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2600, Lithuania.
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Abstract. We report our analysis of the stability of pulsation periods
in the DAV star (pulsating hydrogen atmosphere white dwarf) ZZ Ceti,
also called R548. Based on observations that span 31 years, we con-
clude that the period 213.132605 s observed in ZZ Ceti drifts at a rate
dP/dt≤(5.5±1.9)×10−15 s/s, after correcting for proper motion. Our

results are consistent with previous Ṗ values for this mode and an im-
provement over them due to the larger time-base. The characteristic
stability timescale implied for the pulsation period is |P/Ṗ |≥1.2 Gyr,
comparable to the theoretical cooling timescale for the star. Our cur-
rent stability limit for the period 213.132605 s is only slightly less than
the present measurement for G117-B15A for the period 215.2 s, an-
other DAV, establishing this mode in ZZ Ceti as the second most stable
optical clock known, more stable than atomic clocks and most pulsars.

Constraining the cooling rate of ZZ Ceti aids theoretical evolution-
ary models and white dwarf cosmochronology. The drift rate of this
clock is small enough that reflex motion caused by any orbital planets

is detectable within limits; our Ṗ constraint places limits on the mass
and/or distance of any orbital companions.

Key words: stars: white dwarfs: individual: ZZ Cet, R 548 – stars:
pulsations, evolution

1. INTRODUCTION
Of all the stars that ever burn hydrogen, 98–99% will eventu-

ally become white dwarfs (Weidemann 1990). White dwarfs rep-
resent a relatively simple stellar end state with no central nuclear
fusion and electron degeneracy pressure providing the main support
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against gravity. The high conductivity of the degenerate electrons
makes the core almost isothermal. The outer layers, composed of
lighter elements because of a combination of the star’s nuclear burn-
ing history and fast gravitational settling, are non-degenerate. These
outer layers control the rate at which the residual thermal energy of
the ions in the electron degenerate isothermal core is radiated into
space. White dwarf evolution is dominated by cooling, leading to a
simple relation between effective temperature and age of the white
dwarf, described approximately by Mestel theory (Mestel 1952, van
Horn 1971). These properties combine to make white dwarfs reliable
chronometers.

Known white dwarfs at Teff ≈ 4500 K are among the oldest stars
in the solar neighbourhood. The exponential decrease in their cool-
ing rate causes a pile up of white dwarfs at lower temperatures. The
volume density of white dwarfs per unit absolute bolometric mag-
nitude plotted as a function of their luminosity, i.e. the luminosity
function, is expected to show more and more white dwarfs in lower
temperature bins. However, the best current observational determi-
nations of the white dwarf luminosity function for the disk indicate
a turn-down in the space density of low luminosity stars (Liebert,
Dahn & Monet 1988; Oswalt et al. 1996; Leggett, Ruiz & Bergeron
1998), interpreted to be a signature of the finite age of the disk. The
luminosity where this turn-down occurs, in conjunction with theoret-
ical cooling calculations, allowed Winget et al. (1987) to estimate the
age of the galactic disk. Hansen et al. (2002) extended this method
to the halo by using the observations of white dwarfs in the closest
globular cluster M 4, by Richer et al. (2002). The location of the
turn-down is not determined solely by the few white dwarfs detected
at low temperatures, but because none are detected at lower tem-
peratures. One of the most important observational uncertainties of
this dating technique is the statistical difficulty in locating the turn-
down in the luminosity function accurately. Cool white dwarfs are
intrinsically faint and relatively few are currently known. In addi-
tion, uncertainties in their bolometric corrections and trigonomet-
ric parallaxes prove to be the chief observational hurdles at present
(Méndez & Ruiz 2001). Typical uncertainties in bolometric correc-
tion (σBC ≈ 0.1 mag) and trigonometric parallax (σπ ≈ 4 mas) do
not rule out a 10 Gyr age for the galactic disk, compared to the 8 Gyr
quoted by Leggett et al. (1998). Most of the theoretical uncertainty
in the age estimation of white dwarfs comes from uncertainties in the
constitutive physics and the basic parameters that are used in the
estimation of the cooling rates. These include compositional strati-
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fication, crystallization and associated release of latent heat, as well
as phase separation. Convection also affects the cooling rate of a
cool white dwarf; when the base of the convection zone reaches the
degenerate interior, the surface and the core become strongly cou-
pled. The insulation decreases, increasing the rate of energy transfer
across the outer opaque envelope, to values greater than expected
from radiative transfer alone. This implies a significant change in
the cooling rate of an already cool white dwarf (Fontaine, Brassard,
& Bergeron 2001 and references therein). Some of the theoretical
uncertainty can be reduced by calibrating the white dwarf cooling
curve. We can do so by empirically measuring the cooling rate of
white dwarfs at different temperatures, as nature provides us with a
way to constrain and ultimately measure the cooling rate of a white
dwarf through its stable pulsations.

2. DEFINITION OF Ṗ AND MOTIVATION FOR ITS
MEASUREMENT

Global pulsations of stars can be used to probe their interiors,
similar to how earthquakes are used to explore the Earth’s interior.
This technique, called asteroseismology, is a unique method to study
stellar interiors.

The observed properties of the currently known classes of pul-
sating white dwarfs place them in three different temperature ranges:
the high temperature instability strip consists of the PNNV (Plane-
tary Nebula Nuclei Variable) and the DOV (hot degenerate variable;
GW Vir) stars at an effective temperature of 80 000 to 170 000 K
and log g ≈ 6. The DBV (helium atmosphere variable) instability
strip occurs around 25 000 K, log g ≈ 8, while the DAV (hydrogen
atmosphere variable) instability strip is found between 11 000 K to
12 500 K, log g ≈ 8 (see the review Winget 1998). The DAV white
dwarfs are also known as the ZZ Ceti stars after ZZ Ceti (R 548), the
prototype of the class. Their pulsation periods are typically 100 s to
1200 s, consistent with nonradial g-mode pulsations. White dwarfs
have high surface gravities, so nonradial g-mode pulsations require
less energy to reach observable amplitudes than radial or nonradial
p-mode pulsations. This is because gravity modes involve motion
mostly along equi-potential surfaces, while radial or nonradial p-
mode pulsations, dominated by motion along the radial direction,
prove to be energetically unfavourable. Pulsating DA white dwarfs
(DAVs) are not unusual or special in any way; it has been shown
that all known DAs pulsate when their temperatures reach the DAV
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instability strip (McGraw & Robinson 1976; Lacombe & Fontaine
1980; Giovannini et al. 1998), i.e., pulsation is an evolutionary
phase. Therefore, when we measure the cooling rate of a DAV, it
applies to all white dwarfs of that temperature, mass, and chemical
composition.

There are two competing internal evolutionary processes that
govern the change in pulsation period with time (Ṗ ) for a single
mode in the theoretical models of the ZZ Ceti stars. Cooling of the
star increases the periods as a result of the increasing degeneracy,
and residual gravitational contraction decreases the periods (Winget,
Hansen & Van Horn 1983). For high effective temperatures, as in
the DOV/PNNV instability strip, contraction is still significant. The
DOV star PG 1159-035 revealed a rate of period change of (13.0 ±
2.6)×10−11 s/s for the period 516 s ( Costa, Kepler & Winget 1999).

Kepler et al. (2000) conclude that the evolutionary Ṗ is dictated
by the rate of cooling for the DAV stars, and contraction is not
significant in the temperature range of the DAV instability strip. We
theoretically expect DAV evolution to be simple cooling at a constant
radius. The cooler DAV stars exhibit many pulsation modes, the
amplitudes of which are observed to change on timescales orders
of magnitude shorter than the evolutionary cooling (Kleinman et
al. 1998). Near the high temperature edge of the DA instability
strip, we observe the pulsation periods and amplitudes to be highly
stable. This implies that a hot DAV star should show a Ṗ reflective
of its cooling rate. G 117-B15A is a hot DAV star with a measured
Ṗ = (2.3 ± 1.4) × 10−15 s/s for the 215.1973907 s period ( Kepler
et al. 2000). We define a stability timescale τs ≡| P/Ṗ |; it is the
time taken by a clock to lose or gain a cycle. G 117-B15A is the
most stable optical clock known with τs ≥ 3.0 Gyr. By measuring
the cooling rate of another hot DAV like ZZ Ceti, we are providing
a second independent measurement of the cooling rate of a 12 000 K
white dwarf. A second measurement is important in order to apply
the results to DA white dwarfs as a class; the DAs constitute 80%
of the white dwarf population.

Using standard evolutionary theory, Bradley, Winget, & Wood
(1992) estimated the cooling timescale, i.e., T/Ṫ , for a hot DAV
at about 12 000 K to be a few billion years. We thus expect the
pulsational stability timescale (P/Ṗ ) to be a few billion years, which
implies that Ṗ is expected to be positive and of the order of 10−15 s/s.
This is consistent with the measurements for G 117-B15A. To mea-
sure Ṗ ≈ 10−15 s/s, we need decades of data to get a detectable
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change in period. With that criterion in mind, and noting that only
stars near the blue edge have very stable pulsations, our choice of
a suitable candidate amongst all the pulsating DAVs is limited to
exactly four. These are G 117-B15A, ZZ Ceti (R 548), L 19-2 and
G 226-29; they are the only DAVs to have archival data with a suit-
able time span. We intend to monitor all of these white dwarfs along
with our collaborators. In this paper, we present our work on ZZ
Ceti.

Monitoring the stable hot DAV stars has yet another interesting
purpose. Stable clocks with an orbital planet show a detectable reflex
motion around the center of mass of the system, providing a means
to detect the planet ( Mukadam, Winget & Kepler 2001). This is
similar to the method in which planetary mass objects have been
detected around pulsars (e.g. Wolszczan 1994). Theoretical work
indicates outer terrestrial planets and gas giants will survive (e.g.
Vassiliadis & Wood 1993), and be stable on timescales longer than
the white dwarf cooling time (Duncan & Lissauer 1998). The success
of a planet search with this technique around stable pulsators rests
on finding and monitoring a statistically significant number of hot
DAV stars. With this purpose in mind, we intend to observe known
hot DAVs, that exhibit sinusoidal pulse shapes, low amplitudes and
short periods, characteristic of hot DAV stars (Kleinman et al. 1998).
Additionally, we are searching for hot DAVs among the new DA stars
from the Sloan Digital Sky Survey and the Hamburg Quasar Survey.

3. OBSERVATIONS
We obtained archival time-series photometry data on ZZ Ceti

from 1970 to 1993, most of which were acquired with phototubes.
We also have data from the 3.6 m Canada-France-Hawaii Telescope
(CFHT), acquired in 1991. Additionally, ZZ Ceti was included as a
secondary target star in the Whole Earth Telescope (WET; Nather
et al. 1990) campaign XCov18 in November 1999 and XCov20 in
November 2000.

We observed ZZ Ceti extensively on the 0.9 m and 2.1 m tele-
scopes at McDonald Observatory in 1999 and 2000 with
“P3Mudgee”, a 3-star photometer (Kleinman, Nather & Phillips
1996). In November 2001, we also acquired high signal to noise
data using our new prime focus CCD photometer, “Argos”, at the
2.1 m telescope. This instrument on the 2.1 m telescope has the same
efficiency as “P3Mudgee” on a 5.2 m telescope. Our observations ex-
tend the time-base on ZZ Ceti by 8 years, making it a total of 31
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years. We present our journal of observations for all the data from
1999–2001 in Table 1.

The dominant power in the pulsational spectrum of ZZ Ceti
resides in two doublets at 213 s and 274 s with a spacing of 0.5 s
(Stover et al. 1980; Tomaney 1987). To resolve the doublets and to
accurately measure the period and phase for each of the four pul-
sation modes, we need a time-base of 35 to 40 hr in each observing
season. We also need a signal to noise ratio of ≈ 10, measured as
the ratio of the amplitude of a pulsation period to the amplitude
of noise at that period in the Fourier Transform (FT) of the data.
We typically use an integration time of 5–10 s. Choosing an inte-
gration time of 10 s apparently reduces noise in the light curve, as
we effectively increase the averaging time, but it decreases the time
resolution as well. Noise in the FT depends not only on the noise
of each point in the light curve, but also on the time resolution. In
our experience, better timing is obtained for as small an integration
time as is feasible; we found an integration time of 5 s to be ideal
for “P3Mudgee” on the 0.9 m telescope at McDonald Observatory
(and 3 s for “Argos” on the 2.1 m telescope). This sets the Nyquist
frequency at 0.1 Hz, well beyond the range of the observed pulsation
spectrum (Kepler et al. 1982). We did not use a filter with the
3-star photometer to maximize the signal-to-noise ratio. (We used a
BG 40 Schott glass filter with “Argos”.) 1 This does not constitute
a problem as the nonradial g-mode pulsations have the same phase
in all colors (Robinson, Kepler, & Nather 1982; Nitta et al. 1999).

4. DATA REDUCTION
We reduced and analyzed the data in a manner described by

Nather et al. (1990) and Kepler (1993), correcting for extinction and
sky variations. After this preliminary reduction, we brought the data
to the same fractional amplitude scale and converted the times of
arrival of photons to Barycentric Coordinated Time TCB (Standish
1998).

We computed a FT for all the data sets. Figure 1 shows our
best FT from multi-site and extensive single site observations of ZZ

1Amplitudes can be underestimated by as much as 20% for a DAV (Kanaan et
al. 2000), if we use a red-sensitive photo tube or a CCD to acquire the data. We
have to use a filter (e.g. BG 18, BG 38, BG 39 or BG 40 glass) with red-sensitive
detectors to suppress the red part of the spectrum, and to measure amplitudes
reliably. This reduces the photon count, but yields amplitudes comparable to
blue-sensitive bi-alkali photo-multipliers.
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Table 1. Journal of observations for ZZ Ceti data from 1999,
2000 and 2001.

Run Date Time Duration Telescope Observatory
TCB TCB h

asm-0003 5 Sep, 1999 7:36:30 3.7 0.9m McDonald
asm-0004 6 Sep, 1999 8:24:30 2.1 0.9m McDonald
asm-0005 7 Sep, 1999 9:09:00 2.5 0.9m McDonald
asm-0007 8 Sep, 1999 9:58:00 1.5 0.9m McDonald
asm-0010 10 Sep, 1999 9:08:00 2.5 2.1m McDonald
asm-0013 15 Sep, 1999 6:21:30 5.2 0.9m McDonald
asm-0016 17 Sep, 1999 7:51:00 2.1 0.9m McDonald
asm-0017 18 Sep, 1999 8:38:00 3.1 0.9m McDonald
asm-0019 19 Sep, 1999 7:12:30 4.5 0.9m McDonald
asm-0021 20 Sep, 1999 5:27:30 6.4 0.9m McDonald
asm-0031 15 Oct, 1999 3:29:00 2.8 0.9m McDonald
asm-0032 15 Oct, 1999 4:36:01 6.0 0.9m McDonald
asm-0039 16 Oct, 1999 2:51:00 8.0 0.9m McDonald
asm-0040 19 Oct, 1999 2:56:30 7.7 0.9m McDonald
asm-0041 20 Oct, 1999 2:37:30 8.0 0.9m McDonald
asm-0042 21 Oct, 1999 2:19:00 8.2 0.9m McDonald
mdr066 6 Nov, 1999 2:01:00 1.4 1.5m CTIO
n49-0425 8 Nov, 1999 18:37:50 3.2 1 m UPSO
n49-0426 9 Nov, 1999 16:51:00 4.5 1 m UPSO
dmk124 9 Nov, 1999 18:36:01 2.1 1 m SAAO
wccd-004 9 Nov, 1999 17:25:08 0.8 1 m (CCD) Wise
wccd-007 10 Nov, 1999 16:56:20 1.4 1 m (CCD) Wise
n49-0427 10 Nov, 1999 14:03:10 2.5 1 m UPSO
dmk126 10 Nov, 1999 18:32:00 2.0 1 m SAAO
no1199q1 11 Nov, 1999 6:46:00 0.9 0.6m Mauna Kea
no1199q2 11 Nov, 1999 11:26:40 4.1 0.6m Mauna Kea
wccd-012 11 Nov, 1999 16:40:00 1.8 1 m (CCD) Wise
tsm-0065 12 Nov, 1999 2:00:00 1.0 2.1m McDonald
mdr083 13 Nov, 1999 00:54:30 1.6 1.5m CTIO
mdr086 14 Nov, 1999 00:45:50 1.4 1.5m CTIO
tsm-0068 14 Nov, 1999 1:32:00 1.4 2.1m McDonald
no1499q1 14 Nov, 1999 7:32:00 3.5 0.6m Mauna Kea
mdr088 15 Nov, 1999 0:13:30 1.9 1.5m CTIO
no1599q2 15 Nov, 1999 9:36:50 1.8 0.6m Mauna Kea
no1699q1 16 Nov, 1999 6:35:20 4.4 0.6m Mauna Kea
asm-0057 24 Aug, 2000 7:35:11 4.0 2.1m McDonald
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Table 1. Journal of observations for ZZ Ceti data from 1999,
2000 and 2001 (continued).

Run Date Time Duration Telescope Observatory
TCB TCB h

asm-0058 25 Aug, 2000 7:37:20 4.0 2.1m McDonald
asm-0059 28 Aug, 2000 7:31:21 3.4 2.1m McDonald
asm-0060 24 Sep, 2000 8:42:30 3.2 2.1m McDonald
asm-0063 26 Sep, 2000 5:14:20 6.7 2.1m McDonald
asm-0065 27 Sep, 2000 8:28:50 3.5 2.1m McDonald
asm-0070 29 Sep, 2000 8:55:50 3.0 2.1m McDonald
asm-0072 30 Sep, 2000 6:16:00 5.7 2.1m McDonald
asm-0075 1 Oct, 2000 8:40:20 3.3 2.1m McDonald
asm-0077 2 Oct, 2000 7:38:30 4.4 2.1m McDonald
gh-0500 7 Oct, 2000 0:39:30 0.9 2.1m McDonald
gh-0501 7 Oct, 2000 1:41:40 0.9 2.1m McDonald
gh-0502 10 Oct, 2000 2:16:40 1.0 2.1m McDonald
asm-0078 20 Nov, 2000 1:25:10 1.9 2.1m McDonald
joy-001 23 Nov, 2000 1:23:40 2.1 2.1m McDonald
TeideN09 23 Nov, 2000 20:34:10 1.0 0.8m Teide
joy-004 24 Nov, 2000 2:37:11 0.7 2.1m McDonald
joy-008 25 Nov, 2000 1:33:50 1.8 2.1m McDonald
joy-011 26 Nov, 2000 1:16:20 2.0 2.1m McDonald
joy-015 27 Nov, 2000 1:15:50 1.9 2.1m McDonald
jxj-0126 27 Nov, 2000 11:19:40 2.1 0.85m BAO
sa-gh463 27 Nov, 2000 20:02:20 2.8 0.51m SAAO
joy-019 28 Nov, 2000 1:30:10 1.9 2.1m McDonald
jxj-0129 28 Nov, 2000 11:10:20 0.7 0.85m BAO
joy-024 29 Nov, 2000 1:24:00 2.1 2.1m McDonald
joy-027 30 Nov, 2000 1:19:10 2.0 2.1m McDonald
jxj-0133 30 Nov, 2000 11:32:40 1.6 0.85m BAO
joy-030 1 Dec, 2000 1:11:10 2.1 2.1m McDonald
muk-014 19 Aug, 2001 09:45:12 1.83 2.1m McDonald
sam005 4 Nov, 2001 06:46:46 0.80 2.1 m (CCD) McDonald
sam008-012 5 Nov, 2001 04:56:38 2.19 2.1 m (CCD) McDonald
sam019-020 8 Nov, 2001 08:50:13 1.25 2.1 m (CCD) McDonald
sam024-030 10 Nov, 2001 02:36:18 3.75 2.1 m (CCD) McDonald
sam036-042 11 Nov, 2001 06:18:34 3.41 2.1 m (CCD) McDonald
sam048 12 Nov, 2001 03:21:26 4.14 2.1 m (CCD) McDonald
sam053 13 Nov, 2001 04:14:01 3.30 2.1 m (CCD) McDonald
asm-0083 15 Dec, 2001 01:17:50 1.35 2.1m McDonald
asm-0091 18 Dec, 2001 00:54:40 5.19 2.1m McDonald
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0 0.004 0.008

Fig. 1. Top panel shows the Fourier Transform (FT) of the data on ZZ
Ceti from 1999. The lower panel indicates the window pattern, which is
what a single frequency in that data set should look like in an expanded
scale. The inset in the top panel shows the window pattern at the same
scale as the FT.

Ceti in 1999. The true frequencies have to be disentangled from the
aliases, as seen in the window pattern, plotted in the lower panel of
Figure 1. The uncertainty in period is related to the peak width,
which is inversely proportional to the total time observed.

5. DATA ANALYSIS
Certain conditions must necessarily be satisfied before a Ṗ mea-

surement can be meaningful. We assume that the four main pul-
sation frequencies are resolved in the star and their amplitudes are
stable; ZZ Ceti satisfies this requirement. We make another critical
assumption; we assume that the star does the same thing when we
are not looking as when we are looking.

The doublets were clearly resolved in seasonal observations in
the years 1970, 1975, 1980, 1986, 1991, 1993, 1999, 2000 and 2001;
we used these 9 seasons only from all our data spanning 1970–2001
for the direct method (section 5.1) and the O − C diagram (section
5.2). We were able to utilize all our data for the non-linear least
squares technique (section 5.3). Once the frequencies are resolved in
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a data set, we can analyze them individually and independently of
each other, to determine the best-fit period and Ṗ . The magnitude
of the expected Ṗ (≈ 10−15 s/s) renders the measurement difficult
and forces us to use different techniques to do so.

5.1. The direct method
The brute force Direct Method consists of plotting the best pe-

riod for each individual season versus time, and equating the best-fit
slope to a constraint on Ṗ , as shown in Figures 2 and 3. To obtain
these seasonal values, we fit the dominant modes simultaneously us-
ing a non-linear least squares program to obtain our best fits for the
periods, amplitudes, and phases. We obtain the uncertainties in pe-
riod by multiplying the formal non-linear least squares errors by a
factor of 10 to be conservative. 2

The results of the weighted linear least squares fit are not signif-
icantly altered, as we are multiplying the uncertainties of all (except
2001) the points by the same factor. Our best seasonal periods are
shown in Tables 2 and 3, along with their realistic uncertainties.
Our weighted linear least squares fit on the plot in Figure 2 yields
Ṗ = (4.8 ± 1.2) × 10−13 s/s for P0 = 213.13257 ± 0.00004 s and
Ṗ = (12.5 ± 4.1) × 10−13 s/s for P0 = 212.7689 ± 0.0002 s, where we
chose the weights to be inversely proportional to the uncertainties in
period. These Ṗ values prove to be constructive limits in ruling out
large changes in period over time.

2 To obtain a realistic estimation of the true uncertainties in period, we did
an independent Monte-Carlo analysis of each seasonal data set (Mukadam 2000).
For data sets with a short time span of 7–10 days or for multi-site coverage,
we obtain Gaussian error distributions and find the true uncertainties in period
under-estimated by a factor of 2–4, compared to the formal uncertainties from
a non-linear least squares fit. Some of our seasonal data sets have month long
gaps and their period error distributions look “quantized”, with alias peaks at
a spacing of 1/T , where T is the total time span for that data set. Whenever
the simulations converge to an alias, we get a large error in period. Establishing
a means of characterizing such a non-Gaussian error distribution, we found the
uncertainties in period for such data sets under-estimated by a factor of 30–70.
However, all the seasonal data sets are in phase with each other and are not
independent; this information can be used to rule out seasonal aliases. This allows
us to determine periods more reliably; hence our rough rule of thumb of considering
formal non-linear least squares errors under-estimated by a factor of 10 is indeed
conservative. The periods 213.1326 s and 212.768 s are not completely resolved
in the 2001 observing season. We multiplied the uncertainties by a factor of 40 in
this case only; an appropriate factor given the span and the gaps of this season.
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Fig. 2. Direct method: the best seasonal periods vs time for the 213 s
doublet and is useful in ruling out large values of Ṗ. The top panel shows
the best fit Ṗ = (4.8±1.2)×10−13 s/s for P0=213.13257±0.00004 s, while

the lower panel indicates the best fit Ṗ = (12.5±4.1)×10−13 s/s for P0 =
212.7689±0.0002 s.
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Fig. 3. Direct method: a plot of the best seasonal periods vs time for the
274 s doublet. The top panel shows the best fit Ṗ = (-10.0±8.8)×10−13 s/s

for P0 = 274.2511±0.0003 s, while the lower panel indicates the best fit Ṗ
= (8.8±9.1)×10−13 s/s for P0 = 274.7751±0.0003 s.
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Figure 3 shows a plot of the best periods for the 274 s doublet
vs. time. We obtain Ṗ = (−10.0±8.8)×10−13 s/s for P0 = 274.2511±
0.0003 s and Ṗ = (8.8±9.1)×10−13 s/s for P0 = 274.7751±0.0003 s.

This brute force technique is not very sensitive, but we can
better determine Ṗ with two of the more successful techniques, the
(O − C) diagram and the direct non-linear least squares approach.
The uncertainties in Ṗ for both these techniques reduce as time-
squared goes by. The (O−C) technique uses the seasonal data to get
the best value for the first time of maximum. These well-determined
values then contribute towards finding the optimal solution for Ṗ .
The non-linear least squares technique utilizes all the points in a
data set, and therefore directly incorporates all the times of maxima.
This increases the reliability of the Ṗ value. These techniques are
not completely independent.

5.2. The (O − C) technique
The (O − C) technique (e.g. Kepler et al. 1991) can be used

to improve the period estimates for any periodic phenomenon. The
O stands for the observed value of the time of maximum (or time
of zero) for a cycle or an epoch E that occurs in a data set. The C
stands for its calculated value or ephemeris. If (O−C) values show a
linear trend, then the slope indicates a correction to the period. On
the other hand, a non-linear trend in the O −C diagram shows that
the period is changing. Neglecting terms higher than second order
(assuming that Ṗ is constant), we have

O − C = ΔE0 + ΔP E +
1

2
P Ṗ E2 (1)

where
ΔE0 = tmax|E0

− tbvmax|E0

3 (2)

ΔP = P |E0
− P bv|E0

(3)

ΔP is the correction in period P and the superscript “bv” stands for
best value. The observed time of maximum at the reference epoch E0

has been denoted as tmax|E0
. Each data set corresponds to a point on

the (O−C) vs. E diagram, which we determine using this theoretical
recipe. A least squares fit on the resultant parabola will yield the
parameters ΔE0, ΔP and Ṗ for each of the pulsation modes.

3 This value is usually zero unless two methods of determining tmax|E0
are

used.
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5.2.1. Bootstrapping with the (O − C) technique
The (O−C) technique assumes the knowledge of a period to such

a high accuracy that we are able to calculate the phase for the next
data set with an uncertainty less than 10% of the pulsation cycle;
we believe that σP ≤ P/10 implies a cycle count with certainty. We
use bootstrapping (Winget et al. 1985) to improve the period and
to extend our phase baseline from one observing season to the next
available one. Our seasonal data sets have an average gap of 5–6
years. We use the period from one data set and calculate the phase
for the subsequent data set. We force the calculated and observed
values of phase to match by fine-tuning the period, neglecting the Ṗ
term. We also bootstrap from the second data set to the first one.
The average of the two rectified periods is now our best value and
their difference divided by 2 is an estimate of the uncertainty in that
value. The period is more accurate and its uncertainty is reduced to
that of a data set spanning the entire duration from the first season
of observations to the second one, a time-span of 5–6 years. We
bootstrap in a similar manner to the succeeding data sets, producing
refined period estimates that also have reduced uncertainties. The Ṗ
term does not remain negligible while bootstrapping over a time-span
of 10–12 years and has to be taken into account.

Although bootstrapping is normally carried from one night to
the next, the closely spaced doublets of ZZ Ceti require data spanning
at least four nights (35 to 40 h) for proper resolution of the peaks.
If the data are high signal to noise (S/N≈ 20), then even 8–10 h of
observations spanning a timebase of 35 h can give a fruitful season,
where the doublets are well resolved. In a given season, our data
are sparse enough that we can only meaningfully bootstrap from one
observing season to the next.

5.2.2. Cycle count errors
Bootstrapping assumes that we know the period well enough to

predict the phase for the next data set without cycle count ambigu-
ities. When faced with such an ambiguity, we computed corrections
to period for cycle count E as well as E ± 1. As we know that the
uncertainties in phase from the least squares program are underes-
timated (Mukadam 2000; Costa et al. 1999; Winget et al. 1985), we
checked for cycle errors up to E ± 2. Larger cycle count errors are
ruled out by limits from the direct method. Then, we plotted an
(O − C) diagram with each of these periods and chose the one that
yielded the lowest phase dispersion as the most probable solution.
An equivalent mathematical statement would be to say that of these
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Fig. 4. The top panel shows an (O – C) plot for the 213.13260456 s

period, with the best fit parabola Ṗ=(6.1±3.1)×10−15 s/s drawn as a con-
tinuous line. The lower panel indicates an (O – C) diagram for the period

212.76842927 s with the best fit of Ṗ=(1.2±4.0)×10−15 s/s. (The 1991
data set spans only 5 days, and is our shortest season. Most seasons span
over a month and hence their phases are more reliable.)

five possibilities, the one that yields the smallest correction in period
is the most probable solution. We checked all the possibilities using
both these tests for each gap between the data sets; they were always
consistent with each other. This is also the appropriate juncture to
point out that we assume the lowest phase dispersion or the smallest
correction in period is the best solution because we know that Ṗ is
small, as constrained by the direct method.

5.2.3. Results from the (O − C) technique
Our (O−C) values for the 213 s doublet are presented in Tables

2 – 3, along with the best period and Ṗ values. We have plotted
our (O − C) values in Figure 4. The zero epoch corresponds to a
reference time of maximum (E0) of 2446679.833986 TCB. We obtain
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Table 2. (O-C) Table for period P = (213.13260456
±4.1×10−7) s and Ṗ = (6.1±3.1)×10−15 s/s.

(O–C) Error in Epoch Season Period
(s) (O–C) (s) (s)

1.4 3.7 –2346428 1970 213.1326± 0.0041
0.4 1.6 –1617531 1975 213.13242± 0.00089
1.0 2.4 –862740 1980 213.1325± 0.0012
0.0 2.8 0 1986 213.1328± 0.0039
8.3 1.2 743874 1991 213.1318± 0.0070
3.7 1.0 1049404 1993 213.1313± 0.0042
8.3 1.2 1924342 1999 Sep-Oct 213.1327± 0.0010
7.2 1.5 1949381 1999 Nov 213.1314± 0.0090
8.9 1.3 2067847 2000 213.1336± 0.0017

11.0 2.3 2248169 2001 213.1331± 0.0027

Table 3. (O-C) Table for period P = (212.76842927
±5.1×10−7) s and Ṗ = (1.2±4.0)×10−15 s/s.

(O–C) Error in Epoch Season Period
(s) (O–C) (s) (s)

–0.2 5.8 –2350444 1970 212.7684± 0.0066
3.5 2.6 –1620300 1975 212.7683± 0.0015
2.7 3.7 –864217 1980 212.7683± 0.0020
0.0 4.2 0 1986 212.7682± 0.0059
2.2 1.8 745148 1991 212.7780± 0.011

–0.9 1.7 1051200 1993 212.7690± 0.0084
2.1 1.6 1927636 1999 Sep-Oct 212.7685± 0.0015
1.5 2.0 1952718 1999 Nov 212.7660± 0.013

–1.6 1.7 2071386 2000 212.7704± 0.0025
5.8 2.3 2252017 2001 212.7695± 0.0027

Ṗ = (6.1 ± 3.1) × 10−15 s/s for the period P = 213.13260456± 4.1 ×
10−7 s. We also found Ṗ = (1.2 ± 4.0) × 10−15 s/s, for the period
P = 212.76842927 ± 5.1 × 10−7 s. The Ṗ values are consistent with
each other at the 1σ level. The Ṗ values for both modes of the 213 s
doublet are consistent with Ṗ measurements for G 117-B15A and
detailed theoretical evolutionary models. We conclude that these
values reflect the cooling rate of ZZ Ceti.

The (O − C) diagram for the 274 s doublet shows changes on
a timescale that is 100 times faster than the 213 s doublet. This
makes the same gaps between data sets too large to determine the
cycle counts. As we have already constrained the cooling rate with
the 213 s doublet, we can conclude that the (O − C) diagrams for
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both modes of the 274 s doublet are not indicative of cooling. Pos-
sible short-term variations in phase of the order of a few months to
a few years could be swamping out the parabolic effect of the cool-
ing. These modes may be subject to other effects like trapping and
avoided crossings (Wood & Winget 1988; Brassard et al. 1992; Mont-
gomery 1998), discussed in section 7.2. Mukadam (2000) contains an
(O − C) table for the 274 s doublet.

5.3. Direct non-linear least squares fit
We can fit a variable period to all the data from 1970 to 2001,

using a non-linear least squares program, “NLSPDOT”, to obtain
a reliable Ṗ . We fit both periods of the doublet simultaneously to
all the data from 1970 to 2001. The NLSPDOT program utilizes
period, phase, amplitude and a guess value for Ṗ as inputs. We fix
the amplitude for both periods, optimizing the remaining parameters
to minimize the residuals, obtaining a reliable Ṗ value based on all
the points of maxima from 1970 up to 2001. Another advantage of
this technique over the O − C method is that we can now include
all the data in a combined light curve, irrespective of whether the
doublets are resolved or not in individual seasons.

Note that this technique also suffers from cycle count errors in
gaps between data sets, just like the (O−C) method. When we input
a guess value for Ṗ along with a period, we are effectively feeding in
cycle counts for the various epochs. The same bootstrapping process
is implicitly applied here. We obtain Ṗ = (7.7 ± 1.9) × 10−15 s/s
for P = 213.132605 ± 0.000001 s and Ṗ = (2.9 ± 2.8) × 10−15 s/s
for P = 212.768429 ± 0.000001 s. The results for the non-linear
least squares fit are clearly consistent with the (O − C) technique
for both periods within uncertainties. We do not claim either of
these values to be measurements because we have seen them fluctuate
with the addition of subsequent seasons; they are not reliable as
measurements, but they are useful as constraints.

The uncertainties quoted may be underestimated due to pat-
tern and alias noise. Pattern noise has an underlying structure, and
is non-Gaussian (Schwarzenberg-Czerny 1991, 1999). The two fre-
quencies in the doublets are closely spaced; one frequency represents
a source of non-Gaussian noise while determining the phase, period,
and amplitude for the other. Pattern noise can be decreased by in-
creasing the time span of observations as that effectively resolves the
doublets better. Alias noise is caused by the finite extent of the data
and the gaps in it and is also non-Gaussian in nature. Alias noise can
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be decreased by multi-site observations. Instruments like the WET
were conceived to battle alias noise; they consist of a collaboration of
observatories all around the globe and can observe a given pulsator
for 24 h of the day, if weather permits.

6. BEST VALUE OF Ṗ FOR ZZ CETI
We conclude from the results of the (O − C) diagrams and the

non-linear least squares technique that the Ṗ values for the 213 s
doublet reflect cooling of the star, while the values for the 274 s
doublet do not. This is because evolutionary cooling is expected to
be one of the slowest changes and the 274 s doublet seems to evolve
at least a 100 times faster than the 213 s doublet. For the context of
this paper, we will henceforth discuss only the 213 s doublet as we
had set out to measure the cooling rate of the star.

Results from the non-linear least squares fit are more reliable
compared to the (O − C) diagram as this technique utilizes all the
data directly to get a best fit, whereas the (O − C) technique uses
seasonal phases and a best fit on few points yields Ṗ . The (O − C)
method falls in the domain of small number statistics. Hence, we
quote our best values for the 213 s doublet as Ṗ = (7.7 ± 1.9) ×
10−15 s/s for P = 213.132605 s and Ṗ = (2.9 ± 2.8) × 10−15 s/s
for P = 212.768429 s. The 213.132605 s period has an ampli-
tude of about 6.2 mma4, while the 212.768429 s period is about
4.1 mma in amplitude. The smaller uncertainty in the Ṗ measure-
ment for P = 213.132605 s is clearly a manifestation of larger am-
plitude and consequently better signal to noise ratio, as compared
to P = 212.768429 s. Therefore the value of (7.7 ± 1.9) × 10−15 s/s
better reflects the Ṗ for ZZ Ceti.

Tomaney (1987) published his best value Ṗ < (0.4 ± 9.6) ×
10−15 s/s for the 213 s doublet. This implies that at the 3σ level, his
upper limit for the rate of cooling was effectively 29.2 × 10−15 s/s.
Our results are a further refinement due to the larger time-base, and
they are consistent with previous results.

We claim Ṗ = (7.7± 1.9)× 10−15 s/s as an upper limit, and not
as a true measurement. We found fluctuations in the Ṗ value, as we
added various seasons of observation, but the uncertainty in Ṗ always
monotonically decreased. This is true for G 117-B15A as well and
is clearly indicated in Table 1 from Kepler et al. (2000). This leads

4 One milli modulation amplitude (mma) equals 0.1% change in intensity.
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us to conclude that the uncertainties are true indicators of reliability
and are currently more significant than the Ṗ values. If we determine
consistent Ṗ values for at least 3 consecutive seasons, then we will
believe that it is a measurement and not a constraint. Since the Ṗ
for P = 213.132605 s is to be thought of as an upper limit, we can
conclude that Ṗ = (2.9±2.8)×10−15 s/s for P = 212.768429 s is still
consistent with it. In all subsequent considerations, we will use our
best value of (7.7 ± 1.9) × 10−15 s/s.

6.1. Correction due to proper motion
Pulsating white dwarfs have a non-evolutionary secular period

change due to proper motion. Pajdosz (1995) estimated the size of
this effect to be of the order of 10−15 s/s.

Table 4. Correction in Ṗ due to
proper motion.

Period Ṗpm σṖpm

(s) 10−15 (s/s) 10−15 (s/s)

213.132605 2.22 0.36
212.768429 2.22 0.36
274.250804 2.86 0.46
274.774501 2.86 0.46

This proper motion cor-
rection to Ṗ is insignificant
for the DOV and PNNV stars
because their evolutionary Ṗ
is several orders of magni-
tude larger. However, it is
of the same order as the Ṗ
measured for hot DAVs like
ZZ Ceti and G 117-B15A. We
re-derived the proper motion
correction to Ṗ , keeping the vectorial information intact. This
derivation clearly determined the sign of the correction without an
ambiguity and we conclude that the correction is always positive and
must be subtracted from Ṗobs. This agrees with Pajdosz’s result. Pa-
jdosz re-wrote the correction term in terms of the proper motion μ
and the parallax π.

Ṗpm = 2.43 × 10−18P [s](μ[′′/yr])
2
(π[′′])−1

(4)

Using μ = 0.236 ”/year and π = 0.013 ” (Harrington & Dahn
1980), we evaluate Ṗpm for the four periods along with their re-
spective uncertainties, both of which have been indicated in Ta-
ble 4. Subtracting out Ṗpm, we have the following best limit
Ṗcooling ≤ (5.5 ± 1.9) × 10−15 s/s for ZZ Ceti.
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7. INTERPRETATION OF THE RESULTS

7.1. Stability of the 213 s doublet
Using our best limit for the 213 s doublet, Ṗ ≤ (5.5 ± 1.9) ×

10−15 s/s, we calculate the evolutionary timescale | P/Ṗ |≥ 1.2 Gyr.
We compute τs ≥ 0.9 Gyr and τs ≥ 0.6 Gyr at the 1σ and 3σ levels
respectively. 5 Theoretical models suggest that the 213 s doublet
in ZZ Ceti should show a Ṗ value in the range of 2–6×10−15 s/s
(e.g. Bradley et al. 1992; Bradley 1996). Our limit is consistent with
theoretical calculations of cooling as well as the Ṗ measurement for
G 117-B15A, and is already a constraint on stellar evolution.

The hot DAV stars, which include ZZ Ceti, are expected to
exhibit extreme frequency stability, making them reliable clocks. We
found this to be true for the 213 s doublet. Theory tells us that this
frequency stability may be associated with two different effects: low
radial overtone (k) modes and mode trapping. Low k modes sample
the deep interior and have a rate of period change that reflects the
global cooling timescale alone. High k modes have regions of period
formation further out in the star and so may be more easily affected
by magnetic fields, rotation, convection and non-linear interactions.
ZZ Ceti has a measured magnetic field upper limit of about 20 kG
(Schmidt & Grauer 1997).

Compositional stratification occurs in white dwarf stars due to
gravitational settling and prior nuclear shell burning. A mechanical
resonance is induced between the local g-mode oscillation wavelength
and the thickness of one of the compositional layers (Winget, Van
Horn & Hansen 1981). This mechanical resonance serves as a stabi-
lizing mechanism in model calculations. For a mode to be trapped in
the outer H layer, it needs to have a resonance with the He/H transi-
tion region, such that its vertical and horizontal displacements both
have a node near this interface (Brassard et al. 1992; Montgomery
1998). Note that the H/He interface can also lead to confinement
or trapping of modes in the core. Trapped modes are energetically
favored, as the amplitudes of their eigenfunctions below the H/He
interface are smaller than untrapped modes. Modes trapped in the
envelope can have kinetic oscillation energies lower by a few orders of
magnitude, as compared to the adjacent non-trapped modes (Winget

5 In order to calculate these limits, we cannot use the differential approach
as the uncertainties in Ṗ are comparable to the value itself. The 1σ limit is
calculated from the expression P/(| Ṗ | + | σṖ |). The 3σ limit is calculated to be
P/(| Ṗ | + | 3σṖ |).
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et al. 1981; Brassard et al. 1992).
The resonance condition changes as the star cools and this can

lead to an avoided crossing, as explained in section 7.2. As a DAV
cools within the instability strip, trapped modes spend about a quar-
ter of their time in an avoided crossing, during which they are ex-
pected to indicate a larger Ṗ than due to cooling. The trapped modes
are stable only for three quarters of the total time spent in the in-
stability strip, when they are not undergoing an avoided crossing.
During that time, they evolve more slowly than untrapped modes by
a factor ≥2 (Bradley et al. 1992; Bradley 1993). Modes of differing k
sample slightly different regions in the star with correspondingly dif-
ferent evolutionary timescales. Hence, we expect each mode to have
a slightly different rate of period change (Wood & Winget 1988).

All the hot DAV stars known are low k pulsators, including ZZ
Ceti. Bradley (1998) identified the 213 s doublet as �=1, k=2. This
suggests that the stability of the modes can be partially attributed
to their low k values, as explained earlier. However, low k modes
can also be trapped. If the 213 s doublet in ZZ Ceti consists of
trapped modes, then indeed our subsequent measurement of the Ṗ
will reflect the stability of the trapping mechanism, which is related
to the cooling rate. Presently, we only have an upper limit for Ṗ and
we cannot conclude whether these modes are trapped.

The uncertainties in measuring Ṗ are expected to go down as
the square of the time-base.6 This implies that to decrease the un-
certainties by a factor of 10, we would need about 95 years of data!
One way to do this in a lifetime is to get more accurate values for the
phases, every few years or even every decade. We can achieve this by
obtaining longer data sets, using larger telescopes, or a combination
of both. If we are to make a measurement in the next 10 years, we
need timing accuracies of at least 0.1 s.

7.2. Summary of results for the 274 s doublet
The implied Ṗ from the (O − C) diagram for the 274 s doublet

is a 100 times larger than the Ṗ for the 213 s doublet. Limits from
the direct method in section 5.1 indicate that Ṗ ≈ 1 × 10−12 s/s
for the 274 s doublet. The minimum dispersion in the (O − C)
diagram, which does not fit a parabola, allows us to set a lower

6 Kepler et al. (2000) find that the uncertainties decrease linearly with time
for G117-B15A. However, this may possibly be associated with the observed 1.8 s
scatter.
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limit ΔP/Δt ≈ 10−13 s/s. We do not know yet what their period
variation entails, but we know that it is not consistent with cooling,
as cooling is the slowest of all possible timescales. For both modes
of the 274 s doublet, we could never achieve a clear minimization
of phase dispersion. The uncertainties in phase are larger for the
274 s doublet as it has a lower amplitude compared to the 213 s
doublet, but not low enough to explain away the discrepancies. We
obtain an (O −C) diagram with ambiguous cycle counts and all the
points do not lie on a parabola within error bars. This suggests
that Ṗ for the 274 s doublet is not constant and perhaps P̈ and/or
higher order terms are significant. Possibly, the 274 s doublet is
undergoing an avoided crossing, described below, or other short term
phase variations, perhaps associated with the presence of nearby
undetected modes, that have been successful in swamping out the
cooling effect.

We should remind ourselves that the two doublets sample dif-
ferent regions of the star. Bradley (1998) calculated nonradial per-
turbations for the best model of ZZ Ceti, given by Teff = 12, 420 K,
M� = 0.54 M�, hydrogen layer mass MH = 1.5 × 10−4 M�, helium
layer mass MHe = 1.5×10−2 M� and ML3 convection. The eigenfunc-
tions for the l = 1, k = 3 mode or the 274 s doublet show negligible
amplitude near the center of the star compared to the l = 1, k = 2
mode, which corresponds to the 213 s doublet. This is clearly indi-
cated in Figure 5.

Wood & Winget (1988) carried out pulsation calculations in the
quasi-adiabatic Cowling approximation for � = 2, k = 1 to 16. They
evolved their models from 13 000 K to 11 000 K across the DAV
instability strip. Figures 1 and 2 in their paper clearly show k=6
as the trapped mode at the hot end of the sequence. As the star
cools, the kinetic energies of the k=5 and k=6 modes pull closer
together. At this point, the physical properties of the two modes
become nearly identical and they become indistinguishable to the
driving mechanism. As the models continue to evolve, k=5 becomes
the new trapped mode. These modes have effectively inter-changed
their nature and this phenomenon is known as an avoided crossing
(Aizenman, Smeyers & Weigert 1977; Christensen-Dalsgaard 1981).
Out of the 16 modes, four were computed to undergo such an avoided
crossing, i.e., one out of every 4 modes is expected to undergo an
avoided crossing.

Stable modes can become unstable during an avoided crossing
(Montgomery & Winget 1999; Wood & Winget 1988), as explained
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Fig. 5. Radial perturbation (Y1 = δr/r) for the best model of ZZ
Ceti calculated by Bradley (1998) shows that the eigenfunction for the
k = 3 mode, which corresponds to the 274 s periodicities, has negligible
amplitude from the center [log(1–M/M∗) = 0] to the envelope [log(1–
M/M∗)≤4], compared to the k=2 mode, which corresponds to the 213 s
periodicities.

in section 7.1. In other words, if we were monitoring the Ṗ for any of
these modes, we would observe a rapid change during the crossover,
i.e., the P̈ term would be important. Montgomery & Winget (1999)
have done the most detailed calculation to date, showing how the
g-mode periods evolve as the crystallized mass fraction is slowly in-
creased. Their results, plotted in Figure 9 of their paper, clearly
show many “kinks” or avoided crossings. Wood & Winget (1988) as
well as Bradley & Winget (1991) saw similar behavior in their evo-
lutionary calculations, when they included H and He layers in their
models. The 274 s doublet in ZZ Ceti could be undergoing an avoided
crossing, but this issue needs to be investigated more thoroughly.
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It is possible that the 274 s doublet has a larger Ṗ because
it samples regions of the star that could be undergoing changes on
timescales shorter than three decades. We may have variations in
Ṗ at short timescales7 of the order of a few months to a few years,
superposed on the secular cooling (Dziembowski & Koester 1981).
Possibly, such short-term behavior averages out in the long run as
we see stability at some level. We cannot place any limits on the
short-term behavior, as we have large gaps between data sets. Such
short-term phase variations could render a parabolic fit to the (O−C)
diagram difficult, thus swamping out Ṗ due to cooling.

We hope to eventually attempt to unravel this mystery by ob-
taining both multi-site and extensive single-site data in a season. As
both the 213 s doublet in ZZ Ceti and the 215 s mode in G 117-B15A
show a similar Ṗ , it would be worthwhile to find out if the 270 s mode
in G 117-B15A behaves like the 274 s doublet in ZZ Ceti.

8. ADDITIONAL PULSATION MODES
Our FTs from the various seasonal data sets showed additional

pulsations around 187.27 s, 318.08 s and 333.65 s. Observations
of ZZ Ceti with the 3.6 m CFHT telescope in 1991 clearly revealed
these modes, though the result remained unpublished till now. A
FT of the 1991 data set, after pre- whitening or removing the two
doublets is shown in Figure 6. We can clearly see the new modes
along with the residual amplitude of the two doublets, left behind in
the pre-whitening process8.

Table 5 gives our best estimates for the periods and amplitudes
for the various years of observation. The amplitudes of these modes

7 We have searched for variations in phase at timescales from a few days to a
month or so and found none.

8 Pre-whitening of individual seasons leaves behind some residual amplitude,
which can be interpreted as a third frequency, implying that the 213 s and the
274 s modes are actually triplets and not doublets. We pre-whitened various
seasons with the two known periods at 213 s and 274 s, and then attempted to
determine the third frequency by using a non-linear least squares fit to the residual
amplitude. We obtained different frequencies with differing amplitudes from the
various seasons. This implies that from the quality of data in hand, we cannot
conclude that we have a triplet, but we cannot rule it out either. To resolve this
issue, we need very high signal to noise data for at least 3 seasons, which clearly
shows evidence of the triplet even without pre-whitening; frequencies determined
from pre-whitening alone are not reliable. Other causes of the residual amplitude
could include timing uncertainties from either the instrument or the star.
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187s

333s

318s

0 0.004 0.008

Fig. 6. Pre-whitened FT of the 1991 data set, clearly showing the
additional modes 187 s, 318 s and 333 s in the top panel. The doublets
did not get pre-whitened completely and some residual amplitude is left
behind. The lower panel indicates the window pattern.

are small enough that determining their precise frequencies is dif-
ficult. With the discovery of three additional modes in ZZ Ceti,
we now have 5 known independent modes. Bradley (1998) pointed
out various feasible mode identifications for the pulsation periods
observed in ZZ Ceti (see his section 5.6). The confirmation of the
187 s, 318 s and 333 s modes suggest that the 213 s and 274 s dou-
blets (caused by rotational splitting) are probably � = 1, k = 2 and
� = 1, k = 3 modes respectively (Bradley 1998). He shows that
models with this mode identification have periods that best match
the newly identified modes. The 3 new modes are most likely � = 2
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modes with k = 4, k = 8, and k = 9 (Bradley 1998). This mode iden-
tification also suggests that ZZ Ceti has a mass near 0.54 M� and a
65–80% oxygen core; the hydrogen layer mass is near 1.5 × 10−4 M�

and the helium layer mass is near 1.5 × 10−2 M� (Bradley 1998).

Table 5. Period and amplitude measurements
for the additional pulsation modes.

Season Period (s) Amplitude (mma)

1991 333.636±0.015 0.64±0.08
1999 Sep-Oct 333.642±0.004 0.51±0.16
1999 Nov 333.634±0.010 1.31±0.17
2000 333.668±0.004 0.67±0.15
2001 333.639±0.001 1.03±0.13

1991 318.049±0.011 0.85±0.08
1999 Sep-Oct 318.075±0.002 0.93±0.16
1999 Nov 318.082±0.015 0.82±0.17
2000 318.080±0.003 0.67±0.15
2001 318.074±0.001 1.10±0.13

1991 187.272 ± 0.003 0.93±0.08
1993 187.267 ± 0.002 0.85±0.13
2001 187.286± 0.001 0.43±0.12

9. IMPLICATIONS AND APPLICATIONS

9.1. Aiding white dwarf cosmochronometry
Our upper limit on the rate of cooling of ZZ Ceti already con-

strains theoretical evolutionary models. We can calibrate the cool-
ing curve using our constraint along with the Ṗ measurements for
PG 1159-035 (Costa et al. 1999) and G 117-B15A (Kepler et al.
2000). This should result in more accurate ages for white dwarfs, as
we effectively reduce one of the sources of theoretical uncertainty in
white dwarf cosmochronology.

9.2. Core composition
The rate of cooling of a white dwarf depends mainly on core

composition and stellar mass. For a given core mass, a larger mean
atomic weight will correspond to fewer nuclei with smaller heat ca-
pacity, resulting in rapid cooling. By constraining the rate of cooling
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for ZZ Ceti, and comparing it to theoretical evolutionary models, we
effectively limit the mean atomic weight of the core. Bradley et al.
(1992) obtained theoretical Ṗ values around 5–7 ×10−15 s/s from de-
tailed calculations for untrapped modes in oxygen core 0.5 M� mod-
els with periods close to 215 s. This implies that our current limit
of 5.5×10−15 s/s indicates a carbon-oxygen core and eliminates sub-
stantially heavier cores, as they would produce a faster rate of period
change than observed.

9.3. Stable clock
ZZ Ceti is the second most stable optical clock known; we can

predict the time of arrival of a pulse maximum five years in the future
to an accuracy of 2–3 seconds. Moreover, the drift in this clock is
unidirectional and predictable as it is caused by cooling of the star.
This characteristic makes clocks like ZZ Ceti and G 117-B15A supe-
rior to atomic clocks and most pulsars. Atomic clocks demonstrate
an uncertainty in phase that is best described as a random walk,
while many pulsars are known to have an inherent noise level of the
order of 10−14 s/s (Kaspi, Taylor & Ryba 1994), in addition to star
quakes that cause glitches. The millisecond pulsar PSR B1885+09
is, however, more stable than both ZZ Ceti and G 117-B15A. It has
a period of 5.36 ms and a measured Ṗ = 1.78363 × 10−20 s/s (Kaspi
et al.1994), which implies that τs ≈ 9.5 Gyr. We compute a stability
timescale longer than 3.0 and 1.2 Gyr for G 117-B15A and ZZ Ceti
respectively.

We note that ZZ Ceti is stable enough to act as a reference for
the atomic clock system that underpins the GPS network. National
Institute of Standards and Technology (NIST) claims an uncertainty
of 2 × 10−15 for NIST-F1 (Bergquist, Jefferts & Wineland 2001),
the caesium fountain atomic clock, which defines the most accurate
primary time and frequency standard to date. We compute τs =
15.1 h; it loses or gains a cycle every 15 h.

9.4. Orbital companion
If a hot DAV like ZZ Ceti or G 117-B15A had an unseen orbital

companion, such as another star or planet, then its motion about the
center of mass of the system would manifest itself as a periodic vari-
ation of the arrival time of pulse maxima. Such a variation could,
in principle, be distinguishable from the expected parabolic signa-
ture due to cooling of the white dwarf. The period in the (O − C)
diagram would be the orbital period and the amplitude would allow
the estimation of the mass and/or distance of the orbital companion.
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The variable period resulting from the orbital motion of the clock,
would cause a Ṗorb (Kepler et al. 1991), given by

Ṗorb =
P

c

Gm

a2
sin(i) (5)

where P is the pulsation period, m is the mass of the orbital compan-
ion, a is the separation between the components and i is the angle
of inclination. Acceleration in motion along the line of sight causes
Ṗorb; uniform motion would just be interpreted as a correction in
pulsation period, ΔP .

The amplitude of the periodic variations in the (O−C) diagram,
A, is set by orbital light travel time and can be expressed in terms
of the orbital radius r� for the DAV.

A =
r�

c
sin(i) (6)

If the plane of the orbit is perpendicular to the line of sight,
then we cannot detect the companion. Using the equation for center
of mass, we can set a limit on the mass m of the orbital companion
modulated by a factor of sin(i).

Detection of an orbital companion around a pulsating white
dwarf depends on three parameters: the mass of the companion m
(Ṗorb ∝ m), its distance from the white dwarf a (Ṗorb ∝ 1/a2) and
the orbital period T ; all of these are not independent. It is easy
to understand the first 2 criteria. If the companion is not massive
or if it is far away from the white dwarf, then its gravitational in-
fluence may not be detectable. The third criterion is more subtle.
When we observe pulsating white dwarfs, we do not directly measure
Ṗ . We infer a Ṗ by comparing our measurements of the phases to
what we would expect for a constant period, i.e., using the (O − C)
technique. The phase difference, (O − C), should increase due to
an orbital companion for half an orbital period, after which it must
start decreasing. At the end of an orbital period, the (O − C) must
reflect a change from cooling alone. So, the phase variation ampli-
tude in the (O − C) diagram depends not only on the magnitude of
Ṗorb, but also on the time for which the phase change was allowed
to accumulate, i.e., T/2. With this technique, it is easier to detect
companions with large orbital periods, though that would necessarily
require long-term observations. The phase changes are cumulative,
and so in the limit of slow changes (long orbital periods), our lim-
its improve as time-squared goes by. Nearby planets with shorter
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orbital periods may be detected by decreasing the uncertainties on
individual phase measurements. We observe the DAV at about the
same time of the year, so we are de-sensitized to observing an orbital
period of a year, as we would find it to be in the same phase every
orbit.

G 117-B15A is in a binary system, but the orbital companion,
which has a mass of 0.39 M� and a separation of 925 AU, is not
presently detectable with the (O−C) technique (Kepler et al. 1991).
We can get an idea of the detection limits of this technique from the
following examples. If the white dwarf had an Earth-like planet
revolving around it at a distance of 1 AU, we expect ṖEarth

orb = 12.5×
10−15 s/s and a phase variation amplitude of a few ms. Detection
of Earth requires greater timing accuracy than current observations
of ZZ Ceti and G117-B15A, even though Ṗorb is more than 3 times
larger than that due to cooling. Our current amplitude detection
limit is 1 s, constrained by our timing accuracies. Planets like Jupiter
are considerably easier to detect than Earth-like planets; Jupiter
(M = 318 M⊕) at 5.2 AU would result in Ṗorb = 1.5× 10−13 s/s with
an amplitude of 3–4 s.

The gravitational influence of the planet dictates the magnitude
of Ṗorb and the orbital period determines the amplitude of periodic
variation observed in the (O − C) diagram. Both these constraints
along with Kepler’s third law can be used to set a detection limit for a
planetary companion. We can use our current detection limits on ZZ
Ceti to limit the mass and/or distance of any planetary companions
around it. Setting Ṗorb = 5.5 × 10−15 s/s, we are able to detect
planetary companions of masses M ≥ 38 M⊕ at distances a ≤ 9 AU
from ZZ Ceti.

9.5. Asteroseismology
With the discovery of three additional modes in ZZ Ceti, we

now have 5 known independent modes. This helps us in mode iden-
tification and leads to constraining the stellar structure, through
asteroseismology. It would also assist in the work on ensemble as-
teroseismology of DAVs (Kleinman, Kawaler & Bischoff 2000). Met-
calfe, Nather & Winget (2000) have applied an optimization method
utilizing a genetic algorithm for fitting white dwarf pulsation models
to asteroseismological data. For the success of this technique, they
require at least 7 to 8 observed modes. With the additional modes
found in ZZ Ceti coupled to the fact that it shows low amplitude,
sinusoidal variations, makes it an attractive candidate for such work.
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10. CONCLUSION
Our best upper limit for the rate of period change for ZZ Ceti is

Ṗ = (5.5±1.9)×10−15 s/s, which usefully constrains secular cooling.
Using this limit, we calculate the evolutionary timescale | P/Ṗ |≥
1.2 Gyr. The stability timescale τs ≥ 0.9 Gyr at the 1σ level and
τs ≥ 0.6 Gyr at the 3σ level. Theoretical models suggest that the
213 s doublet in ZZ Ceti should show a Ṗ value in the range of 2–6
×10−15 s/s (e.g. Bradley et al. 1992; Bradley 1996).

The 274 s doublet behaves differently than the 213 s doublet.
Limits from the direct method in section 5.1 indicate that Ṗ ≈ 1 ×
10−12 s/s for the 274 s doublet. The minimum dispersion in the
(O − C) diagram, which does not fit a parabola, allows us to set
a lower limit ΔP/Δt ≈ 10−13 s/s. The implied Ṗ does not reflect
cooling, as cooling causes the slowest change in period with time.
The 274 s doublet may be undergoing an avoided crossing, or other
short term phase variations, perhaps associated with the presence
of nearby undetected modes, that have been successful in swamping
out the parabolic cooling effect. To investigate this issue, we need
extensive single and multi-site data for an additional 6–7 years.

ACKNOWLEDGMENTS We acknowledge and thank the NSF grant
AST-9876730, NASA grant NAG5-9321 & STSI GO-08254 for their
funding and support. We thank the NSF International Travel Grant
for support to attend the Sixth WET Workshop, of which these
proceedings are a part of. We also acknowledge the Spanish grants
PB97-1435-C02-02 & AYA2000-1691 and the Polish grant KBN 5-
P03D-012-20 for their financial support.

REFERENCES

Aizenman M., Smeyers P., Weigert A. 1977, A&A, 58, 41

Bergquist J. C., Jefferts S. R., Wineland D. J. 2001, Physics Today, March
2001, 37

Bradley P. A. 1998, ApJS, 116, 307

Bradley P. A. 1996, ApJ, 468, 350

Bradley P. A. 1993, Ph.D. Thesis, University of Texas at Austin

Bradley P. A., Winget D. E., Wood M. A. 1992, ApJ, 391, L33

Bradley P. A., Winget D. E. 1991, ApJS, 75, 463

Brassard P., Fontaine G., Wesemael F., Hansen C. J. 1992, ApJS, 80, 369



102 A. S. Mukadam, S.O. Kepler, D. E. Winget et al.

Christensen-Dalsgaard J. 1981, MNRAS, 194, 229

Costa J. E. S., Kepler S. O., Winget D. E. 1999, ApJ, 522, 973

Duncan M. J., Lissauer J. J. 1998, Icarus, 134, 303

Dziembowski W., Koester D. 1981, A&A, 97, 16

Fontaine G., Brassard P., Bergeron P. 2001, PASP, 113, 409

Giovannini O., Kepler S. O., Kanaan A., Wood A., Claver C. F., Koester
D. 1998, Baltic Astronomy, 7, 131

Hansen B. M. S. et al. 2002, ApJ, 574, L155

Harrington R. S., Dahn C. C. 1980, AJ, 85, 454

Kanaan A., O’Donoghue D., Kleinman S. J., Krzesinski J., Koester D.,
Dreizler S. 2000, Baltic Astronomy, 9, 387

Kaspi V. M., Taylor J. H., Ryba M. F. 1994, ApJ, 428, 713

Kepler S. O., Mukadam A., Winget D. E., Nather R. E., Metcalfe T. S.,
Reed M. D., Kawaler S. D., Bradley P. A. 2000, ApJ, 534, L185

Kepler S. O. 1993, Baltic Astronomy, 2, 515

Kepler S. O., et al. 1991, ApJ, 378, L45

Kepler S. O., Robinson E.L., Nather R. E., McGraw J. T. 1982, ApJ, 254,
676

Kleinman S. J., Kawaler S. D., Bischoff A. 2000, in The Impact of Large-
Scale Surveys on Pulsating Star Research, ASP Conf. Ser. 203, 515

Kleinman S. J. et al. 1998, ApJ, 495, 424

Kleinman, S. J., Nather R. E., Phillips T. 1996, PASP, 108, 356

Lacombe P., Fontaine G. 1980, JRASC, 74, 147

Leggett S. K., Ruiz M. T., Bergeron P. 1998, ApJ, 497, 294

Liebert J., Dahn C. C., Monet D. G. 1988, ApJ, 332, 891

McGraw J. T., Robinson E. L. 1976, ApJ, 205, L155

Méndez R., Ruiz M. 2001, ApJ, 547, 252

Mestel L. 1952, MNRAS, 112, 583

Metcalfe T. S., Nather R. E., Winget D. E. 2000, ApJ, 545, 974

Montgomery M. H., Winget D. E. 1999, ApJ, 526, 976

Montgomery M. H. 1998, Ph.D. Thesis, University of Texas at Austin

Mukadam A. S., Winget D. E., Kepler S. O. 2001, in 12th European Work-
shop on White Dwarfs, ASP Conf. Ser. 226, eds. L. Provencal, H. L.
Shipman, J. MacDonald & S. Goodchild, San Francisco, ASP, p. 337

Mukadam A. S. 2000, Master’s thesis, University of Texas at Austin



Constraining the evolution of ZZ Ceti 103

Nather R. E., Winget D. E., Clemens J. C., Hansen C. J., Hine B. P. 1990,
ApJ, 361, 309

Nitta A., Winget D. E., Kanaan A. et al. 1999, in 11th European Work-
shop on White Dwarfs, ASP Conf. Ser. 169, eds. J-E. Solheim &
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