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ABSTRACT 

Tumor necrosis factor a (TNFa), a potent inflammatory cytokine, has long been 
established as a major driving force for pathologic inflammation.  Currently, anti-TNFa 
therapies are the standard in Inflammatory Bowel Disease (IBD) management; however, 
one-third of IBD patients fail to respond to anti-TNFa therapies. Previous data from this 
lab indicate that TNFa Converting Enzyme (TACE) inhibition does not ameliorate colitis 
in BALB/C mice. Thus, we hypothesized that TNFa is not a critical component in the 
BALB/C model of colitis. To test this, acute colitis was induced in BALB/C mice by 
consumption of 5% dextran sulfate sodium (DSS) in drinking water for 7 days. TACE 
inhibition was achieved through twice daily intraperitoneal injection of DPC-333 (10 
mg/kg; BSM, Inc.) To determine the effects of TACE inhibition during colitis, BALB/C 
mice received the following experimental treatments: Group 1) H2O + vehicle; Group 2) 
DSS + vehicle; Group 3) DSS + DPC-333. Although TACE inhibition significantly 
reduced colon TNFa levels (p = 0.0172), no significant improvement in disease activity 
was observed (p = 0.74), as determined by clinical scoring of bodyweight loss, rectal 
bleeding, and diarrhea. Thus, colitis in BALB/C mice does not appear to be TNFa-driven 
and an alternative pathway must exist. It is possible that BALB/C mice could represent a 
pre-clinical model of primary non-responders to anti-TNFa therapies. Future studies may 
use this model to better understand mechanisms of primary non-response in IBD patients.       
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INTRODUCTION 

 

Inflammatory Bowel Diseases 

Overview. Inflammatory bowel diseases (IBDs), such as Ulcerative Colitis (UC) 

and Crohn’s Disease (CD), have been estimated to affect about 2.8 million people in the 

United States (Kappelman et al., 2007). These diseases are characterized by recurring 

episodes of acute intestinal inflammation resulting in diarrhea, abdominal pain, fever, 

blood in the feces, and weight loss. Currently, the etiology of IBDs is unclear, although 

the CDC has observed relationships between IBDs and gender, smoking status, 

socioeconomic status, and diet, suggesting a role for epigenetics in disease development 

(Jenke, 2012). Research attributes disease pathology to an inappropriately activated 

immune system leading to increased permeability of the intestinal wall in response to 

oxidative stress (Obermeier et al., 1999).  

Although research has led to the innovation of therapies and improved 

diagnostics, a steady rise in the occurrence of IBDs has been documented in Western 

Europe and the United States since the 1960s. Furthermore, IBD patients are more likely 

to develop pernicious anemia and lactose intolerance due to intestinal degradation 

(Podolsky, 1991). In childhood IBDs, malnutrition is a major cause of stunted growth 

(Murch et al., 1991). Likewise, severe UC inflammation has been proven to be related to 

neoplasm formation in the colon (Rutter et al., 2004). Treatments aimed at reduction of 

inflammation may improve these complications. 

However, treating IBDs has proven to be a substantial economic burden. In 2004, 

the mean cost of treatments per patient for CD and UC were $8265 and $5066 per year, 
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respectively. For both diseases, over 30% of costs were attributed to hospitalization. 

Current pharmaceutical therapies are limited by efficacy and cost, and surgical 

management via colectomy has been reported to occur in 13.0-16.5% of UC patients at 

20 years after diagnosis (Targownik et al., 2012). In 1991, it was reported that 

approximately 30% of CD patients required surgical intervention within a year of 

diagnosis, while the remainder required surgery at a rate of 5% per year (Podolsky, 

1991). Surgical intervention often results in the required use of an ileostomy bag and 

increased risk of surgical complications, such as sepsis, colorectal cancers, fistula 

formation, intra-abdominal bleeding, and death (Tulchinsky et al., 2003). 

IBD Pathogenesis. As earlier stated, the mechanisms of IBD pathogenesis are 

poorly understood, yet it is thought that the immune system is inappropriately activated 

(Figure 1). In healthy intestines, a luminal stimulus can incite inflammation through 

either an antigen-specific immune response or an antigen-nonspecific inflammatory 

response. The intestinal immune system will eliminate the stimulus, which halts the 

inflammatory response and preserves the integrity of the epithelial barrier. However, in 

the disease state, an inflammation develops in the same manner, but stimulus elimination 

will either not occur or occur inappropriately, leading to sustained inflammation and 

tissue damage. The mucosal barrier integrity is compromised as it becomes more 

permeable to intestinal flora and infiltrating inflammatory cells. Thus, a positive feedback 

loop ensues, perpetuating the inflammatory response and characterizing the disease state 

(Podolsky, 1991). We do not yet understand why IBD patients are being thrown out of 

homeostasis, but we think it is because of a dysregulation of the inflammatory response 

and the gut microbiota (Figure 2) (Xavier and Podolsky, 2007). 
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Genetic Factors in IBD Development. Throughout the study of IBDs, family 

aggregation has long been established. First-degree relatives of IBD patients have a 

relative risk of 5-fold or greater. Likewise, IBDs are more prevalent in Ashkenazi Jews 

(Podolsky, 1991); however, these conditions are not inherited in a simple Mendelian 

pattern, instead, substantial evidence supports a multigenic mode of inheritance (Pokorny 

et al., 1997). Furthermore, it is thought that epigenetic alterations may underlie gene-

environmental modifications and constitute causal disease variants.  

During chronic inflammation, inflammatory mediators such as cytokines and 

reactive oxygen species can induce methylation of various IBD-associated genes through 

various mechanisms (Chiba et al., 2012). The investigation of epigenetic mechanisms in 

IBD was fueled by the identification of DNMT3A, a methyltransferase gene, as a CD 

susceptibility gene. Consequently, altered methylation of a series of genes involved in the 

production of cytokines in response to IL-17 has been observed in IBD patients. IL-17 is 

secreted by Th17 cells, a subset of CD4+ T cells that are strongly implicated in intestinal 

inflammation (Nimmo et al., 2012). 

Thus, recent genome-wide searches for IBD susceptibility loci have been 

successful in identifying genes that contribute to disease susceptibility (Figure 3) 

(Biancheri et al., 2013). These genes have been defined as those whose products may 

contribute to functional or structural abnormalities in the GI tract that cause it to be more 

susceptible to attack by infection, toxins, or autoimmune activity (Podolsky, 1991). 

Novel associations exist between IBD and two genetic markers within the DNA 

mismatch repair (MMR) gene MLH1, which has been localized to human chromosome 

3p21, a region recently identified as an IBD locus. The protein encoded by MLH1, MutL 
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Homolog 1, is one component in a system of seven DNA MMR proteins (Pal et al., 

2008). The DNA MMR system provides fidelity in replication by correcting any post-

replication errors that have escaped the proofreading function of DNA polymerase 

(Chang et al., 2000). Thus, mutations in DNA MMR genes impart a mutator phenotype to 

affected cells in UC, increasing genomic instability. In fact, the lack of efficient DNA 

MMR has been shown to lead to carcinoma as well as the production of aberrant proteins 

that could incite a localized or systemic autoimmune response (Pokorny et al., 1997). 

Other studies have suggested that alterations in the matrix of mucin glycoproteins 

may be associated with UC. The dense layer of glycoproteins that coat the colonic 

surface is an important component in maintaining the integrity of the intestinal epithelial 

barrier (Podolsky and Isselbacher, 1983). One study found a selective reduction of one 

population of glycoprotein in UC patients; this alteration persists independently of 

inflammatory activity. Similarly, these glycoprotein alterations have been observed in 

unaffected monozygotic twins of patients with UC, supporting the idea that genetics may 

present a pre-disposing factor in IBDs (Podolsky, 1991). 

Furthermore, altered expression of key immunoregulatory genes, such as TNFa 

and NOD2, has been reported in the peripheral blood of IBD patients. The TNF gene 

maps to the IBD3 susceptibility locus on chromosome 6p21. Deletion of 3’ regulatory 

elements from the TNF transcript in mice has been shown to induce a model of CD in 

mice due to increased TNFa biosynthesis (van Heel et al., 2002). Likewise, a frameshift 

mutation in the NOD2 gene causes increased expression of NOD2, a protein responsible 

for inciting an inflammatory response following recognition of bacterial cell wall 

components; this up-regulation of NOD2 is associated with susceptibility to CD (Ogura 
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et al., 2001). Additionally, a 2012 study of IBD-associated genes provided evidence of 

differential methylation of CpG sites within these and other genes that are plausible 

candidates in CD pathogenesis (Nimmo et al., 2012). 

Diagnosis of IBD. Because the etiology of IBDs remains unclear, the major forms 

of IBD, CD and UC, are defined by their clinical, pathologic, radiologic, endoscopic, and 

laboratory features. While these diseases share many signs and symptoms, increasing 

evidence exists to suggest that CD and UC are two distinct diseases (Podolsky, 1991). 

Inflammation in UC presents continuously throughout the large intestine and 

rectum, although it is mainly confined to the mucosa and superficial submucosa of the 

intestinal wall (Figure 4) (Gore et al., 1996). In contrast, CD inflammatory processes can 

occur at any location along the GI tract, including the small intestine. However, 

inflammatory lesions are less continuous than those of UC and can penetrate deeper 

layers of the intestinal wall (Figure 5) (Podolsky, 1991). Another unique feature of CD is 

the development of small, discrete ulcers, termed aphthoid ulcerations. These ulcers have 

been discovered prior to onset of inflammatory relapse, give a more accurate assessment 

of disease severity, and may herald a relapse in established quiescent disease (Simpkins, 

1977). 

As stated earlier, diagnosis of IBD is accomplished via assessment of disease 

activity, primarily through patient-reported symptoms (i.e. abdominal pain, diarrhea, and 

weight loss), laboratory testing, and radiographic and endoscopic evaluation of the colon 

mucosa. Endoscopy of the colon, or colonoscopy, along with tissue biopsy, allows for 

histological assessment of the colon mucosa. This is pertinent in differentiating between 

UC and CD (Leighton et al., 2006). Laboratory biomarkers correlating with leukocyte 
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migration into the colon also prove useful as a secondary diagnostic tool (Schoepfer et 

al., 2013). 

Once an IBD is diagnosed, pharmacological management begins. Results of 

disease assessment dictate which pharmacological therapy to use; this is determined by 

two general parameters: anatomical location of inflammation and inflammatory severity. 

UC practice guidelines, released in 2010 by the Practice Parameters Committee of the 

American College of Gastroenterology, establish a classification system for UC 

inflammatory severity as mild, moderate, or severe. UC disease severity can be 

determined by stool frequency, fecal blood content, erythrocyte sedimentation rate, and 

signs of toxicity such as fever, anemia, or tachycardia (Kornbluth and Sachar, 2010). 

Current Treatments of Ulcerative Colitis. Along with changes in diet and pain 

management, UC patients are usually prescribed medication to reduce inflammation at 

the primary site of tissue injury and prevent recurrence. A variety of pharmaceuticals are 

currently available for physicians to choose from based on the specific benefits to 

individual patients and potential obstacles. Current therapies include anti-inflammatories, 

immunosuppressants, and pharmaceuticals aimed at blocking TNFa signaling. 

Mesalamine, also known as mesalazine or 5-aminosalicylic acid (5-ASA), 

belongs to the aminosalicylate family of anti-inflammatories. Oral administration of the 

prodrug sulfasalazine allows for delivery of mesalamine directly to the large intestine 

(Azad Khan et al., 1977). In the colon, sulfasalazine is reduced to mesalamine by 

intestinal bacteria (Peppercorn and Goldman, 1972). Safety of these pharmaceuticals is 

currently under debate, as there are concerns regarding nephrotoxicity and side effects 

such as abdominal pain, nausea, and diarrhea (Reviewed by Böhm and Kruis, 2014). 
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Corticosteroids prove a more flexible treatment, as they can be administered 

orally, by enema, or topically. Corticosteroid medications are commonly used to control 

acute inflammation; however, adverse effects include steroid dependency, weight gain, 

cataracts, osteoporosis, myopathy, and increased susceptibility to infections (Reviewed 

by Lichtenstein et al., 2006). Thus, corticosteroid use has a limited duration and is 

determined a failure if resultant in steroid-dependent colitis remission (Benchimol et al., 

2008). 

Azathioprine is an oral immunosuppressant currently used to prevent transplant 

rejection and as a treatment for rheumatoid arthritis and dermatologic disorders 

(Reviewed by el-Azhary, 2003). Azathioprine is also used to induce remission for 

steroid-dependent UC patients (Ardizzone et al., 2006). While this steroid-sparing effect 

may reduce the need for subsequent surgical resolution, the optimal effects of this 

treatment can be delayed for up to four months, making UC management difficult 

(Present et al., 1980). Furthermore, there is evidence that treatment with azathioprine may 

increase the risk of lymphoma (Kandiel et al., 2005). 

Another means of treating steroid-dependent UC is by CsA, an 

immunosuppressant that inhibits calcineurin, a protein phosphatase which plays a role in 

T cell development; inhibition of calcineurin by CsA blocks T cell function, thus 

reducing the immune response (Bram et al., 1993). Like azathioprine, CsA can increase 

the risk of malignancy, as well as damage the renal system (Grossman et al., 1996). 

Because of these adverse effects, CsA is regarded as a “last-ditch” attempt, reserved for 

severe colitis episodes when reduction of inflammation and prevention of colectomy is 

urgent. 
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Most recently, IBD treatments focus on reducing inflammation by blocking TNFa 

signaling. Currently, Infliximab, a monoclonal antibody against TNFa, is the standard in 

anti-TNFa therapies. In mild to moderate colitis, Infliximab resolves acute inflammatory 

episodes and improves remission time (Rutgeerts et al., 2006). It has also been shown to 

improve cases of severe inflammation, although it is less effective in these cases (Olsen 

et al., 2009). One study demonstrated that long-term Infliximab treatment induces 

mucosal healing, improves long-term outcomes, and reduces the need for surgical 

intervention (Figure 6) (Schnitzler et al., 2009). While Infliximab is the current standard 

in IBD treatment, its effectiveness may be hindered by development of host antibodies, 

resulting in undetectable levels of Infliximab in serum and increased risk of allergic 

reaction to Infliximab infusions (Baert et al., 2003). 

A review of the current IBD treatments reveals that a quick-acting, long-term 

treatment aimed at increasing remission time and reducing inflammatory episodes are 

imperative. Anti-TNFa therapies may allow for long-term IBD management, however, 

these therapies are last-resort pharmacological approaches to steroid- and thiopurine-

resistant patients. Furthermore, studies show that anti-TNFa therapies are only effective 

in about two-thirds of IBD patients; the remaining one-third of patients demonstrate no 

response or a loss of response during treatment (Figure 7) (Papadakis et al., 2005). 

Further medical options are necessary to effectively treat this cohort of colitis patients. 

 

Tumor Necrosis Factor a 

Overview.  Tumor Necrosis Factor a, or TNFa, is a potent inflammatory 

mediator originally observed as a host-derived mediator required for endotoxin-induced 



 

9 

necrosis of tumor cells (Carswell et al., 1975). Since its identification in 1975, over-

expression of TNFa has been implicated in many inflammatory pathologies; novel 

methods of disease treatment through TNFa inhibition are continuously being explored. 

TNFa Structure and Biology. TNFa, a cytokine primarily produced by 

activated macrophages and monocytes, plays an important role in the initiation, 

regulation, and perpetuation of the inflammatory response (Koss et al., 2000). Over-

expression of TNFa has been implicated in many chronic inflammatory diseases, such as 

rheumatoid arthritis, multiple sclerosis, insulin-dependent diabetes mellitus, and IBDs 

(Plevy et al., 1997). 

TNFa is a member of the TNF superfamily, the largest known family of 

cytokines. It is initially expressed as an insoluble 26 kDa homotrimeric type II 

transmembrane protein (mTNFa). Upon cell stimulation, TNFa Converting Enzyme 

(TACE) cleaves the extracellular domain of mTNFa into a 17 kDa soluble isoform 

(sTNFa) (Solomon, 1999). Binding of TNFa to a TNFa receptor (TNFR) ultimately 

activates downstream signaling pathways that can lead to inflammation (Pasparakis, 

1996). 

TNFa Receptors. Members of the TNF superfamily act as ligands to activate 

corresponding transmembrane receptors of the TNF receptor superfamily. Highly 

conserved among TNF ligands, the TNF homology domain (THD) interacts with the 

cysteine-rich domains of the TNF receptors (TNFR) (Reviewed by Bodmer et al., 2002). 

Activation of TNFRs generally results in one of two opposing signaling pathways: cell 

death via apoptosis or cell survival and inflammation (Dempsey et al., 2003). 
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Cell survival or death in response to ligand binding to the receptor depend on the 

presence of a death domain in the TNFR and affinity of that receptor for intracellular 

signaling proteins. Apoptotic signaling is induced by caspase interaction with TNFR 

death domains, while cell survival or inflammation result from TNFR interaction with 

TNF receptor associated factor (TRAF) proteins (Dempsey et al., 2003). 

So far, two TNFRs that are activated by TNFa have been identified, TNFR1 and 

TNFR2 (Brockhaus et al., 1990), both of which bind soluble and insoluble, membrane-

bound TNFa (Locksley et al., 2001). These receptors consist of hydrophobic cysteine-

rich repeats that form a pre-ligand binding assembly domain (PLAD), which results in 

trimerization of the receptors in the absence of TNFa activation (Chan et al., 2000). 

Upon interaction with TNFa, the extracellular domains of TNFR1 and TNFR2 are 

cleaved into soluble TNFR1/2, a protein that sequesters sTNFa in order to attenuate the 

inflammatory response (Wallach et al., 1991). 

However, TNFR1 and TNFR2 differ in their activation and downstream signaling. 

TNFR1 is fully activated by sTNFa, while TNFR2 is primarily activated by mTNFa and 

only partially activated by sTNFa. Also, TNFR1 is expressed ubiquitously across cell 

types, while TNFR2 is mainly expressed in immune cells (Grell et al., 1995).  

TNFR Signaling. Signal transduction from TNFR1 can result in either cell death 

via apoptosis or cell survival and inflammation (Figure 8) (Gupta et al., 2006). Cell death 

signaling involves the interaction of TNFR1’s death domain and pro-caspases 8 and 10 to 

induce apoptosis. This paper will focus on TNFR signaling for survival and 

inflammation, which results in the activation of the transcription factor nuclear factor 



 

11 

kappa B (NF-kB) and ultimately induces further production of TNFa and other 

inflammatory cytokines (DasGupta et al., 2008). 

Prior to TNFR1 activation by TNFa, a silencer of death domain (SODD) protein 

associates with TNFR1 to mask its death domain, preventing the recruitment of signaling 

proteins (Jiang et al., 1999). Upon TNFR1 activation, SODD dissociates and TNFR1-

associated death domain (TRADD) protein serves as a scaffold for TNFR-associated 

factors 1 and 2 (TRAF1/2) and receptor-interacting kinase (RIP) (Hsu et al., 1996). 

TRAF2 recruits inhibitor of apoptosis proteins (IAPs) and IkB kinase (IKK). IAPs are 

essential for the polyubiquitination of RIP, which is required for IKK activation (Ea et 

al., 2006). Subsequently, RIP activates IKK, which in turn phosphorylates the regulator 

domain of inhibitor kappa B (IkB) protein, marking it for recognition by an E3 ubiquitin 

ligase and degradation (Devin et al., 2000). Initially, IkB sequesters NF-kB in the 

cytoplasm by masking its nuclear localization signal (NLS). Degradation of IkB results in 

exposure of the NF-kB NLS, allowing the protein to translocate to the nucleus where it 

interacts with kB response elements to promote expression of pro-inflammatory 

cytokines and anti-apoptotic genes (Wang et al., 1998). 

TNFR2 signaling is very similar to that of TNFR1, except that TNFR2 does not 

have a death domain, thus it does not require interaction with TRADD and can directly 

recruit TRAF proteins upon interaction with TNFa (Rothe et al., 1995). Furthermore, 

association of TRAF proteins with TNFR2 allows for induction of either the traditional or 

alternative pathways of NF-kB signaling (Rauert et al., 2010). Both pathways result in 

nuclear translocation of NF-kB, however, the alternative pathway activates a NF-kB-
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inducing kinase (NIK) mediator to generate free cytoplasmic NF-kB from an inhibitory 

precursor. 

TNFR signaling via NF-kB acts as a positive feedback mechanism to propagate 

the inflammatory response. TNFa activates TNFR which in turn activates the NF-kB 

pathway. The NF-kB pathway ultimately promotes expression of pro-inflammatory 

cytokines, including TNFa. Newly synthesized TNFa can activate more TNFRs, 

perpetuating the inflammatory cycle (Collart et al., 1990). 

Soluble TNFRs. In addition to a membrane-associated form (mTNFR), TNFRs 

also exist in a soluble form (sTNFR) which is released from mTNFR via the proteolytic 

cleavage of its extracellular domains. Previous research has demonstrated that sTNFRs 

neutralize the function of TNFa without invoking an inflammatory response, thus 

playing a role in the regulation of TNFa activity under physiologic conditions (Spoettl et 

al., 2007). 

Recent studies suggest that sTNFRs also exhibit immunomodulatory functions. 

Through reverse mTNFa signaling, sTNFR is able to induce apoptosis in monocytes 

independent of death receptor pathways. It is thought that sTNFR production may 

mediate the host response to pathologic states via interacting with TNFa, thus 

sequestering it from mTNFRs and preventing induction of inflammatory signaling 

pathways. Incidentally, quantification of sTNFRs in plasma provides information about 

immune processes leading to a better understanding of various diseases. In fact, sTNFR 

levels demonstrate high accuracy in disease prognosis. sTNFR concentrations have been 

used as predictive values as they are strongly associated with the clinical stage and 

progression of pathologies such as HIV infection and sepsis (Spoettl et al., 2007). 



 

13 

A 2007 study by Spoettl et al. demonstrated that sTNFR concentrations are higher 

in the serum of IBD patients than in healthy controls. sTNFR1 levels were significantly 

upregulated in both CD and UC patients, while sTNFR2 concentrations were 

significantly increased in CD patients and slightly increased in UC patients. Furthermore, 

sTNFR concentrations have been associated with disease activity. A correlation between 

increased sTNFR levels in the urine and clinical activity index has been observed 

(Hadziselimovic et al., 1995). A 1998 study by Noguchi et al. described a failure to 

upregulate sTNFRs in response to enhanced TNFa secretion in the lamina propria 

mononuclear cells of IBD patients. This study concluded that an imbalance in 

concentrations of TNFa and its natural inhibitors, such as sTNFR, may play a role in the 

pathogenesis of IBD. Thus, a better understanding of the mechanisms involved in both 

sTNFa and sTNFR release could lead to novel approaches to IBD treatment. 

 

Tumor Necrosis Factor a Converting Enzyme 

Overview. Tumor necrosis factor a Converting Enzyme (TACE) is responsible 

for cleaving membrane-bound TNFa to create a soluble, mature protein (Figure 9) 

(Reviewed by DasGupta et al., 2008). A variety of inflammatory disorders have been 

characterized by aberrant TACE activity leading to over-expression of TNFa. As 

increased TNFa expression is characteristic of IBDs, it can be inferred that TACE is also 

involved in IBD pathology. 

TNFa Converting Enzyme. TACE, also known as ADAM17, is a member of the 

adamalysin family of metalloproteases, enzymes which require interaction with a metal 

ion for activation of the catalytic site (Hooper, 1994). A Disintegrin and Metalloprotease 



 

14 

(ADAM) proteins are a subtype of adamalysins which contain a metalloprotease and 

disintegrin domain (Edwards et al., 2008). 

Specifically, TACE contains a pro-domain, catalytic (metalloprotease) domain, a 

disintegrin and cysteine-rich region, a transmembrane segment, and a cytoplasmic 

segment. The pro-domain acts as an inhibitor of metalloprotease activity. This inactivity 

is maintained via interaction of a cysteine residue in the pro-domain with an essential 

zinc ion located in the catalytic domain (Van Wart and Birkedal-Hansen, 1990). Removal 

of the pro-domain is a pre-requisite for TACE activity (Milla et al., 1999). 

The metalloprotease domain of ADAM proteins contains a zinc-binding motif, 

which coordinates the zinc with histidine residues, creating the active site of the enzyme. 

Although the function of the disintegrin domain in human ADAM proteins is poorly 

characterized, it is thought to be responsible for substrate recognition and TACE 

maturation (Reddy et al., 2000). 

Mechanisms for the regulation of TACE activity are poorly understood. Research 

has shown that inhibitors of the MAPK pathway block aberrant increases in TNFa 

shedding rate by TACE, however, the mechanism for this is unclear (Fan and Derynck, 

1999). 

TACE Involvement in Pathologic Inflammation. As stated earlier, a variety of 

inflammatory disorders have been characterized by aberrant TACE activity. For example, 

increased TACE expression in peripheral monocytes has been observed in patients with 

early systemic sclerosis, while rheumatoid arthritis patients exhibit increased TACE 

mRNA levels in cartilage (Bohgaki et al., 2005; Patel et al., 1998). 
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The pivotal role of TACE in inflammatory signaling was clarified in a study of 

mice with cleavage-defective mTNFa. These mice displayed attenuated inflammation, 

similar to TNFa knockout mice, demonstrating that mTNFa shedding is necessary for 

the propagation of inflammation (Ruuls et al., 2001). Further research has shown that 

reducing sTNFa levels through TACE inhibition allows for regulation of the 

inflammatory response. TACE inhibition was also shown to improve survival of mice 

against a lethal dose of lipopolysaccharide (LPS), a component in bacterial cell walls that 

induces inflammation (Figure 10) (Newton et al., 2001). 

TACE has also been shown to play a role in IBD pathology. UC patients display 

increased TNFa cleavage potential, indicating increased functional TACE capacity 

(Brynskov et al., 2002). Furthermore, biopsies of inflammatory lesions in the intestinal 

epithelia of CD patients exhibited increased TACE expression (Cesaro et al., 2009). 

Thus, TACE inhibition, with the purpose of reducing TNFa levels may prove a viable 

method of IBD treatment. 

History of TACE Inhibition. In the attempt to discover an effective TACE 

inhibitor, a variety of chemicals have been proposed and developed. Initially scientists 

began testing matrix metalloproteinase (MMP) inhibitors and found that, because TACE 

shares catalytic site structure with MMPs, MMP inhibitors also inhibited TACE activity. 

Because both TACE and MMPs are involved in normal physiological processes, the lack 

of TACE-specificity caused these drugs to exhibit toxicity (Yocum et al., 1999). Thus, 

the next step was to observe the electronic, structural, and kinetic differences between 

TACE and MMPs to design TACE-specific inhibitors. 
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Indeed, comparison of the crystal structures of TACE and MMPs led to the 

discovery of structural differences. The fact that the S1’ pocket of TACE is longer and 

narrower than that of MMPs has formed a basis for designing selective TACE inhibitors, 

such as anthranilate-based compounds (Duan et al., 2002). Furthermore, modifications to 

the P1’ and P2’ residues have been found to confer specificity on TACE inhibitors. For 

example, macrocyclic inhibitors, formed by joining the P1’ and P2’ groups of succinate-

based TACE inhibitors to form a cyclic structure, were found to be more selective 

towards TACE over MMP by 100-fold (Holms et al., 2001). 

Based on these discoveries, many compounds based on various chemical classes 

have been developed as selective TACE inhibitors and TACE inhibition during 

inflammatory disorders has been explored in pre-clinical animal models of rheumatoid 

arthritis (Reviewed by Moss et al., 2008). In a study of murine rheumatoid arthritis 

models, TACE inhibition significantly suppressed release of TNFa into serum. 

Furthermore, histological evaluation of the joints showed normal joint structure following 

TACE inhibition; prior to TACE inhibition, joints were plagued with lesions and 

inflammation (Newton et al., 2001). 

Although TACE inhibition was successful in pre-clinical models, concerns about 

liver toxicity and lack of efficacy have blocked progression of TACE inhibitors past 

Phase II clinical trials (Reviewed by DasGupta et al., 2008). 

TACE Inhibition Through DPC-333. DPC-333, also known as BMS-561392, is 

a TACE-specific, small molecule inhibitor developed in 2002 (Grootveld and 

McDermott, 2003). Upon finding that DPC-333 was 100-fold more selective of TACE 

over MMPs, Bristol-Myers Squibb Company claimed that DPC-333 was unlikely to have 
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many adverse effects due to its non-antigenic structure and oral administration; although 

they did warn that close monitoring was required with treatment. Pre-clinically, DPC-333 

was found to have good bioavailability in primates and dogs (54%) and reasonable 

bioavailability in rats (16%) (Grootveld and McDermott, 2003). 

In Phase I clinical trials, DPC-333 was found to be well tolerated by humans at a 

dose rage of 15 to 530 mg (Grootveld and McDermott, 2003); however, 53% of DPC-333 

recipients (n=6) and 40% of the placebo group (n=20) reported adverse effects, taste 

disturbance being the most commonly reported adverse experience (Qian et al., 2007). 

Although the compound demonstrated high potency and selectivity toward TACE, DPC-

333 caused liver toxicity issues, resulting in withdrawal from Phase II clinical trials 

(Reviewed by Moss et al., 2008).  

 While adverse effects were observed in humans, continued study of the effects of 

DPC-333 on TNFa production in mice could lead to advances in inflammatory disease 

research. Oral administration of DPC-333 to mice inhibited LPS-induced TNFa 

production (Figure 11) (Sharma et al., 2012). Although mice have low oral bioavailability 

(<20%), they have 98% bioavailability after intraperitoneal (IP) injection of 11 mg/kg 

bodyweight. Furthermore, IP injection of DPC-333 in mice is rapidly absorbed and 

maximum plasma concentration is reached at 0.1 hours after injection (Qian et al., 2007). 

 

Selecting a Mouse Model of Colitis  

             Overview. Although the etiology of IBD remains unclear, current knowledge of 

the mechanisms that underlie IBD pathology can be attributed largely to the study of 

colitis in mice. Mice represent a readily available and flexible model of study; the many 
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methods of disease induction alone provide a large variety of study designs. The multiple 

mouse strains available to choose from add further variety as each strain exhibits 

differences in response to disease induction methods and disease activity. Murine models 

of colitis have been organized into four main categories based on method of disease 

induction (Blumberg et al., 1999).  

             Spontaneous Colitis Models. Currently, only two mouse models that 

spontaneously develop colitis have been described: the SAMP1/Yit model and the 

C3H/HeJBir mouse. SAMP1/Yit mice were originally developed from AKR mice, which 

were bred for the purpose of studying senescence. By chance, these mice also develop 

mucosal inflammation with features comparable to those of CD. The C3H/HeJBir mouse 

lacks the toll-like receptor 4, and so is unresponsive to LPS. These mice spontaneously 

develop colitis at 3-4 weeks of age (Hoffman et al., 2002). Although spontaneous colitis 

is uncommon in mice, with knowledge of their genetic background these models offer the 

possibility of defining the genetic factors that lead to IBD (Blumberg et al., 1999). 

             Genetically Engineered Colitis Models. The category of genetically engineered 

colitis models consists of those with genetic alterations produced by gene targeting or the 

induction of a transgene. The major advantage of these models is that they allow the 

study of a particular gene product and its role, or lack thereof, in colitis development and 

progression (Blumberg et al., 1999). Study of these mice allowed for characterization of 

the immune network of IBD-associated genes (Mizoguchi & Mizoguchi, 2010). 

Currently, several KO mouse strains have been developed which lack IBD-associated 

genes, some of which spontaneously develop colitis while others require additional 

immune or environmental factors to fully elicit colitis development (Mizoguchi & 
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Mizoguchi, 2010). For example, Mdr1a-/- mice lack the murine multiple drug resistance 

gene for P-glycoprotein 170 and spontaneously develop colitis at around 12 weeks of age, 

highlighting a role for MDR genes in IBD pathology (Wilk et al., 2005). Models that do 

not develop colitis spontaneously allow for in-depth study of a desired gene product. For 

example, administration of DSS to a MMP9-/- mouse revealed a role for MMP9 activation 

in colitis-associated neutrophil infiltration of the intestinal mucosa (Munakata et al., 

2015). 

             Transfer Models of Colitis. A third category of colitis models involves the 

development of colitis following transfer of particular cell populations into a neutral host. 

It has long been established that shifts in microbiota composition can induce colitis 

(Bloom et al., 2011). Studies involving mice with IBD-associated defects further 

demonstrated the importance of microbiota composition in colitis development when KO 

mice raised under germ-free conditions failed to develop colitis. This discovery led to the 

development of colitis transfer models to differentiate between bacterial populations 

associated with colitis development or prevention. For example, transfer of various 

Lactobacillus species prevented colitis development in IL-10-deficient mice living under 

specific pathogen-free conditions. In contrast, these mice develop colitis following 

introduction of Helicobacter hepaticus (Blumberg et al., 1999).  

             Exogenously-induced Colitis Models. The development of colitis following 

exposure of wild type mice to an exogenous agent that induces an immune response 

comprises the fourth category of colitis model. The advantage of this category is the 

ability to observe relationships between particular immune responses and histopathologic 

reaction, as well as immunopathogenesis and treatment (Blumberg et al., 1999).  



 

20 

 Commonly, colitis is induced by two different chemicals: dextran sulfate sodium (DSS) 

and trinitrobenzene sulfonic acid (TNBS). Consumption of DSS in drinking water results 

in a model of colitis relevant to clinical UC, while intra-rectal administration of TNBS 

induces a model of colitis comparable to CD (Scheiffele & Fuss, 2002). Both chemicals 

are thought induce colitis by causing direct injury to intestinal epithelia (Perse & Cerar, 

2012).  

             Additionally, a model of colitis comparable to clinical UC can be induced by IP 

injection of an agonistic CD40 monoclonal antibody to B- and T-cell-deficient mice 

(Munakata et al., 2015). CD40 is a type I transmembrane protein that belongs to the 

TNFR superfamily and is ubiquitously expressed on the surface of immune cells. The 

CD40/CD40L system allows for signaling between immune cells that, when stimulated in 

excess, results in an autoimmune inflammatory response dependent on the release of pro-

inflammatory signaling molecules (Danese et al., 2004).  

 

A DSS-Induced Colitis Mouse Model 

Overview. Previous research has demonstrated that consumption of dextran 

sulfate sodium (DSS) in a murine model produces a clinically relevant model of colitis; 

the induced disruption of the colon mucosa is similar to clinical colitis in humans (Figure 

12) (Perse and Cerar, 2012). Supplementing the animal’s drinking water with DSS for 7 

days results in erosion of the colon mucosa, dysplasia, shortening of the colon, diarrhea, 

fecal blood content, and weight loss (Okayasu et al., 1990). The mechanism by which 

DSS induces inflammation is not well understood, however, mucosal barrier degradation 

may result from direct toxicity to intestinal epithelia (Dieleman et al., 1994). It has also 
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been reported that TNFa and interferon-g (IFN-g), cytokines involved in the perpetuation 

of chronic DSS-induced colitis, cause excessive nitric oxide activity which could be the 

effector mechanism (Obermeier et al., 1999). Due to the ease of administration and rapid 

development of colitis, the DSS murine model is beneficial in studying IBDs (Wirtz et 

al., 2007). Furthermore, severity of colitis in response to DSS is strain dependent, which 

could highlight a role for genetic background in the development of inflammatory 

diseases (Melgar et al., 2005). 

             Tissue Destruction in Colitis Development. The primary function of the 

intestinal epithelium is to serve as a selectively permeable barrier between internal and 

external environments through which nutrients, ions, and water are absorbed and 

secreted. When the barrier is intact, tight junctions limit solute flux to create trans-

epithelial gradients which drive passive paracellular transport of ions and water (Turner, 

2009). Absorption of nutrients occurs through coupling of organic solutes (i.e. sugars and 

amino acids) to Na+ transport across the small-intestinal epithelial lining (Figure 13). The 

organic solutes then move from enterocytes to blood via basolateral membrane carriers 

operating independently of ion transport (Field, 2003). 

             Physical features of the epithelial barrier, such as crypts, villi, and surface cells, 

are responsible for absorption and secretion (Field, 2003). The direct damage to the 

epithelial lining caused by DSS exposure disrupts these features, resulting in diarrhea and 

bodyweight loss due to malabsorption. This correlates to human IBD in that bacterial 

flora, food products, and inflammation can alter secretion and absorption through 

disrupting the integrity of crypts, villi, and surface cells (Field, 2003). Additionally, 
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apoptosis in response to cell damage reduces intestinal surface area and thus, decreases 

the capacity for absorption (Weber & Turner, 2007; Owens & Greenson, 2007). 

             Furthermore, the epithelial damage caused by DSS consumption results in 

increased intestinal permeability, a characteristic observed in human IBD. 

Physiologically, tight junctions seal the paracellular pathway between epithelial cells, 

restricting molecule passage based on size and charge. Destruction of tight junctions 

opens the paracellular pathway, increasing intestinal permeability and allowing 

infiltration of immune cells into the colon mucosa. Thus, inflammation of the colon 

mucosa, or colitis, results (Field, 2003). 

             Pro-inflammatory Effects of TNFa in Colitis Development. Previous research 

has demonstrated that, while DSS causes direct tissue damage, the over-expression of 

TNFa drives colon inflammation in DSS-induced colitis. It has long been established that 

TNFa plays a critical role in pathologic inflammation by recruiting inflammatory cells, 

inducing edema, promoting granuloma formation, and activating the coagulation cascade. 

TNFa has been shown to induce intestinal epithelia to express cell adhesion molecules 

and secrete chemokines; these processes result in the influx of inflammatory cells. Once 

recruited to the mucosal epithelium, monocytes and T-cells are further activated by 

TNFa to secrete pro-inflammatory cytokines and tissue degrading enzymes (Baugh & 

Bucala, 2001).  

             The importance of TNFa in the propagation of inflammation was highlighted by 

the TNFDARE/WT mouse model. Deletion of a repeated AU-rich motif in the 3’-

untranslated region of the TNF encoding gene enhanced mRNA stability of TNFa, 

resulting in mice that spontaneously develop a severe CD8+ T cell ileitis resembling 
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human CD. Studies of this mouse attribute pathology to local expression of pro-

inflammatory cytokines, such as TNFa, likely produced by infiltrating immune or 

epithelial cells (Baur et al., 2011). 

             Additionally, multiple studies by Wang et al. have characterized a mechanism by 

which TNFa contributes to barrier dysfunction by up-regulating myosin light chain 

kinase (MLCK) expression (Figure 14). Phosphorylation of myosin II regulatory light 

chain (MLC) by MLCK has been shown to be involved in physiological and pathological 

tight junction regulation. Treatment of intestinal epithelial monolayers with IFN-g and 

TNFa increased MLC phosphorylation and increased intestinal permeability, leading to 

the conclusion that barrier dysfunction is inducible through IFN-g and TNFa production 

(Wang et al., 2005). 

Cytokine Expression in Two Models of DSS-Induced Colitis. The C57/BL6 

and BALB/C mouse models have both been used in the pre-clinical study of colitis. After 

5 days of consuming 5% DSS in drinking water, both mouse models developed acute 

colitis; however, when no longer exposed to DSS, C57/BL6 mice progressed to severe 

chronic inflammation, while BALB/C mice were symptom-free within two weeks 

(Melgar et al., 2005). 

Cytokine quantification revealed that IL-1b, IL-12 p70, and IL-17 were 

progressively upregulated following chronic development in C57/BL6 mice; these 

cytokines are involved in T cell-mediated immunity, suggesting that the development of 

chronic colitis is T cell-driven. In contrast, during the acute phase of the disease, 

BALB/C mice demonstrated up-regulation of cytokines involved in macrophage 

activation (IL-1, IL-6, IL-18, and G-CSF); these levels were decreased coinciding with 
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disease resolution. Furthermore, production of IFN-g, a macrophage activator produced 

by T cells, was low in BALB/C during the acute phase while high in C57/BL6, 

suggesting that the acute response in BALB/C mice is macrophage-driven (Figure 15) 

(Melgar et al., 2005). 

As it has been previously established that multiple loci affect the disease in both 

mice and humans, Melgar et al. concluded that these results demonstrate the effect of 

genetics on the development and severity of colitis (Melgar et al., 2005). 

TACE Inhibition in Colitis Mouse Models. As TACE has become a target of 

interest in colitis treatment, TACE inhibition has been studied in both C57/BL6 and 

BALB/C mice. A study by Sharma et al. demonstrated dose-dependent improvement of 

colitis in C57/BL6 mice through administration of a selective TACE inhibitor. The 

authors were able to show improved disease activity index (DAI) of colitis through 

evaluation of percent bodyweight loss, colon length, fecal blood content, and stool 

consistency (Figure 16). Following a 5-day regimen of 3.5% DSS paired with oral 

administration of the TACE inhibitor to female C57/BL6 mice for 7 days, the cytokine 

quantification of colon-cultured media exhibited a decrease in serum TNFa levels 

(Sharma et al., 2014). 

Concurrently with Sharma et al., Maddox and Haines examined the effects of 

TACE inhibition in a BALB/C model of colitis (5% DSS consumption for 7 days). These 

results show no significant difference in disease activity between DSS mice that received 

the TACE inhibitor versus a control group (Figure 17); however, Maddox and Haines did 

demonstrate bioactivity of the TACE inhibitor in a model of systemic inflammation due 

to LPS injection (10 mg/kg bodyweight) (Figure 18) (Maddox, 2015). Further study is 
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necessary to determine the cause of failure of TACE inhibition to improve disease 

activity in BALB/C mice. It is possible that the acute colitis observed in BALB/C mice 

could effectively act as a pre-clinical model for studying IBD patients (1/3) who do not 

respond to anti-TNFa therapies. 

 

Efficacy of Anti-TNFa Therapies for IBD Treatment 

             Overview. Modulating TNFa activity has been shown to ameliorate disease in 

many inflammatory pathologies, such as rheumatoid arthritis and IBD. Down-regulation 

of TNFa activity has been accomplished in three main ways: antibody-induced 

neutralization of TNFa, non-specific TNFa inhibition, and inhibition of TNFa 

processing through blockage of TACE activity. While initially successful, these 

treatments have demonstrated a loss of response over time, as well as potentially serious 

side effects. The likelihood of these approaches to improve long-term outcomes of IBD 

depends upon whether TNFa plays a critical role in the condition (Baugh & Bucala, 

2001). Efficacy, or the ability of a therapy to produce the desired result, is a major 

determinant of the therapy’s success in treating disease. Anti-TNFa therapies have been 

shown to be efficacious in inflammatory pathologies in which TNFa is the driving force; 

however, a decrease or lack of efficacy, as seen in loss of response and non-response, 

could be explained should an alternative pathway drive inflammation in some cases of 

IBD.   

             Mechanisms for Loss of Response. It has been observed that approximately one-

third of IBD patients exhibit a lack of response to anti-TNFa therapies (Papadakis et al., 

2005). In a Danish study of 759 IBD patients, ~70% were responders, ~13% were partial 
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responders, and ~17% were non-responders (Bank et al., 2015). Furthermore, 23-46% of 

IBD patients demonstrate a loss of response to anti-TNFa treatments over time (Roda et 

al., 2016). 

             The definition of loss of response, or secondary non-response, is initial response 

to therapy after an induction regimen followed by loss of response during maintenance 

treatment. A common mechanism behind loss of response to anti-TNFa is the 

development of immunogenicity due to the development of host antibodies against the 

TNFa agonists. These antibodies either prevent binding of TNFa to TNFR or hasten 

drug clearance. Studies have demonstrated that the use of immunosuppressive therapy 

along with Infliximab results in reduced anti-drug antibody formation. Furthermore, pre-

treatment with corticosteroids led to significantly less patients who developed antibodies 

(26%) compared with those that did not receive steroid treatment prior to Infliximab 

therapy (42%) (Roda et al., 2016). 

             The accepted clinical definition of primary non-response (PNR) is a lack of 

improvement of clinical signs and symptoms with induction therapy. Several factors 

seem to negatively influence the risk of PNR, such as disease longer than 2 years, small 

intestinal involvement, smoking, C reactive protein, and genetic mutations. Evidence 

suggests that optimization of the dosing regimen and combination therapy can reduce 

PNR occurrence (Figure 19); however, this involves escalating dosage and close drug 

monitoring. Current opinions on mechanisms of PNR involve symptoms other than active 

inflammation, early immunogenicity, or non-TNFa-mediated inflammation (Roda et al., 

2016). 
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Hypothesis and Rationale 

The involvement of TNFa in acute IBD in BALB/C mice will be studied in this 

research project as a continuation of the research in the Morris lab. Based upon previous 

data in the Morris lab, the hypothesis states that TNFa is not a critical component in the 

development of colitis in BALB/C mice. It has been established that one-third of IBD 

patients do not respond to anti-TNFa therapies, thus, if our hypothesis is correct, 

BALB/C mice could represent a pre-clinical model for primary non-responders. 

In studies conducted by Maddox, very low levels of TNFa were measured at 2-6 

pg/mg total protein; however, colon tissue was homogenized ex-vivo in the absence of 

tissue culture (Figure 20). Previous studies utilized a tissue culture technique to allow for 

further cytokine production which resulted in more significant TNFa levels. Thus, in 

order to determine whether TNFa production is involved in this model, this study will 

utilize a tissue culture system to determine the impact of the TACE inhibitor. 

Only the distal portion of the colon will be used for quantification of TNFa 

levels, as Maddox and Haines demonstrated that inflammation is most active in this 

region, especially regarding IL-6 production. The distal colon will be removed and 

cultured for 24 hours to allow for further production of TNFa. Plasma TNFa levels will 

then be quantified using the MagPix system. 

Acute colitis will be induced by administration of 5% DSS in drinking water for 7 

days. The TACE inhibitor DPC-333 will be supplied by Bristol-Myers Squibb, Inc.; 

approval for use of DPC-333 by Bristol-Myers Squibb was acquired April 8, 2013. The 

drug, dissolved in 25 mM citric acid saline, will be delivered twice daily via IP injection, 

using a 1 mg/kg bodyweight ratio. 
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As demonstrated by Melgar et al., the mechanisms of acute colitis differ from 

those of chronic disease. Thus, it may be these differences that cause one-third of IBD 

patients to be unresponsive to anti-TNFa treatments. Determining the involvement of 

TNFa in acute colitis through study of BALB/C mice may lead to a better understanding 

of the disease and provide insights into mechanisms of treatment in human colitis.  
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Figures 
 

 
 
Figure 1. Potential pathogenic relations in Inflammatory Bowel Disease. In the normal 
state, shown in Panel A, the intestinal lumen comes into contact with a variety of 
substances that might stimulate either a specific immune response, a nonspecific 
inflammatory response, or both. This mechanism has the potential to auto-amplify, but is 
counterbalanced by the mucosal barrier, which limits access of luminal constituents to the 
intestinal epithelium, and by feedback mechanisms that down-regulate the immune and 
inflammatory responses after eliminating the stimulus. In the disease state, shown in 
Panel B, fundamental differences in the integrity of the mucosal barrier and/or in the 
regulatory mechanisms of the immune system may contribute to sustained inflammation, 
regardless of stimulus elimination; this results in tissue destruction and subsequent 
inflammatory bowel disease (Reproduced with permission from The New England 
Journal of Medicine, Podolsky, 1991. Copyright Massachusetts Medical Society).  
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Figure 2. Several IBD susceptibility gene products modulate host-cell functional 
responses to microbial flora. Panel (a) illustrates cell-specific NOD2/CARD15 signaling 
pathways. In intestinal epithelium, bacterial cell wall components are recognized by the 
leucine-rich repeats domains of NOD2, which leads to activation of the NF-kB pathway. 
Panel (b) denotes potential roles for autophagy in IBD. Autophagy provides a mechanism 
of response among cells to limit the harmful effects of exogenous and endogenous 
stressors and thus, is essential for homeostasis. This diagram denotes the stages at which 
autophagy may play a role in acute inflammation and the pathogenesis of IBD (Reprinted 
with permission from Macmillan Publishers Ltd: Nature, Xavier RJ and Podolsky DK, 
2007). 
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Figure 3. IBD-associated genes. Many genes have been identified as IBD susceptibility 
loci, including genes for cytokine production, DNA mismatch repair, mucin 
glycoproteins, and immunoregulation (Reprinted from Trends in Immunology 34(11), 
Biancheri et al., The challenges of stratifying patients for trials in inflammatory bowel 
disease, 2013, with permission from Elsevier).  
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Figure 4. Endoscopic and histologic features of Ulcerative Colitis. In panel A, 
colonoscopy of the sigmoid colon of a patient with severe UC depicts diffuse mucosal 
ulceration associated with mucopurulent exudate and mucosal bleeding. In panel B, 
histologic analysis demonstrating typical features of UC, including mucosal ulceration, 
formation of crypt abscesses (arrow indicates a typical crypt microabscess) and depletion 
of goblet cells. Additionally, chronic inflammation is present, confined to the mucosal 
and submucosal layers (Reproduced with permission from The New England Journal of 
Medicine, Podolsky, 1991. Copyright Massachusetts Medical Society). 
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Figure 5. Endoscopic and histologic features of Crohn’s Disease. In panel A, 
colonoscopy of the sigmoid colon of a patient with CD depicts the patchy nature of the 
inflammatory process; irregular ulcers are separated by mucosa that has been relatively 
spared. In panel B, histologic analysis illustrates transmural inflammation with the 
formation of deep linear ulcers (arrow in inset denotes a typical non-caseating granuloma 
(Reproduced with permission from The New England Journal of Medicine, Podolsky, 
1991. Copyright Massachusetts Medical Society). 
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Figure 6. Long-term clinical benefit of Infliximab treatment. Panel A illustrates the long-
term clinical benefit with respect to mucosal healing during Infliximab treatment (n=214) 
(Reproduced with permission from Inflammatory Bowel Disease, Schnitzler et al., 2009). 
  

 
 
Figure 7. Responses to Adalimumab treatment among CD patients with attenuated 
response to Infliximab. Approximately one-third of CD patients demonstrate no response 
to anti-TNFa therapies (Adapted from Papadakis et al., 2005 with permission from 
Blackwell Publishing: American Journal of Gastroenterology). 
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Figure 8. TNFR1-induced pathways. Formation of complex I upon activation by TNFa 
leads to NF-κB activation and, ultimately, cell survival through inflammation. Formation 
of complex II upon activation by TNFa leads to cell death via apoptosis (Reproduced 
with permission from BioMed Central Ltd: Immunity and Ageing, Gupta et al., 2006).  
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Figure 9. Activation and inhibition of TNFa and TNFR. Membrane-bound proTNFa is 
cleaved by TACE, releasing mature, soluble TNF (sTNFa). Infliximab/adalimumab and 
Etanercept represent current pharmaceuticals directed at reducing sTNFa levels, thus 
preventing activation of TNFR1/2 (Reprinted from Bioorganic & Medicinal Chemistry, 
17(2), DasGupta et al., Current perspective of TACE inhibitors: A review, 2009, with 
permission from Elsevier). 
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Figure 10. Effects of TACE inhibition or Etanercept administration on LPS-induced 
cytokine production. TACE inhibition resulted in significant reduction of plasma TNFa 
levels, suggesting TACE inhibition may prove a viable method of treatment for 
inflammatory pathologies. Etanercept is a decoy receptor that binds and neutralizes TNF-
alpha. However, it has been demonstrated to increase plasma TNF-alpha concentrations 
by prolonging the half-life of TNF-alpha and reducing its clearance. Blocking TNF-alpha 
upstream of membrane shedding via TACE inhibition would eliminate this problem by 
preventing soluble isoforms in the plasma (Reproduced from Biology of TACE 
inhibition, Newton et al., 60:30, 2001, with permission from BMJ Publishing Group Ltd).  
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Figure 11. Effect of various concentrations of DPC-333 on LPS-induced TNFa levels in 
mice. Panel A illustrates significant reduction in sTNFa with increasing DPC-333 
concentrations. Panel B illustrates significant increases in mTNFa levels with increasing 
DPC-333 concentrations. Taken together, this data indicates reduction in TNFa 
processing and successful inhibition of TACE (Reprinted from European Journal of 
Pharmacology, 701(1), Sharma et al., Blockade of tumor necrosis factor-alpha converting 
enzyme (TACE) enhances IL-1B and IFN-gamma via caspase-1 activation: A probable 
cause for loss of efficacy of TACE inhibitors in humans?, 2012, with permission from 
Elsevier).  
 

 
 
Figure 12. Schematic of DSS-induced colitis. Various factors regarding the DSS itself, 
the host, and the environment can influence the susceptibility, onset, severity, and 
responsiveness to DSS-induced colitis (Reproduced from Journal of Biomedicine and 
Biotechnology; Perse M, Cerar A. Dextran sodium sulphate colitis mouse model: traps 
and tricks. 2012, with permission from Hindawi Publishing Corporation). 



 

39 

 

 
 
Figure 13. Intestinal absorptive cell. Nutrient absorption is coupled to sodium transport 
across the intestinal epithelial lining (Republished with permission of The American 
Society for Clinical Investigation from Intestinal ion transport and the pathophysiology of 
diarrhea, Field M, vol 111, 2003; permission conveyed through Copyright Clearance 
Center, Inc). 
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Figure 14. Pathogenesis of barrier dysfunction in IBD. TNFa affects transcriptional and 
enzymatic activation of myosin light chain kinase (MLCK) resulting in acute and rapidly 
reversible intestinal epithelial barrier defects (Reproduced from Inflammatory bowel 
disease: is it really just another break in the wall?, Weber CR, Turner JR, 56:6-8, 2007 
with permission from BMJ Publishing Group Ltd). 
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Figure 15. Cytokine production in acute, chronic and recovery phases of DSS-induced 
colitis in C57/BL6 and BALB/C mice. Levels of IL-1b (A), IL-12 p70 (B), IL-12 p40 
(C), IL-17 (D), and IFN-g (E) were analyzed for each strain (Reproduced with permission 
from The American Journal of Gastroenterology and Liver Physiology, Melgar et al., 
2005).  
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Figure 16. Effect of TACE inhibition on DSS-induced colitis. Colitis was induced in 
C57/BL6 mice by consumption of 3.5% DSS in drinking water for 5 days. Compound 
11p, CsA, or vehicle treatments were administered daily starting on day 1 of DSS 
administration and ending on day 7. Animals were observed daily for body weight and 
DAI. On day 10 animals were sacrificed and colon lengths measured. These data 
demonstrate overall TACE inhibition reduces disease symptoms when compared with 
diseased control groups (Reprinted from Involvement of TACE in colon inflammation : 
A novel mechanism of regulation via SIRT-1 activation, 66(1), Sharma et al., 2014, with 
permission from Elsevier).  
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Figure 17. TACE inhibition and average disease activity index during development of 
colitis in BALB/C mice. No significant difference in DAI was observed between DSS 
mice that received the TACE inhibitor versus the control group (Reproduced with 
permission from Missouri State University, Maddox, 2015). 
 

 
 
Figure 18. Plasma TNF and TACE inhibition during LPS challenge in BALB/C mice. 
Bioactivity of the TACE inhibitor was confirmed in a model of LPS-induced systemic 
inflammation (Reproduced with permission from Missouri State University, Maddox, 
2015).  
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Figure 19. Management of patients with loss of response to anti-TNF therapies 
(Reproduced from Roda G, Loss of response to anti-TNFs: definition, epidemiology, and 
management; 2016, with permission from Nature Publishing Group). 
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Figure 20. Effect of TACE inhibition on colon TNF without tissue culture. TACE 
inhibition had no effect on colon TNF-alpha concentrations. Maddox removed colon 
tissue, homogenized it, then took the supernatant for quantification. Colon TNF-alpha 
concentrations were quantified at 2-6 pg/mg total protein. These levels are so low as to be 
insignificant and represent a weakness of the Maddox and Haines study (Reprinted from 
Tumor necrosis factor alpha converting enzyme during acute colitis in mice: a regional 
analysis, Maddox, 2015, with permission from Missouri State University). 
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MATERIALS AND METHODS 
 

 

Cohort Establishment and Induction of Colitis 

             Animal care followed the Missouri State University guidelines for 

experimentation with animals and was approved by the Institutional Animal Care and 

Use Committee of Missouri State University on April 29, 2016 (ID# 16-027.0-A). Acute 

colitis was induced in male BALB/C mice by supplementing drinking water with 5% 

DSS weight/volume. The 5% DSS water was replaced with fresh DSS solution every two 

days. 

 

Dosing of DPC-333 

             DPC-333 was dissolved in 25 mM citric acid (CA) saline at 1 mg DPC-333 per 1 

mL CA saline. Previous studies established CA saline as the vehicle for DPC-333 and 

performed qualitative solubility tests to determine appropriate CA concentrations (Kim et 

al., 2008; Maddox, 2015). DPC-333 was administered at 10 mg/kg bodyweight by 

intraperitoneal (IP) injections of 1 mg/mL DPC-333. Previous investigation of 

pharmacodynamics of DPC-333 demonstrated that 10 mg/kg bodyweight IP injection was 

found to effectively block TACE activity and production of sTNFa in vivo (Figure 21) 

(Qian et al., 2007). 

 

Study Design 

            Three cohorts (n=6-7) of mice were used in this study to generate one control 

group and two disease groups: 1) H2O + vehicle, 2) 5% DSS + vehicle, 3) 5% DSS + 
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inhibitor (Figure 22). A second control group, H2O + inhibitor, was not generated due to 

previous study in this lab (Maddox, 2015). Each mouse received twice daily IP injections 

of either DPC-333 (10 mg/kg bodyweight) or an equivalent volume of vehicle (25 mM 

CA saline). DSS was administered for 7 days before tissue collection under isoflurane 

anesthetization and animal sacrifice by isoflurane overdose and cervical dislocation. Food 

and water consumption were monitored daily. Additionally, clinical scoring parameters, 

including bodyweight, stool consistency, and presence of blood in the stool and at the 

anus, were evaluated daily. 

 

Single Blinding of Control and Experimental Groups 

            Cohort treatments were blinded from assessor. Each mouse was randomly 

assigned to a cohort. Conical vials were filled with either 5% DSS in drinking water or 

tap water by an assistant and installed in the appropriate cage without assessor knowledge 

of vial contents. Syringes were filled with either inhibitor or vehicle by assistants and 

labeled with mouse identifier. The assessor then injected the appropriate mouse with the 

corresponding syringe without knowledge of contents. 

 

Assessment of Disease Activity 

            Disease activity was evaluated through daily recording of bodyweight, food and 

water consumption, stool consistency, and rectal bleeding. A disease activity index 

(DAI), adapted from Cooper et al., was calculated by assigning scores for parameters 

analogous to clinical presentation of IBD in humans.  
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             DAI was calculated as the sum of DAI scores resulting in the total DAI score 

ranging from 0 (unaffected) to 12 (severe colitis) (Table 1). Score parameters included 

weight loss (-1 = 1-5% weight gain, 0 = none, 1 = 1-5% weight loss, 2 = 5-10% weight 

loss, 3 = 10-15% weight loss, and 4 = >15% weight loss), stool consistency (0 = normal, 

2 = loose stools, 4 = watery diarrhea), and bleeding (0 = no bleeding, 2 = slight bleeding, 

4 = gross bleeding). 

 

Tissue Sample Collection and Culture 

             Distal colon specimens were collected from mice anesthetized under isoflurane. 

Specimens were placed in cold saline, opened longitudinally, and cleared of fecal matter. 

Specimens then underwent three washing steps with ice cold saline, placed in 1 mL of 

complete RPMI medium 1640 [10% FBS vol/vol, 100 IU penicillin, 100 µg/mL 

streptomycin, 2 mM L-glutamine], and minced. Medium containing minced specimen 

was then transferred to culture plates and incubated for 24 hours at 37°C. Following 

incubation, culture media was transferred to a microcentrifuge tube and centrifuged at 

16.2 RCF for 10 minutes at 4°C. Aliquots of supernatant were then taken for TNFa 

quantification (Protocol adapted from Sharma et al., 2014). 

 

TNFa Quantification 

             Tissues were homogenized in lysis buffer compatible with EMD Millipore 

Milliplex Mouse TNFa Magnetic Bead Panel kit for use with the Luminex MagPix 

singleplex system. Protocol for plasma and tissue preparation as outlined by the kit 

instructions were followed. 
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            Luminex xMAP kits provide magnetic beads conjugated with bead-specific 

antibodies for use in a multiplex immunoassay similar to the enzyme-linked 

immunosorbent assay (ELISA) concept of protein quantification (Luminex, 2011). The 

bead provides a solid surface for building the assay. A bead-conjugated primary antibody 

is incubated with sample containing an unknown concentration of analyte. Subsequent 

incubations are performed to attach a secondary antibody followed by a reporter-

conjugated tertiary antibody (streptavidin-phycoerythrin). 

            The MagPix multiplex system is a LED-based system which detects individual 

bead identity through excitation at 635 nm and identification of bead-specific 

fluorescence (Figure 23). Primary antibodies for TNFa are conjugated to beads with a 

specific fluorescence range. Simultaneously, the fluorescent label of the immunoassay is 

excited with a green LED at 525 nm and the intensity of fluorescent emission is 

quantified. In this manner, the MagPix system is capable of quantifying TNFa; median 

fluorescence intensity (MFI) for TNFa is then used to interpolate assay sample 

concentration from a standard curve. 

            For the quantification of TNFa, 25 µL of colon tissue homogenate samples 

diluted to 2-5 µg/mL were analyzed. Standards were generated from serial dilution of 

10,000 pg/mL reconstituted Mouse Cytokine Standard, resulting in 6 standards down to 

3.2 pg/mL. Experimental and standard samples were incubated overnight with 25 µL 

antibody conjugated beads. Tris lysis buffer was used as a background matrix with tissue 

homogenate assays. Samples were then incubated with a secondary antibody for one 

hour, followed by an hour-long incubation with a streptavidin-phycoerythrin conjugate 

(reporter). Standard, control, and experimental samples were then run in duplicate. 
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Standard curve analysis was performed with Milliplex Analyst software. Curve fit was 

produced with 5-parameter non-linear regression analysis and assay sample TNFa values 

were interpolated from the standard curve. Results were normalized to total protein of the 

original tissue homogenate, previously determined in BCA assay. 

 

Statistical Analysis 

             Disease activity data was analyzed using independent t-tests within GraphPad 

Prism analysis software. Analysis for successful development of colitis was performed 

via comparison between water control and DSS colitis group (Group 1 versus Group 2). 

DSS colitis groups receiving vehicle control injections were compared to DSS colitis 

groups receiving the inhibitor (DPC-333) to determine the effects of the inhibitor (Group 

2 versus Group 3). 

 Quantified TNFa levels were analyzed using independent t-tests within 

GraphPad Prism analysis software. Analysis for successful development of colitis, and 

thus induction of TNFa production, was performed with t-tests between water control 

and DSS colitis groups receiving vehicle control injections (Group 1 versus Group 2). 

Effect of the inhibitor on TNFa levels was determined through t-test between DSS colitis 

groups receiving either vehicle control or DPC-333 injections (Group 2 versus Group 3).  
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Tables 

Table 1. Clinical Scoring Guide for Disease Activity Index determination. Disease 
Activity Index (DAI) was calculated as the daily sum of clinical scoring parameters 
including percent bodyweight change, stool consistency, and bleeding (Reproduced with 
permission from Missouri State University, Maddox, 2015). 
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Figures 

 

Figure 21. Dose-dependent inhibition of sTNFα production in vivo. Dose dependent 
sTNFα inhibition with DPC-333 was determined in male BALB/C mice challenged with 
10 µg/mouse LPS IP injection. Determination of percent inhibition of sTNFα release was 
achieved through comparison of plasma sTNFα concentrations following IP (solid line) 
and oral (dotted line) doses of DPC-333 to vehicle control (Reproduced with permission 
from The American Society for Pharmacology and Experimental Therapeutics: Drug 
Metabolism and Disposition, Qian et al. 2007).  
 



 

53 

 
 
Figure 22. Study Design. Mice were randomly assigned to one of three groups: a water 
control (Group 1), a disease control (Group 2), and an experimental group (Group 3). For 
7 days, mice consumed either untreated drinking water or 5% DSS in drinking water and 
received twice daily injections of either the TACE inhibitor DPC-333 or its vehicle 25 
mM citric acid saline. Every morning, food and water consumption as well as 
bodyweight were recorded and clinical parameters were scored to create a disease activity 
index. Following morning routine, mice were sacrificed and the distal 1 cm of colon was 
removed. 
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Figure 23. Luminex xMAP Technology and MagPix Multiplex System. The Luminex 
MagPix system is a LED-based fluorescent detection system for protein quantification. 
Antibody-conjugated magnetic beads are passed through a magnetic capture field and 
excited with 635 nm LED.  Resulting fluorescence intensity is used to quantify analyte 
concentrations (Reprinted with permission from EMD, 2015).  
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RESULTS 
 

 

Clinical Scoring of 5% DSS Colitis 

            Effects of DSS Consumption on Colitis Development. The effects of 5% DSS 

colitis were assessed via scoring of clinical parameters to create a disease activity index 

(DAI). The results of this clinical assessment are summarized in Table 2. To evaluate the 

successful induction of 5% DSS colitis, independent t-tests were performed to compare 

groups 1 and 2 (Group 1: H2O + vehicle injection; Group 2: DSS + vehicle injection). 

The effect of the TACE inhibitor during 5% DSS colitis was evaluated via independent t-

test between groups 2 and 3 (Group 2: DSS + vehicle injection; Group 3: DSS + DPC-33 

injection). Consumption of 5% DSS in drinking water for 7 days significantly increased 

the DAI, indicating successful induction of colitis (p < 0.0001; Group 1 vs Group 2 on 

day 7) (Figure 24). Diseased mice exhibited clinically relevant signs of colitis, such as 

significant bodyweight loss, rectal bleeding, and diarrhea. TACE inhibition had no 

significant effect on DAI and did not improve colitis (p = 0.74; Group 2 vs Group 3 on 

day 7) (Figure 24). Diseased mice receiving the TACE inhibitor exhibited clinical signs 

of colitis comparable to those that received only vehicle injections. 

             Bodyweight Loss in Response to DSS Consumption.  The effects of DSS 

consumption on bodyweight loss was evaluated via an independent t-test comparing 

groups 1 and 2 (Group 1: H2O + vehicle injection; Group 2: DSS + vehicle injection). 

Mice that consumed 5% DSS in drinking water exhibited significant bodyweight loss 

compared to control mice (p = 0.0002; Group 1 vs Group 2 on day 7). An independent t-

test between groups 2 and 3 (Group 2: DSS + vehicle injection; Group 3: DSS + DPC-
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333 injection) revealed that TACE inhibition had no effect on bodyweight loss (p = 0.45; 

Group 2 vs Group 3 on day 7) (Figure 25); the final bodyweights of these mice were 

comparable to diseased mice that received vehicle injections. 

Effects of TACE Inhibition on Rectal Bleeding. An independent t-test 

comparing groups 1 and 2 (Group 1: H2O + vehicle injection; Group 2: DSS + vehicle 

injection) revealed that 5% DSS consumption induced significant gross bleeding at the 

rectum as early as day 5 and continuing through day 7 (p < 0.0001; Group 1 vs Group 2 

on day 7). To evaluate the effects of TACE inhibition on rectal bleeding, an independent 

t-test between groups 2 and 3 (Group 2: DSS + vehicle injection; Group 3: DSS + DPC-

333 injection) was performed. No significant difference in rectal bleeding was observed 

between these groups, indicating that TACE inhibition had no effect on the clinical 

bleeding score (p = 1.00; Group 2 vs Group 3 on day 7) (Figure 26).  

Alterations in Stool Consistency Following DSS Consumption. Occurrence of 

loose stools and watery diarrhea in response to 5% DSS consumption were evaluated via 

independent t-test between groups 1 and 2 (Group 1: H2O + vehicle injection; Group 2: 

DSS + vehicle injection). Mice receiving DSS passed loose stools as early as day 5, 

though a significant increase in loose stool scores was not seen until day 7 (p < 0.0001; 

Group 1 vs Group 2). An independent t-test between groups 2 and 3 (Group 2: DSS + 

vehicle injection; Group 3: DSS + DPC-333 injection) revealed that TACE inhibition had 

no effect on stool consistency scores (p = 0.15; Group 2 vs Group 3) (Figure 27). In fact, 

diseased mice receiving the TACE inhibitor exhibited signs of diarrhea comparable to 

those that received only vehicle injection.  
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Impact of DSS Consumption on Food and Water Consumption. Food and 

water consumption were recorded daily for each group of mice in order to evaluate the 

effects of DSS consumption and TACE inhibition on food and water intake. Quantitative 

analysis of this data indicates that neither consumption of 5% DSS in drinking water nor 

twice daily DPC-333 or vehicle injections had an effect on food and water intake (Figures 

28 and 29). This suggests that mice consumed food and water regardless of the stressors 

associated with experimental protocols. 

 

Quantification of Colon TNFa Levels 

             Overview. Following 24-hour tissue culture, colon TNFa levels were measured 

through multiplex immunoassay quantification of distal colon tissue homogenate and 

normalized to total protein (pg/mg total protein acquired by BCA assay). 

             Effect of DSS Colitis on Colon TNFa Levels. The effect of 5% DSS 

administration for 7 days on colon TNFa levels was evaluated via an independent t-test 

between groups 1 and 2 (Group 1: H2O + vehicle injection; Group 2: DSS + vehicle 

injection) (Figure 30). Although not statistically significant, consumption of 5% DSS for 

7 days increased colon TNFa levels by 51.9% (p = 0.11; Group 1 vs Group 2) (Table 3), 

suggesting that DSS-induced colitis up-regulates colon TNFa.  

             Colon TNFa Levels in Response to TACE Inhibition. The effect of TACE 

inhibition on colon TNFa levels during 5% DSS colitis was evaluated through an 

independent t-test between groups 2 and 3 (Group 2: DSS + vehicle injection; Group 3: 

DSS + inhibitor injection) (Figure 30). TACE inhibition significantly reduced TNFa 

levels by 56.2% (p = 0.017; Group 2 vs Group 3) (Table 3). These findings confirm that 
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the TACE inhibitor DPC-333 is bioactive in the colon and that TACE inhibition 

successfully reduces colon TNFa levels. 
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Tables 

Table 2. Analysis of clinical scoring in colitis development. p values were obtained from 
an independent t-test comparing parameters on day 7 of 5% DSS. Group 1 (G1): H2O + 
vehicle injection; Group 2 (G2): DSS + vehicle injection; Group 3 (G3): DSS + inhibitor 
injection. 
 

 
 
Table 3. TACE Inhibition during Colitis and Percent Difference in TNFα Concentration. 
Results are independent t-test values of TNFα concentrations after 24-hour tissue culture.  
Group 1 (G1): H2O + vehicle injection; Group 2 (G2): DSS + vehicle injection; Group 3 
(G3): DSS + inhibitor injection. 
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Figures 
 

 
 
Figure 24. Average disease activity index (DAI) during development of 5% DSS-induced 
colitis. DAI was quantified through scoring of clinical parameters as described in the text. 
Values are group means ± SEM; * p<0.05 (DSS + vehicle versus respective H2O+vehicle 
day). No significant difference between DSS + vehicle versus DSS + inhibitor.  
 
 

 
 
Figure 25. Average bodyweight during development of colitis. Values are group means ± 
SEM; * p<0.05 (DSS + vehicle versus respective H2O + vehicle day). No significant 
difference between DSS + vehicle versus DSS + inhibitor. 
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Figure 26. Bleeding scoring during development of colitis. Values are group means ± 
SEM; * p<0.05 (DSS + vehicle versus respective H2O+vehicle day). No significant 
difference between DSS + vehicle versus DSS + inhibitor.  
 
 

 
 
Figure 27. Stool consistency scoring during development of colitis. Values are group 
means ± SEM; * p<0.05 (DSS + vehicle versus respective H2O+vehicle day). No 
significant difference between DSS + vehicle versus DSS + inhibitor.  
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Figure 28. Food consumption during development of colitis. Values are group means ± 
SEM. No significant difference between groups.  
 
 

 
 
Figure 29. Water consumption during development of colitis. Values are group means ± 
SEM. No significant difference between groups.  
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Figure 30. Effect of DSS colitis and TACE inhibition on colon TNFa. Tissue TNFa 
concentrations were quantified after 7 days of 5% DSS. Groups received twice daily IP 
injections of either 10 mg/kg DPC-333 or an equivalent volume of vehicle (25mM citric 
acid saline). Values are group means ± SEM; *p<0.05 (DSS + vehicle versus DSS + 
inhibitor).  
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DISCUSSION 

 

Novel Impact of Data Collected and Rejection of Hypothesis 

            BALB/C Mouse Model as Primary Non-Responders to Anti-TNFa Therapy. 

Current literature and research on the DSS model of clinical colitis demonstrate that the 

disease model and findings vary between mouse strain, thus establishing difference in 

susceptibility to DSS-induced colitis are due to genetic background. A 2005 study by 

Melgar et al. observed the differences in response to DSS between C57/BL6 and 

BALB/C mice (Table 4). While BALB/C mice recover after termination of DSS 

administration for 7 days, C57/BL6 progress to chronic disease. These two models of 

colitis also differ in the concentration of DSS tolerated and the inflammatory cytokines 

produced. Identification and quantification of inflammatory cytokines revealed that the 

acute colitis in BALB/C may be macrophage-driven, while the progression to chronic 

disease in C57/BL6 mice may be T-cell-driven.  

             Additionally, studies of TACE inhibition in DSS colitis models vary widely in 

methods (DasGupta et al., 2008). One study provided evidence for TACE inhibition 

improving disease phenotype in C57/BL6 mice by giving twice daily IP injections of the 

TACE inhibitor DPC-333 during 7 days of DSS administration (Sharma et al., 2014). 

Concurrent with the methods of Sharma et al., Maddox demonstrated that administration 

of DPC-333 does not improve the disease state in a BALB/C model of DSS colitis. This 

study improved upon the methods of Maddox by conducted a single-blind randomized 

study to prevent bias in phenotyping of clinical symptoms. Additionally, a 24-hour tissue 

incubation step was included to allow for continued cytokine production and resulted in 
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more significant readings of colon TNFa Furthermore, DPC-333 was observed to be 

bioactive in the target tissue, knocking down colon TNFa levels to concentrations 

comparable to those of healthy animals. These results suggest that TNFa is not involved 

in the development of DSS colitis in the BALB/C model and that an alternative pathway 

may exist.  

Further research is necessary to determine the mechanism behind primary non-

response to anti-TNFa treatments and characterize an alternative pathway in colitis 

development. In light of the failure of TACE inhibition to resolve the disease phenotype 

in BALB/C mice, it is possible that the BALB/C colitis model could serve as a pre-

clinical model of study for IBD patients who do not respond to anti-TNFa treatments. 

 

Future Directions and Preliminary Data in C57/BL6 Mice 

             TNFa Involvement in BALB/C Colitis Models. It has long been established that 

TNFa is a key player in the development and progression of IBD. However, current 

research suggests that TNFa may not be the driving force in some forms of IBD. Further 

research is necessary to determine an alternative driving force for inflammation and an 

animal model that does not respond to anti-TNFa therapies could provide insight in these 

cases. We have confirmed that BALB/C mice fail to respond to TACE inhibition during 

DSS colitis, thus, we find it pertinent to provide further evidence for the lack of 

involvement of TNFa in BALB/C colitis models by conducting an identical study in 

C57/BL6 mice. Although our methods were adopted from the study of TACE inhibition 

in the C57/BL6 model of DSS colitis conducted by Sharma et al., we are currently 

recreating this study to generate data with which we can compare the response of these 
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two mouse models to TACE inhibition. Although preliminary data shows no statistically 

significant difference in disease activity between the three groups (Group 1: H2O + 

vehicle, n=4; Group 2: DSS + vehicle, n=4; Group 3: DSS + inhibitor, n=4), there 

appears to be a trend for improvement of disease activity with TACE inhibition (p = 

0.0758) (Figure 31). 

             If a difference in response to TACE inhibition is observed between C57/BL6 and 

BALB/C mice, it would be necessary to investigate BALB/C response to TACE 

inhibition in colitis induced by other methods as well as response to other forms of anti-

TNFa therapy. Lack of response to all forms of anti-TNFa treatments in multiple colitis 

models would provide sufficient evidence to suggest that BALB/C mice are a pre-clinical 

model of study for a form of IBD in which TNFa is not involved. 

             Alternative Driving Forces in IBD. Evidence suggests that forms of IBD exist in 

which TNFa is not the driving force for inflammation, thus, alternative pathways of 

colitis development need to be investigated. Determination of an alternative driving force 

might prove a difficult feat due to the variety of factors involved in IBD development, 

such as genetics, signaling pathways, diet, and microbiota composition. Because 

BALB/C and C57/BL6 mice vary in their response to DSS-induced colitis, study of the 

differing pro-inflammatory cytokines between the two models might illuminate an 

alternative cytokine as the driving force for inflammation in BALB/C mice. Additionally, 

comparison of the genetic backgrounds of the two mouse strains might shed light on 

genetic factors behind non-TNFa-mediated colitis. 
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Impact of Results on Current Directions in IBD Research- Alternative Therapeutics 

for Non-Responders 

             Overview. The failure of current pharmaceuticals to completely ameliorate colitis 

has led current IBD research to broaden its horizons. Traditionally, the focus has been on 

anti-inflammatory agents that modulate the immune system, with the intestinal immune 

response as the key focus of developing therapies (Bernstein, 2015). Research has now 

shifted its focus to developing new therapeutics, investigating the role of the gut 

microbiota in IBD development, and improving clinical assessment protocols and clinical 

goals to optimize personalized patient treatments (Löwenberg & Haens, 2015; Marchesi 

et al., 2015; Levesque et al., 2015).  

             Novel Therapeutics for IBD. Recently, various novel drugs have been evaluated 

in clinical trials, showing promising outcomes in IBD patients. These drugs include small 

molecules interfering with intracellular signaling pathways and therapeutic antibodies 

directed against extracellular targets.  

             Golimumab, a novel anti-TNFa monoclonal antibody, has recently been approved 

by the US Food and Drug Administration (FDA) and the European Medicines Agency 

(EMA) for UC patients with moderate to severe IBD (Löwenberg & Haens, 2015). 

Induction treatment with golimumab in UC patients naïve to biologic treatment 

significantly increased clinical response, remission, and mucosal healing rates at week 6 

compared to a placebo (Sandborn et al., 2014). 

             Several agents interfering with leukocyte trafficking have been developed to 

selectively target cell adhesion molecules and interfere with T-cell trafficking. The 

recently developed therapies vedolizumab, etrolizumab, and PF-00547659 are more gut 



 

68 

selective than previous leukocyte trafficking drugs, and have so far not led to progressive 

multifocal leukoencephalopathy (PML) (Löwenberg & Haens, 2015). 

             Orally active small molecules represent novel therapeutics that interfere with 

intracellular signaling and have lower production costs than therapeutic antibodies. So 

far, Janus kinase (JAK) inhibitors are the most developed small molecules, one of which 

has already been approved and marketed for treatment of rheumatoid arthritis. JAKs play 

a major role in regulation of cell proliferation, differentiation, and immune cell function. 

JAK-dependent signaling pathways are known to be involved in chronic inflammatory 

pathologies, such as rheumatoid arthritis and IBD. Thus, JAK inhibition is a novel 

approach to IBD treatment as an anti-inflammatory therapy (Löwenberg & Haens, 2015). 

             Gut Microbiota Modulation as an IBD Therapy. Early studies of intestinal 

bacteria in IBD pathogenesis focused on identifying a specific cell population that could 

potentially initiate colitis. Recently, the realization that the gut microbiota as a whole is 

altered in IBD has shifted the focus to microbiota modulation as a therapy. Changes in 

gut microbiota composition, such as a reduction in Firmicutes coincident with an increase 

in Bacteroidetes, have been reported in patients with IBD. Furthermore, certain changes 

have been clearly linked to either CD or UC. 

             Several clinical trials have investigated modulation of the microbiota in IBD 

through antibiotics, probiotics, prebiotics, enteral nutrition, and fecal transfer. 

Randomized controlled trials of antibiotic combinations in CD and UC have 

demonstrated beneficial effects and antibiotics are a popular treatment for perineal 

fistulizing CD. While proof of safety and efficacy are lacking for the use of probiotics, 

there are promising results for E. coli Nissle 1917 as a maintenance therapy for UC. 
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Prebiotics are food substances that are not digested in the small intestine and promote 

selective growth of beneficial bacteria in the colon. To date, no proof of benefit from 

prebiotic treatment exists for IBD patients, although their use is still being investigated. 

            Modulation of enteric nutrition through specialized dietary formulations has 

demonstrated effectiveness in treatment of pediatric CD. Thus, this approach has been 

widely adopted by pediatric gastroenterologists. Finally, fecal transfer has been 

considered in the treatment of IBD; however, in IBD, the microbiota is altered very 

permanently and preliminary data on randomized controlled trial of fecal transplantation 

by enema in UC was negative (Bernstein, 2015). Thus, investigation of definitive 

microbiota abnormalities in IBD is ongoing with the hope that better understanding will 

lead to novel therapeutic approaches. 

             Improvement of Clinical Assessment and Practices. Therapeutic advances and 

better understanding of IBD have led to a shift in the assessment of disease activity, as 

remission targets are more achievable (Walsh et al., 2016). IBD management goals have 

been based on composite indices which incorporate symptoms, signs, laboratory test 

results, and endoscopic assessments. Because these indices are complex and not intuitive 

to clinicians, or individual patient phenotypes, there is a disconnect between clinical trials 

and practice. Consideration of patient-reported outcomes, in addition to use of these 

composite indices, could provide a clinically meaningful and scientifically valid 

assessment of disease activity (Levesque et al., 2015). Thus, focus has shifted to fine-

tuning disease activity assessment protocols and combination therapies with the hopes of 

personalizing IBD management plans to individual patients. 
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             One aspect of this new goal is to predict patient response to anti-TNFa therapies 

so as to design a practical management plan to optimize response prior to treatment. One 

recent study formulated clinical algorithms that employ therapeutic drug monitoring to 

determine the underlying cause of primary non-response and secondary loss of response 

(Figure 32). Ultimately, these algorithms should allow clinicians to identify which 

patients are most likely to respond to anti-TNFa therapies and optimize drug therapy for 

those who are losing response (Ding et al., 2015). 

             Additionally, new serological markers are being utilized in the prediction of IBD 

patient outcomes. So far, only anti-neutrophilic cytoplasmic antibodies (ANCA) and anti-

Saccharomyces cerevisiae antibodies (ASCA) have demonstrated diagnostic ability and 

their simultaneous use allows for distinction between CD and UC. More recently, 

antibodies such as anti-glycoprotein 2 (anti-GP2) and anti-granulocyte macrophage 

colony-stimulating factor (anti-GM-CSF) have been identified in IBD patients. GP2 is 

thought to play an immunomodulatory role in the intestinal immune system, while GM-

CSF promotes myeloid cell maturation and is necessary for homeostatic responses to 

tissue damage. Both proteins have been demonstrated to be neutralized in the serum of 

IBD patients, while their antibodies are up-regulated (Bonneau et al., 2014). Thus, 

identification and use of serological markers could improve IBD diagnosis and optimize 

personalization of management plans. 

 

Limitations of this Study 

            Type of Murine Colitis Model. The DSS model represents only one type of 

colitis mouse model and presents potential limitations. Because the mechanism behind 



 

71 

DSS-induced colitis is poorly understood, no potential systemic effects have been 

identified (Dieleman et al., 1994); thus, we cannot control for any underlying issues that 

might skew our study. Furthermore, chemically-induced colitis models receiving a drug 

or vehicle treatment could be experiencing drug interactions that researchers are unaware 

of. Ideally, a model of colitis would be generated in which BALB/C mice spontaneously 

develop intestinal inflammation as a result of genetic and environmental factors. 

However, the only known murine models that develop spontaneous colitis are the 

SAMP1/Yit or C3H/H3JBir models which were referenced in the introduction (Hoffman 

et al., 2002). Induction of spontaneous colitis in BALB/C mice would require mutations 

in IBD-associated genes similar to those observed in human IBD, the exact details of 

which would take time and extensive resources to determine. 

Method of TACE Inhibition. TACE inhibition is a novel approach to TNFa 

blockade in inflammatory pathologies. Reducing TNFa upstream of membrane shedding 

prevents soluble TNFa production, thus effectively down-regulating the amount of 

TNFa that can activate TNFRs (Ruuls et al., 2001). However, TACE inhibition did not 

progress past phase II clinical trials due to liver toxicity concerns (Reviewed by 

DasGupta et al., 2008). It remains to be seen whether liver toxicity occurs in response to 

TACE inhibitor use in mice and if the effects of liver toxicity could affect our colitis 

model. 

As mentioned earlier, we do not know of any drug interactions between DSS and 

DPC-333; if an interaction exists, this could also affect our study. Additionally, DPC-333 

was solubilized in 25 mM citric acid (CA) saline; although our water control group 

accounted for any adverse effects to CA saline, we do not know what those effects might 
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be. Furthermore, administering DPC-333 through twice daily IP injection caused stress to 

the mice, as well as abdominal bruising. For this study, an ideal TACE inhibitor would be 

bioactive only in the target tissue (i.e. the colon) following oral administration, thus 

eliminating the pain and stress associated with needle injections. 

Confirmation of Role for TNFa in Colitis Development. Blocking TNFa 

signaling by TACE inhibition is effective in preventing soluble TNFa production, thus 

reducing the amount of TNFa that could activate membrane-bound TNFRs on other 

inflammatory cells (Ruuls et al., 2001). However, TACE inhibition does not completely 

prevent TNFa signaling; it is possible for membrane-bound TNFa to interact with 

TNFRs on neighboring inflammatory cells that come into contact with the plasma 

membrane (Figure 33) (Campbell et al., 2003).  

Generation of a TNFa knockout (KO) or a TNFR KO mouse, in which TNFa 

signaling is completely ablated, would allow for conclusive study of the role of TNFa in 

the BALB/C colitis model. Convincing evidence that TNFa is not involved in the 

development of colitis in BALB/C mice would be provided if TNFa is effectively 

knocked out in these mice yet colitis development still occurs. Ideally, a mouse would 

have to be generated in which TNFa knockout only occurs in the colonic epithelium and 

mucosal tissues. One major limitation to this approach is that infiltrating inflammatory 

cells would still produce TNFa; thus, ablation of TNFa signaling in leukocytes would be 

necessary. However, this systemic ablation of TNFa signaling would induce systemic 

side effects, such as immunosuppression and prolonged recovery from injury that could 

skew the study (Bruce et al., 1996). Developing a perfect model in which to study the 

role of TNFa in the development of colitis in BALB/C mice may be impossible. Further 
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study of current models is necessary to understand all of the interactions involved and 

ensure that future colitis studies can control for unwanted systemic and local side effects. 

  

Overall Conclusions 

             Management and treatment of IBD proves difficult due to the complexity of the 

mechanisms involved in pathologic inflammation. In fact, it is possible that there are 

factors yet to be discovered. Currently, anti-TNFa therapies are the standard in IBD 

treatment as it has been established that TNFa drives inflammation in many 

inflammatory diseases; however, one-third of IBD patients do not respond to anti-TNFa 

therapies and many primary responders exhibit secondary loss of response (Papadakis et 

al., 2005). This study demonstrates the failure of BALB/C mice to respond to anti-TNFa 

therapy via TACE inhibition in a DSS-induced model of colitis, suggesting that forms of 

colitis exist in which TNFa is not the driving force for inflammation. This finding 

highlights the need for new approaches to IBD management in unique patient cohorts and 

supports the endeavors of current research to formulate personalized management plans 

for IBD patients. 
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Tables 

Table 4. Two colitis models emphasize role for genetics in colitis development. During 
DSS administration, BALB/C mice develop an acute colitis characterized by the up-
regulation of cytokines involved in a macrophage-mediated inflammatory response. 
Following DSS termination, BALB/C mice enter a recovery phase in which they are 
symptom-free within 2 weeks and completely recovered by day 28. In contrast, C57/BL6 
mice progress to a severe chronic colitis following DSS termination characterized by the 
up-regulation of cytokines involved in T cell-mediated inflammation. This study 
concluded that genetic background plays a role in the development of colitis (Adapted 
from the American Journal of Physiology, Acute colitis induced by dextran sulfate 
sodium progresses to chronicity in C57/BL6 mice but not in BALB/C mice: correlation 
between symptoms and inflammation, Melgar et al., 2005, with permission from the 
American Physiological Society). 
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Figures 
 

 
 
Figure 31. Average disease activity index (DAI) during development of colitis in 
C57/BL6 mice. DAI was quantified through scoring of clinical parameters, such as 
percent bodyweight loss, rectal bleeding, and stool consistency. Values are groups means 
± SEM. DSS consumption significantly increased DAI (*p < 0.05; DSS + veh versus 
respective H2O + veh day). Although not statistically significant, there appears to be a 
trend for improvement in DAI following TACE inhibition (p = 0.0758). 
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Figure 32. Proposed algorithm for managing primary nonresponse to anti-TNF therapy in 
Crohn’s disease. These algorithms employ therapeutic drug monitoring to determine the 
underlying cause of nonresponse or loss of response to anti-TNF therapies. This strategy 
should allow clinicians to identify patients that are most likely to respond to anti-TNF 
treatments and optimize therapies for those who are losing response (Reproduced from 
Alimentary Pharmacology & Therapeutics, Systematic review: predicting and optimising 
response to anti-TNF therapy in Crohn’s disease - algorithm for practical management, 
Ding et al., 2015, with permission from John Wiley and Sons). 
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Figure 33. Membrane-bound TNF-alpha can interact with TNF receptors on neighboring 
cells. TNF-alpha signaling can occur through either soluble or membrane-bound TNF-
alpha binding to membrane-bound receptors on other inflammatory cells (Reprinted by 
permission from Macmillan Publishers Ltd: Immunology and Cell Biology, Campbell et 
al., copyright 2003). 
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