consecutive days that 
100% of bees that spent less than 60 seconds in the flight arena did not forage (they entered and then left the 
arena rapidly; mean length of all visits in seconds for days 1–5 =​ 22.4 seconds) and that approximately 80% of 
bees in the foraging chamber were actually collecting sucrose (proboscis extended and abdomen pumping on the 
sucrose feeder) or pollen (bee packing pollen into its pollen baskets) at any given time. Although foragers were 
not prevented from visiting both the nectar and pollen chamber before returning to the colony, all of the observed 
foragers returned to the colony after foraging from a single chamber.

Figure 2.  Representative Bombus impatiens forewing and proboscis scanned at 2400dpi and portion of an 
antenna’s nail polish cast. (a) Right forewing and (b) proboscis. White arrows indicate start and end points for 
length measures made in ImageJ. (c) Nail polish cast of the 7th antennal segment showing the boundary between 
the zone with pore plates (bottom) and the zone with only hair plates (top). White arrows indicate several pore 
plates at the boundary.
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Data analyses.  All data were analysed using R v.3.2.0 30.
We tested for a significant association between lifetime degree of reward specialization and lifetime foraging 

period for foragers using a linear model (LM). Possible values range from 0.5 to 1: values closer to 0.5 belong to 
bees that collected both rewards equally frequently; values closer to 1 belong to bees that were specialized on a 
given reward (either pollen or nectar). The LM was specified using the lm() function in R. ‘Degree of reward spe-
cialization’ was specified as the independent variable and ‘lifetime foraging period’ was specified as the response 
variable. We log transformed the independent variable and thereby normalized the residuals.

To determine how foragers switched between foraging for pollen versus nectar across bouts while controlling 
for any bias in their reward preference, we applied a modified Jacob’s Constancy Index31, calculated as 

= −
+ −

CI c e
c e ce2

, where ‘c’ was the proportion of transitions between the same reward (i.e., the proportion of 
sequences made to one reward following an immediately prior bout made to that same reward) and where ‘e’ was 
the proportion of transitions between the same reward given the expected proportion (the overall frequency of 
nectar bouts over the lifetime of the forager). Possible values range from −​1 to 1: bees that were more inconstant 
(systematically alternated between rewards) have values closer to −​1; bees that made random transitions between 
rewards have values closer to 0; bees that were more constant (i.e., foraged in runs for one or the other reward) 
have values closer to 1. We used a one-way Wilcoxon signed rank test to determine whether bees on average for-
aged in runs.

The 14 bees that showed complete constancy (CI =​ 1) or complete inconstancy (CI =​ −​1) made very few bouts 
over their lifetime (18 or fewer bouts, as compared to a mean ±​ SE of 115.6 ±​ 15.3 bouts over forager lifetime; 
N =​ 98 foragers), raising the possibility that these CI values were a result of small sample size. We therefore dis-
carded all bees that had made 18 or fewer bouts from this analysis (22 total bees). Mean Jacob’s CI dropped as a 
result (mean ±​ SE: before, 0.18 ±​ 0.04; after, 0.11 ±​ 0.03).

We ran a Chi-square (χ​2) test via the chisq.test() function in R to analyse whether lifetime reward specialists 
made proportionally fewer bouts. Likewise, we ran a paired t-test via the t.test() function in R to analyse whether 
daily reward specialists made proportionally fewer daily bouts.

We used separate linear models, after model selection (see Supplementary Materials), to determine whether 
morphological characteristics were associated with behavioural patterns.

We report results of two sets of linear models (LMs). For one set we report effects of ‘pore plate number’ on 
lifetime behaviour (‘total days foraged’, ‘lifetime bouts’, ‘lifetime nectar bouts’, ‘lifetime pollen bouts’, ‘lifetime 
nectar preference’). For the other set we report effects of ‘forewing length’ on mean daily behaviour (‘mean daily 
bouts’, ‘mean daily nectar bouts’, ‘mean daily pollen bouts’). We apply a conservative Bonferroni correction for 
these analyses (α​-value =​ 0.006). We discarded 22 bees that had zero values in at least one category (otherwise we 
encountered errors).

In addition, we used separate LMs to determine effects of colony age on brood and foraging characteristics, 
applying a Bonferroni correction (α​-value =​ 0.017). Colony age was specified as the independent variable for each 
LM. Daily ‘percent brood’, ‘colony reward preference’, ‘foraging force size’, ‘mean bouts per forager’, percentage of 
daily ‘reward specialists’ (>​90% of bouts per day for either food type), percentage of daily ‘nectar specialists’, or 
percentage of daily ‘pollen specialists’ were specified as the response variable. For the LM examining the effect of 
colony age on the size of the active foraging workforce (foraging force size) we used an F-test via the R function 
anova() to test whether a quadratic model was better than a linear model. The quadratic model was a much better 
fit (F1,40 =​ 74.272, P <​ 0.0001, N =​ 43 days) and we therefore only report the results of the quadratic model. For 
the LM examining the effect of colony age on daily percent brood, we discarded 10 days for which photos of brood 
analysis were not available (due to file corruption); these missing days were distributed approximately evenly.

We also used an LM to determine whether forager lifetime nectar preference was associated with mean daily 
measures of foraging performance. Log-transformed measures of foraging performance (‘daily nectar bouts’ and 
‘daily pollen bouts’) were specified as fixed factors and forager lifetime nectar preference was specified as the 
dependent variable. To examine the possible significance of an interaction between daily nectar bouts and daily 
pollen bouts, results were first examined using type III sums of squares via the ‘Anova()’ function in the car  
package32,33. Because the interaction was not statistically significant, we report results with a Type II ANOVA 
via the ‘Anova()’. In a separate LM, we used the offset() function in R to change the null hypothesis of the linear 
regression to a slope of 1.We discarded 14 bees that had zero values in at least one category (otherwise we encoun-
tered errors).

We used another LM to determine the effect of when a forager joined the foraging workforce on the mean 
daily number of bouts made by the forager. ‘Date of joining workforce’ was specified as the independent variable 
and ‘mean daily bouts’ was specified as the response variable. Both variables were log-transformed, thereby nor-
malizing the residuals.

We used separate linear mixed effects models (LMM) to determine the effect of forager age on the number of 
bouts made for each forager per day and on their daily degree of reward specialization. ‘Forager age’ was specified 
as the independent variable and also included as a repeated measures factor within the random factor ‘BeeID’. 
Models were specified via the lmer() function in the lmerTest package34. We report the overall result via type II 
Wald chi-square (χ​2) tests with Anova().

To determine whether morphological characteristics (‘forewing length’, ‘head width’, ‘proboscis length’, ‘pore 
plate number’, ‘antennal length’, ‘7th antennal segment width’, ‘7th antennal segment length’, and ‘pore plate den-
sity’) were correlated with one another via Pearson’s r we used the R function cor(). Correlations between lifetime 
behavioural measures (‘total days foraged’, ‘lifetime bouts’, ‘lifetime nectar bouts’, ‘lifetime pollen bouts’, ‘lifetime 
nectar preference’) were assessed in the same way. Correlations are reported in the Supplementary Materials.
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Results
We obtained a complete foraging record for the growth phase of the colony (43 days; from eclosion of the first new 
workers to eclosion of the first reproductives, marking the end of worker replacement and colony growth). Of 111 
RFID-tagged bees, 103 made at least one foraging bout after being tagged. The colony made 11507 foraging bouts 
(mean per day: 267.6 bouts); 7801 for nectar (mean bout length in minutes ±​ SE: 7.62 ±​ 0.06) and 3706 for pollen 
(mean bout length in minutes ±​ SE: 5.64 ±​ 0.09).

Most foragers were reward generalists over lifetime, but specialists in the short term.  There 
was a continuous distribution of lifetime reward preference among foragers (Fig. 3a). Only a minority (12.4%) 
of foragers could be classified as long-term reward specialists (making >​ 90% of their foraging bouts for a single 
type of reward over their lifetime1,20) on either food type. Degree of lifetime reward specialization, ranging from 
1 (completely specialized on a given reward) to 0.5 (collecting both rewards equally frequently) was not signifi-
cantly associated with an individual’s lifetime foraging period (LM: F1,96 =​ 2.92, P =​ 0.091, R2 =​ 0.019).

Conversely, short-term reward specialization was common: on average, 51.1% of a day’s foragers made >​ 90% 
of their bouts for a single type of reward (Fig. 3b; see Fig. 3e top and bottom traces for examples). Many of these 
foragers switched between specializing on either pollen or nectar over a day or more, thereby mixing rewards over 
their lifetimes (see Fig. 3e middle trace for an example). Additionally, bees exhibited substantial flexibility in their 
daily degree of reward specialization (Fig. 3g). Despite mixing rewards, most bees foraged in runs for one or the 
other reward: the mean Jacob’s Constancy Index (CI) value for all foragers over lifetime was significantly greater 
than zero (Fig. 3f; one-way Wilcoxon signed rank test: V =​ 1858, P <​ 0.0001, N =​ 68 bees; mean Jacob’s CI ±​ SE: 
0.11 ±​ 0.03). Likewise, most foragers (73.5% of 68 foragers) had a CI >​ 0.

A small number of foragers contributed disproportionately to foraging effort.  Mean daily for-
aging effort, estimated as mean number of daily foraging bouts, varied nearly 40-fold among foragers; foraging 
effort formed a continuous, though highly skewed distribution (Fig. 4a). In fact, half of the colony’s mean number 
of daily foraging bouts were performed by a minority (17.3%) of foragers (mean daily bouts ±​ SE: 20.7 ±​ 2.2, 
N =​ 17 bees). Conversely, when foragers were ranked by activity level, the bottom 50% made just 16.7% of the col-
ony’s daily foraging bouts (mean daily bouts ±​ SE: 2.4 ±​ 0.1, N =​ 49 bees). Variation in mean daily nectar foraging 
effort was more substantial than variation in mean daily pollen foraging effort (Fig. 4c).

Importantly, short (daily) and long-term (lifetime) reward specialists (foragers that made >​ 90% of their bouts 
for a single type of reward for the given duration) contributed little to foraging effort: long-term reward special-
ists (12.4% of 97 total foragers) made just 6.3% of all foraging bouts made by the colony (Fig. 3a,c); short-term 
specialists (51.1% of 33.1 ±​ 1.4 foragers on average) likewise made only 33.9% of mean daily foraging bouts 
(Fig. 3b,d). Proportionally, daily reward specialists made significantly fewer foraging bouts each day (paired t-test: 
null expectation of equivalence of % of bouts made by reward specialists and % of foragers each day that were 
reward specialists, t42 =​ 10.991, P <​ 0.0001, N =​ 43 days). Although not significant, lifetime reward specialists 
also tended to make fewer foraging bouts (χ​2-test: null expectation that % bouts made by reward specialists =​ % 
foragers that were reward specialists, χ​2 =​ 1.99, P =​ 0.158).

More active foragers preferred to collect nectar over lifetime.  Forager preference to collect nectar 
was strongly associated with mean daily number of bouts made for nectar and pollen (Fig. 5a; LM overall effect: 
F3,85 =​ 1429, P <​ 0.0001, R2 =​ 0.98, N =​ 89 bees). Specifically, increasing preference to collect nectar was strongly 
positively associated with more daily nectar bouts and, to a lesser degree, negatively associated with more daily 
pollen bouts (Fig. 5a; Type II ANOVA: log(daily nectar bouts) effect: F1,85 =​ 4062.1, P <​ 0.0001; log(daily pollen 
bouts) effect: F1,85 =​ 1847.8, P <​ 0.0001). There was no significant interaction between mean daily nectar bouts 
and mean daily pollen bouts (Type II ANOVA: daily bouts:daily nectar bouts effect: F1,85 =​ 0.2817, P =​ 0.597). 
Further, foragers making the most mean daily bouts tended to be less strongly specialized on nectar collection 
(Fig. 5b; Type II ANOVA: slope <​ 1 for LM of log(daily nectar bout) on log(daily pollen bout): F1,87 =​ 76.722, 
P <​ 0.0001).

Effects of colony age on reward preference, specialization, and amount of brood.  Amount of 
brood, colony reward preference, and the size of the active foraging workforce all changed significantly over the 
lifetime of the colony (N =​ 43 days; Fig. 6a–d). As the colony aged, the amount of brood (percent colony surface 
composed of brood cells) declined significantly and the colony shifted to foraging significantly more for nectar 
relative to pollen (Fig. 6a–b; LM: age effect on: percent brood, F1,31 =​ 42.82, P <​ 0.0001, R2 =​ 0.580; colony reward 
preference, F1,41 =​ 5.838, P <​ 0.014, R2 =​ 0.139; Bonferroni correction α​-value =​ 0.017). Furthermore, as the col-
ony aged, the active foraging workforce increased significantly in size and the mean daily foraging bouts per for-
ager decreased significantly (Fig. 6c–d; LM: age effect on: foraging force size, F1,41 =​ 59.85, P <​ 0.0001, R2 =​ 0.737; 
mean bouts per forager, F1,41 =​ 25.89, P <​ 0.0001, R2 =​ 0.387; Bonferroni correction α​-value =​ 0.017). Although 
a forager’s mean daily foraging rate did not change significantly with forager age (LMM: forager age effect,  
χ​2 =​ 0.708, P =​ 0.401, N =​ 103 bees), foragers that joined the workforce later in the colony’s life made significantly 
fewer mean daily bouts than foragers that joined the workforce earlier (LM: date of joining workforce effect on 
mean daily bouts, F1,96 =​ 4.29, P =​ 0.041, R2 =​ 0.043).

Patterns of reward specialization also changed significantly over the lifetime of the colony (N =​ 43 days; 
Fig. 6e–g). Specifically, as the colony aged the percentage of bees that specialized daily on pollen significantly 
decreased, while there was a trend for the percentage of bees that specialized daily on nectar to increase (Fig. 6e–f; 
LM: age effect on: % pollen specialists, F1,41 =​ 8.124, P <​ 0.007, R2 =​ 0.165; % nectar specialists, F1,41 =​ 3.555, 
P =​ 0.066, R2 =​ 0.080; Bonferroni correction α​-value =​ 0.017). There was no significant correlation between per-
centage of daily reward specialists and colony age (>90% of bouts per day for either food type) (Fig. 6g; LM: 
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age effect on: % reward specialists, F1,41 =​ 0.207, P =​ 0.651, R2 =​ 0.005; Bonferroni correction α​-value =​ 0.017). A 
forager’s daily degree of reward specialization decreased as it aged (LMM: forager age effect, χ​2 =​ 6.42, P <​ 0.012, 
N =​ 103 bees).

Figure 3.  Patterns of reward specialization and of foraging effort for bees with a given degree of 
specialization, over both short and long timescales. Percentage of foragers with a given (a) lifetime or (b) 
mean daily nectar foraging preference (+​SE). Percentage of (c) colony lifetime or (d) mean daily foraging bouts 
made by foragers with a given (c) lifetime or (d) mean daily nectar foraging preference (+​SE). Bin width =​ 10%; 
range =​ 0.0–100.0% nectar foraging preference; N =​ 97 bees and 43 days. (e) A 2-week foraging period for 
exemplars of the three major types of reward specialists: a bee that specialized on nectar collection over its 
lifetime (top trace - blue line); a bee that specialized on pollen collection over its lifetime (bottom trace - yellow 
line); and a bee that specialized on either food type over the short-term (middle trace - black line). (f) Jacob’s 
Constancy Index (CI) for forager lifetime: bees that were more inconstant (systematically alternated between 
rewards) have values closer to −​1; bees that made random transitions between rewards have values closer to 0; 
bees that foraged in runs for one or the other reward have values closer to 1; bin width =​ 0.1; N =​ 68 bees.  
(g) Variance of percentage daily reward specialization; bin width =​ 10; N =​ 97 bees.
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Bees with more pore plates foraged more for pollen.  Bees with more antennal pore plates foraged for 
more days and made more pollen bouts over their lifetime (Fig. 7a–c; LM: pore plate number effect on: total days 
foraged, F1,79 =​ 17.52, P <​ 0.0001, R2 =​ 0.182; log(lifetime bouts), F1,79 =​ 7.18, P <​ 0.009, R2 =​ 0.083; log(lifetime 
pollen bouts), F1,79 =​ 12.4, P <​ 0.0008, R2 =​ 0.136; Bonferroni correction α​-value =​ 0.006; pore plate number var-
ied by a factor of 2.09 across all foragers). There was no significant association between pore plate number and 
a forager’s lifetime number of nectar bouts or the degree to which a forager preferred to collect nectar over its 
lifetime (Fig. 7d–e; LM: pore plate number effect on: log(lifetime nectar bouts), F1,79 =​ 3.97, P =​ 0.05, R2 =​ 0.048; 
lifetime nectar preference, F1,79 =​ 0.518, P =​ 0.474, R2 =​ 0.007; Bonferroni correction α​-value =​ 0.006).

Forewing length (a proxy for body size) was not associated with mean daily number of bouts (for pollen, nec-
tar, or both) (LM: forewing length effect on: log(daily pollen bouts), F1,79 =​ 6.54, P <​ 0.013, R2 =​ 0.076; log(daily 
nectar bouts), F1,79 =​ 0.807, P =​ 0.372, R2 =​ 0.010; log(daily bouts), F1,79 =​ 2.341, P =​ 0.130, R2 =​ 0.029; Bonferroni 
correction α​-value =​ 0.006; N =​ 81 bees; forewing length varied by a factor of 1.83 across all foragers). In other 
words, mean daily activity level was not related to forager morphology.

Figure 4.  Percentage of foragers that make a given daily mean number of foraging bouts and standard 
error (S.E.) around the means. (a,b) Nectar and pollen bouts summed (c,d) nectar (blue bars) and pollen 
(yellow bars) bouts displayed separately. Bin width for means =​ 5 bouts; range: all bouts, 1.0–38.4 bouts per day; 
nectar bouts, 0.0–35.8; pollen bouts, 0.0–15.85. Bin width for variances =​ 1 bout; range: all bouts, 0.2–8.7; nectar 
bouts, 0.1–6.9; pollen bouts, 0.1–5.6. N =​ 97 bees and 43 days.

Figure 5.  Log of the mean daily number of foraging bouts made by foragers with a given lifetime nectar 
collection preference. (a) Lifetime nectar foraging preference plotted against nectar (blue points) and pollen 
(yellow points) bouts, displayed separately, (b) nectar bouts plotted against pollen bouts; slope of 1 indicated 
by red dashed line. N =​ 89 bees. Plots with trend lines indicate a statistically significant relationship (p <​ 0.05) 
according to a Type II ANOVA and an LM, respectively.



www.nature.com/scientificreports/

9SciEntific REPorTS | 7:42448 | DOI: 10.1038/srep42448

Discussion
Previous research has characterized foraging specialization on the two dominant floral rewards, pollen and nec-
tar, at a particular stage in the colony’s lifespan, for a subset of foragers, and/or at particular times of day (e.g., 
for honeybees, stingless bees, and bumblebees20,32,35–37). These data snapshots, while informative, offer limited 
insight into daily and lifetime patterns of reward use for the individual and colony. For bumblebees in particular, 
the limited evidence to date indicates that individual workers specialize weakly on reward type over their lifetimes 
(e.g., refs 1, 20 and 38). However, how bees mix collection of pollen and nectar over shorter timescales and how 
these patterns may change over the life of the colony has so far been unclear. One of the reasons we do not have 
this information is that it has been logistically difficult to obtain. With the aid of RFID technology, we obtained 
a complete description of patterns of reward specialization for all bumblebee foragers in the colony during its 

Figure 6.  Effects of colony age on its foraging behaviour and on its reproduction. (a) Percent of the colony 
surface composed of brood cells, (b) colony nectar collection preference, (c) number of active foragers, (d) 
mean number of bouts per bee, (e) percentage of bees that specialized on nectar collection, (f) percentage of 
bees that specialized on pollen collection, and (g) percentage of bees that specialized on either food type, for 
each day of the experiment. N =​ 89 bees. N =​ 33 days for (a–d) and 43 days for (e–g). Plots with trend lines 
indicate a statistically significant relationship (p <​ 0.05) according to LMs; although the analysis for (c) was 
performed via a quadratic model, the quadratic fit for the untransformed data is shown here.
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growth phase. Logistics dictated the use of a single colony, due to the labour intensive nature of obtaining a colony 
lifetime record of foraging and forager morphology. Future work should examine between-colony variation, as 
forager behaviour can differ greatly between colonies (e.g., refs 39 and 40). We therefore advise caution when 
drawing definitive conclusions from our work.

We found that patterns of specialization differed greatly depending on the timescale over which specialization 
was assessed. Only a small percentage of foragers specialized on one or the other food type over their lifetimes 
(making >​ 90% of their bouts to a single reward), in accordance with what has been described previously in the 
literature (e.g., refs 1 and 20). Yet while most foragers were reward generalists over their lifetimes, greater than 
half of all foragers specialized on one or the other food type on a given day.

Why might the colony benefit from having individuals specialize on a given food type over short timescales, 
while having them switch specialization periodically over their lifetime? Foragers might specialize over short 
timescales for multiple reasons. For instance, costs of switching might be particularly high over short timescales. 
Costs associated with switching between tasks are thought to reduce task performance, thus encouraging a greater 
degree of task specialization by workers5,41. Alternatively, individuals may not be able to track changes in colony 
requirements precisely enough to justify more frequent switching. For instance, if it takes substantial time for 
a given forager to ascertain shifts in colony demand, frequent switching is likely to realize little or no benefit in 
relation to its costs.

There is reason to believe that individuals cannot instantaneously track changes in colony requirements. 
Colony food stores and cues released by the brood drive collection of pollen and nectar (e.g., refs 12, 18 and 19).  
Actively foraging workers likely interact sparingly with colony stores and brood. Conversely, workers that are 
not actively foraging (e.g., during night-time hours) likely interact frequently with colony stores and brood. 
Consequently, an active forager might respond little to changes in colony demand over the foraging day. Instead, 
the forager would rely on an internal motivational state set by prior knowledge of the colony’s needs, obtained 

Figure 7.  The relationship between forager antennal sensory morphology and lifetime foraging patterns. 
Lifetime number of (a) active foraging days, (b) nectar and pollen bouts summed, (c,d) pollen and nectar bouts 
displayed separately, and (e) the lifetime preference of foragers to collect nectar. The number of pore plates is 
reported for the 7th antennal segment of each forager. N =​ 81 bees. Plots with trend lines indicate a statistically 
significant relationship (p <​ 0.05) according to LMs.
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while that worker was not actively foraging. Upon again attending primarily to tasks within the nest, the forager’s 
internal motivational state would be reset. Such a mechanism of setting and resetting forager motivational state 
could explain why most bees specialize over short timescales when costs of acquiring information on colony 
resource demand are high, but switch specializations over longer timescales when costs are periodically lower.

Why then do foragers switch specializations periodically? By having foragers be flexible in their specialization, 
the colony might rapidly and efficiently meet shifting resource demands. For instance, pollen and nectar availa-
bility change rapidly over several days or weeks as flowers open, are depleted by visitors, and senesce and as new 
resource patches become available or decline (see ref. 42). Although we controlled the foraging environment, the 
colony itself was a changing environment. Colonies have been shown to exhibit strong day-to-day variation in 
demand for one or the other food type (e.g., refs 12, 18 and 19). Accordingly, we found that when brood - which 
requires copious pollen to develop - was abundant, pollen was the food type of choice for short-term specialists. 
When brood declined, bees were more likely to specialize on nectar collection in the short term.

If a pattern of individual specialization with periodic switching leads to gains in colony foraging performance 
we might expect those gains to be associated with higher individual foraging performance5. Indeed, data snap-
shots of prior research suggests that at least some putative nectar and pollen specialists in a colony forage at a 
higher rate or contribute more to colony foraging effort over a short duration (e.g., refs 1, 41 and 43). However, the 
complete description of both reward specialization and foraging effort provided by our RFID system allowed us 
to assess this metric of foraging performance for all foragers in a colony across multiple timescales. Interestingly, 
lifetime specialists made proportionally fewer foraging bouts than lifetime generalists. This result may not be par-
ticularly surprising, because lifetime generalists are also putatively daily reward specialists (specializing on either 
reward on any given day). However, we were surprised to find that daily reward specialists made proportionally 
fewer foraging bouts than generalists at the same timescale. One possible explanation is that daily generalists may 
have been specializing at a different timescale (e.g., shorter or longer than a day) than examined in this study.

Additionally, daily reward specialists might have been better foragers had they been relatively larger. Larger 
bees are thought to be better foragers because they are able to carry more resources per bout and are able to locate 
and learn about resources more quickly due to their disproportionately larger sensory organs (e.g. refs 21–24). 
However, we found no relationship between degree of lifetime reward specialization and body size. The lack of 
a relationship should not come as a surprise: while some foragers were consistent across days in the degree and 
type of reward on which they specialized, the vast majority of foragers instead exhibited substantial variation in 
both metrics across days. Specifically, most foragers specialized on collecting pollen or nectar on a given day, but 
individual foragers exhibited a surprising degree of flexibility in how specialized they were on any given day, and 
body size is fixed in adult insects.

In addition, our results suggest that at least for bumblebees, antennal sensory morphology does not directly 
account for short or long-term patterns of reward specialization. If lifetime reward preference reflected variation 
in response thresholds, as commonly presumed for honeybees4,9, and antennal sensory morphology in turn gov-
erned response thresholds10, short-term reward specialists (lifetime reward generalists) would be expected to 
exhibit intermediate numbers of pore plates. Yet we did not find that reward specialization was associated with 
pore plate number. Interestingly, we did find that workers with more pore plates made more pollen bouts over 
their lifetimes. Taken together with10, this result suggests that pore plates may mediate lifetime pollen foraging 
activity to some degree for eusocial pollinators generally.

Patterns of short-term specialization are one way in which colonies could meet shifting resource demands. 
However, fixed lifetime preferences could also allow colonies to meet demand for a given food type if lifetime 
specialists were able to rapidly and flexibly alter their foraging effort (number of bouts). For instance, if demand 
for pollen exceeded demand for nectar, lifetime specialists on nectar might decrease their foraging effort, while 
lifetime specialists on pollen might increase their foraging effort. Yet while we found that daily foraging effort 
varied nearly 40-fold across bees, an individual’s foraging effort did not change significantly over lifetime. In 
fact, approximately 17% of bees made 50% of the colony’s daily foraging bouts. Variation in bumblebee foraging 
effort was a continuous, though strongly skewed, distribution – similar to honeybees44. Our results thus indicate 
that while individual bumblebee foragers may exhibit tremendous flexibility in patterns of reward specialization 
over lifetime, foraging effort is not as plastic. Furthermore, greater lifetime foraging effort was associated with a 
greater number of pore plates (and thus larger body size). This result lends additional support to the hypothesis 
that larger bees with better sensory capabilities also contribute more to nutrient collection21,22,38.

Our results suggest a number of future directions. In this study we forced bees that collected both pollen and 
nectar to switch between foraging chambers. This design imposed a cost of switching between rewards, which 
could have contributed to the observed patterns of specialization. Future work should therefore directly inves-
tigate whether switching between collection of pollen and nectar is costly (as suggested for bees foraging from 
live flowers41) and whether imposing greater switching costs might cause a greater degree of short-term reward 
specialization. Switching costs may be greater under natural conditions, as distances between plants can be large. 
Likewise, the effect of differences in forager morphology on reward specialization may be more pronounced in 
the field. For instance, a longer proboscis permits use of flowers with deeper nectaries, and bees with larger wings 
can forage at a larger spatial scale21,24,45. At the same time, flowers of many plant species offer pollen and nectar 
simultaneously. Therefore we might expect foragers to exhibit less reward specialization over the course of a bout 
when foraging from these flowers, reflecting a reduction in switching costs. To our knowledge no studies have yet 
formerly quantified patterns of reward specialization under these conditions.

Furthermore, although honeybee-collected pollen is regularly used in studies of bee foraging behaviour (e.g., 
refs 20, 36 and 46) this reward is adulterated with debris and up to 60% sugars25 and is thus not a realistic sub-
stitute for floral pollen that wild bees must collect. While behavioural patterns in our study were robust, the use 
of honeybee pollen might be misleading, especially where the collection of pollen is concerned. For instance, 
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adulteration with nectar may have reduced the putative role of pore plates in mediating pollen foraging behaviour 
in our study. Future work should thus have bees forage for live (unadulterated) floral pollen.

In closing, we report here a more complete accounting of lifetime patterns of foraging for alternative floral 
rewards than has been conducted to date. We found that while lifetime reward specialization in bumblebees is 
rare, short-term specialization on either pollen or nectar appears to be the norm. While reward specialists were 
not larger or more active foragers, we propose that patterns of short-term specialization in particular allow bum-
blebees colonies to flexibly meet shifts in pollen and nectar demand. Future work will be required to investigate 
what factors regulate short-term specialization and whether reward specialists at either lifetime or daily timescales 
also enhance colony performance, for instance, by making quicker bouts or carrying larger resource loads than 
generalists at either timescale. Moreover, we found enormous interindividual variation in foraging effort; a small 
number of foragers contributed disproportionately to foraging effort. Future studies should examine whether 
heightened foraging activity simply reflects a general heightened activity level (a ‘behavioural syndrome’47).
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