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ABSTRACT 

Since the characterization of the oligomer d(CGCGAATTCGCG) has been published 

by Dickerson et al., computational studies have been carried out to produce an accurate 

3D model. These models are important for visualizing how certain DNA repair enzymes, 

such as the glycosylases, recognize sites of damage by signatures of local 3D distortion. 

Using 
1
H NOESY-generated internuclear distances to replicate the model of this 

oligomer and a derivative with an 8-oxo-dA5 lesion, we propose characteristics of helical 

distortion that DNA glycosylases might use for identifying this form of damage. In 

addition, this method of comparison can be used to study the repair signatures of other 

known DNA lesions. 
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CHAPTER 1. BIOLOGICAL BACKGROUND 

 

1.1 Introduction 

Deoxyribonucleic acid (DNA) is a modular and repetitive molecule with multiple 

levels of structure. It was identified by Friedrich Miescher in 1868 and demonstrated as a 

genetic carrier in 1944 by Avery, MacLeod, and McCarty.
[1]

 In the famous experiment by 

James Watson and Francis Crick, DNA was posited as a double helix, held together by 

hydrogen bonds.
[2]

 As the genetic blueprint and legacy of all life, DNA is necessarily 

protected and repaired when modified. While organisms capitalize on the diversity 

offered by mutation, such as in the adaptive immune system and by evolution, many 

regions are necessarily conserved and result in harm when altered. Accordingly, repair 

processes are vital. 

The regulation and mechanism of DNA repair has been studied intensively, but 

the detailed process in which enzymes recognize damage is uncertain. Traditional models 

of enzyme-substrate recognition by molecular groups cannot always apply for DNA, 

since it is a redundant molecule and docking seems to be more dependent on local helical 

distortions and dynamics. In this thesis, I hope to clarify part of the repair signature for 

DNA damage by focusing on the 8-oxo-dA lesion, which is where the hydrogen atom at 

the 8
th

 carbon in adenosine is replaced by oxygen. The lesion, inserted at position A5 

(underlined) into CGCGAATTCGCG, known as the Dickerson dodecamer,
[3] 

will be 

studied by way of 
1
H NOESY to glean insights about its 3D structure. This project 

represents the initial phase in modeling the 8-oxo-dA damage in DNA by setting into 

motion techniques by which internuclear distances are discovered. In addition, methods 

for incorporating these distances into computer-simulated models will be discussed.  
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Figure 1.2.1. General structure of the 4 nitrogenous bases, showing the numbering 

scheme, base-pairing, and the origin of the two grooves in DNA.Dashed lines indicate 

Watson-Crick base pairs. The nitrogens N1 of the pyrimidines and N9 of the purines 

connect to the deoxyribose moiety of DNA (not shown). From left to right: A = Adenine, 

T = Thymine, G = Guanine, C = Cytosine. 

 

 

1.2  DNA Structure 

The primary structure of DNA is its sequence of units, the nucleoside 

monophosphates, also known as nucleotides. These are composed of a 5-membered sugar 

(deoxyribose) linked to a phosphate and one of 4 nitrogenous bases: Adenine (A), 

Guanine (G), Cytosine (C), or Thymine (T). Nucleosides are connected by phosphates 

covalently in a polyester chain, called the phosphodiester backbone at the 5′ and 3′ ends 

of the sugar, so-named by the number given to the carbons at those positions. At the 1′ 

(anomeric) position, the base is connected by a β-glycosidic linkage, which indicates that 

the stereochemistry (R or S) of the two stereocenters is not the same. The nitrogenous 

bases are further classified as pyrimidines or purines, which respectively have one or two 

heterocyclic rings. In healthy DNA, the purines (A and G) form hydrogen bonds with the 

pyrimidines (T and C) on the opposing strand specifically as A=T and G≡C, although 
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there are exceptions, such as where G-G hairpins and quadruplexes occur naturally.
[4]

  

These forces collectively create the biopolymer DNA with the paired strands running 

antiparallel to each other. 

The secondary structure of DNA reveals how and in what arrangement bases pair, 

illustrated in tandem with tertiary structure in F1.2.2. In secondary structure, names are 

ascribed to the few configurations in which hydrogen bonds connect bases, modeled after 

Watson and Crick,
[2]

 Hoogsteen,
 [5]

 and others.
[6]

 In addition, bases can pair with non-

neighbors on the opposing strand or members on the same strand, although this is 

generally reserved for RNA and viral DNA. Such forms can produce bulges, hairpin 

loops, cloverleaves, and other local features which, together with proteins or other 

molecules, can fold into structures that have catalytic functionality.
[7,8,9]

 Lastly, the nearly 

planar arrangement of the bases in double-stranded DNA (dsDNA) is packed close 

enough that electrostatic attractions occur, known as π-stacking. In DNA, stacking is 

generally a result of π-orbital overlap and substituent effects, but the actual contribution 

of each is an area of disagreement and active research.
[10,11]

  

Single-stranded DNA (ssDNA) automatically pairs with a neighboring strand 

under physiological conditions and disruption of this is termed denaturation or 

melting.
[12,13]

 The rejoining of strands after denaturation, or annealing, is a useful 

technique for ensuring that all of a DNA sample is double stranded for analysis.
[14]

 This 

process involves heating the DNA to its melting point, followed by cooling to room 

temperature.  
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Figure 1.2.2. Differences in helicity seen by four of the many possible tertiary structures 

of DNA. B-DNA is the most common form in organisms. In addition, secondary structure 

is visualized by focusing on the differences in base pairing. Replicated with permission 

from Xiang-Jun Lu & Wilma K. Olson.
[51] 

 

 

The twisting of dsDNA is its tertiary structure, and usually takes the form of a 

right-handed double helix, but also has left handed and triple helical forms. Those 

commonly encountered in the biological setting are named by letter and can be seen in 

F1.2.1. There are two gaps between rounds of the helix named the major and minor 

grooves. The differences in phosphate torsion angles and sugar puckering between these 

forms of DNA are the primary factors that account for the distances in these grooves, 
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which in turn affect how much base stacking is involved. F1.2.2 provides another way to 

differentiate the major groove and minor grooves. 

The compaction of the helix is mathematically treated with a linking number, Lko, 

which is a combination of twist (tw) and writhe (wr). Twist is the number of times one 

strand of DNA is wrapped around the other in the right-handed (clockwise) direction, 

while writhe is the number of times the axis of a closed loop of DNA is coiled. For 

reference, B-DNA has 10.4-10.5 base pairs per turn.
[15]

 The longer it is, the greater the 

number of turns and thus the higher the linking number. Since B-DNA is a right-handed 

helix, its linking number is positive and any deviation from this is considered 

supercoiling. 

Positive supercoiling condenses DNA, while negative supercoiling unwinds it. 

Since local unwinding is necessary for transcription and translation; natural dsDNA 

exhibits negative supercoiling in those regions. The stress of supercoiling creates 

emergent structures, such as solenoids and figure-eights which primarily depend on the 

number of coils, pH, and structural proteins to support the topology. Supercoiling is 

initiated in cells by topoisomerases, which cleave the phosphodiester backbone of one 

strand of dsDNA (Type I topoisomerase) or both (Type II). Type I topoisomerases 

change the linking number of dsDNA by causing one strand to rotate about the other, 

then repair the nick to preserve the changes. Type II topoisomerases cleave both strands 

of DNA and insert a double-stranded fragment.
[16]

 In this way, the degree of helical 

constriction is modulated to grant site-specific regulation. Owing to its relationship with 

damage recognition by repair enzymes, the helicity of the DNA studied in this thesis will 

be semi-empirically quantified and explored in the Discussion section. 
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Nuclear DNA is wrapped around histones and other structural proteins. This 

comprises a quaternary structure, the chromosomes, which pack, protect, and govern 

accessibility further. DNA is rarely naked outside the loci of transcription and replication. 

Although an important feature in the landscape, quaternary structure will not be discussed 

in detail because it is largely a result of DNA-protein interactions.
[17]

 Even with these 

levels of protection, damage does occur. 

This collection of research will refer to numbering scheme in F1.2.3 extensively. 

Each number on the bases represents a carbon in the cycle. If a hydrogen atom is attached 

to it, it is named after that number. 

 
 

Figure 1.2.3. Numbering scheme of the four major DNA bases and sugar. Blue circles 

indicate non-labile 
1
H nuclei, while red circles indicate those nuclei which are 

eitherabsent or exchangeable in the solvent. Only Hydrogens encircled in blue provide 

NMR signals in the experimental setup. 
 

 

 

To distinguish between hydrogens with non-degenerate NMR signals pointing in 

different directions on the same carbon, the prime (′) and double prime (″) are also used. 

For the experiments outlined in this thesis, the 1′, 2′, 2″, and 3′ hydrogen nuclei on the 

sugar will be measured. For pyrimidines, the C5H and C6H will be recorded, with the 

exception of thymines, which have a methyl group instead of C5H. On the purines, only 

the C8H will be measured. By tradition and because of a similar chemical shift, the C8H 

on purines will be referred to as the Base proton, as will the C6H on the pyrimidines. In 
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addition, each nucleotide will be numbered by its position in the oligomer, from 1 to 12, 

as C1, G2, C3, etc. 

 

1.3 DNA Damage 

DNA inherently resists certain forms of modification compared to RNA. As a 

general rule, DNA incorporates the thymine base, whereas RNA uses uracil. The C5-

methyl on thymine has been found to stabilize DNA by contributing to base-stacking 

interactions.
[18]

 In addition, the presence of a 2′ hydroxyl group on the sugar in RNA 

leaves it open to hydrolysis by a suitable nucleophile.
[18]

 The 2′ hydroxyl is absent in 

DNA and is the reason for the “deoxy” affix. In these two aspects of stability, DNA has 

been considered the more appropriate candidate for representing the genome.  

DNA can be damaged in a variety of ways. High energy radiation, such as 

ultraviolet light can cause dimerization of adjacent pyrimidines and double strand 

breakage. DNA can be modified by reactive oxygen species (ROS), which are oxygen-

containing radicals. Radicals possess one or more unpaired valence electrons, making 

them highly reactive because the pairing of electrons is very energetically favorable.  

In this thesis, the form of oxidative DNA damage studied is the 8-oxo-2-deoxyadenosine 

(8-oxo-dA), seen in F1.3.1. The lesion can form when ultraviolet radiation excites 

molecular oxygen to its singlet state, which reacts with DNA. Several other pathways to 

its formation occur in the body as well, including direct attack by hydroxyl radicals. The 

same type of damage occurs with deoxyguanosine (dG) and the two species have been 

used as markers of oxidative stress in animal models.
[19]
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Figure 1.3.1. Reaction of deoxyadenosine with singlet oxygen to form the 8-oxo-2-

deoxyadenosine adduct. 

 

 

Commonly encountered ROS in cells have a lifetime on the order of nanoseconds, 

such as for OH•, HOO•, and O2
-
•, depending on what chemical species they encounter.

[20]
 

Singlet oxygen lasts relatively longer, at around 3-4µs in a cell
[21]

 and 48µs
[22]

 in aqueous 

solution. Nitric oxide NO• is an exception, lasting up to 2s
[23]

 in the blood between 

erythrocyte transfer to tissues, where it acts as a molecular messenger. The ultimate 

lifetime of NO• is much longer, as it can participate in many cellular processes. 

 

 

Figure 1.3.2. Reaction of malondialdehyde with guanine to form an alkylated purine 

derivative. 

 

 

deoxyadenosine (dA)       endo-peroxide-dA                   8-oxo-dA                  8-hydroxy-dA 

                                              intermediate 

       malondialdehyde               guanine                     pyrimido[1,2-a]purin-10(3H)-one 
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Evidence exists that ROS can cause damage indirectly by forming reactive 

byproducts. They can be introduced into the body by cooking and eating, whereby 

oxygen from the air reacts with heated foods and creates a cocktail of products, some of 

which are harmful. Malondialdehyde (F1.3.2) is an example that can be encountered by 

ROS-induced rearrangement of oils during cooking, which can initiate electrophilic 

reactions and form adducts with proteins and purines.
[24]

  

Reducing sugars can react with amino groups, including those of nucleic acids. 

These are a class of sugars that either have an aldehyde group or can isomerize into 

having one. This proceeds by the Maillard reaction, simplified in F1.3.3, resulting in 

advanced glycation endproducts (AGEs). Although AGEs are not ROS, they are often 

grouped with them, since they are harmful and indirectly participate in the generation of 

ROS in the body. By one route, AGEs that crosslink to mitochondrial proteins can lead to 

leaking of ROS during oxidative phosphorylation.
[25]

 

 

 

Figure 1.3.3. An example of the Maillard reaction, where reducing sugars can attach to 

free amino groups.  
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AGEs of proteins in the lens of the eye can turn them into photosensitizers, which 

enter excited states and participate in undesirable electron transfer reactions.
[26]

 Damage 

to proteins involved in regulating DNA reduces the ability of cells to recover, making 

AGEs and ROS strong candidates for part of the reason why organisms age. 

DNA modified by reactive molecules often have abnormal properties.
[19]

 This is 

especially prominent when nucleotides have participants in base-pairing overridden by 

new functional groups. By interfering with replication, regulation, and causing repair 

mechanisms to take place which do not always replace the site of the lesion with the 

correct base, DNA adducts are mutagenic. 

 

1.4  DNA Repair 

Mutations and damage are of great consequence because DNA uniquely serves as 

a permanent copy of the cell and mitochondrial genomes. Since these alterations can 

impede cell function, several mechanisms for repairing damaged DNA have evolved. 

Repair pathways can be divided into two basic classes: 1) direct reversal of the chemical 

reaction that caused the damage and 2) removal of the damaged base followed by its 

replacement with newly synthesized DNA.
[27]

 

Only a few types of DNA damage are repaired using direct reversal. Two 

examples are the repair of pyrimidine dimers that can result from exposure to UV light 

and alkylated guanine residues that have been modified by methyl or ethyl groups added 

to the O
6
 position on the purine ring.

[27]
 Although direct reversal is an efficient way of 

dealing with a specific type of DNA damage, excision repair is a more general 

mechanism for fixing a wide variety of chemical alterations to DNA.  
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Figure 1.4.1. The general mechanism of base-excision repair (BER) as it proceeds 

through the long and short patch pathways.
[27]

 

 

In excision repair, the damage is recognized and removed, either as free bases or 

nucleotides. The resulting gap is then filled in with newly synthesized DNA, using the 

complementary strand as a template. There are three different types of excision repair 

mechanisms: 1) base-excision repair, 2) nucleotide-excision repair and 3) mismatch 

repair.  

Base-excision repair (BER) arises when damage to single bases is recognized and 

they are removed from the DNA molecule. This is the mechanism by which the 8-oxo-dA 

lesion studied in this thesis is repaired.
[28]

 

The removal of a damaged base is catalyzed by DNA glycosylase. DNA 

glycosylase is an enzyme that cleaves the bond linking the base to the deoxyribose of the 

DNA backbone. This will yield a free base as well as an apyrimidinic or apurinic (AP) 
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site, which is a sugar without a base.
[27]

 These sites are repaired by AP endonuclease, 

which cleaves the molecule adjacent to the AP site. The remaining deoxyribose moiety 

can then be removed, thus leaving a single nucleotide gap.  DNA polymerase and ligase 

fill the gap via the long or short patch as shown in F1.4.1. The choice between long or 

short patch is thought to be influenced by the type of lesion, the cell cycle stage and 

whether the cell is terminally differentiated or actively dividing.
[29]

 Some lesions, such as 

oxidized or reduced AP sites, cannot be cleaved by the lyase, so they must be processed 

by the long-patch pathway.
[29]

 

 The 8-oxo-dA lesion studied in this thesis is repaired by the BER pathway. It was 

shown in the 1990s that eukaryotic 8-oxo-dG-DNA glycosylase (OGG1) and mammalian 

endonuclease VII-like protein 1 (NEIL 1) could efficiently remove 8-oxo-dA, but only 

when it is paired with cytosine.
[30]

 8-oxo-dA•dC pairs can occur when the oxidized 

deoxyadenosine triphosphate (dATP) is misincorporated during DNA replication.
[16]

 It 

has only recently been reported that human thymine-DNA glycosylase (hTDG) is able to 

excise 8-oxo-dA from its pair with thymine; the form that occurs when normal dA•dT 

pairs are oxidized directly.
[30]

 The results of this thesis are most relevant to this repair 

pathway, since the artificially-induced lesion in the dodecamer is across from a dT, not a 

dC. Although this thesis will attempt to describe the type of helical distortion for enzyme 

recognition, the excision process itself occurs at the same rate regardless of the flanking 

sequence.
[30]

 

In addition to the removal of the 8-oxo-A lesion, BER is the process by which 

uracil is removed from the DNA molecule. Uracil can appear by two primary 

mechanisms: 1) it can accidentally be incorporated in the place of thymine during 

replication and 2) by the deamination of cytosine.
[27]

 Other abnormal bases that can be 



 

13 

removed by base-excision include hypoxanthine formed by the deamination of adenine, 

most types of alkylated purines, and bases damaged by oxidation or ionizing radiation.
[13]

 

Whereas BER involves single base pairs, Nucleotide-excision repair (NER) 

removes damaged bases as part of an oligonucleotide containing the lesion. This pathway 

usually repairs bulky, helix-distorting lesions, which often result from exposure to UV 

light or reactions with various carinogens. There are nine major proteins involved in 

nucleotide-excision repair in mammalian cells, largely identified from studies on 

individuals with xeroderma pigmentosum (XP), a rare genetic disorder that causes the 

affected individual to be extremely sensitive to UV light and to develop multiple skin 

cancers on regions of their body upon exposure.
[31]

 Nucleotide-excision repair can be 

divided into two subpathways: global genomic and transcription coupled.
[32]

 The two 

differ in how they recognize DNA damage, but share the same process for lesion incision, 

repair and ligation, as can be seen in F1.4.2.  

The basic model for mammalian cells begins with the XPA protein recognizing 

the damaged DNA and forming complexes with the other proteins involved in the repair 

process.
[27]

 These proteins include XPB and XPD, which act as helicases that unwind the 

damaged DNA. The binding of XPA to the lesion also recruits XPF and XPG to the 

repair complex,
[27]

 which are endonucleases that cleave the DNA on the 5′ and 3′ sides of 

the damaged site, removing an oligonucleotide consisting of approximately thirty bases. 

The resulting gap is filled by DNA polymerase δ or ε and then sealed by ligase. 

Mismatch repair (MR) recognizes base-pairing violations that result from 

insertions, deletions and misincorporations, which can arise during DNA replication and 

recombination. In humans, mismatched pairs are principally removed by the proofreading 

activity of DNA polymerase δ and ε during replication and by a complex of recruited 

http://www.ncbi.nlm.nih.gov/books/n/cooper/A2886/def-item/A2896/
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proteins (MutL, MutS, MutH, and PCNA) during any time of the cell cycle. RNA is 

proofread by aminoacyl-TRNA synthetases.
[33]

 

When DNA polymerase recognizes an incorrect base pair, it will move backwards 

by one nucleotide.  The 3′-5′ exonuclease activity of the enzyme allows the incorrect pair 

to be removed.  Following excision, the polymerase will reinsert the correct base and 

replication will continue forwards. The ones that are missed are subject to later correction 

by the Mut protein system. Several Mut homologs are present in humans, classified as 

MutS, MutL and MutHtypes depending on their mechanism of action.
[27]

  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.4.2. The two subpathways of nucleotide-excision repair, illustrating the 
different complexes of proteins recruited to the lesion site during transcriptionally 
active (1A) and inactive DNA (1B).[32]
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Figure 1.4.3. The double-strand break repair (DSBR) and synthesis-dependent strand 

annealing (SDSA) models of homologous strand recombination.
[35] 

 

 

Cells can initiate nucleotide-excision repair (NER) when bulky DNA adducts 

such as thymine dimers are generated by ultraviolet light, seen in F1.4.2. Like mismatch 

repair, this proceeds by two pathways. In transcription-coupled NER, the bulky lesion 

causes RNA polymerase to become clogged, resulting in the recruitment of a protein 

complex to liberate it. In the global genomic NER pathway, DNA that is not undergoing 
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transcription is recognized and bound by a separate complex of proteins. These two 

processes differ only by the stages of damage recognition; the lesion is excised and 

replaced by the same repair enzymes.Another type of  repair process is homologous 

strand recombination (HR). Here, two similar or identical molecules of DNA align and 

one serves as the template of exchange for the other.
[34]

 HR is most widely used by cells 

to accurately repair harmful breaks that occur on both strands of DNA, known as double-

strand breaks. The processes can vary between organisms and cell types, but generally 

follow the same basic steps as F1.4.3. After a double-strand break occurs, the sections of 

DNA around the 5′ ends of the break are cut away by a process called resection. Next, an 

overhanging 3′ end of the broken section invades and links to the non-damaged DNA 

template, forming an X: the Holliday junction. After strand invasion, the sequence of 

events can follow two main pathways: 1) double-strand break repair (DSBR) or 2) 

synthesis-dependent strand annealing (SDSA).
[35]

 

The DSBR pathway is unique in that the second 3′ overhang also forms a 

Holliday junction with the homologous chromosome. These double Holliday junctions 

are converted into recombination products by nicking endonucleases, which cut one DNA 

strand.
[35]

 The DSBR pathway commonly results in crossover, where large segments of 

DNA are swapped between two strands. In the SDSA pathway, the 3′ invading strand is 

extended along the recipient DNA duplex by a DNA polymerase. It is released as the 

Holliday junction between the donor and recipient DNA molecules slides in a process 

called branch migration.
[35]

 The newly synthesized 3′ end can then anneal to the other 3′ 

overhang in the damaged chromosome through complementary base pairing. 

Homologous strand recombination that occurs during DNA repair tends to result in non-
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crossover products, meaning the damaged molecule is restored to its original state before 

the double-strand breakage.  

 

1.5  The Dickerson Dodecamer 

The Dickerson dodecamer (DDD) has been studied extensively by 1D and 2D 

NMR, X-ray crystallography, and modeling software. Among the many reasons for its 

utility, the Dickerson dodecamer was among the earliest DNA oligomers to be modeled. 

It adopts the B-DNA conformation, is stable, and can be cleaved by EcoRI, a restriction 

endonuclease whose structure has been determined.
[36]

 

In the first paper by Richard E. Dickerson in 1981,
[3]

 advances in DNA synthesis 

made it possible to support the claims of Watson and Crick with crystals large enough for 

single-crystal X-ray analysis, whereas the prior work in 28 years had been supported 

mainly by X-ray diffraction. The study generated the first working model of the B-DNA 

dodecamer with main chain and glycosyl conformation angles and set the stage for 

further studies, carrying the eponym. The first NMR study on the Dickerson dodecamer 

was performed in 1983 by B. R. Reid and coworkers, where the DNA sample was 

prepared in D2O and most of the non-exchangeable 
1
H nuclei were assigned by chemical 

shift via COSY and NOESY.
[37]

 Distance measurements were attempted by the same 

group on a modified (hairpin) version of the dodecamer, since it could switch between 

hairpin and straight chain forms in solution.
[38,39]

 

The first NMR-derived distance measurements for the Dickerson dodecamer 

appeared in 2000 by Ad Bax and colleagues, stabilized with phospholipid bicelles that 

conferred a liquid crystal phase.
[40]

 This model, along with the original X-ray 

crystallographic model by Dickerson, forms the basis for structural comparison of the 
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Dickerson dodecamer in this laboratory, which was obtained without any stabilizing 

agent. This was done for two reasons. Firstly, a stabilizing agent might mask aspects of 

helical distortion in the 8-oxo-dA modified dodecamer. Secondly, the conformational 

switching between hairpin and straight chain DNA after annealing was not observed at 

the temperature (25 °C) and salt concentrations (25 mM PO4
3-

). The predominant species 

observed in this thesis was B-DNA with peaks suggestive of hairpins appearing 

inconsistently and at very low intensity. 
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CHAPTER 2. COMPUTATIONAL CHEMISTRY 

 

2.1  Density Functional Theory 

Density functional theory (DFT) is an exact mathematical treatment for describing 

the ground state properties of an electronic system. Given the number and type of atoms 

in a molecule, their energy-minimized bond distances, angles, and connectivity can be 

approximated with increasing accuracy (but to a limit) based on the number of atomic 

orbitals represented by basis functions. Instead of solving the time-independent 

Schrödinger equation forthe ground state properties, which poses a many-body problem 

due to electron-electron interactions, DFT treats the molecule with a single set of electron 

densities using the Kohn-Sham equations
[41]

 and approximates the interaction energy 

between electrons by the Local Density Approximation (LDA).
[42]

 This reductionist 

approach, representing many complex interactions with fewer variables defines it as a 

functional theory, since a functional is a lower-dimensional function of a function.  

One major challenge to solving the time-independent Schrodinger equation is the 

many-body problem. Since the motion of the electron is strongly coupled to that of its 

neighbors, computing time exponentially scales with the number of interacting particles 

added into the system. The Kohn-Sham equations are inspired by the variational 

principle, which states that although a natural system may be impossibly complex, it will 

tend to adopt the lowest energy configuration over time. DFT works by exactly solving 

each electron as non-interacting entities at their ground states and applies a correction 

factor EXC for the approximate interactions between them, named for the exchange and 

correlation energies. The full Kohn-Sham treatment, LDA, and Hamiltonian operation for 

energy is overviewed in App A. 
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The LDA calculates the exchange and correlation energies EXC using Quantum 

Monte Carlo methods (beyond the scope of this text) which are most accurate for systems 

where there is a low level of charge density fluctuation.
[42]

 Since the LDA poorly predicts 

van der Waals dispersions and gives a very poor description of hydrogen bonding, hybrid 

functional are an area of active research, which are based on a combination of computed 

(via the Hartree-Fock formalism) and empirical observations. B3P86 is the set of hybrid 

functionals considered by this thesis because it has been shown to produce hydrogen 

bond distances and energies for individual DNA base-pairs comparable to crystal 

structures when the solvent is simulated with sodium ions.
[43]

 That stated, simulation of 

oligomeric DNA poses a continuing challenge to research in this field due to 

discrepancies in distances caused by base stacking and other forces not present in single 

base pairs.  

DFT can provide very good approximations for certain problems and works best 

for determining structural stability, vibrational properties, and to a lesser degree with 

hybrid functionals, certain electronic properties.
[44]

 DFT is an exact theory by its 

construction, but like other methods of computer simulation, is not a theory where one 

can reach an exact result or use techniques such as longer computation or increase basis 

set size to theoretically come up with the exact result. Even if the user completely 

converges in DFT, there will be some error. Convergence is where the total energy of the 

calculated system differs from the previous iteration by less than a set amount. The 

smaller this amount, the more iterations are required (and therefore longer processing 

time) for the program to stop the fine-tuning. 
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2.2 Quantum Mechanics in Computer Simulation 

As described previously, DFT uses the Kohn-Sham equations to compute the 

charge and spin density for N non-interacting electrons, while the exchange-correlation 

energy (EXC) is accounted for by the LDA. Before the EXC can be understood, it is 

important to introduce the concept of spin in a quantum mechanical system. 

Spin has been notoriously difficult to picture in a classical (Newtonian) sense. It is 

a type of angular momentum attributed to a point particle. Since a point cannot “spin”, 

the word is a substitute for the phenomenon. For non-point particles, it takes 360 degrees 

for the spin of that object to return to its initial state. This is also true for a point particle 

with a spin of 1. However, for an electron with spin of ½, it takes two “revolutions” to 

return to the initial state. This behavior is strange and has no classical counterpart, except 

possibly a Möbius strip, which is a circular ribbon with a half-twist. If a line is drawn 

lengthwise on one side of the Möbius strip, it appears on the back side after one 

revolution, then at the starting position after a second. Translating this to 1 temporal and 

3 spatial dimensions (the classical point of view), a point particle with a spin of 1 would 

rotate in such a way as to cut out a spherical trajectory, while one with ½ spin would 

produce an inverted sphere.  

To demonstrate exchange energy, a detailed description of the Pauli Exclusion 

Principle is required, which states that paired electrons sharing an orbital must have 

opposite spins.
[41]

 Quantum mechanical particles have the unusual property of exchange 

symmetry. In a system of two identical particles where there are two possible states, it is 

impossible to distinguish which particle is in which state. The particles exist in 

superposition for the two states because there is an equal probability for either. This 

superposition of wavefunctions is mathematically treated as a sum or difference of the 
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two states, depending on whether the states are respectively symmetric or antisymmetric. 

Electrons have a spin of ½, which corresponds to an antisymmetric spin state. They are 

classified as fermions, as opposed to bosons with integer spin (symmetric spin states). If 

the electrons have the same spin in the same state (i.e. a shared orbital, since spin and 

spatial coordinates are coupled), their superimposed wavefunctions cancel out to zero, 

meaning that the probability of finding them in that state is zero. Thus, the Pauli 

Exclusion Principle leads electrons with opposite spins to be more likely to occupy 

nearby positions.  

The correlation energy is a much simpler behavior of interacting electrons that 

decreases the coulombic potential. It is generated because the coupling of motion 

between nearby electrons causes them to have trajectories that encounter less repulsive 

force than if they were independent.
[41]

 This feature drops off dramatically with distance 

as well. However, some correlations are not distance-dependent and unpredictable. 

Another reason why DFT can never produce an exact model of a QM system is that 

coupling in the form of quantum entanglement can occur between natural electrons. The 

only way to accurately model entanglement is by knowing beforehand which electrons 

are entangled, which parameters are entangled, and for what duration. This requires 

invoking “hidden variables” that cannot be known definitively by classical computing 

methods.
[45, 46]

 Despite these handicaps, DFT experiments have shown a remarkable 

fidelity to empirical observations. 
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2.3  DNA Simulation 

Owing to the complexity and number of atoms involved, full DFT treatment of 

oligomeric DNA exceeds the current limits of computation. On the other hand, 

techniques based on Newtonian laws of motion such as the UFF (Universal Force 

Field)
[47]

 have inaccurately portrayed some degrees of freedom such as found in helicity, 

leading to the development of more specific methods like CHARMM (Chemistry at 

Harvard Macromolecular Mechanics).
[48]

 

Semi-empirical methods like PM6-DH+, which mix quantum mechanics with 

experimental data have been developed to minimize resource intensity.
[49]

 Small regions 

of DNA can be given DFT treatment however, using the ONIOM multilayered model 

featured in Gaussian 09.
[50]

 In this thesis, the 8-oxo-dA5 lesion of the Dickerson 

dodecamer was modeled in Gaussian 09 with BPV86, while the most relevant semi-

empirical method available for the rest of the molecule was PM6. Distance restraints 

conforming to standards put forth in sections 5.3 and 5.5 were applied to individual 

nuclei. While PM6 is not as accurate as other methods, especially in terms of hydrogen 

bonding, it must be emphasized that the point of the modeling procedure was explorative, 

not quantitative. 

Since Gaussian 09 does not include features for specifying helical and base-

pairing properties, another software tool that will be involved in the analysis is 3DNA,
 [51]

 

which uses a matrix-based approach to detect them. The comparison of these parameters 

for the 8-oxo-A and unmodified DDD sequence are provided in sections 5.5-6. 
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CHAPTER 3. NMR SPECTROSCOPY  

 

3.1  Introduction to NMR 

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool for studying 

molecular structures because it focuses on the spin dynamics of atomic nuclei, which tend 

to persist in relative isolation to the solvent and other intermolecular effects. Samples can 

be analyzed by a range of techniques, from small compounds in one-dimensional proton 

(
1
H) or carbon-13 (

13
C) NMR to large proteins or nucleic acids in 2-dimensional 

NMR.
[52]

 NMR spectra are unique, well resolved, analytically tractable, and often highly 

predictable. NMR can only be practiced where nuclei possess a non-zero spin. Molecules 

with hydrogen are well-suited because 
1
H has a spin of ½, at 99.9% abundance of that 

isotope. In contrast, carbon, nitrogen and oxygen are not easily visible by NMR, at least 

for their most abundant isotopes (
12

C, 
14

N and 
16

O), for which samples have to be 

prepared specially. For DNA in solution, deuterated solvents are helpful in singling out 

hydrogens unable to exchange with the environment. Deuterium(which has a spin of 1) is 

invisible in 
1
H NMR because it has a different resonant frequency due to the presence of 

an additional neutron. This technique was used for studying the Dickerson sequence in 

this thesis. There are a few important concepts for understanding the basics of NMR 

spectroscopy. These include chemical shift, J-coupling, Nuclear Overhauser Effects 

(NOEs) and spin diffusion.
[52]
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3.2 Chemical Shift 

A spinning charge generates a magnetic field, which has a magnetic moment (μ) 

that is proportional and oriented perpendicularly to the axis of rotation. Analogous to 

bodies rotating in space, spin can be viewed as a type of angular momentum. These 

momenta point in stochastic directions in materials until an external magnetic field (B0) is 

applied, conventionally aligned along the +z axis in NMR. In 
1
H nuclei, there are two 

spin angular momentum states that can exist: +½ and -½.
[53]

 The difference in energy 

between the two spin states depends on the strength of the external magnetic field as 

shown in F3.2.1. The difference is usually very small, leading to the requirement of 

strong magnets (~1-20 Tesla) to resolve them. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1. The spin states of 
1
H, a magnetic dipole.

[53]
 The two spin states have the 

same energy where B0 is equal to zero. As the B0 strength increases, the spins diverge. At 

any given field strength, the formula for the difference in E (eV) is provided in terms of 

the B0 (T) and magnetic moment μ (eV/T). 
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Irradiation of the sample with a radio frequency (RF) pulse with energy 

corresponding to the exact spin state separation of a specific set of nuclei can cause the 

excitation of those nuclei to the next higher quantum energy state. As previously stated, 

for spin ½ nuclei such as hydrogen, the energy difference between the two spin states at a 

given magnetic field strength is proportional to their magnetic moment. However, even if 

all protons have the same magnetic moments, they do not give resonant signals at the 

same frequency values.  The difference arises from the varying electronic environments 

around the nucleus of interest.
[53]

 

Electrons around a nucleus can move in response to an applied magnetic field, 

creating localized magnetic fields that oppose the stronger applied field B0. These fields 

can “shield” the proton from B0 so that it must be increased to achieve resonance.
[53]

 Such 

increments, known as chemical shift, are usually very small, but carry important 

information. Since shielding is a result of the local magnetic environment, the chemical 

shift provides information on the structure of the molecule.  

The location of the chemical shift signal is dependent on the strength of the 

external magnetic field as well as the resonance frequency. In order for comparison 

between data sets run at different field strengths, chemical shifts are reported in parts per 

million (ppm) relative to a standard, as per the following equation: 

 

Here, v is the signal frequency in Hertz (Hz) and v0 is the signal frequency of the 

reference compound.
[52]

 Important factors influencing chemical shift include electron 

density, electronegativity of neighboring groups, and anisotropic effects induced by the 

magnetic field. As an example, a nucleus in the vicinity of a more electronegative atom 
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will experience a reduction in electron density. It will thus be de-shielded and the signal 

will appear further downfield (higher ppm). F3.2.2 shows the chemical shifts of protons 

for common functional groups. 

 

 

 

 

 

 

Figure 3.2.2. Chart showing the general distribution of proton chemical shifts associated 

with different functional groups.
[53]

 
 

 

 

When comparing molecular derivatives by NMR, a peak that shifts upfield 

(smaller ppm) reflects a shielded nuclear environment. This can be caused by a greater 

electron density, which protects the nucleus from the external magnetic field. Conversely, 

a downfield (more positive ppm) indicates deshielding, such as when electron density is 

removed by that nucleus moving closer to an electron-withdrawing group. Other 

deshielding effects, which spread density away from the nucleus, include increased π-

electron components of bonding (e.g. alkenes) and electron delocalization of aromatic 

compounds.  
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3.3 Scalar Coupling 

Scalar coupling or J-coupling refers to through-bond interactions between two 

nuclei (typically represented as A and X) with a non-zero spin that cause NMR signals to 

split into multiple peaks.
[52]

 The interaction is indirect and mediated by the electrons of 

the two nuclei: one spin perturbs the spins of the shared electrons, which will then perturb 

the second spin. Since scalar coupling is only propagated through bond orbitals, it can be 

used to tell which atoms are connected. For example, if two ½ spins are scalar-coupled, 

the spectrum of each will be a doublet with the separation between the two lines called 

the coupling constant J.
[52]

 Coupling constants are denoted 
n
JAX, where A and X are the 

interacting nuclei and n is the number of covalent interceding bonds. One-bond coupling 

(
1
J) are an order of magnitude larger the two- and three-bond couplings (

2
J and 

3
J 

respectively).
[52]

 Splitting patterns for spin ½ nuclei are symmetrically distributed on both 

sides of the chemical shift. The central lines always have a stronger intensity than the 

outer lines. Some commonly observed patterns are shown in F3.3.1: a doublet has two 

equal intensity signals, while a triplet has three signals with an intensity ratio of 1:2:1 and 

a quartet has four signals with an intensity ratio of 1:3:3:1. 

 

 

 

 

 

Figure 3.3.1. Examples of J-coupling patterns commonly observed in proton NMR 

spectra.
[53]
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The splitting patterns of Figure3.3.1 display ideal or “First-Order” arrangement of 

lines.
[53]

 This is usually observed if the spin-coupled nuclei have very different chemical 

shifts (Δv is large compared to JAX). However, if the coupled nuclei have similar chemical 

shifts, the splitting patterns can be distorted. This is known as second-order behavior. If 

the chemical shifts are the same, then signal splitting disappears entirely and a singlet is 

observed. The splitting pattern for a given nucleus can be predicted by the n+1 rule, 

where n is the number of neighboring spin-coupled nuclei with the same or similar 

coupling constants. On the other hand, if a nucleus is spin-coupled to two or more sets of 

neighboring nuclei by different JAX values, the n+1 rule cannot predict the entire splitting 

pattern. In this case more complex splitting patterns will be observed. 

 

3.4 One-Dimensional NMR Spectroscopy 

Measurement of a one-dimensional (1D) NMR experiment is carried out in two 

stages: preparation and detection as shown in F3.4.1. During preparation, the sample 

must be set to a defined spin state. Once it does, a radio frequency signal is transmitted 

with sufficient power (~50W) and time period (~few microseconds). In the simplest case, 

this is a 90
o
 pulse, which rotates the equilibrium magnetization Mz onto the Y-axis 

(My).
[53]

 After this pulse, each spin precesses with its own Larmor frequency around the 

Z-axis and induces a signal in the receiver coil. The signal then decays, with spin-lattice 

(t1) relaxation in the Z plane and spin-spin (t2) in the XY planes. The entire process, (i.e. 

the variation of magnetization with time) is known as the free induction decay (FID). 
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Figure 3.4.1. Schematic diagram of how a 1D NMR experiment is carried out and the 

creation of a FID.
[53]

 

 

 

The information in the FID signal is incomprehensible in its native form, so it must be 

transformed from a time domain to a frequency domain. This is done using a 

mathematical procedure called a Fourier Transform (FT), which gives a spectrum of 

intensity versus frequency and is simplified in F3.4.2. Identifiable peaks appear, which 

allow for sample analysis. 

 

 

Figure 3.4.2. Fourier transform takes the FID signal produced by an NMR instrument and 

turns it into the NMR spectrum with assignable peaks.
[53]

 

  



 

31 

3.5 Two Dimensional NMR Spectroscopy 

Two-dimensional (2D) NMR was first introduced in the early 1970s and it has since been 

widely used to correlate the resonance frequencies of several nuclei.
[52]

 In contrast to 1D 

NMR, 2D NMR has four stages as demonstrated in F3.5.1. The preparation stage is 

similar to a 1D experiment. The key step in a 2D NMR experiment is the mixing. This 

allows the magnetizations or coherences to exchange through multiple types of 

interactions, such as scalar coupling or the nuclear Overhauser effect (NOE).
[52]

 Finally, 

the signal is sampled during the detection period (t2).  

Although two frequency labeling periods are present, the signal is indirectly 

detected during t1 due to the “memory” of the spins.
[52]

 This generic 2D NMR scheme 

can be used to generate a homonuclear spectrum (correlates 
1
H with 

1
H frequencies) as 

well as a heteronuclear spectrum (correlates 
1
H with 

15
N frequencies or 

1
H with 

13
C 

frequencies). There are a number of variants conceived from each basic type but only 

nuclear Overhauser effect spectroscopy (NOESY) and total correlation spectroscopy 

(TOCSY) will be discussed in this thesis. 

 
 

Figure 3.5.1. Sketch of a 2D NMR experiment, depicting the RF pulses at 90° to one 

another. 
[53]
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3.6 Nuclear Overhauser Effect Spectroscopy (NOESY) 

The NOESY signal is a measurement of the equilibrium state after perturbation of 

spin magnetization through space. This is possible where the spins of nuclei are near 

enough in space to exhibit dipolar coupling. When the resonance of one is perturbed by a 

magnetic field, a change in resonance affects the other, termed the NOE. Since these are 

through-space interactions, they are not mediated through J-coupling, which is a through-

bond phenomenon.
[54]

 The signal intensity can be calculated in the following equation: 

 

As can be seen in the equation, the NOE intensity (I) is inversely proportional to the 6th 

power of distance (r) between two nuclei (a and b). This equation is particularly useful 

because it allows for internuclear distances to be calculated from NOE intensities if a 

reference NOE and distance are known. 

 

3.7 Spin Diffusion 

Signal intensity increases linearly with mixing time when two nuclei are involved 

in the spin relaxation pathway. However, when other nuclei offer additional routes for 

relaxation, the trend is not linear.
[55]

 To validate internuclear distances derived by 

NOESY, a build-up curve must be produced, which plots signal intensity over mixing 

time. This process is termed spin diffusion and limits the accuracy of internuclear 

distances because the signal contains no information about how many atoms were 

involved, the amount of relaxation each contributes, and the type of transition made. To 

understand these types of transitions, which may impart a positive or negative alteration 

to the NOE signal, a more detailed description of the effect is required. 
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Figure 3.7.1. Two coupled nuclear spins and the spin transitions they can make. ω0 

transitions yield negative NOE signals, ω1 have no change, and ω2 signals generate 

positive ones.  

 

 

For two proximal protons, each possessing a spin up (α) or spin down (β), four 

possible energy states are available: αα, αβ, βα, and ββ. Once the magnetic field is 

applied at the start of the experiment, these spins become saturated (equal in population). 

Signal is produced when the spins are allowed to relax to their equilibrium state. As can 

be seen in F3.7.1, there are 12 possible spin transitions, represented by ω. The overall 

sign and magnitude of the NOE (including spin diffusion) depends on which spin 

transitions are involved, as can be seen in the Solomon equation below.
[55]

 The 

gyromagnetic ratios (γ) of the two nuclei in 1H NMR are the same. 

 

Positive NOEs result when the transition increases the population difference between 

spin states, such as when αα→ββ and ββ→αα occurs. Negative NOEs appear with αβ→βα 

and βα→αβ transitions because, while the rest of the molecule’s nuclei equilibrate and 

produce a signal, these transitions result in a net decrease in the population difference.  
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It is important to point out that the dominant relaxation pathway depends highly 

on molecular motion.
[55]

 Spin transitions occur when the frequency of the difference 

between energy levels matches the frequency of molecular tumbling. More mobile 

molecules tend to generate positive NOEs because they have fast relaxation times, which 

favor ω2 transitions. Since the NOESY spectra obtained for the Dickerson sequences 

were in D2O, all have positive peaks. Spin diffusion, on the other hand, is less predictable 

and it is essentially impossible to determine the sign and magnitude of the several 

transitions involved. Additional nuclei can increase or decrease the signal in spite of the 

solvent. 

Owing to its erratic nature, only nuclei which exhibit minimal spin diffusion can 

produce signals that correlate with distance. For this reason, only nuclear distances 

derived from linear build-up curves can be included in the Dickerson model as geometric 

constraints.  
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CHAPTER 4. MATERIALS AND METHODS 

 

4.1 DNA Preparation 

 Two DNA sequences were purchased from SynGen™: the Dickerson dodecamer, 

ds(CGCGAATTCGCG) and the dodecamer with an 8-oxo-deoxyadenosine substituted at 

the 5th position, ds(CGCGOA5ATTCGCG).
[56]

 For a detailed description of the 8-oxo-

dA5 lesion, refer to F1.3.1. The two dodecamers are represented in F4.1.1. 

 

 

Figure 4.1.1. The Dickerson dodecamer without (a) and with (b) the 8-oxo-dA5 lesion. 
 

 

Dry DNA samples were dissolved in 25 mM phosphate buffer using a stock 

phosphate buffer solution of 100 mM with 1% sodium azide (for antimicrobial 

protection), and adjusted to a pH of 7.4. To ensure all DNA was double stranded, samples 

were heated in a water bath at 90 °C for 15 minutes, then cooled for at least three hours. 

From there, the pH was adjusted to 7.4 again and the samples were lyophilized and 

redissolved in D2O to remove residual H2O. The process of lyophilization, redisollution 

in D2O, and pH adjustment was performed three more times. All final DNA samples were 

at 5 mM. 
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4.2  NMR Studies 

All 
1
HNOESY experiments were performed on 5 mM DNA samples with a Varian 

INOVA 400 MHz NMR at Missouri State University. With the exception of the 25 °C 

study for the build-up curves, sample temperatures were kept at 10 °C. The spectral width 

was set to capture between 9.50 ppm and -0.50 ppm. For estimating internuclear 

distances, the mixing times were set to 50, 75, 100, and 200 ms with a relaxation time of 

3s. The 
1
HNOESY operated at 128 scans per increment and 128 increments. Since it is 

highly dependent with temperature, an internal reference to the water peak was taken 

from Gottlieb et al.,
[57]

 which defined the center of the spectrum at δ = 5.051 - 0.0111T. 

As per this equation, 10 °C spectra were referenced to 4.94 ppm, while those of 25 °C 

were to 4.77 ppm. Assignment resolution was 0.01 ppm. Sample integrity was validated 

by the sharp signal:noise ratio of the 1D presaturation spectrum, shown in F4.2.1. 

 
 

 

Figure 4.2.1.The 1D 
1
H NMR spectrum of the Dickerson dodecamer.  A general 

placement of peaks is indicated for the non-exchangeable hydrogens.
[37]
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4.3  Modeling Software 

Varian FID files were assigned for intensities in ACDLabs NMR Processor 

v12.01-39104 and MestReNova 10.0.2-15465.
[59,60]

 Once the NOE intensities translated 

into distance measurements, those possessing linear build-up curves were used as initial 

distance restraints for modeling in Gaussian 09,
[60]

 using an ONIOM multilayered model. 

The 8-oxo-dA5 base was set to the B3P86 functional under the 6-31G (d,p) basis set, 

while the rest of the molecule ran under PM6. CHARMM PARNAH1ER1, while ideal, 

was not available in this version. Water was simulated using IEFPCM. All default 

coordinates not restricted by the NMR-derived distances were taken from the 1DUF 

model on the RCSB Protein Data Bank by Tjandra, et al.
[40]

 Helical parameters were 

found by processing the Gaussian-derived DNA model files in the online 3DNA software 

package.
[51]

  

 

4.4 
1
H NOESY Assignment of the Dickerson and 8-oxo-dA5 Dodecamers 

This section will take the form of a walkthrough with images for clarity because 

the assignment of an NOE is easily made confusing by rote directions. In addition, the 

jargon inherent in the naming of peaks can take some practice. Extra attention has been 

paid to lowering these burdens by focusing on the general concept. 

F4.4.1 portrays an annotated NOESY spectrum zoomed in to where the T7 Base-

CH3 interaction would be found for the Dickerson dodecamer. Previously, chemical shifts 

have all been assigned by 1D NMR and it is now a matter of finding their intensities in 

2D. If no peaks appear in an expected region, those nuclei are too far apart for their 

NOEs to be detected.  

  



 

38 

 

 

 

 

 

 

 

 

 

Figure 4.4.1. Example assignment of the T7 Base-CH3peak and T7 CH3- A6 Base 

crosspeak. Peaks represent interactions on the same residue, while crosspeaks are for 

separate residues. The spectrum is zoomed in to the region where the T7 CH3, T7 H6, and 

A6 H8 peaks intersect in terms of their chemical shifts (left). Also indicated is a graphical 

manifestation of the through-space interactions between these atoms (right). NOEs 

associated with CH3 groups represent the average interactions of the 3 equivalent protons. 

 

To conceptually review, a non-degenerate NOE peak will appear in the 2D NMR 

spectrum where two hydrogens are close enough in space to interact by magnetic 
1
H                                                                              

dipolar coupling strongly enough to measure. The orange box in F4.4.1 at 1.25 ppm 

represents the CH3 on the thymine at position 7 on the dodecamer. Any NOEs at this 

chemical shift represent nuclear spin transfer between the T7 CH3 and some other nearby 

hydrogen. The blue box at 7.09 ppm is where interactions appear with the T7 Base (C6H) 

hydrogen. Since there is an NOE at the crossroads of 1.25 ppm and 7.09 ppm where the 

boxes overlap, it follows that this is the T7-Base-CH3 NOE peak, represented by the 

yellow arrow in the wireframe image to the right of the spectrum. All NOEs are assigned 

in this general way, although the existence of spurious, missing, shifted, and overlapped 

peaks must be considered. F4.4.2 shows an example of overlapped peaks and how to 

disambiguate them. 
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Figure 4.4.2. Peak overlap for the G2, G12, and G10 Base-2′ and Base-2′′ NOEs. 

 

 

 

 
Figure 4.4.3.The H8-1′ peaks for G2, G10, and G12 do not overlap in this case, allowing 

for partial assignment of the overlapped H8-2′ and H8-2′′ peaks because the H8 chemical 

shifts appear. 
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Figure 4.4.4. The 2′-2′′ peak for G12, located in the 2′-2′′-CH3 region. Since the H8 

chemical shift was found in Figure 4.4.3, these chemical shifts allow for the assignment 

of the overlapped G12 H8-2′ and H8-2′′ peaks in Figure 4.4.2. 

 

 

Shown in F4.4.2 is the base-2′-2′′-CH3 region (the same as F4.4.1) and spotlighted 

in the blue box is the spot where the H8-2′ and H8-2′′ NOEs for G12, G10 and G2 all 

overlap. Disambiguation of these peaks involves looking in different regions and trying 

to assign related peaks. In F4.4.3 (the Base-1′-3′region), there is some clarity.  

Since the H8 and 1′ interactions for G12, G10, and G2 are fully resolved, their 

chemical shifts can be assigned. The H8 chemical shift is of specific interest here and is 

half of the problem solved. Next, the 2′ and 2′′ coordinates must be found.  

Looking in the 2′-2′′-CH3 region, there is a peak for the 2′-2′′ interaction of G12. 

This allows the H8-2′ and H8-2′′ peaks to be separated from G2 and G10. Using this 

technique and looking elsewhere in the spectrum, the G2 and G10 coordinates can be 
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separated, but this is not always so. If every peak and crosspeak is overlapped, 

disambiguation is impossible. 

Assignment of the 8-oxo-dA5 sample relies on the premise that nuclei closest to 

the lesion will be the most affected. Accordingly, they should have the greatest changes 

in chemical shift. The lesion also replaces the H8, meaning that there will be no NOEs 

associated with the base on A5. 

One further example of DDD peak assignment will be covered, named after the 

“walking” mechanic of sequentially aligning nuclei in a NOESY region by their 

closeness in space. This is particularly useful for DNA, since the atoms involved are 

iterative over the length of the molecule, making the peaks predictable. This is 

demonstrated in the aromatic-1′ walk in Figure 4.4.5. 

The NOESY walk operates on the principle that interacting 
1
H nuclei produce 

NOEs where their chemical shifts meet on the F1 and F2 axes. This can be mapped 

wherever a horizontal or vertical line connects two NOEs. This becomes complicated 

where nuclei have the same chemical shifts, leading to peak overlap and several NOEs 

aligned in a row, but the NOESY walk can still be performed.  

A straightforward example in the aromatic-1′ NOESY walk is where lines can be 

drawn between the T7 and its two neighbors T8 and A5. Since the chemical shifts for the 

T7 H6 and 1′ are known from the 1D NMR and they produce an NOE, drawing straight 

lines in the horizontal and vertical from this coordinate indicates wherever those nuclei 

interact with other nuclei. In F4.4.5 A, the lines run into NOEs that correspond to 

chemical shifts for the A6 1′ (by the vertical) and T8 H6 (horizontally). When the two 

NOEs are assigned based on their chemical shifts, they can serve as new focal points for 
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horizontal and vertical lines to be drawn. In this way, nearby nuclei generate an NOE 

pattern that can be “walked”, reflecting the pattern of their spatial orientation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4.5. The Base-1′ walk. A) The walk from G1 to G12 on the NOESY spectrum. 

Encircled in blue are intermolecular NOEs. B) The walk as imagined geometrically from 

G4-C9, showing inter- and intramolecular NOEs in blue.  

 

 

  

A 

B 
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CHAPTER 5. RESULTS AND DISCUSSION 

 

5.1 Chemical Shift Assignment 

T5.1.1-.2 display the chemical shift assignment at 10 °C for each oligomer, 

referenced to 4.94 ppm. Changes in chemical shift are shown in T5.3. The G4, A5, A6, 

and T7 show prominent differences, so they will be discussed individually in the 

following sections.  

 

Table 5.1.1. Assignment of the chemical shifts (ppm) for non-exchangeable 
1
H 

nuclei in the Dickerson dodecamer at 10 °C, referenced to 4.94 ppm. 

 

 

 

 

 

 

 

 

 

Table 5.1.2. Assignment of the chemical shifts (ppm) for non-exchangeable 
1
H 

nuclei in the 8-oxo-dA5 Dickerson dodecamer at 10 °C, referenced to 4.94 ppm. 

 

 

 

 

 

 

 

 

Residue Base H5/Me 2′ 2′′ 1′ 3′ 
C1 7.65 5.93 2.03 2.44 5.76 4.71 
G2 7.93 N/A 2.63 2.67 5.89 5.00 
C3 7.24 5.36 1.87 2.24 5.55 4.77 
G4 7.74 N/A 2.51 3.03 5.96 4.96 

O-A5 N/A N/A 2.45 3.40 5.54 4.97 
A6 8.24 N/A 2.46 2.84 6.21 5.00 
T7 6.93 0.36 1.96 2.57 5.96 4.84 
T8 7.33 1.57 2.11 2.57 6.02 4.86 
C9 7.47 5.63 2.06 2.39 5.67 4.87 

G10 7.97 N/A 2.63 2.67 5.89 5.00 
C11 7.35 5.45 1.93 2.34 5.74 4.85 
G12 7.96 N/A 2.36 2.63 6.16 4.67 

 

Residue Base H5/Me 2′ 2′′ 1′ 3′ 
C1 7.60 5.86 1.97 2.40 5.71 4.70 
G2 7.93 N/A 2.63 2.68 5.88 4.96 
C3 7.27 5.37 1.88 2.26 5.53 4.81 
G4 7.86 N/A 2.68 2.75 5.45 5.02 
A5 8.11 N/A 2.71 2.95 5.98 5.05 
A6 8.11 N/A 2.58 2.95 6.14 5.00 
T7 7.13 1.25 2.00 2.57 5.91 4.84 
T8 7.37 1.52 2.17 2.57 6.12 4.87 
C9 7.44 5.61 2.07 2.43 5.65 4.87 

G10 7.90 N/A 2.63 2.68 5.84 4.96 
C11 7.32 5.42 1.91 2.32 5.72 4.82 
G12 7.93 N/A 2.37 2.6 6.14 4.68 
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Table 5.1.3. Difference in chemical shifts between the 8-oxo-dA5 and control 

Dickerson at 10 °C. Colors indicate the magnitude of alteration, in the order of 

red > orange > yellow and white representing a negligible effect. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.1.1 Assignment of A5 

The A5 base NOE is absent in the 8-oxo-dA5 Dickerson as expected, since the 

lesion replaces the proton at that spot. As such, the 2′, 2′′, 1′, and 3′ peaks for A5 can only 

be determined by their interactions with each other and with their nearest neighbors, not 

by alignment with the H8 (base) peak. The 2′-2′′ interaction was found at the 2.45 ppm 

and 3.40 ppm crosspeak. The A5 2′ peak had a decrease in chemical shift, while the 2′′ 

had an increase, even though these protons are very close in proximity. From this, it may 

be inferred that the electron-withdrawing effect of the nitrogenous base, which is stronger 

for the 2′′ proton than the 2′ in the unmodified DDD, was magnified by the 8-oxo-dA5 

adduct. There are also peaks at 5.54 ppm with these two representing interactions with 

the A5 1′ proton, which was expected to appear in the 5-6 ppm range with the rest of the 

1′ protons. There is no evidence to suggest the 2′ and 2′′ protons have swapped order as 

Residue Base H5/Me 2′ 2′′ 1′ 3′ 
C1 0.05 0.07 0.06 0.04 0.05 0.01 
G2 -0.01 N/A 0.00 -0.01 0.01 0.04 
C3 -0.03 -0.01 -0.01 -0.02 0.02 -0.04 
G4 -0.12 N/A -0.25 0.35 0.51 -0.06 
A5 Lesion N/A -0.27 0.45 -0.44 -0.08 
A6 0.13 N/A -0.12 -0.11 0.07 0.00 
T7 -0.20 -0.89 -0.04 0.00 0.05 0.00 
T8 -0.04 0.05 -0.06 0.00 -0.10 -0.01 
C9 0.03 0.02 -0.01 -0.04 0.02 0.00 

G10 0.07 N/A 0.00 -0.01 0.05 0.04 
C11 0.03 0.03 0.02 0.02 0.02 0.03 
G12 0.03 N/A -0.01 0.01 0.02 -0.01 
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compared to the Dickerson control, which does occur in the 8-oxo-dG4 DDD as seen in 

T5.4. Furthermore, the 2′ and 2′′ peaks, which were expected to possess crosspeaks with 

the 3′ proton, had crosspeaks at 4.97 ppm in the expected range of 4-5 ppm. 

 

 

Figure 5.1.1. Differences in chemical shift between the 8-oxo-dG4 and 8-oxo-dA5 

with the unmodified sequence. 

 

 
 

The 8-oxo-dG4 and 8-oxo-dA5 share a similar NMR profile as can be seen in 

F5.1. For both sequences at the lesion site, there was a downfield chemical shift for the 1′ 

and 2′ protons and an upfield shift for the 2′′ proton. Both sequences affected their 5′ 

neighboring residue by decreasing the chemical shift for their 1′ and 2′′ protons.  
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Table 5.1.4. Assignment of the 8-oxo-dG4 DDD 
 

 

 

 

 

 

 

 

 

  

Figure 5.1.2. TOCSY (black) overlay on the NOESY (red) for the 8-oxo-dA5 DDD in the 

1'-2'-2'' region. Encircled in blue are missing crosspeaks between G4 and A5 that appear 

in the unmodified sequence. The 1' peaks for G4 and A5 are overlapped with those for 

the T7 and C3, respectively. 
 

 

 

A5 1' 

A5 2' 

G4 1' 

T7 1' C3 1' 

C3 2' 
T7 2' 

A5 2'' 

G4 2'' 

G4 2' and T7 2'' 

Residue Base H5/Me 2′ 2′′ 1′ 3′ 
C1 7.62 5.90 1.97 2.40 5.73 4.70 
G2 7.96 N/A 2.67 2.76 5.84 4.96 
C3 7.38 5.37 1.85 2.55 5.99 4.85 

O-G4 N/A N/A 3.36 2.41 5.15 4.85 
A5 8.19 N/A 2.70 2.94 6.00 5.06 
A6 8.13 N/A 2.55 2.94 6.15 5.00 
T7 7.13 1.23 1.97 2.57 5.92 4.83 
T8 7.36 1.48 2.16 2.55 6.09 4.89 
C9 7.46 5.59 2.03 2.40 5.67 4.86 

G10 7.88 N/A 2.60 2.68 5.84 4.96 
C11 7.32 5.43 1.88 2.30 5.69 4.80 
G12 7.95 N/A 2.33 2.63 6.15 4.67 
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Table 5.1.5. Assignment disambiguation between G4 and A5. The first column represents 

a chemical shift (ppm) that could correspond to G4, A5, or A6. The second column 

indicates where NOEs appear at that chemical shift, providing clues about its assignment. 

The third column explains the disambiguation process. The fourth column identifies the 

residue(s) accounting for that evidence.  

Assignment Interaction Explanation Candidate 

2.51 7.74 7.74 is the G4 base. Since the Dickerson G4 2' and 2" 

are at 2.68 and 2.75, it is likely that this is the G4 2'.  

G4 

3.03 7.74, 2.51, 

5.96 

3.03 is very close to the A5 2" on the Dickerson 

control, which is 2.95. Thus it was considered as 

either a crosspeak between G4 and A5 or the G4 H8 - 

2". While a TOCSY was performed, no H8-2' peaks 

appeared for any residue, since they are separated by 

too many bonds. As a result, 3.03 was assigned as the 

G4 2'' by way of there being no other candidates for 

the 2'' position (unless the 2'/2'' were overlapped). 

G4 

5.54 1.87, 2.24, 

2.44, 3.40 

1.87 is the C3 2', while 2.24 is the C3 2''. If the G4 1’ 

is here, it is not only overlapped with the C3 1', it has 

no G4 1'-2'' peak. It seems more likely it is the A5 1' 

because it interacts with the A5 2' and 2'. Proof that 

this is the A5 1' appeared with the absence of a 

TOCSY peak for the supposed G4 and presence of a 

peak at 5.54 and 3.40, shown in Figure X. 

A5 

5.96 2.51, 2.98 On the Dickerson control, the G4 1' is 5.45 and the 

A5 1' is 5.98. By this account, 5.96 on the 8-oxo-dA5 

is closest to being the A5 1', but this is misleading. 

5.96 is interacting with 2.51 and 2.98, which as 

described above, are the G4 2' and 2''. While A5 2’ is 

also at 2.51, there is no A5 1'-2'' NOE here. Thus, 

this must be the G4 1’.  

G4 

3.40 5.54, 2.45, 

8.24 

There is no corollary for 3.40 in the DDD. However, 

5.54 is both the C3 1' and A5 1'. Judging it alone, it is 

unknown if this is a A5 peak or G4 crosspeak. 

However, since 3.40 interacts with 2.5, which is the 

A5 2’ and 8.24, which is the A6 H8, this is likely an 

A5 assignment. There are no other A5 nuclei to 

assign, so by process of elimination, 3.40 was 

determined as the A5 2''.  

A5 

2.45-2.51 6.21, 5.96 2.45 is the A6 2', which is very close to the G4 2' and 

the A5 2' at 2.46 and 2.51. Thus, any crosspeaks here 

can generate ambiguity over whether they involve 

G4, A5, or A6. This is a large and broad NOE. 

Unfortunately, with this ambiguity, the distances 

between these nuclei cannot be found, since there is 

no way to separate the intensity in this region for 

each. 

A6, A5, and 

G4 
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Assigning G4 and A5 on the 8-oxo-dA5 sequence is challenging since both are shifted to 

where comparison with the unmodified DDD is not helpful. Most of their ambiguous 

peaks occur in the 1'-2'-2'' region. Due to peak overlap and chemical shift redundancy, a 

NOESY was not sufficient for distinguishing through-space from through-bond peaks in 

this area. However, a TOCSY was useful to determine which, as shown in F5.1.2 because 

this method only produces peaks where nuclei interact through J-coupling, which is 

propagated via bonds only.  A detailed description of the assignment and disambiguation 

process for this region is included in T5.1.5. 

 

5.1.2 Assignment of G4 

The G4 base peak shifted -0.11 from the Dickerson control, which is the same 

magnitude but opposite sign as A6. The G4 2′, 2′′, and 1′ were shifted upfield much more 

than A6. Thus, it can be assumed that the 8-oxo-dA5 lesion had a greater impact on G4 

than A6. Further evidence for this effect can be found in there being more crosspeaks 

between A5 and G4. Specifically, crosspeaks were found between the G4 H8 and the A5 

2′ and 2′′, while none were found with the A6 H8. 

 

5.1.3 Assignment of A6 

No new crosspeaks for A6 were observed. The base peak was shifted by +0.13 

ppm, the 2′ by -0.12 ppm, and the 2′′ proton by -0.11 ppm, making the effects of the 

8-oxo-dA5 lesion apparent on A6, but not extreme. Whereas in the unmodified DDD, the 

A6 2′′ had the same chemical shift as the A5 2′′, this degeneracy no longer became the 

case with the 8-oxo-dA5 sequence, indicating that they are experiencing different 

electronic environments. 
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5.1.4 Assignment of T7 

It is interesting that the T7 base changed by -0.20 ppm and the methyl by -0.89 

ppm because the T7 is one residue further away from the lesion. However, considering 

that the dodecamer is dsDNA, it is more likely that the effects are being observed on the 

opposite strand, in which case the T7 is adjacent and diagonal to the lesion, being paired 

with A6. Why T8 is not shifted remains a mystery, since T8 directly base-pairs with A5, 

the lesion site. The extreme upfield change in the T7 methyl (shielding), which is greater 

than any change in A5 suggests several possibilities which will be noted, but are 

inconclusive by 
1
H NMR alone: 

1) The T7 methyl is gaining substantial electron density, shielding it. This could 

be possible if it was nearby an electron donating group or wedged into an area of higher 

electron density. 

2) There is a distortion in the helix, causing the T7 methyl to be closer to A6. If 

this were so, then a crosspeak between one or more of the A6 and T7 protons would be 

observed. Indeed, crosspeaks were found between the T7 methyl and the A6 2′ and 2′′. 

However, these are also observed for the Dickerson control. No other crosspeaks between 

A6 and the T7 methyl were found. 

3) The damaged A5 base is extruded and twisted to where it is closer to the T7 

methyl on the opposite strand. If this were so, then a crosspeak between one or more of 

the A5 and T7 protons would be observed. However, no crosspeaks were found for any 

of the A5 protons with any of the T7 protons. That stated, 5.92 ppm was the 1′ 

assignment for both A5 and T7, so if crosspeaks occurred there, they would not be 

separated from the peaks. 
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Since the T7 methyl is so strongly shielded, it is most likely interacting with a 

group with higher electron density. If this were so, then new peaks could be observed and 

the three protons might lose degeneracy. For the 8-oxo-dA5 DDD, a new peak was 

observed corresponding to the T7 methyl (0.05 ppm) interacting with the C9 base (7.16 

ppm). These two are not normally in proximity, as a nucleoside separates them. It is 

unlikely that this is a real interaction, although 5 sample runs show that there is always a 

peak there. The methyl peaks did not split to remove the degeneracy on each hydrogen 

and no other remarkable interactions were found. 

 

5.1.5 Missing and Additional NOEs 

T5.1.6 lists the peaks and crosspeaks that are not shared in common between the 8-oxo-

dA5 DDD and unmodified sequence. One explanation for why the T7-CH3 was so 

strongly shifted is that it was behaving in an alternate cross-relaxation pathway. While 

crosspeaks consistently appear for the T7-CH3 with C9 and G10 instead of A6, this 

pathway is highly improbable because several residues separate them. Furthermore, those 

distant residues do not have different chemical shifts from the unmodified DDD.  

 

Table 5.1.6. Missing and additional peaks between the 8-oxo-dA5 and unmodified DDD 

sequences. 
 

 

 

 

 

†overlapped in the unmodified sequence 

††NOE appears consistently, but is an unlikely relaxation pathway due to distance
 

 

DDD 

(ppm) 

8-oxo-dA5 

(ppm) 

Nuclei involved DDD 

status 

8-oxo-dA5 

status 1.24 - 6.14 0.36 - 6.21 T7 CH3 - A6 1′ present absent 
1.24 - 7.44 0.36 - 7.47 T7 CH3 - C9 H6 

††
 

absent present 
5.45 - 2.95 5.96 - 3.40 G4 1′ - A5 2′′ present absent 
5.98 - 2.68 5.54 - 2.51  A5 1′ - G4 2′   present 

†
 

absent 
5.98 - 2.75 5.54 - 3.03 A5 1′ - G4 2′′   present 

†
 

absent 
1.24 - 7.90 0.36 - 7.97 T7 CH3 - G10 H8 

††
 

absent present 
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The significance of these peaks is inconclusive and requires further study. The 

T7-CH3 has no other new or missing interactions to account for why it is so strongly 

shifted. G4 and A5 had strongly affected chemical shifts, with four missing NOEs in the 

1′ - 2′ - 2′′ region.  

How exactly the nucleosides moved to account for the chemical shifts remains to 

be explained. From the 
1
H NMR alone, only broad statements can be made. While it 

might be reasonable to suggest that the 8-oxo-dA5 base could possess greater electron-

withdrawing capacity due to having an additional oxygen atom, it is involved in an 

aromatic ring system, which does not necessarily behave in that fashion. Geometric 

changes are also not simple to envisage when there are many atoms involved in DNA and 

only a few 
1
H nuclei from these experiments. Additionally, T7, which had the most 

dramatic downshift in its methyl protons, had no crosspeaks and thus no NOE 

interactions with A5. From this, three inconclusive interpretations can be made for T7: 

1)  The oxidation of A5 may have produced a downstream or opposite strand 

change. 

 

2)  The T7 base and methyl were close enough to the 8-oxo-dA5 lesion that 

shielding would take place, but not close enough to participate in observable 

nuclear coupling. 

 

3)  The T7 base and methyl are being shielded by other atoms or a combination. 

 

The paradoxically negligible effect on T8, which directly opposes A5, makes sense when 

considering that only exchangeable hydrogens are involved in Watson-Crick base pairing 

between A and T. Thus, the protons observed in this experiment are not in the hydrogen-

bonding region. However, it is still unusual that no changes were observed when residues 

further away were affected. 
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Figure 5.1.3. Overlapped spectra of the 8-oxo-A DDD (red) with the unmodified 

sequence (black) for the 1′-2′-2′′ region (A) and Base-2′-2′′ region (B). Missing 

crosspeaks from Table 5.6 are encircled in blue, with arrows pointing from the direction 

of the residue involved. Residues are indicated at the X-axis.  

B) 

A) 

T7 T7 

A5/A6 A5 G4 G4 T7 T7 
A6 

C9 
G10 
G10 

C9 
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5.2 Temperature Studies 

The assignments for the DDD and 8-oxo-dA5 were compared at 10C and 25C to 

survey for molecular mobility. It was hypothesized that the lesion might confer 

sensitivity to internal motion, which could account for the T7 methyl shielding. As can be 

seen in T5.7 and 5.8, no significant temperature changes were found. 

 

Table 5.2.1. Difference in chemical shifts between10 °C and 25 °C for the 8-oxo-dA5 

DDD. 

 

 

 

 

 

 

 

 

 

 

Table 5.2.2. Difference in chemical shifts between 10 °C and 25 °C for the unmodified 

DDD. 

 

 
 

 

 

 

 

 

 

  

8-oA5 

DDD 

Base H5/Me 2′ 2′′ 1′ 3′ 
C1 -0.02 0.00 -0.05 -0.03 0.01 -0.04 
G2 -0.03 

 
-0.07 -0.01 -0.01 -0.01 

C3 -0.02 -0.03 -0.03 -0.01 0.01 0.05 
G4 -0.02 

 
-0.05 -0.04 -0.04 0.01 

A5 
  

0.05 -0.05 0.03 -0.05 
A6 -0.04 

 
-0.01 -0.03 -0.07 -0.04 

T7 -0.04 0.06 -0.02 -0.04 -0.04 -0.02 
T8 0.01 0.01 0.01 -0.04 0.02 0.01 
C9 -0.03 -0.01 -0.04 -0.02 0.00 -0.02 

G10 0.00 
 

-0.08 -0.02 -0.01 -0.01 
C11 -0.03 -0.03 -0.04 0.00 0.02 -0.02 
G12 -0.02 

 
0.00 -0.03 -0.04 0.00 

 

DDD Base H5/Me 2′ 2′′ 1′ 3′ 

C1 -0.05 -0.05 -0.08 -0.04 -0.01 -0.04 

G2 -0.03 0.00 -0.04 -0.01 0.00 0.02 

C3 0.00 0.00 -0.04 -0.01 0.08 -0.01 

G4 -0.02 0.00 -0.02 -0.02 -0.02 -0.03 

A5 -0.02 0.00 -0.02 -0.02 -0.02 -0.01 

A6 -0.02 0.00 -0.01 -0.02 -0.01 -0.01 

T7 -0.04 0.00 -0.03 -0.02 -0.02 -0.02 

T8 -0.01 0.01 -0.02 -0.02 -0.03 -0.01 

C9 -0.02 0.01 -0.02 -0.02 -0.03 0.00 

G10 -0.03 0.00 -0.01 -0.02 -0.02 0.00 

C11 -0.03 -0.01 -0.03 -0.02 0.05 -0.02 

G12 -0.02 0.00 0.02 -0.03 -0.02 -0.02 
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5.3  Dickerson Build-up Curves 

In this section, the build-up curves for the non-exchangeable nuclei at 25 °C will 

be presented for each residue in the two dodecamers (F5.3.1-14). Initially, all samples in 

this thesis were taken at 25 °C, but it was determined that the spectra lacked many of the 

distinct aromatic-1' peaks. As a result, all experiments were redone at 10 °C except these, 

owing to the many weeks required to perform them at multiple mixing times. While the 

build-up curves lack some important peaks, they nevertheless yield some nuclear 

distances of sufficient quality to include as modeling restraints. 

Error bars represent the 5% deviation of intensity expected for the instrument. 

Excluded from the figures are ambiguous and heavily overlapped NOEs, build-up curves 

at less than a 0.8 R
2
, and crosspeaks between residues, which tend to be highly variable. 

Only those with greater than 0.9 R
2
 will be included as NMR restraints for the modeling. 

Additionally, a restriction of 15% error will be imposed, which was the tolerance 

accepted in the Tjandra et al. paper
[40]

 between its model (1DUF) and the NMR distances 

cited therein. Thus, the screening for acceptable NMR restraints involved a two prong 

approach: having a linear build-up curve and being comparable to known distances. 

T5.3.1-12 list the internuclear distances for inclusion to the model. 

Not all NOEs in the same DNA sequence have the same expected variability 

because each proton experiences a different environment. Also, while the sample 

conditions for the sequences were identical, many more NOEs for the 8-oxo-dA5 DDD 

were subject to intensity variation resulting in a lower than acceptable R
2
, even if they 

presented as distinct, assignable peaks. Further, some peaks (particularly H6-H5 NOEs 

on the cytosines) were prone to splitting into tetrads with zero or negative intensity at the 

center, shown in F5.4.11. These phenomena were not observed at 10 °C. 
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The build-up curves present a large amount of data, but several key features keep 

the purpose in perspective. As can be expected, shorter distances (as referenced to the 

Tjandra et al. paper
[40]

) generated greater NOE magnitudes for most nuclei. This trend 

was only violated for some short distances at fast mixing times. It is possible that spin 

diffusion for these nuclei involves multiple and variable relaxation pathways, which can 

confer a large positive or negative component to intensity.  

For short nuclear distances (less than 0.8Ǻ), the build-up curve loses correlation 

between intensity and distance. This is a direct result of spin diffusion. Since the 

magnitude of the NOE is proportional to 1/r
6
 and these distances are so short, the effects 

of spin diffusion are multiplied considerably as mixing time increases. On the other hand, 

signal to noise plays a significant role in reducing efficacy at shorter mixing times. This 

dilemma mostly makes short distances unfit for inclusion. 

For long distances, there are fewer nuclei to be involved in the spin-lattice 

relaxation pathway. Spin diffusion plays a very minor role, if any. However, the intensity 

of the signal is much lower and some distances can never be resolved, even with a 

stronger magnetic field-strength NMR because the NOE effect sharply diminishes with 

distance by 1/r
6
. Crosspeaks (peaks between nuclei of different residues) tend to represent 

long distances and while they are reproducible, their intensities are more subject to 

variation than intrastrand peaks, making them unfit for inclusion in the build-up curves. 

Depicting the errors caused by spin diffusion is complicated because the R-

squared is also affected by the standard 5% error of the instrument. While longer 

distances may suffer little from spin diffusion error, the R-squared can indicate poor 

linearity. Spin diffusion correlates best with R-squared at short distances where this error 
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is very small. As a result, the most accurate NOEs will appear in a goldilocks zone that 

balances long and short distances. 

A further confounding factor is that the slopes of the build-up curves should 

ideally be the same, but all 
1
H nuclei suffer spin diffusion to some extent, even if they are 

sampled in the linear range. Additionally, not all build-up curves have the same number 

of nuclear distances nor do they plot all non-exchangeable nuclei in the residue. Even if 

the NOE can be assigned and distinguished, peak broadening and overlap, especially in 

the guanosine residues, can make it impossible to clarify signal intensity under the chosen 

experimental parameters. For these reasons, the distances are compared to the best known 

literature values (T5.3.1-12). 

It is important to note that for dsDNA, the natural conformations of the two 

strands are not identical. Indeed, the original paper by Dickerson et al. described the 

sequence as being remarkably asymmetrical.
[3]

 As such, all NOEs are assumed to 

represent two distances, one for each strand, and that the distance ascertained is the 

average. The more asymmetrical the two strands, the greater the deviation. This deviation 

amounts to another unknowable error for modeling by 
1
H NMR because the NOEs from 

each strand cannot be distinguished. This was a necessary sacrifice however, because 

nuclear DNA is double-stranded when not undergoing replication and transcription.  
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Figure 5.3.1. The build-up curves for C1 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 

 

 

 

Table 5.3.1. The interatomic distances for C1, with those excluded from modeling (grey). 

Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 sequence, 

only distances with acceptable corollaries in the DDD were used. 
 

Residue Proton 1 Proton 2 Angstroms Literature % Difference 

C1 (DDD) H6 2' 2.39 2.40 0.50% 

C1 (DDD) H6 2'' 2.74 3.94 30.34% 

C1 (DDD) H6 1' 2.57 3.73 31.02% 

C1 (DDD) H6 3' 2.92 3.66 20.30% 

C1 (DDD) H5 2' 2.81 4.36 35.47% 

C1 (DDD) 2'' 3' 2.57 2.83 9.10% 

C1 (8-oxo-A) H6 2' 2.40 2.40 0.15% 

C1 (8-oxo-A) H6 1' 2.55 3.73 31.48% 

C1 (8-oxo-A) 2'' 1' 2.30 2.41 4.65% 
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Figure 5.3.2. The build-up curves for G2 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 

 

 

 

Table 5.3.2. The interatomic distances for G2, with those excluded from modeling (grey). 

Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 sequence, 

only distances with acceptable corollaries in the DDD were used. 

 

Residue Proton 1 Proton 2 Angstroms Literature % Difference 

G2 (DDD) H8 2' 2.17 2.30 5.74% 

G2 (DDD) H8 2'' 2.17 3.78 42.66% 

G2 (DDD) H8 1' 2.58 3.91 33.88% 

G2 (DDD) H8 3' 2.55 4.19 39.12% 
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Figure 5.3.3. The build-up curves for C3 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 

 

 

Table 5.3.3. The interatomic distances for C3, with those excluded from modeling (grey). 

Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 sequence, 

only distances with acceptable corollaries in the DDD were used. 
 

Residue Proton 1 Proton 2 Angstroms Literature % Difference 

C3 (DDD) H6 2' 2.34 2.38 1.36% 

C3 (DDD) H6 2'' 2.66 3.89 31.68% 

C3 (DDD) H6 1' 2.90 3.72 22.05% 

C3 (DDD) H6 3' 3.02 3.70 18.59% 

C3 (DDD) H5 2' 2.91 4.41 34.00% 

C3 (DDD) 2'' 3' 2.29 2.81 18.68% 

C3 (8-oxo-A) H5 2'' 2.30 5.78 60.23% 
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Figure 5.3.4. The build-up curves for G4 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 

 

 

 

Table 5.3.4. The interatomic distances for G4, with those excluded from modeling (grey). 

Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 sequence, 

only distances with acceptable corollaries in the DDD were used. 
 

Residue Proton 1 Proton 2 Angstroms Literature % Difference 

G4 (DDD) H8 2'' 2.50 3.64 31.36% 

G4 (DDD) H8 1' 2.88 3.87 25.58% 

G4 (DDD) H8 3' 2.77 4.27 35.14% 

G4 (DDD) 2' 1' 2.32 3.03 23.65% 

G4 (DDD) 2'' 1' 2.30 2.38 3.20% 

G4 (DDD) 1' 3' 2.51 3.78 33.75% 

G4 (8-oxo-A) 2' 1' 2.21 3.03 27.06% 

G4 (8-oxo-A) 2'' 1' 2.30 2.38 3.20% 
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Figure 5.3.5. The build-up curves for A5 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 
 

 

 

Table 5.3.5. The interatomic distances for A5, with those excluded from modeling (grey). 

Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 sequence, 

only distances with acceptable corollaries in the DDD were used. 
 

Residue Proton 1 Proton 2 Angstroms Literature % Difference 

A5 (DDD) H8 2' 2.03 2.47 18.06% 

A5 (DDD) H8 2'' 2.02 3.98 49.33% 

A5 (DDD) H8 1' 2.29 3.91 41.54% 

A5 (DDD) H8 3' 2.39 4.17 42.64% 

A5 (DDD) 2' 1' 2.42 3.02 19.73% 

A5 (DDD) 2' 3' 2.21 2.31 4.37% 

A5 (DDD) 2'' 1' 2.30 2.34 1.69% 

A5 (DDD) 2'' 3' 2.29 2.73 16.20% 

A5 (DDD) 1' 3' 2.64 3.84 31.36% 

A5 (8-oxo-A) 2' 1' 2.15 3.02 28.81% 

A5 (8-oxo-A) 2' 3' 1.85 2.31 20.20% 

A5 (8-oxo-A) 2'' 1' 2.75 2.34 17.37% 

A5 (8-oxo-A) 2'' 3' 1.95 2.73 28.68% 
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Figure 5.3.6. The build-up curves for A6 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 

 

 

Table 5.3.6. The interatomic distances for A6, with those excluded from modeling (grey). 

Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 sequence, 

only distances with acceptable corollaries in the DDD were used. 
 

Residue Proton 1 Proton 2 Angstroms Literature % Difference 

A6 (DDD) H8 2' 2.21 2.36 6.39% 

A6 (DDD) H8 2'' 2.02 3.85 47.52% 

A6 (DDD) H8 1' 2.61 3.91 33.37% 

A6 (DDD) H8 3' 2.42 4.18 42.03% 

A6 (DDD) 2' 1' 2.35 3.01 22.15% 

A6 (DDD) 2' 3' 2.15 2.32 7.43% 

A6 (DDD) 2'' 1' 2.3 2.33 1.08% 

A6 (DDD) 2'' 3' 2.25 2.75 18.39% 

A6 (DDD) 1' 3' 2.55 3.84 33.59% 

A6 (8-oxo-A) H8 2' 1.78 2.36 10.37% 

A6 (8-oxo-A) H8 2'' 2.5 3.85 35.09% 

A6 (8-oxo-A) 2' 1' 2.48 3.01 17.84% 

A6 (8-oxo-A) 2' 3' 1.94 2.32 16.33% 

A6 (8-oxo-A) 2'' 3' 2.16 2.75 21.47% 
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Figure 5.3.7. The build-up curves for T7 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 

 

 

 

Table 5.3.7. The interatomic distances for T7, with those excluded from modeling (grey). 

Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 sequence, 

only distances with acceptable corollaries in the DDD were used. 
 

Residue Proton 1 Proton 2 Angstroms Literature % difference 

T7 (DDD) H6 2' 2.33 2.38 1.80% 

T7 (DDD) H6 2'' 2.35 3.87 39.38% 

T7 (DDD) H6 1' 2.72 3.73 27.15% 

T7 (DDD) H6 3' 2.94 3.75 21.65% 

T7 (DDD) Me 2'' 2.52 4.38 42.52% 

T7 (DDD) 2'' 1' 2.3 2.32 1.05% 

T7 (DDD) 2'' 3' 2.26 2.82 19.81% 

T7 (DDD) 1' 3' 2.72 3.84 29.16% 

T7 (8-oxo-A) H6 2' 2.34 2.38 1.69% 

T7 (8-oxo-A) H6 Me 2.29 2.65 13.60% 

T7 (8-oxo-A) 2' 1' 2.55 3.01 15.23% 

T7 (8-oxo-A) 2'' 1' 2.3 2.32 1.05% 

T7 (8-oxo-A) 2' 3' 2.17 2.28 4.79% 
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Figure 5.3.8. The build-up curves for T8 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 

 

 

 

Table 5.3.8. The interatomic distances for T8, with those excluded from modeling (grey). 

Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 sequence, 

only distances with acceptable corollaries in the DDD were used. 
 

 

 

 

 

 

  

Residue Proton 1 Proton 2 Angstroms Literature % difference 

T8 (DDD) H6 2'' 2.14 3.59 40.28% 

T8 (DDD) H6 1' 2.58 3.71 30.36% 

T8 (DDD) H6 3' 2.51 3.72 32.53% 

T8 (DDD) Me 2'' 2.49 4.2 40.75% 

T8 (DDD) 2' 1' 2.57 3.02 14.98% 

T8 (DDD) 2' 3' 2.31 2.32 0.32% 

T8 (DDD) 2'' 1' 2.3 2.33 1.34% 

T8 (DDD) 2'' 3' 2.34 2.79 15.94% 

T8 (DDD) 1' 3' 2.72 3.85 29.27% 

T8 (8-oxo-A) H6 2'' 2.28 3.59 36.40% 

T8 (8-oxo-A) H6 2' 2.25 2.04 10.66% 

T8 (8-oxo-A) H6 1' 2.62 3.71 29.19% 

T8 (8-oxo-A) H6 3' 2.47 3.72 33.42% 

T8 (8-oxo-A) 2' 1' 2.64 3.02 12.53% 

T8 (8-oxo-A) 2' 3' 2.12 2.32 8.55% 

T8 (8-oxo-A) 2'' 3' 2.28 2.79 18.15% 
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Figure 5.3.9. The build-up curves for C9 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 

 

 

 

Table 5.3.9. The interatomic distances for C9, with those excluded from modeling (grey). 

Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 sequence, 

only distances with acceptable corollaries in the DDD were used. 
 

 

 

 

  

Residue Proton 1 Proton 2 Angstroms Literature % difference 

C9 (DDD) H6 2' 2.25 2.4 6.17% 

C9 (DDD) H6 2'' 2.53 3.88 34.84% 

C9 (DDD) H6 1' 2.87 3.73 23.20% 

C9 (DDD) H6 3' 2.69 3.76 28.57% 

C9 (DDD) H5 2' 2.63 4.46 41.20% 

C9 (8-oxo-A) H6 2' 2.17 2.40 9.33% 

C9 (8-oxo-A) Base 2'' 2.54 3.88 34.61% 

C9 (8-oxo-A) Base 1' 2.70 3.73 27.66% 

C9 (8-oxo-A) H5 2' 2.73 4.46 38.91% 

C9 (8-oxo-A) 2' 2'' 1.99 1.79 11.28% 

C9 (8-oxo-A) 2' 3' 2.08 2.30 9.90% 

C9 (8-oxo-A) 2' 1' 2.68 3.02 11.35% 
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Figure 5.3.10. The build-up curves for G10 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 

 

 

 

Table 5.3.10. The interatomic distances for G10, with those excluded from modeling 

(grey). Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 

sequence, only distances with acceptable corollaries in the DDD were used. 
 

Residue Proton 1 Proton 2 Angstroms Literature % difference 

G10 

(DDD) H8 2' 2.30 2.31 0.40% 

G10 

(DDD) H8 2'' 2.30 3.83 39.93% 

G10 

(DDD) H8 1' 2.87 3.90 26.34% 

G10 

(DDD) H8 3' 2.71 4.10 34.06% 
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Figure 5.3.11.The build-up curves for C11 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 

 

 

 

Table 5.3.11. The interatomic distances for C11, with those excluded from modeling 

(grey). Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 

sequence, only distances with acceptable corollaries in the DDD were used. 
 

Residue Proton 1 Proton 2 Angstroms Literature % difference 

C11 (DDD) H6 2' 2.29 2.49 7.88% 

C11 (DDD) H6 2'' 2.64 3.98 33.73% 

C11 (DDD) H6 1' 2.82 3.73 24.39% 

C11 (8-oxo-A) H6 2' 2.32 2.49 6.85% 

C11 (8-oxo-A) H6 2'' 2.63 3.98 33.92% 

C11 (8-oxo-A) H6 1' 2.93 3.73 21.51% 

C11 (8-oxo-A) 2'' 1' 2.30 2.36 2.69% 
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Figure 5.3.12. The build-up curves for G12 assignable NOEs. Intensity correlates with 

internuclear distance inasmuch as it is linear with mixing time. Linearity can be 

diminished by noise and spin diffusion. 

 

 

 

Table 5.3.12. The interatomic distances for G12, with those excluded from modeling 

(grey). Viable DDD distances were no greater than 15% of 1DUF. For the 8-oxo-dA5 

sequence, only distances with acceptable corollaries in the DDD were used. 

 

Residue Proton 1 Proton 2 Angstroms Literature % difference 

G 12 (DDD) H8 2' 2.26 4.01 43.63% 

G 12 (DDD) H8 1' 2.55 3.91 34.72% 

G 12 (DDD) H8 3' 2.50 3.88 35.59% 

G 12 (DDD) 2'' 1' 2.30 3.01 23.59% 

G 12 (DDD) 2'' 3' 2.16 2.27 4.78% 

G 12 (8-oxo-A) H8 2' 2.49 4.01 37.82% 
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5.4 NOESY Spectra  

This section (F5.4.1-11) displays the 10 °C NOESY spectra at 200ms mixing time 

for reference, as a visual supplement to T5.3.1-12. While these generated the 

assignments, they are important for inclusion because they indicate, by way of 

crosspeaks, which nuclei are involved in NOE relaxation pathways. 

 

Figure 5.4.1. NOESY spectrum for the Dickerson dodecamer (DDD) at the Base-2′-2′′ 

region. 
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A5/A6 G2 
G12 
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G4 
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Figure 5.4.2. NOESY spectrum for the DDD at the Base-1′-3′ region. 

 

 

Figure 5.4.3. NOESY spectrum for the DDD at the 1′-2′-2′′ region. 
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Figure 5.4.4. NOESY spectrum for the DDD at the 3′-2′-2′′ region. 

 

 

Figure 5.4.5. NOESY spectrum for the DDD at the 2′-2′′ region. 
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Figure 5.4.6. NOESY spectrum for the 8-oxo-dA5 DDD at the Base-2′-2′′ region. 

 

 

Figure 5.4.7. NOESY spectrum for the 8-oxo-dA5 DDD at the Base-1′-3′ region. 
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Figure 5.4.8. NOESY spectrum for the 8-oxo-dA5 DDD at the 1′-2′-2′′ region. 

 

 

Figure 5.4.9. NOESY spectrum for the 8-oxo-dA5 DDD at the 3′-2′-2′′ region. 
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Figure 5.4.10. NOESY spectrum for the 8-oxo-dA5 DDD at the 2′-2′′ region. 

 

 

Figure 5.4.11. NOESY spectrum for the 8-oxo-dA5 DDD at the base-1′ region at 25 °C, 

showing the splitting of cytosine H5-H6 peaks into tetrads and absence of 1′ peaks.  
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5.5  Molecular Mechanics and DFT Simulation 

The molecular dynamics simulation was an attempt to roughly estimate the 

structures of the Dickerson dodecamers, where the 8-oxo-dA5 lesion site was given DFT 

calculation privileges. Distance constraints were applied based on those derived from the 

NOE intensities in the build-up curves. NOEs were selected to participate in the modeling 

if the R-squared values were greater than 0.90 and deviated from previously described 

distances no more than 15% (DDD only). Featured in F5.5.1 is a bird’s eye view of the 8-

oxo-dA5 DDD, with the lesion represented as “ball and stick” over a wireframe before 

energy minimization. Initial attempts at molecular dynamics (MD) simulation are 

included in the supplemental disk and listed in App B.  

 

F5.5.1 The 8-oxo-dA5 Dickerson dodecamer as it appears in GaussView 5.0.9 before MD 

simulation, with the lesion as a ball-and-stick cartoon. 
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While useful in principle, the molecular dynamics simulation unfortunately 

encountered errors for ONIOM and DFT attempts in practice. The only model of the 

8-oxo-A DDD to produce an energy-minimized structure was with the UFF (included in 

the supplemental disk), which does not possess restrictions on internuclear distances 

found by 
1
H NMR. UFF-minimized structures of DNA oligomers do not represent 

accurate geometries.
[48]

 Even if the ONIOM and DFT succeeded, the model would still be 

intractable, considering that only nine 
1
H internuclear distances would be empirical, out 

of 758 atoms in the molecule. As such, finding the helical differences for the 8-oxo-dA5 

DDD is a matter for future study and only those of the unmodified DDD (1DUF) were 

explored. 

 

5.6 Helicity Studies 

Since damage recognition by repair enzymes is expected to be largely dependent 

on secondary structure, it might be clarified by comparing the degrees of freedom 

comprising helicity between unmodified and modified sequences. Graphic depictions of 

these variables are shown in F5.6.1-2. 
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Figure 5.6.1. The 13 degrees of freedom in sugar puckering and torsion. Replicated with 

permission from the 3DNA tutorial.
[51]

 
 

 

The 5 degrees of freedom for the torsion of a 5-membered ring (deoxyribose) are 

represented by v0-v4. Since they are constrained in a ring, their conformation is 

traditionally viewed as an amalgam of these torsions, called pseudorotation, which is 

given two values: phase angle (P) and amplitude (Tm). Two formulae have been 

developed for computing pseudorotation.
 [61,62]

 By comparison, the phosphate backbone 

and base, which undergo torsion at α-δ and χ respectively, do not have ring constraints. 

Puckering and torsion of the sugar influence and are influenced by the base pairs. The 

helicity of base pairs can be determined by the magnitude of their 16 degrees of freedom, 

shown in F5.6.2.  
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Figure 5.6.2. The 16 degrees of freedom between opposing bases in DNA. Replicated 

with permission the 3DNA tutorial.
 [51]

 
 

 

These 29 degrees of freedom comprise helicity, but it can be more descriptive to 

represent these as derived variables, such as major and minor groove width, since these 

are the docking sites of transcription factors and enzymes. For simplicity, only the 

degrees of freedom for the base pairs, major and minor grooves will be noted for the 

DDD in T5.1.1-2.   



 

79 

Table 5.1.1. Average and standard deviation of helical parameters for the 1DUF 

Dickerson dodecamer from the RCSB Protein Data Bank,
[40]

 using the 3DNA software 

package.
 [51]

 
 

 

Shear (Å) Stretch (Å) Stagger (Å) Buckle (°) Propeller (°) Opening (°) 

ave. 0.00 -0.39 -0.28 -0.02 -11.76 0.99 

s.d. 0.38 0.16 0.50 3.33 4.49 3.03 

 

Shift (Å) Slide (Å) Rise (Å) Tilt (°) Roll (°) Twist (°) 

ave. 0.01 -0.46 3.41 0.02 2.32 34.45 

s.d. 0.33 0.10 0.30 2.81 5.16 3.01 

 

X-disp (Å) Y-disp (Å) h-Rise (Å) Incl (°) Tip (°) h-Twist (°) 

ave. -1.28 -0.01 3.32 4.41 -0.04 35.01 

s.d. 1.10 0.56 0.23 9.06 5.13 2.46 
 

 

 

Table 5.1.2. Major and minor groove distances for the 1DUF Dickerson dodecamer from 

the RCSB Protein Data Bank,
[40]

 using the 3DNA software package.
[51]

 
 

 Minor Groove Major Groove 

Bases P-P Refined P-P Refined 

1 CG/CG --- --- --- --- 

2 GC/GC --- --- --- --- 

3 CG/CG 12.4 --- 19.2 --- 

4 GA/TC 11.7 11.6 18.1 18.0 

5 AA/TT 10.7 10.6 18.0 18.0 

6 AT/AT 10.2 10.2 17.5 17.5 

7 TT/AA 10.7 10.6 18.0 17.9 

8 TC/GA 11.6 11.6 18.0 17.9 

9 CG/CG 12.4 --- 19.1 --- 

10 GC/GC --- --- --- --- 

11 CG/CG --- --- --- --- 
 

 

 

As mentioned previously, understanding the recognition of repair enzymes to the 

8-oxo-A lesion could be clarified by comparing its helical parameters to those of the 

unmodified DDD. This is dependent on robust model of the molecules, with accuracy 

honed by internuclear distances taken from several experiments, with the 
1
H NMR values 

in this thesis comprising a part. As such, the data in T5.1.1-2 provide only a basis for 

comparison, since the model of the 8-oxo-dA5 DDD has not yet reached maturation.  
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CHAPTER 6 Conclusions 

 

Several complicating factors must be understood before concluding upon NMR-

derived geometries of DNA. Firstly, it takes many more experiments than described in 

this thesis to gather interatomic distances of the whole molecule. Only a few hydrogen 

nuclei were found in the linear range of the experimental parameters and of those, even 

fewer presented within 15% of previously published distances. As such, the benefit of 

adding these NMR restraints to an existing model is not impressive. Likewise, modeling 

the sequence with an 8-oxo-dA5 lesion based on these restraints is barely empirical. 

However, the process could be, presuming a fecundity of data, along with NMR-derived 

distances on the other elements in the molecule. Rather than focus on impact, the 

modeling exercise sets into motion an expandable method. 

What can be concluded upon is the general landscape of the 8-oxo-dA5 DDD in 

the context of chemical shift assignment. The changes in select 
1
H nuclei of G4, A5, A6, 

and T7 create a general boundary for the lesion, with the most shifted nuclei being the G4 

1′, A5 2′′ and 1′, and the T7 CH3. Since chemical shift did not appreciably change with 

temperature, an internal flexibility not seen in the unmodified sequence is unlikely, 

although a wider range of temperatures would be more authoritative, as would more 

atoms. The 8-oxo-dA5 lesion showed similarities to those found in the 8-oxo-dG4. Both 

sequences experienced a deshielding of the 2′ and 1′ protons and shielding of the 2′′. Both 

affected their 5′ neighboring residue by shielding effects on their 1′ and 2′′ protons. 

In the 25 °C samples, it is unknown what feature corresponds with the splitting of 

cytosine H6-1′and some other NOEs into tetrads, although it has been hypothesized to be 

related to spin diffusion and the mobility to change between cross-relaxation pathways. 
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Signal loss was another problem, leading to the disappearance of several aromatic-1′ 

peaks, which ultimately led to relying on 10 °C assignments. While some quality data 

was taken from the 25 °C acquisitions, lower temperatures are recommended. This is 

especially important since shorter mixing times are ideally suited for large molecules to 

reduce spin diffusion, an effect most prominently seen at shorter distances. The caveat is 

that shorter mixing times produce lower intensity spectra, which are more susceptible to 

noise artifacts.  

Only two of the nine H-H distances ascertained to be valid in the 8-oxo-dA5 

sequence deviated from the unmodified DDD by more than the tolerance limit of 15%, 

making them candidates for structural distortion. These were the A5 2′-3′ and the A5 

2′′-1′. While there was no obvious indication of changes in the 3′ hydrogen of A5 in 

terms of chemical shift assignment, the missing peaks between A5 and G4, along with 

how the 8-oxo-G4 DDD was affected at the 1′, substantiate the role of the oxopurine 1′ as 

a fingerprint for this form of damage. 
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CHAPTER 7 Future Work 

 

The empirical relevance of the model produced in this thesis can only go so far as 

the number of NMR-derived distances going into it. Performing another series of build-

up curves at 10 °C and at different mixing times would be ideal, with longer 
1
H-

1
H 

distances (>0.8 Å) appearing at long mixing times (>100 ms) and shorter distances 

suffering from less spin diffusion at short mixing times. Optimizing the sampling 

conditions for these two classes of internuclear distances would ensure that the conditions 

are suited better for both.  

Additionally, heteronuclear single quantum coherence spectroscopy HSQC 

experiments for determining phosphate backbone parameters, along with 
13

C NMR 

would fill gaps in the structure. Comparing these changes to those found in the 8-oxo-

dG4 DDD would create for a more robust understanding of the helical alterations induced 

by oxopurines, with the ultimate goal being the detection of common elements of enzyme 

recognition for the repair of these lesions.  
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APPENDICES 

 

Appendix A: Equations (Kohn-Sham and LDA) 

Firsthand, it must be noted that the equations comprising DFT are many and 

beyond the scope of this thesis. A full description on the equations of DFT can be found 

in a volume by Dreizler and Gross
[63]

. Broadly speaking, DFT is a method for 

approximating the properties of atoms, which are quantum-mechanical (QM) systems. 

For a QM system, all information is contained within the wavefunction (Ψ). The 

Schrödinger equation is the method for solving this and works on the basis of 

eigenfunction transformation. In its most general sense, this can be arranged as: 

 

where the Hamiltonian operator Ĥ operates on the wavefunction Ψ such that the same Ψ 

is returned, multiplied by a constant, the eigenvalue E. Unfortunately, for atoms with 

more than 2 interacting particles, it is impossible to solve the Schrödinger equation 

because of repeated, unpredictable interactions between them. Approximations must be 

made to reduce the number of variables and treat them in solvable ways. For Density 

Functional Theory (DFT), ϕ simplifies the eigenfunction Ψ of a many-electron molecule 

by treating it in terms of electron density, which is a condensed single entity as if the 

atom had non-interacting electrons.  

Electron density is useful because according to the Hohenburg-Kohn theorem, the 

ground-state density of any system is a function of and determines all of its ground-state 

properties. For atoms, it is electron density that determines the ground-state energy. 

Electron density is treated in terms of the spatial coordinates x, y, and z (instead of 3N 
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variables for a many-electron atom), so derived values, such as bond-lengths and angles, 

can be rendered from this 3D energy matrix. 

From a mathematical standpoint, the electron density n(r) is a single potential ν(r) 

acting upon the electrons in the system ϕ, which depends only on the spatial and spin 

coordinates of each. As a result, the one-electron equation appears as follows: 

 

where  is the kinetic component added to the local potential of the electron. 

Solutions to this equation produce orbitals (ϕi) representing where the electron density is 

for the atom or molecule, seen as 

 

This one-particle equation must represent a system of N particles and yield a 

ground-state energy. The Hohenberg-Kohn Theorem does this by treating the problem in 

terms of a functional of N, as its density n(r). This changes the ground-state energy (E) of 

that density to 

 

Since n(r) and v(r) are defined, all that remains is to define the functional F[n(r)]. 

Kohn and Sham divided F[n(r)]into two parts, the kinetic energy Ek functional of a non-

interacting electron gas with density n(r) and the exchange-correlation energy EXC. The 

kinetic energy component is 
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The EXC component is defined by the local density approximation (LDA). Since this is 

computed by quantum Monte Carlo (QMC) methods, which are beyond the scope of this 

thesis, EXC will simply be represented as 

 

In addition, F[n(r)] is defined such that  

 

 

The full Kohn-Sham equation for energy is a combination of these parts, becoming 

 

 

The extra term  comes from normalizing the Kohn-Sham equation with 

respect to the electron density and rewriting it as an effective potential. 

 

To recapitulate, the user-created molecule is represented in DFT by the Kohn-

Sham equations as a fictional system, the wavefunction ϕ of a non-interacting electron 

gas. From there, the observables are extracted from ϕ by calculating their expectation 

values, using the operations defined by the Kohn-Sham equation. Ultimately and after 

intensive computation, the result is an electron density solution that approximates the 

molecule.  

 

and 
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Appendix B: Supplemental Material 

The following tables organize all files generated by the NMR for this thesis, along 

with representations of that data, such as spreadsheets and files generated by modeling 

and graphing software. This information is included in the supplemental disk, but can 

also be accessed by request at Reynolds2600@live.missouristate.edu. 

 

 

 

Mixing 

time 

Sequence Filename 
200 ms DDD DDD_pH7p4_longer_mix_20150904_01/data_NOESY_002/fid 
200 ms 8-oxo-dA5 

DDD 

20151102_01/data_NOESY_001/fid 
150 ms DDD DDD_pH7p4_longer_mix_20150904_01/data_NOESY_001/fid 
150 ms 8-oxo-dA5 

DDD 

20151030_02/data_NOESY_001/fid 
100 ms DDD DDD_pH7p4_multimix_20150827_01/data_NOESY_003/fid 
100 ms 8-oxo-dA5 

DDD 

20151030_02/data_NOESY_002/fid 
75 ms DDD DDD_pH7p4_multimix_20150827_01/data_NOESY_002/fid 
50 ms DDD DDD_pH7p4_multimix_20150827_01/data_NOESY_001/fid 

 
Temperature Sequence Filename 

10 °C DDD s_20110429_01/data/d2o_02.fid/fid 
10 °C 8-oxo-dA5 

DDD 

s_20140312_002/data/20140312T130052_01.fid/fid 

 10 °C 8-oxo-dA5 

TOCSY 

s_20140312_002/data/20140313T224102_01.fid/fid 
 
Project Description Software Filename 

Spreadsheet with all NMR 

assignments, intensities, and 

distances. 

MS Excel 2007 Intensity Comparison Mixing Times.xlsx 

DDD model generated by 

Tjandra et al 

Gaussian/XPLOR 1DUF.pdb 

DDD model generated by 

Dickerson et al. 

Gaussian/XPLOR 1BNA.pdb 

DDD model generated by the 

methods and restraints in this 

thesis. 

Gaussian/XPLOR Future work; model completed with errors: 

DDD_thesis.pdb  

8-oxo-dA5 DDD model 

generated by the methods and 

restraints in this thesis. 

Gaussian/XPLOR Future work; model completed with errors: 

8OA5DDD_thesis.pdb 

8-oxo-dA5 DDD model 

minimized by UFF 

Gaussian 8OA5DDD_UFF.log 

MNOVA collection of DDD 

spectral images. 

MestReNova 

10.0.2-15465 

DDD_5mm_25C.mnova 

MNOVA collection of 8-oxo-

dA5 DDD spectral images. 

MestReNova 

10.0.2-15465 

8-oxo-A_5mm_25C.mnova 
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