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ZHENG, Traditional Chinese Medicine syndrome, is an integral and essential part of Traditional Chinese Medicine theory.
It defines the theoretical abstraction of the symptom profiles of individual patients and thus, used as a guideline in disease
classification in Chinese medicine. For example, patients suffering from gastritis may be classified as Cold or Hot ZHENG, whereas
patients with different diseases may be classified under the same ZHENG. Tongue appearance is a valuable diagnostic tool for
determining ZHENG in patients. In this paper, we explore new modalities for the clinical characterization of ZHENG using various
supervised machine learning algorithms. We propose a novel-color-space-based feature set, which can be extracted from tongue
images of clinical patients to build an automated ZHENG classification system. Given that Chinese medical practitioners usually
observe the tongue color and coating to determine a ZHENG type and to diagnose different stomach disorders including gastritis,
we propose using machine-learning techniques to establish the relationship between the tongue image features and ZHENG by
learning through examples. The experimental results obtained over a set of 263 gastritis patients, most of whom suffering Cold
Zheng or Hot ZHENG, and a control group of 48 healthy volunteers demonstrate an excellent performance of our proposed
system.

1. Introduction

Traditional Chinese Medicine (TCM) has a long history in
the treatment of various diseases in East Asian countries
and is also a complementary and alternative medical system
in Western countries. TCM takes a holistic approach to
medicine with emphasis on the integrity of the human
body and the close relationship between a human and its
social and natural environment [1]. TCM applies different
therapeutic methods to enhance the body’s resistance to
diseases and prevention. TCM diagnosis is based on the
information obtained from four diagnostic processes, that
is, looking, listening, and smelling, asking, and touching. The
most common tasks are taking the pulse and inspecting
the tongue [2]. For thousands of years, Chinese medical
practitioners have diagnosed the health status of a patients’
internal organs by inspecting the tongue, especially the

patterns on the tongue’s surface. The tongue mirrors the
viscera. The changes of tongue can objectively manifest the
states of a disease, which can help differentiate syndromes,
establish treatment methods, prescribe herbs, and determine
prognosis of disease.

ZHENG (TCM syndrome) is an integral and essential
part of TCM theory. It is a characteristic profile of all clinical
manifestations that can be identified by a TCM practitioner.
ZHENG is an outcome after analyzing all symptoms and
signs (tongue appearance and pulse feeling included). All
diagnostic and therapeutic methods in TCM are based on
the differentiation of ZHENG, and this concept is as ancient
as TCM in China [3]. ZHENG is not simply an assemblage
of disease symptoms but rather can be viewed as the TCM
theoretical abstraction of the symptom profiles of individual
patients. As noted in the abstract, ZHENG is also used as a
guideline in TCM disease classification. For example, patients
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suffering from the same disease may be grouped into different
ZHENGs, whereas different diseases may be grouped as the
same ZHENG. The Cold ZHENG (Cold syndrome) and the
Hot ZHENG (Cot syndrome) are the two key statuses of
ZHENG [3]. Other ZHENGs include Shen-Yang-Xu ZHENG
(Kidney-Yang deficiency syndrome), Shen-Xu ZHENG (Kidney
deficiency syndrome), and Xue-Yu ZHENG (Blood Stasis
syndrome) [4].

In this paper, we explore new modalities for the clin-
ical characterization of ZHENG using various supervised
machine-learning algorithms. Using an automated tongue-
image diagnosis system, we extract objective features from
tongue images of clinical patients and analyze the relation-
ship with their corresponding ZHENG data and disease
prognosis (specifically stomach disorders, i.e., gastritis)
obtained from clinical practitioners. We propose a system
that learns from the clinical practitioner’s subjective data
on how to classify a patient’s health status by extracting
meaningful features from tongue images using a rich set of
features based on color-space models. Our premise is that
Chinese medical practitioners usually observe the tongue
color and coating to determine ZHENG such as Hot or
Cold ZHENG, and to diagnose different stomach disorders
including gastritis. Hence, we propose using machine-
learning techniques to establish the relationship between the
tongue image features and the ZHENG by learning through
examples. We are also interested in the correlation between
the Hot and Cold patterns observed in ZHENG gastritis
patients and their corresponding symptom profiles.

Various types of features have been explored for tongue
feature extraction and tongue analysis, including texture
[5], color [6–8], shape [9], spectrum [8], among others. A
systematic tongue feature set, comprising of a combination of
geometric features (size, shape, etc.), cracks, and textures, was
later proposed by Zhang et al. [10]. Computer-aided tongue
analysis systems based on these types of features have also
been developed [11, 12]. Our goal is to provide a set of
objective features that can be extracted from patients’ tongue
images, based on the knowledge of ZHENG, which improves
accuracy of an objective clinical diagnosis. Our proposed
tongue feature set is based on an extensive color model.

This paper is organized as follows: in Section 2, we
provide a TCM descriptive view of the physiology of the
tongue. An overview of the proposed feature extraction and
learning framework along with a complete description of the
color space model feature set is presented in Section 3. Our
experimental results and analysis in a tongue image dataset
from gastritis patients with Cold ZHENG and Hot ZHENG
are discussed in Section 4 before drawing our conclusions
and proposing plans for future work in Section 5.

2. Tongue Diagnosis in TCM

TCM believes that the tongue has many relationships and
connections in the human body, both to the meridians and
the internal organs. It is, therefore, very useful and important
during inspection for confirming TCM diagnosis as it can
present strong visual indicators of a person’s overall physical

and mental harmony or disharmony. In TCM, the tongue
is divided into tongue tip, tongue margins, tongue center,
and tongue root. Figure 1(a) shows each part of the tongue
and its correspondence to different internal organs according to
TCM while Figure 1(b) illustrates how we geometrically obtain
an approximation of these regions from the tongue image. The
tongue tip reflects the pathological changes in the heart and
lungs, while the bilateral sides of the tongue reflect that of
the liver and gallbladders. The pathological changes in the
spleen and stomach are mirrored by the center of tongue,
while changes in the kidneys, intestines, and bladder section
correspond to the tongue root.

In this paper, we focus on the patients with stomach
disorders, gastritis. Hence, we are interested in extracting
features not only from entire tongue image but also specifically
from the middle region, as this corresponds to the stomach
organ, according to TCM. We extract the middle rectangular
region, illustrated in Figure 1(b), as our approximation for the
tongue middle region.

The practitioner examines the general and local shape as
well as the color of the tongue and its coating. According to
TCM, the normal tongue is pale red with thin white coating.
Some signs of imbalance or pathology are red body, yellow
coating, or thick coating like mozzarella cheese, and so forth.
Some characteristic changes occur in the tongue in some
particular diseases. Most tongue attributes are on the tongue
surface. A TCM doctor looks at several attributes of tongue
body: color, moisture, size, shape, and coating. These signs
not only reveal overall states of health but they also correlate
to specific organ functions and disharmonies, especially in
the digestive system.

The two main characteristics of the tongue in TCM
ZHENG diagnosis are the color and the coating. The color of
the patient’s tongue color provides information about his/her
health status. For example [13], dark red color can indicate
inflammation or ulceration, while a white tongue indicates
cold attack, mucus deposits, or a weakness in the blood
leading to such conditions as anemia [12]. Moreover, a yellow
tongue points out a disorder of the liver and gallbladder,
and blue or purple implies stagnation of blood circulation
and a serious weakening of the part of the digestive system
that corresponds to the area of the tongue where the color
appears.

The coating on the tongue is discriminated by not only its
presence but also its color. The color could be yellow, white,
and other colors. However, the color in image is not the
exact true color of the tongue. To properly identify the color
of the tongue coating, we applied the specular component
technique presented in our prior work on tongue detection
and analysis [2]. Figure 2 illustrates different tongue images
of patients and their corresponding ZHENG class.

3. Tongue Feature Extraction and
Classification Framework

3.1. Feature Extraction for Tongue Image Analysis. Our goal

is to compute a set of objective features �Fj = {Fn} from
each tongue image j that can be fed into our learning



Evidence-Based Complementary and Alternative Medicine 3

Kidney, bladder, intestines

Liver LiverSpleen, stomach

Lung, heart

(a) organ layout of tongue regions

1/5 1/5

1/5

1/5

(b) geometrical layout of tongue regions

Figure 1: Tongue areas and their correspondence to internal organs in TCM.

(a) Hot ZHENG (b) Cold ZHENG (c) Normal

Figure 2: Tongue images of patients with different ZHENG classification. “Normal” represents a healthy person.

system so that we can predict not only the color and
coating on the tongue, but also different ZHENGs of the
gastritis patients. These features are designed to capture
different color characteristics of the tongue. While a single
feature may not be very discriminative, our premise is that
the aggregation of these features will be discriminative.
We leave it to the learning algorithm to determine the
weight/contribution of each feature in the final classification.

Most color spaces are represented in tuples of number,
normally three or four color components. Color components
determine the position of the color in the color space used.
There are many color spaces defined for different purposes.
We designed a set of 25 features that span the entire color-
space model. They can be grouped under eight categories:
RGB, HSV, YIQ, Y’CbCr, XYZ, L∗a∗b∗, CIE Luv, and CMYK.

In this section, we first describe in detail how we compute

each feature �f i per ith pixel in the image. Then, we explain

how each feature per pixel is aggregated to obtain �Fj = {Fn}
per tongue image j.

3.1.1. RGB. RGB is an additive color system, based on
trichromatic theory in which red, green, and blue light com-
ponents are added together to produce a specific pigment.
The RGB model encodes the intensity of red, green, and blue,
respectively. (Ri,Gi,Bi) for each pixel is an unsigned integer
between 0 and 255. Each RGB feature { f in | n = 1, . . . , 3}
represents the normalized intensity value of the red, green,
and blue component, respectively, of the ith pixel in the
image. We denote the normalized value of each component
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as ri = Ri/255, gi = Gi/255, and bi = Bi/255. Thus, f i1 =
ri; f i2 = gi; f i3 = bi.

All the remaining color-space model features described
in our feature set derive their value from the RGB feature set.

3.1.2. HSV. HSV color space represents color using a 3-tuple
set of hue, saturation, and value. It separates the luminance
component of the color from chrominance information. The
HSV model (Hi, Si,Vi) is obtained by a linear transformation
of thenormalized RGB color space {ri, gi, bi}.

For each pixel pi, let ˜Mi = max{ri, gi, bi} represent the
maximum value of the pixel’s RGB triple set while m̃i =
min(ri, gi, bi), the minimum value of the set. We also denote
the difference between maximum and minimum values of
each RGB tuple by Δi = ˜Mi − m̃i. The HSV components
{Hi, Si,Vi} are computed from RGB color space {ri, gi, bi} as
follows:

Vi = ˜Mi,

Si =
⎧

⎪

⎨

⎪

⎩

0, ˜Mi = 0,
Δi

˜Mi

, otherwise,

Hi =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

0, Δi = 0,
gi − bi
6 · Δi

, ˜Mi = ri,
(

bi − ri
Δi

+ 2
)

· 1
6

, ˜Mi = gi,
(

ri − gi
Δi

+ 4
)

· 1
6

, ˜Mi = bi.

(1)

Thus, the HSV features are f i4 = Hi; f i5 = Si; f i6 = Vi.

3.1.3. YIQ. The YIQ color model is the television transmis-
sion color space for a digital standard. The Y component
represents the perceived luminance, while I and Q compo-
nents are the color information. I character is referred to
“in-phase” term and Q letter stands for “quadrature.” I and
Q can place color in a graph representing I as X axis and Q
as Y axis. The YIQ system takes advantage of human color
perceiver characteristics [14, 15].

The YIQ model (Yi, Ii,Qi) is obtained by a linear
transformation of the normalized RGB color space {ri, gi, bi}
as follows:

⎡

⎢

⎣

Yi

Ii
Qi

⎤

⎥

⎦ =
⎡

⎢

⎣

0.299 +0.587 +0.114
0.596 −0.274 −0.322
0.211 −0.523 +0.312

⎤

⎥

⎦

⎡

⎢

⎣

ri
gi
bi

⎤

⎥

⎦. (2)

The {Yi, Ii,Qi} values are each normalized to obtain
{yi, ii, qi} ∈ [0, 1]. Thus, the YIQ features are f i7 = yi; f i8 =
ii; f i9 = qi.

3.1.4. Y’CbCr. Like YIQ, Y’CbCr is the television trans-
mission color spaces but it is in analogue spaces for the
NTSC system. YCbCr color space detaches RGB into the
luma component, the blue-difference and red-difference

chroma components. The transformation equation from
RGB (unnormalized) model to YCbCr is defined as

⎡

⎢

⎣

Y ′i
Cbi

Cri

⎤

⎥

⎦ =
⎡

⎢

⎣

0.299 +0.587 +0.114
−0.169 −0.331 +0.500
0.500 −0.419 −0.081

⎤

⎥

⎦

⎡

⎢

⎣

Ri

Gi

Bi

⎤

⎥

⎦. (3)

Similar to the YIQ features, the {Y ′i ,Cbi,Cri} values are each
normalized to obtain{y′i , cbi, cri} ∈ [0, 1]. Thus the YIQ
features are f i10 = y′i ; f i11 = cbi; f i12 = cri.

3.1.5. XYZ. Brightness and chromaticity are two principal
components of color that interact with human vision. XYZ
are developed under CIE XYZ color space [16]. The XYZ
values can be obtained by a linear transformation of the
gamma corrected value of the RGB normalized color space
{ri, gi, bi}.

The gamma-corrected function is defined as

γ(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t

12.92
, if t ≤ 0.04045,

(

t + a

1 + a

)2.4

, otherwise,
(4)

where a = 0.055. Thus, XYZ model consisting of {Xi,Y ′′i ,Zi}
components is given by

⎡

⎢

⎣

Xi

Y ′′i
Zi

⎤

⎥

⎦ =
⎡

⎢

⎣

0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

⎤

⎥

⎦

⎡

⎢

⎣

γ(ri)
γ
(

gi
)

γ(bi)

⎤

⎥

⎦. (5)

The {Xi,Y ′′i ,Zi} values are each normalized to
obtain {xi, y′′i , zi} ∈ [0, 1]. Thus, the XYZ features are
defined as f i13 = xi; f i14 = y′′i ; f i15 = zi.

3.1.6. L∗a∗b∗. CIE L∗a∗b∗ color space is a nonlinear
transformation of the CIE XYZ color space [17]. CIE L∗a∗b∗

try to imitate the logarithmic response of the human eye.
The L∗ component is designed to match closely with human
perception of lightness. The other two components describe
the chroma.

The forward transformation of CIE XYZ color space to
CIE L∗a∗b∗ is computed as follows:

L∗i = 116ϕ

(

Y ′′i
δ2

)

− 16,

Ai = 500

[

ϕ
(

Xi

δ1

)

− ϕ

(

Y ′′i
δ2

)]

,

Bi = 200

[

ϕ

(

Y ′′i
δ2

)

− ϕ
(

Zi

δ3

)

]

,

(6)

where

ϕ(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

t1/3, if t >
(

6
29

)3

,

1
3

(

29
6

)2

t +
4

29
, otherwise,

(7)

and {δ} denotes the D65 white point given by
{0.950456, 1.0, 1.088754}.

The L∗a∗b∗ values {L∗i,Ai, Bi} are normalized
as {l∗i , ai, bi} ∈ [0, 1]. Hence, the CIE L∗a∗b∗ color features
are given by f i16 = l∗i ; f i17 = ai; f i18 = bi.
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3.1.7. CIE Luv. CIE Luv, or L∗u∗v∗, is color-space-
computed from the transformation of the CIE XYZ color
space by International Commission on Illumination (CIE) in
order to perceptual uniformity [17]. Similar to CIE L∗a∗b∗,
the D65 white point is referred by {δ}:

L′′i =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(

29
3

)3
(

Y ′′i
δ2

)

, if
Y ′′i
δ2

≤
(

6
29

)3

,

116

(

Y ′′i
δ2

)1/3

− 16, otherwise,

Ui = 13L′′i

(

4Xi

Xi + 15Y ′′i + 3Zi
− k1

)

,

Vi = 13L′′i

(

9Y ′′i
Xi + 15Y ′′i + 3Zi

− k2

)

,

(8)

where k1 = 0.2009, k2 = 0.4610, under the standard
luminance C. The normalized {L′′i ,Ui,Vi} values are denoted
by {l′′i , ui, vi} ∈ [0, 1]. Therefore, f i19 = l′′i ; f i20 = ui; f i21 =
vi.

3.1.8. CMYK. The CMYK color space is a subtractive color
system mainly used in the printing industry [16]. The
components consist of cyan, magenta, yellow, and neutral
black. It is a common way to translate RGB display on
monitors to CMYK values for printing.

Let ˜Mi = max{ri, gi, bi} represent the maximum value of
the pixel’s RGB triple set. The CMYK color space, denoted
by {Ci,Mi,Y∗i ,Ki}, can be computed from the RGB model
as follows:

Ki = 1− ˜Mi,

Ci =
˜Mi − ri
˜Mi

,

Mi =
˜Mi − gi
˜Mi

,

Y∗i =
˜Mi − bi
˜Mi

,

(9)

Thus, the CMYK features are computed as f i22 =
Ci; f i23 =Mi; f i24 = Y∗i ; f i25 = Ki.

3.1.9. Aggregate Operators for the Feature Vectors. To train
our classification model using this set of features, we need
to combine the features per pixel into one composite feature

vector �Fj = {Fn} per tongue image (or region) j. We
aggregate the pixel features using two different statistical
averages (mean and median) and the standard deviation
values. We derive five variations of feature vectors for
our automated tongue ZHENG classification system using

the following operators: mean, median (med�F), standard

deviation (σ�F), “mean plus standard deviation” ({μ�F, σ�F}),

and “median plus standard deviation” ({med�F, σ�F}).

Let N denote the number of pixels in a given tongue
image (or region) j. The mean feature vector is denoted

by μ�F j = {μFn}, where μFn is given by

μFn =
∑N

i=1 f in
N

, n = 1, . . . , 25. (10)

The median feature vector, denoted by med �F j =
{medFn}, is computed as medFn = mid{sort(Fset)}, n =
1, . . . , 25. Standard deviation depicts the margin of differ-
ence between a given feature value and its average value
among all the pixels in the given region. Thus, the standard

deviation feature vector is denoted by σ �F j = {σFn}, where
σFn is given by

σFn =
2

√

∑N
i=1

(

f in − μFn
)

N
, n = 1, . . . , 25. (11)

The “mean plus standard deviation,” denoted by

{μ�F, σ�F}, is a concatenation of the mean feature vector
and the standard deviation feature vector. Similarly, the
“median plus standard deviation” feature vector, denoted by

{med�F, σ�F}, is a concatenation of the median feature vector
and the standard deviation feature vector. Thus, the total
number of features in both concatenated feature vectors is
50 each.

3.2. Supervised Learning Algorithms for ZHENG Classifi-
cation. We apply three different supervised learning algo-
rithms (AdaBoost, support vector machine, multilayer per-
ceptron network) to build classification models for train-
ing and evaluating the proposed automated tongue based
diagnosis system. Each model has its strength and weakness,
which we describe briefly below. We empirically evaluate
their performance over our dataset.

3.2.1. AdaBoost. An ensemble of classifiers is a set of
classifiers whose individual predictions are combined in
some way (typically by voting) to classify new examples.
Boosting is a type of ensemble classifier which generates a set
of weak classifiers using instances drawn from an iteratively
updated distribution of the data, where in each iteration
the probability of incorrectly classified examples is increased
and the probability of the correctly classified examples is
decreased. The ensemble classifier is a weighted majority vote
of the sequence of classifiers produced.

The AdaBoost algorithm [18] trains a weak or base-
learning algorithm repeatedly in a series of round t =
1, . . . ,T . Given a training set {xi, yi}i=1,...,n, where xi belongs
to some domain X and yi ∈ Y = {−1, +1} (the
corresponding binary class labels), we denote the weight of
ith example in round t by Dt(i). Initially, all weights are
set equally and so D1(i) = 1/n, for all i. For each round
t, a weak learner is trained using the current distribution
Dt. When we obtain a weak hypothesis ht with error εt =
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Pri∼Dt [ht(xi) /= yi.], if εt > 1/2, we end training; otherwise,
we set αt = (1/2) ln((1− εt)/εt) and update Dt+1 as

Dt+1(i) = Dt(i)
Zt

×
{

e−αt if ht(xi) = yi,

eαt if ht(xi) /= yi,
(12)

where Zt is a normalization factor.
The final hypothesis is given by H(x) = sign

(
∑T

t=1 atht(x)).

3.2.2. Support Vector Machine. The support vector machine
(SVM) [19] is one of the best-known general purpose
learning algorithms. The goal of the SVM is to produce a
model which predicts target values of data instances in the
testing set given a vector of feature attributes. It attempts
to maximize the margin of separation between the support
vectors of each class and minimize the error in case the data
is nonlinearly separable. The SVM classifiers usually perform
well in high-dimensional spaces, avoid overfitting, and have
good generalization capabilities.

For a given a training set {xi, yi}i=1,...,n, the SVM model
for an instance x can be written as [20]

f (x) =
n
∑

i=1

yiαik(xi, x) + b, (13)

where k is the kernel function used (polynomial kernel in this
work), αi is the Lagrange multiplier, and b is a constant.

In our work, we utilize the sequential minimal optimiza-
tion (SMO) algorithm [21], which gives an efficient way
of solving the dual problem of the support vector machine
optimization problem.

3.2.3. Multilayer Perceptron Networks. The multilayer per-
ceptron network (MLP) [22] is a feed-forward neural
network with one or more layers that are hidden from
the input and output nodes. Neural networks have the
ability to learn complex data structures and approximate
any continuous mapping [23]. The model of each neuron in
the network includes a nonlinear activation function that is
differentiable such as the sigmoid. The units each perform a
biased weighted sum of their inputs and pass this activation
level through the transfer function to produce their output
given by

ϕ(x) = f
(

wTx + θ
)

, (14)

where w is the synaptic vector, x is the input vector, θ is the
bias constant, and T is the transpose operator. For K-class
classification, the MLP uses back propagation to implement
nonlinear discriminants. There are K outputs with softmax
as the output nonlinearity.

3.3. Dataset Labeling and Preprocessing. Our proposed sys-
tem relies on a labeled dataset, to effectively build an
automated tongue-based ZHENG classification system. Our
dataset is comprised of tongue images from 263 gastritis
patients and a control group of 48 healthy volunteers. Most

of the gastritis patients have been classified as Hot or Cold
ZHENG and are identified with a color label (yellow or
white) based on the color of the coating of their tongue, as
determined by their Chinese doctors. The doctors also carry
out a detailed profile of the ZHENG symptoms for each
patient based on clinical evaluations. The list of the main
symptom profile terms is summarized in Table 1.

We are also interested in the relationship between
TCM diagnosis and Western medicine diagnosis; hence,
for a subset of the patients, we are provided with their
corresponding Western medical gastritis pathology. They are
grouped into two categories: superficial versus atrophic. In
Western medicine, the doctors are also interested in knowing
whether the Helicobacter Pylori (HP) bacterium found in
the stomach is present (positive) or absent (negative) in the
patients with chronic gastritis. Thus, we are provided with
that information for a subset of the patients. It was not
feasibleto obtain all the different information collected per
patient. Table 2 summaries the population of each subset for
four different labels (ZHENG, Coating, Pathology, and HP).

4. Results and Analysis

4.1. Experimental Setup. In this section, we evaluated the
performance of our proposed ZHENG classification system
using the three classification models (AdaBoost, SVM, and
MLP) described in Section 3.2. We compared the perfor-
mance of training the classifier models using the set of
features extracted from the entire tongue image versus the
middle tongue region only. As mentioned in Section 2, in
TCM, it is believed that the middle tongue region provides
discriminant information for diagnosing stomach disorders.
Hence, we extract features from the middle tongue region, as
described in Figure 1(b), to evaluate the performance compared
to extracting features from the entire tongue region. In training
and testing our classification models, we employ a 3-fold
cross-validation strategy. This implies that the data is split
into three sets; one set is used for testing and the remaining
two sets are used for training. The experiment is repeated
with each of the three sets used for testing. The average
accuracy of the tests over the three sets is taken as the
performance measure. For each classification model, we
varied the parameters to optimize its performance. We
also compare the results obtained using the five different

variations of the feature vector (mean = μ�F, median =
med�F, standard deviation = σ�F, mean + standard deviation =
{μ�F, σ�F}, and median + standard deviation = {med�F, σ�F}),
as described in Section 3.1. We also apply Information
Gain attribute evaluation on the feature vectors to quantify
and rank the significance of individual features. Lastly, we
apply the Best First feature selection algorithm to select the
“significant” features before training the classifiers to compare
the performance of training the classifiers with the whole feature
set against selected features.

The performance metrics used are the classification
accuracy (CA) and the average F-measure. CA is defined
as the percentage of correctly classified instances over the
entire set of instances classified. In our dataset, as described
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Table 1: Symptom profile terms of Cold ZHENG and Hot ZHENG.

Subjects Terms (keywords)

Cold-ZHENG related symptoms
Cold (chill, coldness), hot diet/drink preferred, desires warm environment, pale flushing of face, not
thirsty, no bad mouth breath, no acidic saliva, clear urine, loose stool, high and short pitch voice, and
feeling cold at limbs.

Hot-ZHENGrelated symptoms
Fever (heat, hot), cold diet/drink preferred, desires cold environment, red flushing of face, thirsty,
obvious bad mouth breath, acidic saliva, yellow urine, hard stool, constipation, and feeling hot at limbs.

Table 2: Data label summary for the gastritis patients.

Data labels Population

ZHENG: Hot/Cold 132/68

Coating: yellow/white 147/67

Pathology: superficial/atrophic 84/144

HP bacterium: positive/negative 72/167

in Table 2, for each data label, the population of both classes
(which we denote by {C1, C2}) is not uniformly distributed.
Hence, evaluating the performance of our classifiers using
simply the classification accuracy does not paint an accurate
picture of the discriminative power of the classifier. Since the
dataset distribution is skewed, we can achieve a high accuracy
but very poor performance in discriminating between both
classes. Thus, we judge our classifiers using the average F-
measure obtained for both binary classes. The F-measure
combines precision and recall. It measures how well an
algorithm can predict an instance belonging to a particular
class. Let TP represent true positive, which we define as the
number of instances that are correctly classified as C1 for a
given test set, while TN denotes true negative, the equivalent
for C2 instances. Let FP represent false positive, which
we define as the number of instances that are incorrectly
classified as C1 for a given test set, while FN denotes
false negative, the equivalent for C2 instances. Precision =
TP/(TP + FP) and Recall = TP/(TP + FN). Thus, the F-
measure is defined as

F-measure = 2 · Recall · Precision
Recall + Precision

. (15)

For both binary classes {C1, C2}, let (|C1|, |C2|) denote
the total number of instances belonging to class C1 and
C2, respectively, then the average F-measure is defined as

F-measure

= |C1| · F-measure (C1) + |C2| · F-measure (C2)
|C1| + |C2| .

(16)

In all the tables illustrating the different experimental
results, we highlight the best F-measure obtained along with
the corresponding classification accuracy of the classifier.

4.2. Classification Results Based on Tongue Coating and
ZHENG for Gastritis Patients. The experimental results
presented in this section analyze the discrimination among
the gastritis patients based on their tongue coating color and

ZHENG category. Table 3 summarizes the results obtained
using our proposed color-space feature vector to train the
classifiers to automatically classify the color of the coating
of a gastritis patient’s tongue as yellow or white. We can
observe from Table 3 that the combination of the median and
standard deviation feature values ({med�F, σ�F}) yields the
best result for both the entire tongue region and the middle
tongue region only. The results for both regions are also very
comparable.

When using the entire tongue region, the top three signif-
icant features for the color coating classification, ranked by
the information gain attribute, were {σF9, medF12, σF2},
which denote the standard deviation of Q chroma (YIQ
model), the median of Cr component (YCbCr), and the
standard deviation of Green Channel (RGB), respectively.
For the middle tongue region only, the top three were
{σF9, σF20, medF4} which denote the standard deviation
of Q chroma (YIQ model), the standard deviation of u
component (L∗u∗v∗), and the median of the Hue (HSV). It
is also interesting to observe that out of the top ten significant
features using the entire region versus the middle tongue
region, they both have six of those features in common.

The result obtained on ZHENG classification between
the Hot and Cold groups is shown in Table 4. For the
ZHENG classification, using the standard deviation feature

values (σ�F) performs best when dealing with the entire

tongue region while the {med�F, σ�F} feature vector is the top
performer for the middle tongue region only.

For ZHENG classification between Hot and Cold syn-
dromes for gastritis patients, when using the entire tongue
region, only one feature was considered significant by the
information gain attribute: σF9, that is, which is the standard
deviation of Q chroma (YIQ model). For the middle tongue
region, the most important feature is σF20, the standard
deviation of u component (L∗u∗v∗). Even though the
noteworthy feature in the entire tongue area and the middle
tongue area is not the same, both Q components in YIQ
color space and u component in L∗u∗v∗ color space show
the difference from green to red in chromaticity diagram.

Table 5 summarizes the results obtained when we train
different classifiers to detect the presence of the HP bacteria
in a gastritis patient using the color feature vector. The
classification result obtained in learning the pathology
groups of the patients (superficial versus atrophic) is shown
in Table 6. Both cases are not very strong, which illustrates
a weak correlation between the western medicine diagnosis
and the tongue information utilized by Chinese medical
practitioners. No feature was identified as significant in
either case.
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Table 3: Tongue coating color classification: yellow versus white for gastritis patients.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.681 69.16 0.757 76.64 0.752 76.17 0.761 77.57 0.796 80.84 0.773 78.04

{μ�F, σ�F} 0.743 74.77 0.792 79.44 0.774 77.57 0.764 76.64 0.799 80.37 0.767 77.10

med�F 0.758 76.64 0.728 74.30 0.724 72.90 0.735 74.77 0.789 79.44 0.766 77.10

{med�F, σ�F} 0.763 76.64 0.801 80.37 0.767 77.10 0.781 78.50 0.775 77.10 0.811 81.31

σ�F 0.747 75.70 0.797 79.91 0.783 78.50 0.747 74.77 0.777 77.57 0.783 78.97

Table 4: ZHENG classification between Hot and Cold syndromes for gastritis patients.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.618 63.50 0.716 71.50 0.710 71.00 0.622 63.50 0.710 70.50 0.663 67.00

{μ�F, σ�F} 0.750 75.00 0.680 67.50 0.723 72.00 0.664 68.00 0.735 73.50 0.740 74.00

med�F 0.647 65.50 0.649 64.50 0.676 68.00 0.684 71.00 0.661 67.00 0.690 69.00

{med�F, σ�F} 0.738 74.50 0.665 66.00 0.726 72.50 0.685 70.00 0.708 72.00 0.761 76.00

σ�F 0.763 76.50 0.709 71.00 0.709 71.00 0.676 69.00 0.704 70.00 0.719 72.00

Table 5: Detection of presence of HP bacteria (positive versus negative) in gastritis patients.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.679 71.97 0.681 68.20 0.673 68.20 0.696 71.97 0.686 70.29 0.682 70.29

{μ�F, σ�F} 0.644 66.11 0.680 67.78 0.713 71.97 0.632 64.85 0.681 68.20 0.681 67.78

med�F 0.655 67.78 0.666 67.36 0.666 67.78 0.699 71.55 0.644 69.04 0.676 68.20

{med�F, σ�F} 0.655 67.78 0.686 68.20 0.695 69.87 0.633 65.27 0.631 64.44 0.684 68.20

σ�F 0.661 68.20 0.695 71.13 0.702 70.29 0.594 61.09 0.669 66.95 0.649 65.27

Table 6: Classification between superficial and atrophic pathology of the gastritis patients.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.604 63.16 0.642 64.47 0.627 63.16 0.658 66.67 0.631 63.16 0.622 62.72

{μ�F, σ�F} 0.633 65.35 0.662 65.79 0.702 71.05 0.604 61.40 0.630 63.60 0.621 62.28

med�F 0.633 64.47 0.601 62.72 0.640 64.04 0.623 65.79 0.632 63.16 0.623 62.28

{med�F, σ�F} 0.657 66.23 0.660 65.79 0.697 69.74 0.613 62.72 0.645 64.47 0.663 66.23

σ�F 0.637 64.91 0.697 70.18 0.659 66.23 0.631 64.04 0.629 63.16 0.639 64.47

Table 7: Tongue Classification between superficial and atrophic in Cold syndrome patients.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.579 58.33 0.658 66.67 0.633 63.33 0.651 65.00 0.639 65.00 0.633 63.33

{μ�F, σ�F} 0.716 71.67 0.647 65.00 0.680 68.33 0.643 65.00 0.649 65.00 0.662 66.67

med�F 0.600 60.00 0.714 71.67 0.733 73.33 0.633 63.33 0.613 66.67 0.633 63.33

{med�F, σ�F} 0.717 71.67 0.698 70.00 0.700 70.00 0.684 68.33 0.598 60.00 0.667 66.67

σ�F 0.701 70.00 0.761 76.67 0.745 75.00 0.579 58.33 0.598 60.00 0.601 60.00
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Table 8: Tongue classification between superficial and atrophic in Hot syndrome patients.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.768 77.06 0.755 75.23 0.735 73.39 0.710 71.56 0.735 76.15 0.680 67.89

{μ�F, σ�F} 0.741 74.31 0.845 84.40 0.764 76.15 0.680 68.81 0.777 77.06 0.780 77.98

med�F 0.718 72.48 0.708 72.48 0.718 71.56 0.686 68.81 0.706 70.64 0.736 73.39

{med�F, σ�F} 0.715 71.56 0.817 81.65 0.815 81.65 0.672 67.89 0.774 77.06 0.808 80.73

σ�F 0.770 77.06 0.818 81.65 0.817 81.65 0.675 67.89 0.792 78.90 0.781 77.98

Table 9: Tongue classification between Hot syndrome and Cold syndrome in superficial patients.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.583 59.68 0.773 77.42 0.705 70.97 0.705 70.97 0.773 77.42 0.726 72.58

{μ�F, σ�F} 0.740 74.19 0.839 83.87 0.765 77.42 0.690 69.35 0.839 83.87 0.757 75.81

med�F 0.628 62.90 0.740 74.19 0.743 74.19 0.675 67.74 0.710 70.97 0.658 66.13

{med�F, σ�F} 0.774 77.42 0.839 83.87 0.755 75.81 0.774 77.42 0.839 83.87 0.774 77.42

σ�F 0.834 83.87 0.757 75.81 0.838 83.87 0.819 82.26 0.791 79.03 0.750 75.81

Table 10: Tongue Classification between Hot syndrome and Cold syndrome in atrophic patients.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.539 55.14 0.642 63.55 0.645 64.49 0.572 58.88 0.762 75.70 0.615 61.68

{μ�F, σ�F} 0.662 67.29 0.681 69.16 0.698 70.09 0.638 64.49 0.702 69.16 0.685 68.22

med�F 0.612 61.68 0.646 63.55 0.666 66.36 0.611 62.62 0.606 62.62 0.638 64.49

{med�F, σ�F} 0.704 71.03 0.657 64.49 0.677 68.22 0.604 60.75 0.701 69.16 0.703 70.09

σ�F 0.696 70.09 0.691 68.22 0.734 73.83 0.650 64.49 0.675 66.36 0.645 63.55

Table 11: Classification between normal tongue and tongue with coating.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.803 82.82 0.831 82.44 0.795 80.53 0.771 78.63 0.774 77.48 0.764 75.95

{μ�F, σ�F} 0.829 83.59 0.851 85.11 0.848 85.50 0.812 81.68 0.814 81.68 0.816 82.44

med�F 0.785 80.53 0.803 83.21 0.814 83.21 0.776 80.53 0.791 78.63 0.784 79.39

{med�F, σ�F} 0.814 83.21 0.835 83.59 0.861 86.26 0.817 83.59 0.823 82.06 0.824 82.44

σ�F 0.818 83.21 0.839 83.59 0.851 85.11 0.837 84.73 0.786 79.39 0.818 82.44

Table 12: Tongue classification between normal group and ZHENG gastritis group.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.765 78.63 0.809 80.24 0.784 78.63 0.781 79.44 0.770 76.61 0.762 76.61

{μ�F, σ�F} 0.836 84.68 0.852 84.68 0.857 85.89 0.820 82.66 0.798 80.65 0.826 82.26

med�F 0.756 77.82 0.795 81.45 0.784 78.63 0.772 78.23 0.817 81.45 0.785 78.63

{med�F, σ�F} 0.802 81.45 0.845 84.27 0.844 84.68 0.779 79.44 0.837 83.47 0.869 87.10

σ�F 0.826 83.47 0.849 84.68 0.843 84.27 0.799 81.05 0.780 77.02 0.833 83.87
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Table 13: Tongue classification between normal group and Hot ZHENG.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.671 70.00 0.781 77.78 0.708 72.22 0.741 75.00 0.773 77.22 0.755 76.11

{μ�F, σ�F} 0.804 80.56 0.792 79.44 0.816 81.67 0.780 78.89 0.764 77.22 0.799 79.44

med�F 0.721 72.78 0.711 72.22 0.739 75.00 0.727 73.89 0.739 73.33 0.744 74.44

{med�F, σ�F} 0.796 80.00 0.814 82.78 0.797 80.00 0.781 79.44 0.752 75.00 0.798 79.44

σ�F 0.768 77.22 0.828 82.22 0.826 82.78 0.736 75.00 0.766 77.22 0.805 80.56

Table 14: Tongue classification between normal group and Cold ZHENG.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.690 68.97 0.759 75.86 0.676 68.10 0.714 71.55 0.741 74.14 0.731 73.28

{μ�F, σ�F} 0.742 74.14 0.785 78.45 0.748 75.00 0.826 82.76 0.759 75.86 0.750 75.00

med�F 0.686 68.97 0.745 75.00 0.757 75.86 0.672 67.24 0.750 75.00 0.742 74.14

{med�F, σ�F} 0.759 75.86 0.774 77.59 0.734 73.28 0.768 76.72 0.733 73.28 0.811 81.03

σ�F 0.741 74.14 0.733 73.28 0.734 73.28 0.679 68.10 0.723 72.41 0.708 70.69

Tables 7–10 illustrate how experimental results reflect the
analysis of the classification between two pathology types
of gastritis patients according to ZHENG category. Table 7
summarizes the results obtained using our proposed color-
space feature vector to train the classifiers to automatically
classify between Superficial group and Atrophic group for
patients labeled as Cold ZHENG. The results obtained on
classification between superficial group and atrophic group
for Hot ZHENG patients is shown in Table 8. We can observe

from Table 7 that the σ�F feature vector performed best for the

entire tongue region while the {med�F, σ�F} feature vector
yielded the best result for the middle tongue region.

Similarly, from Table 8 we can observe that for the
Hot ZHENG patients, for the middle tongue region, the

{med�F, σ�F} feature vector also performed best. However,

{μ�F, σ�F} feature vector performs best when dealing with the
entire tongue region.

When using the entire tongue region, the top three
significant features for the pathology classification between
superficial and atrophic in Cold ZHENG, ranked by the
information gain attribute, were {σF9, σF6, σF1} which
denote the standard deviation of Q chroma (YIQ model),
the standard deviation of value component (HSV), and the
standard deviation of Red Channel (RGB), respectively.

In Table 8, when using the entire tongue region, the
top three significant features for the pathology classification
between superficial and atrophic in Hot syndrome, ranked
by the information gain attribute, were {μF22, μF25, μF3}
which denote the mean of Cyan Ink (CMYK model), the

mean of Black Ink (CMYK model), and the mean of
Blue Channel (RGB), respectively. For the middle tongue
region only, the top three were {σF22, σF25, medF25}, which
denote the standard deviation of Cyan Ink (CMYK model),
the standard deviation of Black Ink (CMYK model), and the
median of Black Ink (CMYK model).

The next set of experimental results focus on training
our classifier using our proposed color-space feature vector
to discriminate Hot ZHENG from Cold ZHENG in each
pathology group. Table 9 summarizes the results obtained
to train the classifiers to automatically classify between Hot
and Cold ZHENG for superficial gastritis patients. Table 10
reflects the results for gastritis patients. We can observe from

Table 9 that both {μ�F, σ�F} and {med�F, σ�F} feature vectors
perform the best for both the entire tongue region and
the middle tongue region. From results in Table 10, using

the standard deviation feature values ({μ�F, σ�F}) performs
best when dealing with the entire tongue region while the

({μ�F, σ�F}) feature vector is the top performer for the middle
tongue region.

When using the entire tongue region, the top three
significant features for the ZHENG classification between
Hot syndrome and Cold syndrome in the patients who
are superficial, ranked by the information gain attribute,
were {σF9, medF3, medF18}, which denote the standard
deviation of Q chroma (YIQ model), the median of Blue
Channel (RGB), and the median of the blue sensitivity Z
component, respectively. For the middle tongue region only,
the top three were med F24, σF19, and med F5 which denote
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Table 15: Tongue classification between normal group and superficial patients.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.655 65.91 0.737 74.24 0.754 75.76 0.694 69.70 0.687 68.18 0.704 70.45

{μ�F, σ�F} 0.679 68.18 0.751 75.00 0.774 77.27 0.749 75.00 0.744 74.24 0.719 71.97

med�F 0.675 67.42 0.737 74.24 0.737 73.48 0.733 73.48 0.677 67.42 0.739 73.48

{med�F, σ�F} 0.695 70.45 0.759 75.76 0.811 81.06 0.749 75.00 0.762 75.76 0.726 72.73

σ�F 0.687 68.94 0.735 74.24 0.706 70.45 0.726 72.73 0.742 74.24 0.749 75.00

Table 16: Tongue classification between normal group and atrophic patients.

Feature
vector

Entire tongue Middle tongue

AdaBoost SVM MLP AdaBoost SVM MLP

F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA F-meas CA

μ�F 0.733 75.52 0.803 80.21 0.781 79.17 0.754 77.08 0.770 78.13 0.699 70.83

{μ�F, σ�F} 0.736 73.96 0.772 78.13 0.837 83.85 0.798 80.73 0.782 78.65 0.802 80.21

med�F 0.726 73.96 0.754 77.08 0.751 75.52 0.726 75.52 0.749 74.48 0.753 75.52

{med�F, σ�F} 0.738 74.48 0.816 82.29 0.818 81.77 0.751 75.52 0.792 78.65 0.848 84.90

σ�F 0.761 77.08 0.787 79.69 0.799 80.21 0.772 78.13 0.798 80.21 0.791 79.69

the median of Yellow Ink (CMYK), the standard deviation
of lightness component (Luv model), and the median of
saturation (HSV). It is also interesting to observe that by
comparing the set of the top five significant features using the
entire region versus the set from the middle tongue region,
they both have the Yellow Ink (CMYK) in common.

When using the entire tongue region, there is only one
significant feature difference for the ZHENG classification
between Hot syndrome and Cold syndrome in patients who
are atrophic, ranked by the information gain attribute, σF9

which denotes the standard deviation of Q chroma (YIQ
model). For the middle tongue region only, there were two
significant features: {μF19,μF3} which denote the mean of
the blue sensitivity Z component (XYZ) and the mean of the
Blue Channel (RGB).

4.3. Classification Results for Gastritis Patients versus Control
Group. The experimental results presented in this section
analyze the discrimination between the gastritis patients and
control group. Table 11 summarizes the results obtained
using our proposed color-space feature vector to train the
classifiers to automatically classify patients with coating on
tongue versus healthy patients with normal tongue (without

coating). We can observe from Table 11 that the {med�F, σ�F}
feature vector yields the best result for the entire tongue

region while for the middle tongue region, it was the σ�F
feature vector.

When using the entire tongue region, the top three sig-
nificant features for distinguishing between normal tongue
and tongue with coating, ranked by the information gain
attribute, were {σF1, σF6, σF25} which denote the standard
deviation of Red Channel (RGB), the standard deviation
of value component (HSV), and the standard deviation of

Black Ink (CMYK) respectively. For the middle tongue region
only, there were only two significant features: {σF13, σF14}
which denote the standard deviation of lightness component
(L∗a∗b) and the standard deviation of a∗ component
(L∗a∗b∗). It is also interesting to observe that by comparing
the set of the top 10 significant features using the entire
region versus the set from the middle tongue region, they
both have the lightness and a∗ component (L∗a∗b∗) in
common.

The results obtained from the classification between the
normal group and the entire set of patients with ZHENG

syndrome is shown in Table 12. The {μ�F, σ�F} feature vector
performs best when dealing with the entire tongue region

while the {med�F, σ�F} feature vector is the top performer for
the middle tongue region.

When using the entire tongue region, the top three
significant features for the classification between the normal
group and the gastritis group, ranked by the information gain
attribute, were {σF1, σF6, σF25} which denote the standard
deviation of Red Channel (RGB), the standard deviation of
value component (HSV), and the standard deviation of Black
Ink (CMYK) respectively. For the middle tongue region only,
the top three were: {medF1, medF6, σF13} which denote
the median of Red Channel (RGB), the median of Value
component (HSV), and the standard deviation of lightness
component (L∗a∗b∗).

Tables 13 and 14 show the results of training our
classifiers to discriminate between the normal group and the
Hot ZHENG patients only, and then normal group versus
Cold ZHENG patients only. Table 13 illustrates the results
for normal versus hot ZHENG. We can observe that the
σ�F feature vector performs best both for the entire tongue
region and the middle tongue region. From Table 14, when
only the normal versus Cold ZHENG patients is considered,
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Table 17: Comparison between using selected features versus Whole feature set for classification.

Classification experiment type
Feature selection Whole feature

F-measure Accuracy F-measure Accuracy

Coating (yellow versus white) 0.764 77.10% 0.801 80.37%

ZHENG (Hot versus Cold) 0.642 65.00% 0.763 76.50%

HP Bacteria (positive versus negative) 0.636 72.38% 0.713 71.97%

Gastritis patients (superficial versus atrophic) 0.656 68.42% 0.702 71.05%

Cold ZHENG patients (superficial versus atrophic) 0.750 75.00% 0.761 76.67%

Hot ZHENG patients (superficial versus atrophic) 0.776 77.98% 0.845 84.40%

Superficial Patients (Hot versus Cold ZHENG) 0.807 80.65% 0.839 83.87%

Atrophic patients (Hot versus Cold ZHENG) 0.782 78.50% 0.734 73.83%

Normal tongue versus tongue with coating 0.833 85.88% 0.861 86.26%

Normal group versus ZHENG patients 0.834 84.68% 0.857 85.89%

Normal group versus Hot ZHENG 0.808 81.11% 0.828 82.22%

Normal group versus Cold ZHENG 0.750 75.00% 0.785 78.45%

Normal group versus superficial patients 0.765 76.52% 0.811 81.06%

Normal group versus atrophic patients 0.762 78.13% 0.837 83.85%

the same feature vector, {μ�F, σ�F}, performs best for both
cases, however, considering only the middle tongue region
outperforms using the entire tongue region.

When using the entire tongue region, the top three
significant features for the classification between the normal
group and the gastritis patients with Hot syndrome, ranked
by the information gain attribute, were {σF1, σF6, σF25}
which denote the standard deviation of Red Channel (RGB),
the standard deviation of value component (HSV), and
the standard deviation of Black Ink (CMYK), respectively.
For the middle tongue region only, there were only two
significant features: {σF13, σF14} which denote the standard
deviation of lightness component (L∗a∗b) and the standard
deviation of a∗ component (L∗a∗b∗). When the set of the
top ten significant features using the entire region versus the
set from the middle tongue region are compared, they both
have the lightness and a∗ component (L∗a∗b∗) in common.

When using the entire tongue region, the top three signif-
icant features for the classification between the normal group
and the gastritis patients with Cold syndrome, ranked by the
information gain attribute, were {σF25, σF22, σF1} which
denotethe standard deviation of Black Ink (CMYK), the
standard deviation of Cyan Ink (CMYK), and the standard
deviation of Red Channel (RGB), respectively. For the middle
tongue region only, the top three were {σF13,μF22, σF14}
which denote the standard deviation of lightness component
(L∗a∗b), the mean of Cyan Ink (CMYK), and the standard
deviation of a∗ component (L∗a∗b∗).

Table 15 show the results of training our classifiers to
discriminate between the normal group and the superficial
patients while Table 16 shows the result for normal group
versus the atrophic patients. When using the entire tongue
region, the top three significant features for the classification
between the normal group and the superficial group, ranked
by the information gain attribute, were {σF1, σF6, σF25}
which denote the standard deviation of Red Channel (RGB),
the standard deviation of value component (HSV), and

the standard deviation of Black Ink (CMYK), respec-
tively. For the middle tongue region, the top three were
{medF9, medF1, medF6} which denote the median of Q
chromatic component (YIQ), the median of Red Channel
(RGB), and the median of Value component (HSV).

When using the entire tongue region, the top three
significant features for the classification between the normal
group and the atrophic group, ranked by the information
gain attribute, were {μF25, μF22, μF1} which denote the
mean of Black Ink (CMYK model), the mean of Cyan Ink
(CMYK model), and the mean of Red Channel (RGB),
respectively. For the middle tongue region, the top three
were {medF16, σF13, σF23} which denote the median of red
sensitivity X component (XYZ), the standard deviation of
lightness (L∗a∗b∗), and the standard deviation of Cyan Ink
(CMYK).

4.4. Analysis of Classification Results. From the experimental
results presented in Sections 4.2 and 4.3, we can draw the fol-
lowing conclusions. Firstly, concerning the performance of
the different classification models, we observe that the MLP
and SVM models usually outperformed the AdaBoost model.
The multilayer perceptron neural network seems most
adequate for learning the complex relationships between the
color features of the tongue images and the ZHENG/coating
classes. However, both the MLP and SVM models have many
parameters to consider and optimize while the AdaBoost is
a much simpler model. In the AdaBoost model, we use a
decision tree as our base weak learner and vary the number
of classifiers to optimize its performance.

Secondly, we observe that when making discriminations
within the gastritis patients group (hot versus cold ZHENG,
yellow versus white coating, etc.), it was more profitable to
apply the feature vectors on the entire tongue image. When
classifying the normal groups versus the ZHENG groupings,
usually, it improved classifier performance to apply the
feature vectors to the middle tongue regions only.
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Thirdly, we also observe that from the evaluation of
the variations of the feature vectors used, taking into
account both the average and the standard deviation usually
resulted in an excellent performance. It seemed like the
mean outperformed the median slightly, overall, that is,

{μ�F, σ�F}. In a few cases, simply considering variation of the

spread of the values over the region ({σ�F}) yielded the best
performance. Thus, we can conclude that when deriving a
feature vector for the tongue image, the mean (or median) as
well as the standard deviation (which takes into account the
variation of the spread on the region) is very important.

Lastly, we observe that though we were not able to effec-
tively discriminate between the pathology groups (superficial
versus atrophic and also the presence of the HP bacterium
using our color-space feature vectors, we were able to
classify them much better when we took into account the
ZHENG classes. This further strengthens the notion that our
proposed color-space feature vectors are able to discriminate
between the hot and cold ZHENG patients in addition to
discerning a ZHENG patient from a non-ZHENG (healthy)
patient.

4.5. Applying Feature Selection Algorithm. The classification
results presented in Sections 4.2 and 4.3 were obtained using
the whole feature set. For each experiment carried out on
the entire tongue region, we also applied information gain
attribute evaluation to rank the significance of the features.
In this section, we apply feature selection algorithm (Best
First) to select only a subset of features, which are deemed
significant, before training the classifiers. Our goal is to
see if this would yield a better result than using the whole
feature set. The Best First algorithm searches the space of
attribute subsets by greedy hill climbing augmented with a
backtracking facility.

The summary of the results obtained is shown in
Table 17. The normal group refers to the healthy (non-
ZHENG) control group. We present the best classification
result obtained for each experiment based on using the five

variations of the feature vectors (μ�F, med�F, σ�F, {μ�F, σ�F},
{med�F, σ�F}) and the three different classification models
(Adaboost, SVM, and MLP). As we can observe from
Table 17, using the whole feature set to train the classifiers
yielded a better result in all cases except for the Atrophic
Patients (Hot versus Cold ZHENG) experiment. Thus, we
can conclude the overall, using the aggregate of the proposed
feature sets is more discriminative even though some features
are more significant than others.

5. Conclusion and Future Work

In this paper, we propose a novel color space-based feature
set for use in the clinical characterization of ZHENG using
various supervised machine-learning algorithms. Using an
automated tongue-image diagnosis system, we extract these
objective features from tongue images of clinical patients and
analyze the relationship with their corresponding ZHENG
data and disease prognosis (specifically gastritis) obtained

from clinical practitioners. Given that TCM practitioners
usually observe the tongue color and coating to determine
ZHENG (such as Cold or Hot ZHENG) and to diagnose
different stomach disorders including gastritis. We propose
using machine-learning techniques to establish the relation-
ship between the tongue image features and ZHENG by
learning through examples.

The experimental results obtained demonstrate an excel-
lent performance of our proposed system. Our future work
will focus on improving the performance of our system
by exploring additional tongue image features that can be
extracted to further strengthen our classification models. We
plan to explore ways to improve our methodology to more
accurately classify the ZHENGs such as including a preprocess-
ing step of coating separation prior to the feature extraction
phase. Lastly, we plan to evaluate the classification of the other
ZHENG types mentioned in Section 1.
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