
BearWorks BearWorks 

MSU Graduate Theses 

Summer 2017 

Genetic Tools to Allow Efficient Gene and Protein Characterization Genetic Tools to Allow Efficient Gene and Protein Characterization 

of the Industrially Important Bacterium Gluconobacter Oxydans of the Industrially Important Bacterium Gluconobacter Oxydans 

Melissa A. Schoeben 
Missouri State University, Melissa833@live.missouristate.edu 

As with any intellectual project, the content and views expressed in this thesis may be 

considered objectionable by some readers. However, this student-scholar’s work has been 

judged to have academic value by the student’s thesis committee members trained in the 

discipline. The content and views expressed in this thesis are those of the student-scholar and 

are not endorsed by Missouri State University, its Graduate College, or its employees. 

Follow this and additional works at: https://bearworks.missouristate.edu/theses 

 Part of the Microbiology Commons 

Recommended Citation Recommended Citation 
Schoeben, Melissa A., "Genetic Tools to Allow Efficient Gene and Protein Characterization of the 
Industrially Important Bacterium Gluconobacter Oxydans" (2017). MSU Graduate Theses. 3117. 
https://bearworks.missouristate.edu/theses/3117 

This article or document was made available through BearWorks, the institutional repository of Missouri State 
University. The work contained in it may be protected by copyright and require permission of the copyright holder 
for reuse or redistribution. 
For more information, please contact bearworks@missouristate.edu. 

https://bearworks.missouristate.edu/
https://bearworks.missouristate.edu/theses
https://bearworks.missouristate.edu/theses?utm_source=bearworks.missouristate.edu%2Ftheses%2F3117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/48?utm_source=bearworks.missouristate.edu%2Ftheses%2F3117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bearworks.missouristate.edu/theses/3117?utm_source=bearworks.missouristate.edu%2Ftheses%2F3117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bearworks@missouristate.edu


 

GENETIC TOOLS TO ALLOW EFFICIENT GENE AND PROTEIN 

CHARACTERIZATION OF THE INDUSTRIALLY IMPORTANT   

BACTERIUM GLUCONOBACTER OXYDANS 

 

 

A Masters Thesis 

Presented to 

The Graduate College of 

Missouri State University 

 

TEMPLATE 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Master of Science, Biology 

 

 

 

By 

Melissa A. Schoeben 

May 2017 

  



 

ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2013 by Melissa Ann Schoeben 



 

iii 

GENETIC TOOLS TO ALLOW EFFICIENT GENE AND PROTEIN 

CHARACTERIZATION OF THE INDUSTRIALLY IMPORTANT BACTERIUM 

GLUCONOBACTER OXYDANS 

Biology 

Missouri State University, May 2017 

Master of Science 

Melissa A. Schoeben 

 

ABSTRACT 

The acetic acid bacterium Gluconobacter oxydans is an industrially valuable 

microorganism, particularly in the production of acetic acid, D-gluconic acid, 

ketogluconic acids, dihydroxyacetone, and precursors for the antidiabetic drug miglitol. 

Despite its importance in industry, there is still much to be learned about G. oxydans and 

its many uncharacterized enzymes. Additionally, genetic engineering holds the possibility 

of improving current yields. However, these goals are limited, largely due to a lack of 

molecular tools suitable for working with the bacterium. The current molecular toolkit for 

G. oxydans specifically lacks an efficient screening system for positive clones and a 

system for regulatable gene expression. Therefore, two sets of fluorescent protein-based 

reporter systems were designed for screening and protein purification along with two sets 

of inducible promoter systems, the Tet and Lux systems, for the regulation of gene 

expression. Although, the fluorescent reporter systems were unreliable as a gene 

expression screening tool, the Lux inducible promoter system had reliable and strong 

induction of gene expression, and is a promising system to use for metabolic engineering 

and regulatable gene expression in G. oxydans. 

 

 

KEYWORDS:  Gluconobacter oxydans, fluorescent reporter, inducible promoter, fusion 

protein, genetic tools 

 

 This abstract is approved as to form and content 

 

  

 _______________________________ 

 Paul Schweiger, PhD 

 Chairperson, Advisory Committee 

 Missouri State University 



 

iv 

GENETIC TOOLS TO ALLOW EFFICIENT GENE AND PROTEIN 

CHARACTERIZATION OF THE INDUSTRIALLY IMPORTANT   

BACTERIUM GLUCONOBACTER OXYDANS 

 

By 

Melissa A. Schoeben 

 

A Masters Thesis 

Submitted to the Graduate College 

Of Missouri State University 

In Partial Fulfillment of the Requirements 

For the Degree of Master of Science, Biology 

 

 

May 2017 

 

 

 

 

 

 

 Approved: 

 

 

   

  _______________________________________ 

  Paul Schweiger, PhD 

 

   

  _______________________________________ 

  Laszlo Kovacs, PhD 

  

   

  _______________________________________ 

  Christopher Lupfer, PhD 

 

 

  _______________________________________ 

  Julie Masterson, PhD: Dean, Graduate College 



 

v 

ACKNOWLEDGEMENTS 
 

I would like to express my gratitude to Dr. Schweiger for allowing me to work in 

his laboratory and for his help and guidance with my research and thesis. I would also 

like to thank my committee members, Dr. Kovacs and Dr. Lupfer, for taking the time to 

read and critique my thesis. Thank you to the Graduate College and the Biology 

Department for providing funding for my research. I would like to acknowledge my 

labmates Marshal Blank, Kyle Ess, and Kevin martin. Thank you to Dr. Kathy Hughes, 

Dr. John Steiert, and Rhy Norton for their letters of recommendation. Finally, I would 

like to thank my husband, Mark, for his support and encouragement throughout my time 

as a student. 



 

vi 

TABLE OF CONTENTS 

 

Introduction ..................................................................................................................... 1 

 Gluconobacter oxydans 621H .............................................................................. 1 

 Molecular Tools for Gluconobacter ..................................................................... 2 

 Fluorescent Protein-based Reporter Systems ........................................................ 4 

 Inducible Promoters ............................................................................................. 5 

 

Materials and Methods .................................................................................................... 9 

 Bacteria, Growth Conditions, and Storage ............................................................ 9 

 Molecular Biological Techniques ......................................................................... 9 

 Construction of Fluorescent Reporter systems .................................................... 11 

 Construction of Inducible Promoter System ....................................................... 14 

 Preparation of Competent cells and Transformation ........................................... 18 

 Microscopy, β-D-Glucuronidase Assays, and Data Analysis .............................. 20 

 

Results  .......................................................................................................................... 22 

 Fluorescent Protein-Based Reporter Systems ..................................................... 22 

 Inducible Promoter Systems ............................................................................... 26 

 

Discussion ..................................................................................................................... 36 

 Fluorescent Protein-based Reporter Systems ...................................................... 36 

 Inducible Promoter Systems ............................................................................... 38 

  

References ..................................................................................................................... 43 

 

 



 

vii 

LIST OF TABLES 

 

Table 1: Primers ............................................................................................................ 12 

Table 2: Plasmids used in this study ............................................................................... 16 

Table 3: Statistical analysis for p0169pLux-uidA induction ........................................... 32 

 

Table 4: Statistical analysis for p264pLux-uidA induction ............................................. 33 

 

Table 5: Statistical analysis for p452pLux-uidA induction ............................................. 34 



 

viii 

LIST OF FIGURES 

 

Figure 1. Original expression vectors designed for use in G. oxydans .............................. 3 

Figure 2. Fluorescent reporter fusion products and protein purification scheme ............... 6 

Figure 3. Scheme of proposed regulatable promoter elements .......................................... 7 

 

Figure 4. Agarose gels confirming positive GFPuv and mRFP constructs ...................... 23 

 

Figure 5. Construction of fluorescent-based reporter systems ......................................... 24 

 

Figure 6. Fluorescent microscopy of G. oxydans expressing GFPuv............................... 25 

Figure 7. Fluorescent microscopy of G. oxydans expressing mRFP ................................ 26 

Figure 8. Construction of the Lux system ....................................................................... 27 

Figure 9. Agarose gels confirming positive Lux constructs ............................................ 28 

Figure 10. Construction of the Tet system ...................................................................... 29 

Figure 11. Agarose gels confirming positive Tet constructs ........................................... 30 

Figure 12. AHL induced UidA activity in cells containing p0169pLux-uidA ................. 32 

 

Figure 13. AHL induced UidA activity in cells containing p264pLux-uidA ................... 33 

 

Figure 14. AHL induced UidA activity in cells containing p452pLux-uidA ................... 34 

 

Figure 15. ATc induced UidA activity in G. oxydans ..................................................... 35 

 

Figure 16. E. coli cells expressing GFPuv ...................................................................... 37 

 

Figure 17. Lux promoter-mediated β-Glucuronidase activity in AHL induced cells ....... 40 

 

Figure 18. Brightfield microscopy of G. oxydans cells stained with crystal violet .......... 41 

 



 

1 

INTRODUCTION 

 

Gluconobacter oxydans 621H 

Gluconobacter oxydans is a gram negative, rod shaped, obligately aerobic, acetic 

acid bacterium. Carbon sources utilized by Gluconobacter include D-mannitol, D-

glucose, D-fructose, sorbitol, and glycerol, and it requires pantothenic acid, niacin, 

thiamine, and p-aminobenzoic acid for growth (Gupta et al., 2001). As member of the 

family Acetobacteraceae, Gluconobacter can be distinguished from its close relative 

Acetobacter by its inability to completely oxidize acetate and lactate to CO2 and H2O 

(Gossele et al., 1983). Because of its ability to incompletely oxidize carbohydrates, 

alcohols, polyols, and their derivatives in a stereo- and regiospecific manner, it has 

become valuable in industry, especially in the production of acetic acid, the antidiabetic 

drug miglitol, vitamin C, D-gluconic acid, ketogluconic acids, and dihydroxyacetone 

(Deppenmeier et al., 2002). Many of these products are the result of reactions catalyzed 

by membrane-bound dehydrogenases that feed electrons into the respiratory chain 

(Deppenmeier et al., 2002). Among the most important are three sorbitol dehydrogenases 

involved in the oxidation of D-sorbitol to L-sorbose (used for vitamin C production), 

namely a flavoprotein sorbitol dehydrogenase, a quinoprotein sorbitol dehydrogenase, 

and a D-sorbitol dehydrogenase (Matsushita et al., 2003). Glucose dehydrogenase, 

another quinoprotein, produces gluconate (Levering et al., 1988), which is then oxidized 

by the flavoprotein D-gluconate dehydrogenase to 2-keto-D-gluconate (Matsushita et al., 

2003) or by a polyol/glycerol dehydrogenase to 5-ketogluconate. 2-Keto-D-gluconate and 

5-ketogluconate are precursors to tartaric acid. Glycerol is converted to the tanning agent 
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dihydroxyacetone by the polyol/glycerol dehydrogenase (Gupta et al., 2001). Lactate 

dehydrogenase produces pyruvate, which is used by chemical and pharmaceutical 

industries (Deppenmeier et al., 2002; Peters et al. 2013b). Gluconobacter also contains 

cytosolic NAD(P)/H-dependent oxidoreductases that may have important industrial 

applications. For example, the xylitol dehydrogenase reduces D-xylulose to the artificial 

non-cariogenic sweetener xylitol. 

 

Molecular Tools for Gluconobacter 

Despite its value in multiple industrial applications, many of its oxidoreductases 

remain uncharacterized as their heterologous expression and purification in the molecular 

biology model organism Escherichia coli was unsuccessful (20/75, Schweiger et al. 

unpublished results). Homologous expression and purification of these remaining 

proteins provides the possibility of characterization and expression in the native host and 

is not expected to be problematic. Yet, these attempts have been hindered largely due to a 

limited availability of bioengineering tools suitable for working with G. oxydans. 

However, recently some progress has been made due to the development of several 

deletion systems and expression vectors compatible with G. oxydans (Peters et al., 2013a; 

Kostner et al., 2013; Kallnik et al., 2010). 

The most commonly used expression vectors for homologous and heterologous 

gene expression in G. oxydans are the pBBR1p452 and pBBR1p264 vectors that are 

based on the broad-host-range plasmid pBBR1MSC-2 (Kallnik et al., 2010). These 

vectors contain either a constitutively moderate (p452) or a strong (p264) promoter. Both 

contain a kanamycin resistance cassette for antibiotic selection (Figure 1). These vectors 
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have recently been modified to facilitate the export of proteins outside the cell and into 

the periplasmic space by adding a PelB signal peptide from Erwinia carotovora 

(Kosciow et al., 2014).  More recently, the novel promoter gHp0169 was identified and is 

recognized by G. oxydans (Shi et al., 2014). 

 

 
Figure 1. Original expression vectors designed for use in G. oxydans. (a) Plasmid 

pBBR1p264 with constitutive strong promoter p264; (b) Plasmid pBBR1p452 with 

constitutive moderate promoter p452 (Kallnik et al. 2010). 

 

 

For gene deletion two systems exist, namely the upp and cod systems (Peters et 

al., 2013a; Kostner et al., 2013). The upp system relies on a special strain of G. oxydans 

621H lacking the native upp gene, G. oxydans Δupp. It is based on counter selection by 

reintroducing the upp gene, encoding a uracil phosphoribosyl transferase, to the mutant 

strain via a non-replicative plasmid that also encodes kanamycin resistance (Peters et al., 

2013a). When transformants are grown in the presence of kanamycin the plasmid is 

integrated into the chromosome. Upon addition of toxic 5-fluorouracil, the plasmid loops 

out resulting in either wildtype or a markerless deletion. If the plasmid remains in the 
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chromosome, 5-fluorouracil is channeled into uracil metabolism by the plasmid encoded 

upp gene product causing fluorinated uracil incorporation into nucleic acids and 

eventually cell death. To eliminate the need for this special mutant strain and to enable 

use of wildtype bacteria the cod system was developed (Kostner et al., 2013). This is also 

a counter selection method where the nontoxic 5-fluorocytosine is converted by a non-

replicative plasmid encoded cytosine deaminase, codA, to the toxic 5-fluorouracil that 

acts in the same manner as the upp system. More recently, the cod deletion system was 

used to create a leaky outer membrane mutant strain of G. oxydans to facilitate the 

extracellular hydrolysis of polysaccharides (Kosciow et al., 2016). This was done by 

deleting the gox1687 gene encoding TolB. The resulting ∆tolB strain, when engineered to 

express an enzyme fused to the PelB signal sequence, secretes high yields of the enzyme 

into the medium. 

 

Fluorescent Protein-based Reporter Systems 

When attempting to characterize proteins, it can be advantageous to overproduce 

the protein of interest. This is done by inserting the gene that codes for the protein into an 

expression vector, transforming that vector into a bacterial cell, and then plating on 

selective medium. Because vectors that do not contain the gene of interest can be 

introduced along with the recombinant plasmid, it is necessary to screen for positive 

clones, which can be time consuming and labor intensive in G. oxydans. This bacterium 

contains 5 native plasmids (Prust et al., 2005), which makes screening by classic plasmid 

purification and restriction digestion unfeasible. Furthermore, rapid colony PCR 

techniques that are well established in E. coli are often unreliable in G. oxydans 
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(Schweiger et al. unpublished results). To streamline the screening process in G. oxydans, 

and to aid in protein purification, a fluorescent-based reporter system was designed. This 

involved the creation of vectors containing a multiple cloning site (MCS), a protease 

cleavage site, fluorescent reporter gene (FP), and StrepTag, all under the control of a 

constitutive promoter (Promoter-MCS-Protease-FP-STL) (Figure 2a). Transcripts of 

these base vectors lack a ribosomal binding site (RBS) and should not be translated, so 

fluorescence should not be produced in transformed cells. Once the gene of interest with 

its RBS is cloned into the MCS (Figure 2b), translation of the fusion product should 

cause fluorescence in positive clones. The addition of the protease cleavage site and the 

StrepTag to the fusion product allows for purification of tagless protein. The StrepTag 

will bind the fusion protein to a column containing streptavidin. The protein of interest 

can be released from the rest of the fusion product by adding Xa protease (Pearson, 2014) 

(Figure 2c).     

  

Inducible Promoters 

Another problem that needs to be overcome when overexpressing proteins is that 

protein overproduction can be toxic to the bacterial cell (Skerra, 1994).  To mitigate 

reduced product yields that result from cell toxicity, it is advantageous to suppress 

expression of the target protein until cultures have reached a high cell density and then 

induce expression. Two sets of regulatable promoter/operator systems were designed to 

regulate gene expression in G. oxydans. The first was an anhydrotetracycline (ATc) 

inducible system in which the tetracycline repressor (TetR) is constitutively expressed 

and is bound to the tetracycline promotor/operator (pTet) in the absence of ATc, 
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a.  

b.  

c.  

Figure 2. Fluorescent reporter fusion products and protein purification scheme.  

(a) Fusion product with the MCS, protease recognition site Xa, fluorescent protein (FP) 

and StrepTag (STL) under the control of the constitutive promoter; (b) Fusion product 

with the gene of interest (GOI), protease recognition site Xa, FP, and STL under the 

control of the constitutive promoter; (c) Protein purification scheme by affinity 

chromatography. The StrepTag binds the fusion protein to streptavidin. Protease is added 

to the column, cleaving at the Xa site, releasing the target protein. 

 

 

repressing gene expression. Upon ATc addition, the repressor is released from pTet and 

gene expression is turned on (Figure 3). The second system was inducible by acyl-

homoserine lactone (AHL), in which the Lux activator (LuxR) is constitutively 

expressed, but is unbound to the Lux promoter/operator (pLux) in the absence of AHL 

and gene expression is turned off (Figure 3). In these two systems, the native gene(s) 

encoding tetracycline resistance and bioluminescence, respectively (Fuqua et al., 1994; 

Bertrand, et al., 1983), were replaced with a multiple cloning site to allow the desired  
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Figure 3. Scheme of proposed regulatable promoter elements. (a.) Regulation of the Tet 

promoter/operator system. (b.) Regulation of the Lux promoter/operator system. Blunt 

ended arrows represent repression or transcriptional terminators. Binding of 

anhydrotetracycline (ATc) to TetR or acyl homoserine lactone (AHL) to LuxR induces 

gene expression. In the promoter-fusion, induction produces β-glucuronidase (UidA) that 

hydrolyzes colorless p-nitrophenyl-β-D-glucuronide and produces a yellow p-nitrophenol 

at a rate proportional to the amount of enzyme present, which can be used to assess 

promoter strength and regulation. 
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gene to be cloned in and controlled by the inducible promoters. To evaluate and quantify 

gene expression, the uidA gene encoding a β-D-glucuronidase was used as it produces a 

measurable yellow color when it hydrolyzes 4-nitrophenyl-β-D-glucuronide (PNPG) 

(Miller, 1972) (Figure 3). 
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MATERIALS AND METHODS 

 

Bacteria, Growth Conditions, and Storage 

Gluconobacter oxydans 621H (DSMZ 2343), Escherichia coli 10β (New England 

Biolabs), and Aliivibrio fischeri (ATCC 7744) were used in these studies. G. oxydans 

621H was grown in yeast mannitol (YM; 6 g/L yeast extract, 20 g/L mannitol) broth with 

50μg/mL cefoxitin at 30˚C and 200rpm. E. coli 10β was grown in lysogeny broth (LB; 

5g/L yeast extract, 10g/L tryptone, 10g/L sodium chloride) with 100μg/mL streptomycin 

at 30-37˚C and 200rpm. A. fischeri was grown on marine broth (BD Difco 2216) at 30˚C 

and 200rpm. Agar was added to 1.5% when making solid medium. Kanamycin was 

added to 50µg/mL for plasmid maintenance when appropriate. For long-term storage, 

bacteria were kept at -80˚C in frozen stocks made from well-grown cultures with glycerol 

added to 15%. 

 

Molecular Biological Techniques 

Genomic DNA was extracted using a GenElute Bacterial Genomic DNA Kit 

(Sigma Aldrich) according to the manufacturer’s instructions. Plasmids were purified 

using a GeneJET Plasmid Miniprep Kit (ThermoFisher Scientific) according to 

manufacturer’s instructions. DNA was purified from agarose gels and PCR reactions 

prior to ligations using the GeneJet Gel Extraction and DNA Cleanup Micro Kit 

(ThermoFisher Scientific) or the Wizard SV Gel and PCR Cleanup Kit (Promega) using 

the recommended protocols.  
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Electrophoresis was performed using a 0.7% agarose gel to determine the 

approximate size of DNA fragments or to separate them for purification. Ethidium 

bromide was added directly to the gel at a final concentration of 0.5 µg/mL for 

visualization of nucleic acids.  Agarose gels were prepared with 1x TAE buffer (40 mM 

Tris base, 1 mM EDTA, 20 mM glacial acetic acid, pH 8.6) and run at 100 – 120 V. DNA 

samples were mixed with 6x loading dye (ThermoFisher Scientific) prior to loading the 

gel. A Gene Ruler 1Kb DNA Ladder (ThermoFisher Scientific) was used as a marker. 

Gels were viewed and photographed over a UV light using a FOTO/Analyst Apprentice 

System (Fotodyne Inc, Hartland, WI). 

DNA was digested using FastDigest or ThermoFisher Scientific restriction 

endonucleases (ThermoFisher Scientific) in 20-30μL reactions according to 

manufacturer’s recommendations. Digested PCR fragments were ligated into similarly 

cut and purified vectors in a 20μL reaction volume at a 3:1 mol ratio using T4 DNA 

Ligase (ThermoFisher Scientific). Reactions were incubated at 16˚C for 16-24 hours. 

When possible 1.0-0.5 µl of a restriction enzyme that cuts the vector, but not the desired 

construct was added post-ligation to reduce self-ligated vector and uncut vector 

background.   

Sanger sequencing was used to confirm all constructs and was performed by 

Eurofins Genomics using primers pBBR1_for, pASK_rev, MCSseq_F, or MCSseq_R. 

Synthetic genes were codon optimized for G. oxydans 621H and synthesized by 

GenScript (Piscataway, NJ) or Eurofins Genomics. 

Gradient PCR was performed to determine the optimal annealing temperature for 

PCR primers (Table 1). DreamTaq DNA Master Mix (ThermoFisher Scientific) was used 
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according to the manufacturer’s recommended instructions using the following 

amplification cycling: 95˚C for 5 min, followed by 30-35 cycles of 95˚C 10 s, 50-70˚C 30 

s, 72˚C 1 min/kb and a final extension of 72˚C for 5 min. The high fidelity Phusion DNA 

Polymerase (ThermoFisher Scientific) was used to amplify cloning targets according the 

recommended conditions using the following amplification cycling: 98˚C for 2 min, 

followed by 30-35 cycles of 98˚C 10 s, annealing temperature 30 s, 72˚C 15 s/kb for 

plasmid templates or 30 s/kb for genomic DNA templates and a final extension of 72˚C 

for 5 min. When not determined by gradient PCR, annealing temperature was determined 

using the New England Biolabs Tm Calculator (http://tmcalculator.neb.com/#!/). 

Colony PCR was done to screen for positive transformants. E. coli colonies were 

picked from plates using sterile wooden toothpicks, mixed with 50μL of sterile nuclease-

free water, and 5μL was used as a template for colony PCR. To the remaining cell 

suspension, 150μL of LB was added and used as an inoculum for 5 mL cultures of 

positive transformants. G. oxydans transformants were streaked onto a quadrant of YM 

agar and incubated until growth occurred. Cells were then picked as described for E. coli. 

Dream Taq DNA Master Mix Polymerase (ThermoFisher Scientific) was used to amplify 

the target sequence according to the manufacturer’s recommended instructions using the 

following amplification cycling: 95˚C for 5 min, followed by 30-35 cycles of 95˚C 10 s, 

annealing temperature 30 s, 72˚C 1 min/kb and a final extension of 72˚C for 5 min.   

 

Construction of Fluorescent Reporter Systems  

Two fluorescent protein reporter systems were created using pBBR1p264-pelB-

STL and pBBR1p452-STL as backbones. The genes encoding the fluorescent proteins 
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Table 1: Primers 

Primer Sequence RE 

Xa-GFPuvRBS_F ATGCTACGTAATCGATGGTCGCATGAGTAAAGG

AGAAGAAC 

 

SnaBI 

GFPuv_R ATCGGCGCGCCTTTGTAGAGCTCATCCATGCCAT 

 

AscI 

Gox0265_EcoRI_F ATGGAATTCTGACATCTTGACCCTTGACG 

 

EcoRI 

Gox0265_SnaBI_R ATGTACGTATTTCtGATCGGGCAGGGC 

 

SnaBI 

Gox2015_EcoRI_R ATGGAATTCTCAAACCTGCATTCACAAGG 

 

EcoRI 

Gox2015_SnaBI_R ATGTACGTACGAGGACCAGTTGTTTTCG 

 

SnaBI 

RFPf ATGCTACGTAATCGATGGTCGCATGGCCTCCTCC

GAGGACGTC 

 

SnaBI 

RFPr CGGTGGCGCGCCGGCGCCGGTGGAGTGGCGGC 

 

AscI 

rbsRFPf TGCAGGAATTCAGGAGGTAATATTTATGGCCTCC

TCCGAGGACGTC 

 

EcoRI 

p0169_F ATGCAGAGCTCTGAAAGCGGCTGGCGCGT 
 

SacI 

p0169_R ATGCAGAATTCGCGGAAGGCGTTATACCCTGA 

 

EcoRI 

   

EcoRI/RBS/tetR_F ATGAGAATTCAAAGAGGAGAAATACTAGATGT

CTCGTTTAGATAAAAG 

EcoRI 

BsaI_uidA_F ATGGTAGGTCTCAAATGTTACGTCCTGTAGAAAC

CCCAAC 

 

BsaI 

BsaI_uidA_R ATGGTAGGTCTCATATCATTGTTTGCCTCCCTGC

TGCGG 

 

BsaI 

EcoRI/RBS/luxR_F ATGAGAATTCAAAGAGGAGAAATACTAGATGAA

AAACATAAATGCCGAC 

 

EcoRI 

luxR_R ATGAGGTCTCAAGCTGTTAATTTTTAAAGTATG

GGC 

 

BsaI 

RE, Restriction endonucleases are underlined. 

* Indicates primers used for sequencing.  
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Table 1: Primers continued 

Primer Sequence RE 

MluI/RBS/luxR_F ATGAACGCGTAAAGAGGAGAAATACTAGATGA

AAAACATAAATGCCGAC 

 

MluI 

TetR_R ATGAAAGCTTTTAAGACCCACTTTCACAT HindIII 

MluI/RBS/tetR_F ATGAACGCGTAAAGAGGAGAAATACTAGATGT

CTCGTTTAGATAAAAG 

MluI 

pTet_F GCTCGAATGCCCCAGGGTC PasI 

pTet_R CGAGCGCATTGTATACGAG Bst1107I 

MCSseq_F* CTGTTCCGTCAGCAGCTTTT - 

MCSseq_R* GTAGGCGGTCACGACTTTG - 

pBBR1-for* ACTCACTATAGGGCGAATTG - 

pASK_rev* CGCAGTAGCGGTAAACG - 

RE, Restriction endonucleases are underlined. 

*
 
Indicates primers used for sequencing.  

 

GFPuv and mRFP were amplified with Phusion DNA polymerase using Xa-

GFPuvRBS_F and GFPuv_R for GFPuv or RFPf and RFPr for mRFP. Primers contained 

5’ restriction sites for SnaBI (forward) and AscI (reverse). The forward primer also 

contained the sequence for the Xa protease cleavage site to create the amplicons Xa-

GFPuv or Xa-mRFP. The amplicons were then digested with SnaBI and AscI and ligated 

into the similarly cut pBBR1p264-pelB-STL and pBBR1p452-STL vectors to create 

pBBR1p(264/452)-Xa-(GFPuv/mRFP)-STL and transformed into E. coli 10β for plasmid 

maintenance. Vectors were isolated from E. coli 10β and transformed into 

electrocompetent G. oxydans 621H. 
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Two G. oxydans genes, gox0265 and gox2015 (Prust et al., 2005), were cloned 

into the multiple cloning site (MCS) of pBBR1p(264/452)-Xa-(GFPuv/RFP)-STL to act 

as proof of concept for the fluorescent reporter systems. The genes were amplified with 

Phusion DNA polymerase using primers containing 5’ restriction sites EcoRI (forward 

primer) and SnaBI (reverse primer). The amplified fragments were cut with EcoRI and 

SnaBI and then ligated into similarly cut pBBR1p(264/452)-Xa-(GFPuv/mRFP)-STL 

vectors. These vectors were transformed into E. coli 10β for plasmid maintenance. 

Vectors were isolated from E. coli 10β and transformed into electrocompetent G. oxydans 

621H cells.  

 

Construction of Inducible Promoter Systems 

 TetR System. The tetR gene was amplified from a pASK-IBA3 plasmid (IBA 

GmbH, www.iba-lifesciences.com) using MluI/RBS/tetR_F or EcoRI/RBS/tetR_F and 

TetR_R primers containing 5’ restriction sites MluI (forward primer) or EcoRI (forward 

primer) and HindIII (reverse primer) (Table 1). The amplified fragments were purified as 

described above, were cut with EcoRI and HindIII, and ligated into similarly cut 

pBBR1p452-STL to create p452TetR. Alternatively, purified PCR products were cut with 

MluI and HindIII and ligated into similarly cut pBBR1p264-pelB-STL to create 

p264TetR. To create p0169TetR, p0169 was amplified from G. oxydans DNA with 

primers containing the 5’ restriction sites SacI and EcoRI. The amplified fragments were 

purified and cut with SacI and EcoRI and then ligated into similarly cut p452TetR. These 

vectors were transformed into E. coli 10β for plasmid maintenance. Positive 
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transformants were screened by colony PCR and isolated plasmids were screened by 

restriction digest and confirmed by sequencing 

 The tetracycline promotor and MCS fragment was designed with a Tet promotor 

(iGEM part BBa_R0040) upstream of a ribosomal binding site (iGEM part BBa_B0034) 

and a MCS region containing 2 BsaI restriction sites derived from pASK-IBA3 (IBA 

GmbH, www.iba-lifesciences.com). A transcriptional terminator (iGEM part 

BBa_B0010) was added downstream of the MCS. The fragment was synthesized and 

cloned into a pUC57 plasmid by GenScript (Table 2). The pTet-MCS region was 

amplified using pTet_F and pTet_R primers with the 5’ restriction sites PasI (forward 

primer) and Bst1107I (reverse primer) then purified. The amplified fragments were cut 

with PasI and Bst1107I and ligated into similarly cut p0169TetR, p264TetR, and 

p452TetR plasmids to create p(0169/264/452)pTet (Table 2). These vectors were 

transformed into E. coli 10β for plasmid maintenance. Positive transformants were 

screened by colony PCR and isolated plasmids were screened by restriction digest, 

sequenced and transformed into G. oxydans. Positive G. oxydans were confirmed by 

colony PCR and sequencing. 

The uidA gene was amplified using BsaI_uidA_F and BsaI_uidA_R primers with 

BsaI restriction sites and purified. The amplified fragments were cut with BsaI and 

ligated into similarly cut and purified p(0169/p264/p452)pTet plasmids creating 

p(0169/p264/p452)pTet-uidA to act as proof of concept for the inducible Tet system. 

These vectors were transformed into E. coli 10β for plasmid maintenance. Positive 

transformants were screened by colony PCR and sequencing prior to transforming into G. 

oxydans. Positive G. oxydans were confirmed through colony PCR. 
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Table 2: Plasmids used in this study 

 Plasmid Description 

P1 pBBR1p264-pelB-STL pBBR1MCS-2 derivative with strong 

promoter p264, KanR, MCS, pelB signal 

sequence and StepTag (Kallnik et al., 2010; 

Kosciow et al., 2014). 

P2 pBBR1p452-STL pBBR1MCS-2 derivative with moderate 

promoter p452, KanR, MCS, and StepTag 

(Kallnik et al., 2010). 

P3 pBBR1p264-Xa-GFPuv-STL P1 derivative with Xa-GFPuv 

P4 pBBR1p452-Xa-GFPuv-STL P2 derivative with Xa-GFPuv 

P5 pBBR1p264-gox2015-Xa-GFPuv-STL P3 derivative with gox2015 

P6 pBBR1p452-gox2015-Xa-GFPuv-STL P4 derivative with gox2015 

P7 pBBR1p264-gox0265-Xa-GFPuv-STL P3 derivative with gox0265 

P8 pBBR1p452-gox0265-Xa-GFPuv-STL P4 derivative with gox0265 

P9 pBBR1p264-Xa-mRFP-STL P1 derivative with Xa-mRFP 

P10 pBBR1p452-Xa-mRFP-STL P2 derivative with Xa-mRFP 

P11 pBBR1p264-gox2015-Xa-mRFP-STL P9 derivative with gox2015 

P12 pBBR1p452-gox2015-Xa-mRFP-STL P10 derivative with gox2015 

P13 pBBR1p264-gox0265-Xa-mRFP-STL P9 derivative with gox0265 

P14 pBBR1p452-gox0265-Xa-mRFP-STL P10 derivative with gox0265 

P15 p264LuxR P1 derivative with LuxR 

P16 p452LuxR P2 derivative with LuxR 

P17 p0169LuxR P16 derivative with p0169 

P18 p264pLux P15derivative with pLux 

P19 p452pLux P16 derivative with pLux 

P20 p0169pLux P17 derivative with pLux 

P21 p264pLux-uidA  P18 derivative with uidA 
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Table 2: Plasmids used in this study continued 

 Plasmid Description 

P22 p452pLux-uidA P19 derivative with uidA 

P23 p0169pLux-uidA P20 derivative with uidA 

P24 p264TetR P1 derivative with TetR 

P25 p452TetR P2 derivative with TetR 

P26 p0169TetR P25 derivative with p0169 

P27 p264pTet P24 derivative with pTet 

P28 p452pTet P25 derivative with pTet 

P29 p0169pTet P26 derivative with pTet 

P30 p264pTet-uidA P27 derivative with uidA 

P31 p452pTet-uidA p28 derivative with uidA 

P32 p0169pTet-uidA p29 derivative with uidA 

P33 pUC-57-pTet Cloning vector with MCS, LacZ 

promoter, AmpR, pTet 

P34 pASK-IBA3 Expression plasmid with StrepTag, Tet 

promoter/operator, AmpR (IBA GmbH) 

 

 

LuxR System. The luxR gene was amplified with Phusion DNA polymerase from 

A. fischerii DNA using MluI/RBS/luxR_F or EcoRI/RBS/luxR_F and LuxR_R primers 

containing MluI, EcoRI, and BsaI 5’ restriction sites, respectively (Table 1). The 

amplified fragments were cut with either MluI or EcoRI and BsaI for ligation into 

pBBR1p452-STL (cut with EcoRI and HindIII) or pBBR1p264-pelB-STL (cut with MluI 

and HindIII) to create p452LuxR and p264LuxR, respectively. To create p0169LuxR, 

p0169 was amplified from G. oxydans with p0169_F and p0169_R primers containing 
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the 5’ restriction sites SacI and EcoRI. The amplified fragments were purified and cut 

with SacI and EcoRI and then ligated into similarly cut p452LuxR. These vectors were 

transformed into E. coli 10β for plasmid maintenance. Positive transformants were 

screened by colony PCR and isolated plasmids were screened by restriction digest prior 

to sequence confirmation.  

The Lux promotor and MCS fragment (pLuxMCS) was designed with a Lux 

promotor upstream of a ribosomal binding site (iGEM parts BBa_R0062 and 

BBa_B0034) and a MCS region containing two BsaI restriction sites derived from pASK-

IBA3. The iGEM BBa_B0010 transcriptional terminator was again added downstream of 

the MCS. The pLuxMCS fragment was synthesized by Eurofins Genomics.  The 

synthesized fragment was cut with PasI and Bst1107I and ligated into similarly cut 

p0169LuxR, p264LuxR, and p452LuxR plasmids to create p(0169/264/452)pLux. These 

vectors were transformed into E. coli 10β for plasmid maintenance. Positive 

transformants were screened by colony PCR and isolated plasmids were screened by 

restriction digest, sequenced and transformed into G. oxydans. Positive G. oxydans were 

confirmed through colony PCR. To monitor gene expression in this system, the uidA 

gene was amplified and cloned in the same way as described for the TetR system except 

the uidA gene was inserted into the p(0169/p264/p452)pLux plasmids creating 

p(0169/p264/p452)pLux-uidA. 

 

Preparation of Competent Cells and Transformation 

Chemically competent E. coli 10β cells were prepared according to the modified 

method of Chung et al., 1989. Briefly, E. coli 10β cultures were grown to an OD600 of 
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0.3-0.6. The cells were then centrifuged at 4˚C and 3000rpm for 10 minutes. After 

centrifugation, the cells were resuspended in 100μL ice cold sterile TSS (10% 

polyethylene glycol 8000, 5% dimethyl sulfoxide, 50 mM MgCl2, pH 6.5). The cells 

suspensions were incubated with 100ng DNA on ice for 30 minutes and heat shocked at 

42˚C for 90 seconds, 900 μL LB was added and the cells were incubated at 30˚C and 

200rpm for 1 hour. The cells were then plated on LB agar with 50μg/mL kanamycin and 

incubated overnight at 37˚C.  

Electrocompetent G. oxydans cells were prepared using a modified method of 

Kallnik et al. (2010). G. oxydans 621H cultures were grown to an OD600 of 0.6-1.0. The 

cells were transferred to centrifuge tubes and incubated on ice for 30 minutes and then 

centrifuged at 4˚C and 4000rpm for 10 minutes. Cells were then washed 3 times in the 

original volume of cold, sterile 1mM HEPES solution by resuspending and centrifuging 

cells at 4˚C and 4000rpm for 10 minutes. Cells were resuspended in 250μL 1mM HEPES 

and 20μL of sterile 75% glycerol was added per 100μL of cell suspension. Cells were 

divided into 50μL aliquots, flash frozen in liquid nitrogen, and then stored at -80˚C or 

used immediately for transformation. For transformation, frozen 50μL aliquots of G. 

oxydans 621H cells were thawed on ice and then mixed with 1-2μL of plasmid. The cells 

were transferred to a sterile 0.1 cm electroporation cuvette and pulsed at 2.0 kV in a Bio-

Rad MicroPulser. Immediately after electroporation 800μL of YM was mixed with the 

cells and transferred to a sterile 15mL conical tube. The cells were incubated at 30˚C and 

200rpm overnight and plated on YM with 50μg/mL cefoxitin and 50μg/mL kanamycin 

until colonies appeared. 
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Microscopy, β-D-Glucuronidase Assays, and Data Analysis 

Fluorescent microscopy was done for GFPuv detection using an Olympus 1X81 

confocal microscope with a Yokagawa CSUX1 spinning disk head and 488nm filter. 

Images were captured using an Image EM camera and software. For mRFP, detection an 

Olympus BX41 with a green filter and Olympus DP70-SBW software was used. 

Brightfield microscopy was done to visualize cell morphology after staining with crystal 

violet. Prior to microscopy, 1mL of cells were centrifuged at 13,200 rpm for 2 minutes 

and washed 3 times in 10X phosphate buffered saline (PBS; ChemCruz:Catalog #sc-

24946 ), then resuspended in 100μL PBS. 

Gene induction was monitored by measurement of β-D-glucuronidase (UidA) 

activity (in Miller Units) essentially as described (Miller, 1972). G. oxydans cells were 

grown in YM with 50μg/mL cefoxitin and kanamycin to an OD600 of 0.4-0.8. Cells 

containing the pTet system were induced with anhydrotetracycline (ATc) to final 

concentrations of 0, 100, 200, and 500ng/mL for 16-24 hours. Cells with the pLux system 

were induced with N-(3-Oxohexanoyl)-L-homoserine lactone (AHL; Chemodex) at final 

concentration of 0, 1, 5, and 10μM for 1 hour. After induction, 750μL aliquots of cells 

were centrifuged at 13,200rpm for 5 minutes. The cells were resuspended in 750μL of 

50mM Tris-HCl pH 8. Cells were permeabilized by adding 30μL chloroform and 20μL 

0.1% SDS, vortexed for 5 seconds, and incubating at 30˚C for 2 minutes. To a 96 well 

plate, 20μL of the permeabilized cells were mixed with 180μL PNPG (1mg/ml PNPG in 

50mM Tris-HCl, pH 8). The plate was placed in a BioTek EL808 plate reader at 30°C, 

incubated for 1-4 h with shaking, and monitored at 405nm with readings taken at time 
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zero and every 5 min thereafter. Data were analyzed using BioTek Gen5 software. All 

tests were done in at least 3 biological replicates each with four replicates. 

Statistical analyses and box-and-whisker plots were performed using R Studio (R 

Core Team, 2013; http://www.R-project.org/). Data was analyzed by performing a one-

way analysis of variance (ANOVA) and a post-hoc Tukey’s HSD test (q = 0.05). The R 

packages used in this study were dplyr, ggplot2, plyr, multcomp, and reshape2. 
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RESULTS 

 

Fluorescent Protein-Based Reporter Systems 

When using expression vectors to overproduce a protein in a cell, vectors that do 

not contain the target gene can be introduced as well as the recombinant plasmid, making 

it necessary to screen for positive clones. G. oxydans contains 5 native plasmids (Prust et 

al., 2005), which makes screening by classic plasmid purification and restriction 

digestion unfeasible. Furthermore, rapid colony PCR techniques are often unreliable in G. 

oxydans. To this end two fluorescent protein based reporter systems using either GFPuv 

or mRFP were created to facilitate rapid screening of positive G. oxydans clones and 

subsequent protein purification. Both reporter systems were created using the expression 

vectors, pBBR1p264-pelB-STL and pBBR1p452-STL as backbones. The backbone 

vectors contained a strong (p264) and moderate (p452) (Kallnik et al. 2010) constitutive 

promoter upstream of a multiple cloning site and a StrepTag sequence. The fluorescent 

reporter genes were amplified with forward primers designed to fuse a Xa protease 

recognition site upstream of the GFPuv or mRFP reporter proteins. The amplicon was 

then cloned into pBBR1p452-ST and pBBR1p264-pelB-STproducing the vectors 

pBBR1p452-Xa-(GFPuv/mRFP)-ST and pBBR1p264-Xa-(GFPuv/mRFP)-ST. Because 

there is no ribosomal binding site upstream of the Xa cleavage site or the fluorescent 

reporter, no fluorescence was expected when G. oxydans contained these constructs. 

 As a proof of concept, a cytosolic and membrane-bound glucose dehydrogenase 

(gox2015 and gox0265) (Prust et al., 2005) containing their native ribosomal binding sites 

were amplified by PCR and cloned upstream and in-frame to the Xa protease site of these 
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vectors using restriction enzymes SnaBI and EcoRI to create translational fusions of the 

genes of interest, Xa site, GFP or mRFP, and StrepTag. This resulted in the construction 

of pBBR1p(264/452)-gox2015-Xa-GFPuv-STL and pBBR1(p452/264)-gox2015-Xa-

mRFP-STL (Figures 4 and 5). Attempts to create constructs containing the gox0265 

target gene were unsuccessful. However, colony PCR screening confirmed that 

pBBR1p(452/264)-Xa-(GFPuv/mRFP)-STL and pBBR1p(264/452)-gox2015-Xa-

(GFPuv/mRFP)-STL were successfully constructed (Figures 4 and 5). They were 

transformed into G. oxydans and analyzed for their ability to fluoresce. Attempts to 

transform G. oxydans with constructs containing the strong p264 promoter in 

combination with GFPuv were also unsuccessful. 

 

    

Figure 4. Agarose gels confirming positive GFPuv and mRFP constructs. (a) GFP 

constructs, lane 1and 2 positive colony PCR band at ~750bp, lane 3 and 4 positive colony 

PCR bands at ~800bp; (b) RFP constructs, lane 5 and 6 positive colony PCR bands at 

~1200bp, lane 7 and 8 positive colony PCR bands at ~2300bp. The figure is a composite 

of multiple agarose gels adjusted to the observed sizes.  
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Figure 5. Construction of fluorescent-based reporter systems. Vector maps of 

pBBR1p452-STL, pBBR1p452-Xa-GFPuv-STL, and pBBR1p452-gox2015-Xa-GFPuv-

STL. Vector pBBR1p452-Xa-GFPuv-STL was created by ligating Xa-GFPuv amplicon 

cut with AscI and SnaBI into similarly cut pBBR1p452-STL. Vector pBBR1p452-

gox2015-Xa-GFPuv-STL was created by ligating the gox2015 amplicon cut with SnaBI 

and EcoRI into similarly cut pBBR1p452-Xa-GFPuv-STL. Construction of the mRFP 

plasmids were done in a similar manner. 

 

 

G. oxydans wildtype and those containing the pBBR1p(264/452)-Xa-

(GFPuv/mRFP)-STL, pBBR1p(264/452)-gox2015-Xa-mRFP-STL, and pBBR1p452-

gox2015-Xa-GFPuv-STL plasmids were grown overnight, washed three times with PBS, 

and visualized by fluorescent microscopy. Cells containing the pBBR1p452-gox2015-Xa-
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GFPuv-STL had unreliable fluorescence as many cells did not fluoresce (Figure 6). 

Unexpectedly, cells containing empty vectors, containing only the Xa-GFPuv element 

also fluoresced (Figure 6). Cells containing the mRFP-based reporter systems fluoresced, 

including empty vectors not containing a RBS and G. oxydans gene to direct expression 

(Figure 7). However, wildtype cells did not fluoresce. One distinct difference in proof of 

concept constructs containing gox2015 is that plasmids containing these genes (i.e. 

pBBR1p264-gox2015-Xa-RBS-mRFP-STL or pBBR1p452-gox2015-Xa-GFPuv-STL) 

were frequently elongated and irregularly shaped compared to those containing the 

pBBR1p(264/452)-Xa-mRFP-STL and pBBR1p452-Xa-GFPuv plasmids, which had 

wildtype G. oxydans morphology (Figure 6 and 7). 

 

Figure 6. Fluorescent microscopy of G. oxydans expressing GFPuv. (a and b) G. oxydans 

621H cells harboring the pBBR1p452-gox2015-Xa-GFPuv-STL plasmids; (c) wildtype 

G. oxydans 621H; (d and e) G. oxydans 621H cells harboring the pBBR1p452-Xa-

GFPuv-STL plasmids; (f) wildtype G. oxydans 621H. 
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Figure 7. Fluorescent microscopy of G. oxydans expressing mRFP. (a) G. oxydans 621H 

cells harboring the pBBR1p264-Xa-mRFP-STL plasmids; (b) G. oxydans 621H cells 

harboring the pBBR1p264gox2015-Xa-mRFP-STL plasmids; (c) Wildtype G. oxydans 

621H; (d) G. oxydans 621H cells harboring the pBBR1p452-Xa-mRFP-STL plasmids; 

(e) G. oxydans 621H cells harboring the pBBR1p452-gox2015-Xa-mRFP-STL plasmids. 

 

   

 

Inducible Promoter Systems 

 

Construction of AHL Inducible Promoter Systems. Three AHL inducible 

systems were created by cloning the luxR gene into pBBR1p264-pelB-STL and 

pBBR1p452-STL to create p264LuxR and p452LuxR (Figure 8 and 9). The promoter 

p452 was then replaced with p0169 (Shi et al., 2014) in the p452LuxR plasmid to create 

p0169LuxR (Figure 9). A synthesized DNA fragment containing the Lux promoter, RBS, 

MCS, and terminator (Florea et al., 2016) (Figure 9e) was cloned into the p264LuxR, 

p452LuxR, and p0169LuxR plasmids to create p264pLux, p452pLux, and p0169pLux 

(Figure 8 and 9). Proof of concept constructs were created by cloning uidA into the MCS 

of p264pLux, p452pLux, and p0169pLux to create p264pLux-uidA, p452pLux-uidA, and 
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p0169pLux-uidA (Figure 8 and 9). The p264pLux, p452pLux, p0169pLux, p264pLux-

uidA, p452pLux-uidA, and p0169pLux-uidA were all transformed by electroporation into 

G. oxydans. 

 

Figure 8. Construction of the Lux system. Vector maps of pBBR1p452-STL, p452LuxR, 

p452pLux, and p452pLux-uidA.  Plasmid p452LuxR was created by ligating LuxR 

amplicon cut with BsaI and EcoRI into a pBBR1p452 plasmid cut with EcoRI and 

HindIII. Plasmid p452pLux was created by ligating the pLux DNA fragment cut with 

PasI and Bst1107I with similarly cut p452LuxR. Plasmid p452pLux-uidA was created by 

ligating the uidA amplicon cut with BsaI into similarly cut p452pLux. Construction of 

p264pLux-uidA and p0169pLux-uidA were done similarly. 
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Figure 9. Agarose gels confirming positive Lux constructs. (a) BamHI/HindIII digest 

with positive bands at ~2938bp and 2634bp for p264pLux and positive bands at ~4203bp 

and 3100bp for p264pLux-uidA; (b) BamHI/HindIII digest with positive bands at 

~2938bp and 2634bp for p452pLux and a positive band at ~6200bp for p452LuxR; (c) 

BamHI/HindIII digest with positive bands at ~3100bp and 4224bp for p452pLux-uidA; 

(d) BamHI/HindIII digest with positive bands at ~3100bp and 3912bp for p0169pLux-

uidA; (e) pLux sequence, bold letters indicate Lux promoter region, italicized letters 

indicate MCS region, and lowercase indicates terminator region. Panels a-d are a 

composite of multiple agarose gels adjusted to the observed sizes. 

 

 

Construction of ATc Inducible Promoter Systems. Three ATc inducible 

systems were created by cloning the tetR gene into pBBR1p264-pelB-STL and 

pBBR1p452-STL to create p264-TetR and p452TetR (Figure 10 and 11). The promoter 

p452 was then replaced with p0169 (Shi et al., 2014) in the p452TetR plasmid to create 

p0169TetR. A synthesized DNA fragment containing the Tet promoter, RBS, MCS, and 

terminator (Florea et al., 2016) (Figure 11) was cloned into p264-TetR, p452TetR, and 

p0169TetR plasmids to create p264pTet, p452pTet, and p0169pTet (Figure 10 and 11). 
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Proofs of concept constructs were created by cloning uidA into the MCS of p264pTet, 

p452pTet, and p0169pTet to create p264pTet-uidA, p452pTet-uidA, and p0169pTet-uidA 

(Figure 10 and 11). The p264pTet, p452pTet, p0169pTet p264pTet-uidA, p452pTet-

uidA, and p0169pTet-uidA were all transformed by electroporation into G. oxydans. 

 
Figure 10. Construction of the Tet system. Vector maps of pBBR1p264-pelB-STL, 

p264TetR, p264pTet, and p264pTet-uidA. Plasmid p264TetR was created by ligating 

TetR amplicon cut with HindIII and MluI into similarly cut pBBR1p264-pelB-STL. 

Plasmid p2654pTet was created by ligating the pTet DNA fragment cut with PasI and 

Bst1107I with similarly cut p264TetR.  Plasmid p264pTet-uidA was created by ligating 

the uidA amplicon cut with BsaI into similarly cut p264pTet. Construction of p452pTet-

uidA and p0169pTet-uidA were done similarly. 
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Figure 11. Agarose gels confirming positive Tet constructs. (a) Lane 1 positive band at 

~660bp, lane 2 negative control with no band, lane 3 positive control band at ~660bp, 

lane 4 positive band at ~660bp, lane 5 negative control with no band, lane 6 positive 

control band at ~660bp, lane 7  restriction digest of p0169 with positive bands at 

~4596bp and 1223bp, lane 10 positive colony PCR bands at ~270bp, lane 11 positive 

colony PCR bands at ~270bp, lane 12 positive control band at ~270bp, lane 13 uidA 

positive colony PCR bands at ~1800bp, lane 14 positive control band at ~1800bp, lane 15 

uidA positive colony PCR bands at ~1800bp, lane 16 uidA positive colony PCR bands at 

~1800bp. The figure is a composite of multiple agarose gels adjusted to the observed 

sizes. (b) pTet sequence shown below gel images, bold letters indicate Tet promoter 

region, italicized letters indicate MCS region, and lowercase indicates terminator region. 

 

 

Lux UidA Assays. To assess if the Lux system could be used to control gene 

expression in G. oxydans, cells containing the p264pLux, p452pLux, p0169pLux, 

p264pLux-uidA, p452pLux-uidA, and p0169pLux-uidA were assayed for inducible UidA 

activity as described above (see section 2.11). The empty vector negative controls 

(p264pLux, p452pLux, and p0169pLux) did not produce a yellow color in the presence 

of PNPG. This was expected as these constructs lacked a UidA enzyme. The uninduced 

controls containing the UidA enzyme did produce a low basal level of β-glucuronidase 
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(UidA) activity. However, when induced, UidA activity increased dramatically. The 

p0169pLux-uidA constructs induced with 0, 1, 5, and 10μM of AHL had average UidA 

activities of 1077.0, 5916.7, 5508.0, and 5558.7 Miller Units, respectively (Figure 12), 

which is about 5.25 ± 0.21 times higher than uninduced levels (q<0.0001, Table 3).  The 

induced p264pLux-uidA constructs had activities 3.42 ± 0.17 times higher than 

uninduced (q<0.0001, Table 4), corresponding to average activities of 1303.9, 4690.0, 

4249.0, and 4436.7 Miller Units when induced with 0, 1, 5, and 10μM of AHL, 

respectively (Figure 13). Whereas the p452pLux-uidA constructs induced with 0, 1, 5, 

and 10μM of AHL had average UidA activities of 2277.2,  10563.4, 9421.3,  and 9610.9 

Miller Units (Figure 14), which is approximately 4.33 ± 0.27 times higher than uninduced 

levels (q<0.0001, Table 5). Interestingly, in all cases the average UidA activities were 

similar regardless of the amount of AHL used to induce gene expression (Figure 12-14). 

Tet UidA Assays. G. oxydans cells containing the p264pTet, p452pTet, 

p0169pTet, p264pTet-uidA, p452pTet-uidA, and p0169pTet-uidA plasmids were assayed 

as described for the Lux system except 0, 100, 200 or 500 ng/mL of ATc was used for 

induction. The empty vector negative controls lacking UidA (p264pTet, p452pTet, and 

p0169pTet) did not produce a yellow color in the presence of PNPG. Cells that contained 

the UidA enzyme all had some UidA activity whether or not they were induced with 

ATc. In cells containing p264pTet-uidA and p452pTet-uidA, activity in induced cells 

was similar to that of uninduced cells (Figure 15). There was an average of 1.83 ± 0.13 

times higher activity in ATc induced cells containing p264pTet-uidA, having average 

UidA activities of 195.0, 352.8,  335.0 and 383.9 Miller Units when induced with 0, 100, 

200, and 500μM of ATc, respectively. Cells containing p452pTet-uida had average UidA 
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Figure 12. AHL induced UidA activity in cells containing p0169pLux-uidA. Letters 

above the plot denote statistical groups and were determined by an ANOVA and post-hoc 

Tukey’s HSD test.  

 

 

Table 3: Statistical analysis for p0169pLux-uidA induction 

 0μM 1μM 5μM 10μM 

0μM - <0.0001 <0.0001 <0.0001 

1μM - - 0.490 0.599 

5μM - - - 0.998 

q values from an ANOVA and post-hoc Tukey’s HSD test 
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Figure 13. AHL induced UidA activity in cells containing p264pLux-uidA. Letters above 

the plot denote statistical groups and were determined by an ANOVA and post-hoc 

Tukey’s HSD test. 

 

 

 

Table 4: Statistical analysis for p264pLux-uidA induction 

 0μM 1μM 5μM 10μM 

0μM - <0.001 <0.001 <0.001 

1μM - - 0.073 0.483 

5μM - - - 0.712 

q values from an ANOVA and post-hoc Tukey’s HSD test 
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Figure 14. AHL induced UidA activity in cells containing p452pLux-uidA. Letters above 

the plot denote statistical groups and were determined by an ANOVA and post-hoc 

Tukey’s HSD test. 

 

 

 

Table 5: Statistical analysis for p452pLux-uidA induction 

 0μM 1μM 5μM 10μM 

0μM - <0.0001 <0.0001 <0.0001 

1μM - - <0.0001 0.00118 

5μM - - - 0.85277 

q values from an ANOVA and post-hoc Tukey’s HSD test 

 

 

activities of 790.0,  566.9, and 551.0 Miller Units when induced with 100, 200, and 500 

µM of ATc. These activities correspond to approximately 2.16 ± 0.45 times higher 

activity compared to uninduced levels (294.3 Miller Units). G. oxydans containing 

p0169pTet-uida had an average of 6.23 ± 1.21 times higher UidA activity when induced, 
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regardless of the concentration of ATc. Average UidA activities were 652.0, 4574.0, 

4453.2, and 3159.3 Miller Units when induced with 0, 100, 200, and 500μM of ATc, 

respectively. However, activities were highly variable and clustered tightly according to 

biological replicates, creating two distinct groups for each concentration of ATc. UidA 

activities ranged from 2478 Miller Units to 6805 Miller Units in cells induced with 

100ng/mL ATc, from 2634 Miller Units to 6568 Miller Units in cells induced with 

200ng/mL ATc, and from 1821 Miller Units to 4678 Miller Units in cells induced with 

500ng/mL ATc. This pattern was also observed, although not as dramatically, in G. 

oxydans containing p264pTet-uida or p452pTet-uida (Figure 15). 

 

 

Figure 15. ATc induced UidA activity in G. oxydans Data for the first five minutes after 

PNPG addition were analyzed. Letters above the plot denote statistical groups and were 

determined by an ANOVA and post-hoc Tukey’s HSD test. 
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DISCUSSION 

 

Fluorescent Protein-based Reporter Systems 

Two fluorescent protein based reporter systems were designed to facilitate rapid 

screening of positive clones in G. oxydans. Because the empty vectors 

pBBR1p(264/452)-Xa-(GFPuv/mRFP)-STL were constructed without adding a ribosomal 

binding site to the 5’ end of the Xa-FP fusions, only cells containing plasmids with the 

protein of interest with a RBS inserted upstream of the fluorescent reporter system were 

expected to produce fluorescence. However, even G. oxydans that contained empty 

vectors fluoresced. The same was true for E. coli cells harboring the empty vectors 

(Figure 16). Such systems have been utilized successfully in E. coli including one 

constructed for overexpression and purification of membrane proteins using a TEV 

protease recognition site, GFP reporter, and an 8His purification tag (Drew et al., 2006). 

This indicates that there may be a cryptic RBS either upstream of the Xa-FP fusion or 

within the sequence encoding the Xa recognition site. 

A previous attempt to create a fluorescent-based reported system for G. oxydans 

involved using a Xa-Pp1 fusion as a fluorescent reporter (Pearson, 2014). This construct 

also gave background fluorescence with the empty vector controls. It was hypothesized 

that the Xa protease sequence (5’-ATCGAGGGAAGG-3’) could be acting as a RBS, 

allowing for the translation of Pp1 (Pearson, 2014). In this study, the Xa protease 

sequence was optimized (5’-ATCGATGGTCGC-3’) to reduce the possibility of 

ribosomal binding. The original Xa protease described by Pearson, 2014 has a predicted 

RBS translational rate of 496 AU, which is 1.8-fold higher than the predicted rate (276.5 
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AU) for the optimized Xa protease sequence used here (Borujeni et al., 2013; Salis et al., 

2009, https://salislab.net/software). It is conceivable that the optimized Xa protease 

sequence is still able to direct translation even with this reduced activity, resulting in the 

leaky expression in vectors only containing the Xa protease recognition site (Figure 6 and 

7). It is important to note that the native RBS of gox2015 intended to direct translation 

has a predicted RBS translation rate of 331 AU, which is only slightly greater than the 

optimized Xa protease sequence. One way to determine whether Xa recognition sequence 

could be acting as a weak RBS would be to create a construct where a GS linker replaces 

the Xa protease recognition sequence altogether. If the empty vector cells do not 

fluoresce, then creating a new construct using a different protease recognition site might 

mitigate the background fluorescence from the empty vector clones. 

 

 

 
Figure 16. E. coli cells expressing GFPuv. (a) E. coli 10β cells harboring the 

pBBR1p452-Xa-GFPuv-STL plasmid; (b) E. coli cells harboring the pBBR1p452-

gox2015-Xa-GFPuv-STL plasmid. 
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Inducible Promoter Systems 

Two inducible systems were constructed and assayed for their ability to regulate 

gene expression in G. oxydans. The Lux system induced by AHL was highly regulatable 

with up to 5.25 times higher UidA activity than the uninduced level. Similarly, the Tet 

system induced by ATc was also regulatable with up to 7 times higher UidA activity than 

the uninduced level. However, induction by ATc was also highly variable. When several 

similar AHL and ATc inducible systems were investigated to regulate cellulose 

production in Komagataeibacter rhaeticus, another member of the Acetobacteraceae 

family, the Lux systems had higher induction and lower basal expression of mRFP than 

the Tet systems (Florea et al., 2016). The lack of tight regulation and unreliability of the 

ATc inducible system suggests it is not an optimal candidate for regulatable gene 

expression in G. oxydans. Conversely, the Lux system provides predictable induction 

levels and is tightly controlled, making it a suitable regulatable promoter in G. oxydans 

and other acetic acid bacteria.  

 In addition to the constitutive promoters, p264 and p452, a third G. oxydans 

promoter, p0169, was investigated. Strengths of these three promoters, as well as that of 

tufB, were assessed previously by comparing the fluorescence intensity of GFP expressed 

under the control of each promoter (Yuan et al, 2016). Of the four promoters, p0169 was 

found to be the strongest, followed closely by p264, p452, and tufB. Placing the 

expression of LuxR or TetR under the control of a stronger promotor was expected to 

increase regulatory control. Of the Lux constructs, those with the strongest constitutive 

promoters, p0169 and p264, controlling transcription of the luxR transcriptional activator 

gene were expected to produce the highest level of UidA induction. While the highest 
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induction compared to the basal level was observed with the construct with the strongest 

promoter, p0169, the weakest of the three promoters, p452, produced the highest total 

activities after induction (Figure 17). However, the p452 promoter also produced 

approximately double the basal level of enzyme activity when uninduced. It is possible 

that when UidA is highly overproduced it forms inclusion bodies, making much of its 

activity undetectable. Alternatively, overproduction of LuxR could have formed inclusion 

bodies, making much of the protein unavailable to activate the Lux promoter. In fact, 

LuxR is known to form inclusion bodies when overexpressed in E. coli (Kaplan and 

Greenberg, 1987). This could also explain why there was only near basal level induction 

of the Tet promoter when induced by ATc with both the p264 and p452 promoters. If the 

p0169 overproduces TetR to the point that inclusion bodies are formed, less of the protein 

would be available to bind to and repress the Tet promotor. In this case, lower levels of 

TetR production would mitigate inclusion body formation, making more of the repressor 

available to bind to the Tet promotor. The formation of inclusion bodies may also lead to 

abnormal cell division. This phenomenon has been previously observed in E. coli (Lee et 

al., 2008). Indeed, when G. oxydans cells harboring the p0169pLux, p264pLux, 

p452pLux, p0169pTet, p264pTet, and p452pTet plasmids were observed by brightfield 

microcopy, they were frequently elongated compared to wildtype cells (Figure 18). 

Additionally, G. oxydans cells harboring the fluorescent reporter constructs pBBR1p264-

gox2015-Xa-RBS-mRFP-STL or pBBR1p452-gox2015-Xa-GFPuv-STL were also 

frequently elongated (Figure 6 and 7). Similar abnormalities in morphology have been 

reported G. oxydans cells harboring fluorescent reporter constructs (Pearson, 2014). This 
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could indicate that G. oxydans also forms inclusion bodies and fails to divide properly 

when proteins are overproduced in the cell.   

 

 

 

Figure 17. Lux promoter-mediated β-Glucuronidase activity in AHL induced cells. The 

highest activity was seen in cells containing the p452pLux-uidA plasmids. Data included 

in analyses are from 4 technical replicates of each of 3 biological replicates (n=12). 

 

 

The Lux system showed promise as a candidate for gene regulation in G. oxydans, 

but it may be beneficial to further reduce basal level expression in the uninduced state. In 

A. fischerii, the AHL is produced by a synthase encoded by the luxI gene. The expression 

of the luxI gene, along with the other bioluminescence genes is under the control of the 

activator, LuxR. (Fuqua et al., 1994). Yet, basal levels of AHL are still produced. It may 
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Figure 18. Brightfield microscopy of G. oxydans cells stained with crystal violet.  

(a) G. oxydans cells harboring the p0169pLux plasmid; (b) G. oxydans cells harboring the 

p264pLux plasmid; (c) G. oxydans cells harboring the p452pLux plasmid; (d) G. oxydans 

cells harboring the p0169pTet plasmid; (e) G. oxydans cells harboring the p264pTet 

plasmid; (f) G. oxydans cells harboring the p452pTet plasmid; (g-i) Wildtype cells 

displaying typical cell morphology. Representative images are shown.  

 

 

be that LuxR has weak binding affinity for the Lux promoter without interacting with the 

AHL, providing leaky transcription in G. oxydans. Placing the luxR gene under the 
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control of a regulatable promoter could provide better control over transcription of the 

target gene. However, if the holo-RNA polymerase binds the lacI promoter weakly in the 

absence of LuxR to provide constitutive background levels of LuxI or if G. oxydans 

produces its own AHL or an AHL-like metabolite, more fine-tuned control may not be 

possible using this system. To date, quorum sensing has not been documented in G. 

oxydans, but in a related species, Gluconacetobacter intermedius, quorum sensing via a 

GinI/GinR system has been reported (Iida et al., 2008). In the GinI/GinR system, GinI 

synthesizes three AHLs and GinR is a transcriptional regulator. There are no known 

homologs to GinR or GinI found in G. oxydans based on BLASTp, making it unlikely 

that this system exists in G. oxydans. However, there is little known about the regulatory 

mechanisms of G. oxydans, and it is possible other undiscovered Lux-like systems exist 

in this bacterium that may be at least partially compatible with the LuxR/LuxI system. 

The lack of knowledge about gene regulation in G. oxydans highlights the need for better 

molecular tools to facilitate more research into its regulatory mechanisms.  
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