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ABSTRACT 

Stream sediments from Chat Creek in Aurora, MO, part of the former Tristate Mining 

District, were digested via a sequential extraction procedure modeled after the Tessier 

method. Prior sampling had shown elevated levels of zinc, lead, and cadmium in 

sediments located near former chat piles. Metals in sediments were divided into four 

geochemical fractions: 1) easily exchangeable, 2) carbonate-bound, 3) iron-manganese 

oxides-bound, and 4) organic matter-bound. The distribution of the metals within these 

fractions can help predict the bioavailability and speciation of said metals. The majority 

of metals were contained in the third and to a lesser extent the fourth fraction. In these 

four fractions, 73.5 percent of zinc, 54.0 percent of lead, and 73.4 percent of cadmium 

was recovered from total metals present in sediment samples relative to preliminary total 

metal analysis. Metals in plant samples also showed significant contamination and 

suggested bioavailability of metals. Water samples were also analyzed, but showed no 

significant metal contamination. 
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INTRODUCTION 

 

Aurora, MO is a small city situated on the edge of what is known as the Tristate 

Mining District, which was home to a plethora of zinc and lead mines during the last two 

centuries. Remediation actions have been undertaken by the EPA, but residual 

contamination still exists. Previous research in Aurora has found elevated levels of zinc, 

lead, and cadmium in stream sediments along Chat Creek. Abandoned zinc and lead 

mines and chat piles had left behind residual contamination. This research examines the 

state of metal contamination in stream sediments in Aurora, MO. Here, sediments are 

analyzed in four different fractions to provide an assessment of the state of contamination 

of the area. The bioavailability of these metals is also assessed.  

 

Tri-State Mining District and Aurora, Missouri 

In the late 1800s and early 1900s, the Tri-State Mining District (TSMD) was 

known as one the most abundant sources of zinc and lead ores. For years, the TSMD was 

the largest producer of zinc in the world (1). The geographical boundary of the TSMD 

spans the southwest part of Missouri, northeastern Oklahoma, and eastern Kansas. 

Mining activities flourished during this time resulting in great production. However, this 

also left behind over 100 million tons of mining waste that contained zinc, lead, and 

cadmium (2). The common practice was to dispose of mine tailings in large piles, known 

as “chat” piles. “Chat” was a common term for mining and milling wastes. These chat 

piles contained zinc in the highest concentration and to a smaller extent lead and 

cadmium, but lead and (especially) cadmium are much more potently toxic.  
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In 1990, the Environmental Protection Agency (EPA) designated parts of the 

TSMD as superfund sites. Assessment of the sites were completed in 1995, and by 2012 

1,500 acres of contaminated soil had been remediated. However, chat piles were widely 

dispersed throughout the area and large amounts of contaminated soil still exist 

throughout the area (2). Since lead was a major contaminant, and the negative health 

effects of lead were widely known, the EPA’s approach to remediation gave high health 

hazard areas priority. Soil was given priority over stream sediments as humans encounter 

soil more frequently than sediments. The first objective was to remediate daycares and 

playgrounds with levels of >500 ppm lead and residences of >2,500 ppm in soils, then to 

remediate residences with lead levels of >800 ppm (3).  

Aurora is a city within the TSMD with a population of 7,450 (2014). Aurora is the 

site of one of the isolated zinc/lead deposits of the TSMD. Previous research has found 

highest levels of zinc, lead, and cadmium contamination in north/northeastern Aurora 

where there used to be abundant chat piles and mining operations (Figure 1). Chat Creek 

runs through Aurora, MO from southeast to northwest and drains the area of former chat 

piles. (4).  Contamination of sediments within the creek is the major focus of this study. 

 

Heavy Metals 

The term “heavy metal” is a relative term. There are several different definitions 

given by different sources. The minimalist definition usually describes heavy metals as 

elements on the periodic table which are considered to be metals with relatively high 

atomic masses or densities. Some sources may place further limitations on what classifies 

as a heavy metal. The EPA alone has several different definitions; a more exhaustive one  
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Figure 1. Former mineshaft locations located around Aurora, MO. 

 

under the Resource Conservation and Recovery Act (RCRA) says heavy metals are, 

“Metallic elements with high atomic weights; (e.g., mercury, chromium, cadmium, 

arsenic, and lead); can damage living things at low concentrations and tend to accumulate 

in the food chain.” (5). Other definitions state that they must have negative health effects 

on plants, animals, or people; or that heavy metals have an atomic weight and density that 

is at least five times that of water (6). Some elements such as zinc, copper, or selenium 

are considered to be heavy metals. These are essential nutrients for humans in small 

quantities, but are also toxic at elevated levels. Heavy metals occur naturally in the 

Earth’s crust in various mixtures. Metals are neither created nor destroyed by normal 
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chemical or biological processes, but can transfer between different valence states that 

influence toxicity (7). Many native forms are frequently innocuous, but some 

anthropogenic activities such as mining can concentrate metals into atypically high 

amounts that can be problematic for both humans and the environment. Elevated heavy 

metal levels can be dangerous. There are a variety of mechanisms by which a metal can 

be toxic to an organism: they could displace another metal or element by binding to the 

site to which it should bind, they could block the receptors or disrupt enzyme activity. 

These are a few reasons why it is important to be able to recognize areas that contain high 

levels of heavy metal contamination.  

The EPA has provided primary and secondary regulations concerning many heavy 

metals in a variety of media. Regulatory levels vary based on the medium of the metal. 

Regulations may exist for the maximum allowable amount of a metal that can be in 

drinking water, effluent water, soil, food, etc. (8).  Primary regulations represent legally 

enforceable standards. Secondary standards are not enforced by the EPA, but act as a 

guideline for aesthetic reasons such as taste, smell, and color in drinking water (9). 

Clear guidelines for allowable amounts of heavy metals in stream sediments are 

not as clearly defined as they are for other media, such as drinking water. Limits on the 

amount of lead in soils differ in regards to the type of area. Different allowable levels exit 

for child-occupied facilities, public use areas, leased properties, etc. For the Oronogo-

Duenweg mining belt site in Jasper County, Missouri, the EPA established action levels 

for the remediation of mine tailings and soils at 6,400 ppm zinc, 400 ppm lead, and 40 

ppm cadmium. The action levels for tributary sediments and delta were 250 ppm zinc, 70 

ppm lead, and 2 ppm cadmium (10). 



 

5 

Zinc. Zinc (Zn) is an essential nutrient for humans and many other animals. Zn is 

atomic number 30 on the periodic table (Figure 2). It is a group twelve element and a d-

block transition metal. Its electron configuration is [Ar]3d104s2. It is the 24th most 

abundant element in the Earth’s crust (76 ppm). It is most commonly found as sphalerite 

(ZnS) or zinc blende, a zinc sulfide compound that also contains iron. It is usually found 

with galena (PbS), pyrite (FeS2), calcite (CaCO3), dolomite (CaMg(CO3)2), and fluorite 

(CaF2) (11). Zinc is an important industrial metal and is used in galvanized steel, alloys 

(e.g. brass), paints, soaps, textiles, pharmaceuticals, and many other products. Within the 

human body, zinc is present in the active sites of many enzymes, such as alcohol 

dehydrogenase. It is frequently bound via sulfur linkages. Since it is an essential human 

nutrient, it has a relatively low toxicity and is not of primary concern in regards to human 

health. The EPA has established a National Secondary Drinking Water Regulation 

(NSDWR) of 5 ppm for zinc in drinking water. It is not considered a health hazard at this 

level, it merely gives a metallic taste which may be unpleasant to the drinker.  

 

 

Figure 2. Periodic table of elements with zinc, lead, and cadmium highlighted. Adapted 

from Google image (31). 
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In sediments, zinc is most mobile in oxidizing and acidic environments. Greater 

mobility equals greater bioavailability. Zinc is least mobile and therefore least 

bioavailable in slightly basic and anoxic conditions, such as a marsh environment (12).  

Elements such as lead and cadmium, discussed next, are of much greater concern 

and have enforceable primary regulations. Both lead and cadmium share some chemical 

properties with zinc, such as the formation of 2+ cations and the propensity to form 

strong bonds with sulfur (11). These metals are usually found together in ores with zinc.  

Lead. Lead is one of the oldest metals known to be used by mankind. It was used 

as a pottery glaze in ancient Egypt around 7,000-5,000 B.C. It was also used by Romans 

for plumbing and water pipes and mentioned in the Old Testament (11). Lead still has 

numerous applications today. Several current and previous uses include car batteries, 

paints, ammunition alloys, solder, and anti-knocking agents in gasoline.  

Lead has an atomic number of 82 and an average atomic mass of 207.12 amu. It is 

in group 14 (carbon group) in the p-block and period 6 on the periodic table. It is 

classified as a post-transition metal and has an electron configuration of [Xe] 

4f145d106s26p2. As a metal, lead has a bluish-white, silvery, grey color (14). It is soft, 

malleable, and ductile. Lead’s oxidation states include 4, 3, 2, 1, -1, -2, and -4. Lead is 

usually found in the +2 form and to a lesser extent +4. Lead (II) compounds are the 

dominant inorganic form of lead. Though lead is in the same group as carbon, which has 

a tendency to form four bonds to make +4 or -4 ions, lead’s inert pair affects its tendency 

to form +2 ions. An inert pair occurs in some heavier elements in groups 13 through 16 

that have stable oxidation states that are two less than the group’s typical valency. This 

happens when the electrons from the d- and f-blocks do not sufficiently shield the  
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s-electrons resulting in them being more tightly held by the nucleus. Lead is amphoteric 

and can react with either acids or bases. Lead tends to form covalent bonds and can bond 

with itself to form chains, rings, or polyhedral structures (11).  

Lead is rather abundant when compared to the other relatively heavy members of 

its group, with an abundance of 13 ppm in Earth’s crust, versus germanium and tin which 

have abundances of 2.1 and 1.5 respectively. Lead owes its prevalence to the fact that 

three of its isotopes; 208 (52.4%), 206 (24.1%), and 207 (22.1%), are end products of 

three naturally occurring radioactive decay series (11).  

The most abundant lead ore is galena, PbS (lead sulfide). Other ores include 

anglesite (PbSO4), cerussite (PbCO3), pyromorphite [Pb5(PO4)3Cl], and mimetesite 

[Pb5(AsO4)3Cl]. Other naturally occurring species also include lead chloride, lead 

bicarbonate, lead (II) hydroxide, lead (II) nitrate, lead acetate, lead (II) fluoride, and lead 

(II) chalcogenides (11). 

While lead has a wide array of applications in industry, it has no necessary 

biological function in humans nor any known beneficial effects on the body. Moreover, 

when lead enters the human body, it has the potential to become very problematic. Lead 

will complex with oxo-groups in enzymes and disrupt heme synthesis and porphyrin 

metabolism. It inhibits a number of enzymes including acetylcholinesterase, acid 

phosphatase, ATPase, carbonic anhydrase, and thiol-enzymes. Lead alters cell 

connectivity in the brain and can replace calcium and zinc in transmitters or bind directly 

to receptors. This can be especially dangerous in infants and small children. Lead can 

also cause high blood pressure and nephropathy (kidney problems) (11). 
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Lead has entered the aquatic environment primarily as a gasoline additive and 

through mining operations (14). Inorganic forms of lead are largely sulfides, sulfates, and 

carbonates. Natural forms of lead have low mobility. However, that mobility is increased 

in acidic environments. The EPA regulates the amount of lead that can be present in 

drinking water, air, paint, dust, and soil; as well as lead’s proper waste disposal (15).  

Cadmium. Cadmium is a d-block transition metal in group 12 on the periodic 

table. It composes 0.16 ppm of Earth’s crust. It is one row directly below zinc, and like 

zinc, it forms sulfide minerals such as Greenockite (CdS). The mobility if cadmium is 

highly subject to the redox potential of its environment. In anoxic conditions, it nears 

complete unavailability. River sediments that are exposed to oxidation and acidification 

produce more soluble forms of cadmium: carbonates, hydroxides, and other exchangeable 

forms. Studies of lake sediments have shown that the majority of cadmium is bound to 

exchangeable sites, iron or manganese oxides, or carbonates (11).  

Cadmium is similar to zinc in its tendency to for 2+ cations. This leads to some of 

the biological problems that cadmium can cause. Cadmium may displace zinc in 

enzymes, which can disrupt enzyme function and lead to kidney damage. Cadmium also 

displaces calcium and magnesium (2+) ions in bones, which can lead to joint and skeletal 

problems. Over long periods, this can result in the demineralization of bones, and 

devastating diseases like Itai-Itai disease. There is some transport of cadmium across the 

blood brain barrier, which can result in central nervous system damage. Acute toxicity for 

cadmium is relatively low, but uncommon; chronic low-level exposure is of higher 

concern. Short term low level exposure can cause nausea, diarrhea, muscle cramps, and 

liver and kidney damage. In cases of long term exposure, kidney damage may become 
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irreversible and the likelihood of bone demineralization increases. It may also negatively 

affect enzymes and regulatory systems and is a suspected carcinogen (12).   

Cadmium has been shown to be toxic to small sediment dwelling organisms even 

at small concentrations (3). The study examined the effects on organisms such as the 

mayfly (Hexagenia limbate), amphipod (Hyalella azteca), midge (Chrionomus tentans), 

oligochaete (Lumbriculus variegatus), daphnid (Ceriodaphnia dubia), and bacterial 

luminescence (Photobacterium phosphoreum). An equation was developed based on the 

sediment-toxicity thresholds of amphipod survival: zinc (2083 mg/kg), lead (150 mg/kg), 

and cadmium (11.1 mg/kg). Sediments posed a low health risk if the combined metal 

concentrations (mg/kg) were less than 7.92 via the following equation: 

 

7.92<  
459

[Zn]
 + 

128

[Pb]
 + 

4.98

[Cd]
 

 

The denominators in the equation are the probable effect concentrations (PECs) in mg/kg 

above which harmful effects are likely to occur. Most significant here is the smaller PEC 

for cadmium, reflecting the higher toxicity of that element compared to lead and zinc (3). 

Chemistry of zinc, lead, and cadmium in water and sediments. Figures 3, 4, 

and 5 show the Pourbaix (Eh-pH) diagrams for zinc, lead, and cadmium in the presence 

of inorganic carbon (carbonate/bicarbonate) and sulfur (sulfide, sulfate). For each of 

these, reducing conditions lead to the formation of the metal sulfides throughout the pH 

range of interest. Under less reducing conditions, zinc tends to be soluble as Zn2+(aq) 

below pH 7.5. Above that pH, precipitation of ZnCO3(s) occurs, with ZnO(s) forming at 

higher pH. (Zn(OH)2(s) is metastable with respect to ZnO(s), but is likely the species first  
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Figure 3. Eh-pH Pourbaix diagram for zinc calculated from free energy of formation 

values. Total soluble inorganic sulfur and carbon (bicarbonate and carbonate) = 10‒3 M; 

soluble cadmium = 10‒6 M for zinc hydroxo complexes, and 104 M for Zn2+(aq) (ZnCO3 

does not form at 10‒6 M Zn2+). ΔG°f for ZnS(s) from Eh-pH Diagrams for Geochemistry, 

Douglas Brookins. Springer-Verlag, 1988;  All other free energies of formation from 

Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd ed, Werner 

Stumm and James J. Morgan, Wiley, 1996. 
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Figure 4. Eh-pH Pourbaix diagram for lead calculated from free energy of formation 

values. Total soluble inorganic sulfur and carbon (bicarbonate and carbonate) = 10‒3 M. 

All ΔG°f values from Aquatic Chemistry, Chemical Equilibria and Rates in Natural 

Waters, 3rd ed, Werner Stumm and James J. Morgan, Wiley, 1996. 
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Figure 5. Eh-pH Pourbaix diagram for cadmium calculated from free energy of formation 

values. Total soluble inorganic sulfur and carbon (bicarbonate and carbonate) = 10‒3 M; 

soluble cadmium = 10‒6 M. ΔG°f for CdS(s) from Eh-pH Diagrams for Geochemistry, 

Douglas Brookins. Springer-Verlag, 1988; All other free energies of formation from 

Aquatic Chemistry, Chemical Equilibria and Rates in Natural Waters, 3rd ed, Werner 

Stumm and James J. Morgan, Wiley, 1996. 
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formed from the reaction of Zn2+ with base) (16).  Lead’s behavior is somewhat different 

throughout the pH range relevant to this study. Throughout the near-neutral to moderately 

basic pH range, PbCO3(s) is the preferred species. In the more acidic pH range, formation 

of PbSO4(s) predominates. Cadmium forms CdCO3(s) when pH  8, but is soluble as 

Cd2+(aq) at lower pHs. A limitation to Pourbaix diagrams is that they do not incorporate 

interactions (especially sorption) of the species of interest with other components of 

complex environmental systems.  

According to Carroll et al. (17) the fate of zinc, lead, and cadmium in TSMD 

waters is most heavily determined by the degassing of CO2 (carbon dioxide) rich waters, 

their uptake/release kinetics, iron oxyhydroxide and carbonate competition, and iron 

catalyzed sulfide dissolution. CO2 is deterministic in the pH of water, and pH changes 

control the release and uptake of metals by iron oxyhydroxides and carbonates.  

Sediments such a sphalerite, pyrite, and galena are dissolved more quickly in 

waters with high iron (III) concentration via oxidation reduction reaction. Zinc is 

preferentially divided into zinc hydroxide or iron oxyhydroxide in sediments. In neutral 

waters, lead is taken up by carbonates and iron oxyhydroxides and is mostly insoluble. 

Cadmium has the greatest mobility of the three metals because its sulfide form will more 

readily dissolve. It is also not taken up by calcite in waters with pH < 7. Thermodynamic 

data is provided in Table 1.  

 

Speciation, Geochemical Fractionation, and Bioavailability 

Speciation. The total concentration of metals does not accurately reflect a 

sediments toxicity profile. Rather, the forms or species the metals take more accurately  
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Table 1. Thermodynamic Data for Zinc, Lead, and Cadmium Compounds (17). 

Chemical Equation log K (25oC) 

CaCO3 (calcite) = Ca2+ + CO3
2- -8.48 

CaMg(CO3)2 (dolomite) = Ca2+ + Mg2+ + 2CO3
2- -18.14 

CaSO4
.2H2O (gypsum) = Ca2+ + SO4

2- + 2H2O -4.48 

Cd2+ + H2O = CdOH+ + H+ -10.08 

Cd2+ + 2H2O = Cd(OH)2 + 2H+ -20.34 

Cd2+ + 3 H2O = Cd(OH)3
- + 3H+ -33.29 

Cd2++ 4H2O = Cd(OH)4
2- + 4H+ -47.33 

Cd2+ + CO3
2- = CdCO3 3 

Cd2+ + 2CO3
2- = Cd(CO3)2

2- 6.4 

Cd2+ + CO3
2- + H+ = CdHCO3

+ 11.83 

Cd2+ + SO4
2- = CdSO4 -0.003 

Cd(OH)2 (β) + 2H+ = Cd2+ + 2H2O 13.74 

CdSO4 (solid) = Cd2+ + SO4
2- -0.11 

CdCO3 (otavite) = Cd2+ + CO3
2- -12.1 

CdO (monteponite) + 2H+  = Cd2+ + H2O 15.1 

Fe2O3 (hematite) + 6H+  = 2Fe3+ + 3H2O 0.11 

FeOOH (goethite) + 3H+ = Fe3+ + 2H2O 0.53 

Fe(OH)3 (am) + 3H+  = Fe3+ + 3H2O 5.66 

Pb2+ + H2O = PbOH+ + H+ -7.7 

Pb2+ + 2H2O = Pb(OH)2 + 2H+ 17.09 

Pb2+ + 3H2O = Pb(OH)3
- + 3H+ -28.09 

Pb2+ + CO3
2- = PbCO3 6.58 

Pb2+ + 2CO3
2- = Pb(CO3)2

2- 9.4 

PbCO3 (cerussite) = Pb2+ + CO3
2- -13.54 

Pb3(CO3)2(OH)2 (hydrocerussite) + 2H+  = 2CO3
2- + 3Pb2+ + 2H2O -18.81 

PbSO4 (anglesite) = Pb2+ + SO4
2- -7.85 

SiO2 (quartz) = SiO2 (aq) -4 

SiO2 (am) = SiO2 (aq) -2.71 

Zn2+ + H2O = ZnOH+ + H+ -8.96 

Zn2+ + 2H2O = Zn(OH)2 + 2H+ -17.33 

Zn2+ + 3H2O = Zn(OH)3
- + 3H+ -28.83 

Zn2+ + 4H2O = Zn(OH)4
2- + 4H+ -41.61 

Zn2+ + CO3
2- + H+ = ZnHCO3

+ 11.75 

Zn2+ + CO3
2- = ZnCO3 3.9 

Zn2+ + SO4
2- = Zn SO4 -2.31 

Zn(OH)2 (β) + 2H+ = Zn2+ + 2H2O 11.93 

Zn(OH)2 (ϵ) + 2H+ = Zn2+ + 2H2O 11.66 

Table 1 continued on next page.  
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Table 1 continued. 

Zn(OH)2 (γ) + 2H+ = Zn2+ + 2H2O 

 

11.88 

ZnSO4  (solid) = Zn2+ + SO4
2- 3.55 

ZnCO3 (smithsonite) = Zn2+ + CO3
2- -9.87 

Zn5(OH)6(CO3)2 (hydrozincite) + 6H+ = 5 Zn2+ + 2 CO3
2- + 6H2O 9.65 

 

 

characterizes the toxic potential. “Speciation” is a relatively vague term in chemistry 

without a single set definition. Instead, it has a variety of definitions, which often leads to 

its misunderstanding. The same can be said for two other terms: bioavailability and 

geochemical fractionation. For purposes here, the definition used by the EPA in their 

Framework for Metal Risk Assessment should suffice, “The distribution of a given 

constituent among its possible chemical forms, including metal complexes, which have 

differing tendencies to be adsorbed or desorbed” (7). While all three terms differ from 

one another, they are closely related and the boundaries between them are not always 

clear.  

The primary source of metal introduction is an important consideration in 

speciation. Was the metal deposited by natural processes, industrial activities, aerially, 

leaching from wastes, etc.? Without anthropogenic contamination, metal species are 

determined by elemental composition of rocks. The toxicity profile of a metal is directly 

linked to its environmental parameters. Frequently, contamination with heavy metals 

comes with co-contamination of other metals or chemicals that may alter the sediment 

environment and contribute to the toxicity profile. With acid mine drainage, pH of the 

environment is lower which increases the mobility of many heavy metals that might 

otherwise be locked up in solid phases. (18).  
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When metals enter sediments, there are a variety of dynamic pathways on which 

they can proceed. Pathways are not necessarily exclusive; they can overlap. There are 

three main categories of metals that can be found in soils: “in soil solutions, sorbed onto 

solid phases, (or) as part of the structure of solid phases” (18). With a soil solution, 

metals may be present as free ions or complexed ligands, which can be either organic or 

inorganic. These mobile metals forms could be uptaken by plants or organic matter or 

adsorbed onto mineral surfaces. Or, they may transport through the vadose zone, diffuse 

into porous material, or precipitate (18). Theses phases are also variable and in dynamic 

equilibrium with one another. A detailed description of a species should include the 

contaminant’s identity, its oxidation state, associations and complexes with solids, and its 

molecular geometry and coordination environment (18).  

Regulations that are imposed on heavy metals by organizations such as the EPA, 

the Occupational Safety and Health Administration (OSHA), the Center for Disease 

Control and Prevention (CDC), etc. are based on the total concentration of a metal in the 

environment. The EPA provides official methods for determining metal species. Method 

1632 provides a procedure to determine dissolved inorganic arsenic, total dissolved 

arsenic, and total arsenic (19). However, the only official regulations for arsenic are for 

total arsenic concentration. Beyond total concentration, speciation is a vital factor in 

accessing a substances toxicity and effects in general. Different forms (or species) of 

metals have highly different toxicity profiles. For instance, lead sulfide (PbS), or galena, 

is virtually innocuous, but tetraethyl lead, the once popular anti-knocking agent in 

gasoline, is a central nervous system toxin that can produce acute toxic psychosis (20). 
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Bioavailability. The species or form of a metal is directly correlated with its 

bioavailability. While there are also various definitions of bioavailability, here it may be 

considered the ability of a metal (or elemental species) to be taken in by an organism and 

affect its life cycle. Bioavailability is a term that can be used to describe both toxins and 

essential nutrients, both harmful and beneficial/necessary substances. It is important to 

note that the ability of a substance to affect an organism’s life cycle is an important 

requirement for bioavailability. A metal that gets taken into an organism and passes 

through without affecting it in any significant way is not considered to be bioavailable. 

There are fungi and bacteria that have mechanisms to tolerate high metal concentrations 

by binding metals with proteins to form insoluble metal sulfides thereby decreasing metal 

uptake (18).  

Measuring metal speciation directly/in situ is a complicated process. Often, 

natural environments are mimicked in a laboratory in order to attempt to create a 

simulation of the environment. As metal species are in constant flux, measuring 

environmental metal concentrations will only give a snapshot of metal species at a 

specific time. Environments are dynamic and species are continuously changing with 

environmental influences (18). 

Sorption processes are one of the biggest players in determining a metal’s 

bioavailability. Sorption can be broadly thought of as any process that removes a metal 

(ion) from solution. Such processes include absorption, adsorption, diffusion into a solid, 

and precipitation. The reverse process is called desorption, when metals are dissolved 

into solution (18). 
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Geochemical fractionation. This term represents any of numerous operationally 

defined methodologies intended to determine the chemical state of elements of interest 

within a sample. Methods process samples using various extractants that are intended to 

selectively dissolve a particular mineral component or phase, thereby solubilizing any 

contaminants associated with the phase. The Tessier method, described in the following 

section, is one of the more common fractionation methods. 

 

Previous Aurora Research 

  There has been extensive research on the TSMD and the after effects of mining. 

This research is part of a larger collaborative project to characterize the contaminant 

profile of Aurora, MO. Dylan Jones, a chemistry undergraduate student, and Misty 

Strickland, a Geology, Geography, and Planning undergraduate, had begun the project of 

examining fractional exchangeability of metals in mine tailings of Aurora waterways. 

This was done under the direction of Dr. Gutiérrez, a geology professor at Missouri State 

University. The research group analyzed stream sediments (previously collected by Dr. 

Gutierrez) along Chat Creek, as well as other creeks and streams upstream and 

downstream of Chat Creek. Streams all around the town were sampled to develop a good 

characterization of the area. Samples were collected from a total of 74 areas. Samples 

were processed in a similar manner to this current research as described in the “sample 

preparation” section; sediments were dried and sifted through a 1 mm sieve. Sediments 

were digested in two different geochemical fractions, which simulated an acidic 

environment and a reducing environment (21). 



 

19 

This thesis developed out of this aforementioned research. The intention was to 

better characterize the sediments which showed high metal content. This thesis analyzes 

four fractions of metals in sediments and looks for evidence of contamination in plant 

and water samples as well. The geochemical fractionation and bioavailability of metals is 

analyzed and provides and way to assess the current contamination level of several 

creeks in Aurora, MO. The previous research had accounted for only ~48 percent of the 

total metals in sediments (21). There were also issues measuring cadmium, which is 

found in much lower quantities than zinc or lead. Detection limits on instruments used 

were not sufficient to account for cadmium. 
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METHODS 

 

Chemicals 

Metals standards:  Separate Ricca stock standards of 10,000 ppm in 5% nitric acid 

were used for each zinc, lead, and cadmium. Sigma-Aldrich standard 1,000 ppm 

scandium in 5% nitric acid was used.   

Other chemicals:  The following chemicals were from Fisher Chemical: 

concentrated nitric acid; glacial acetic acid (HPLC grade); ammonium acetate (HPLC 

grade); washed sand. The following were Sigma-Aldrich brand: hydrogen peroxide 

solution (35% by weight in water); anhydrous sodium acetate (>99.0% purity); hydroxyl 

amine hydrochloride (>96.0% purity).  

Water: Water from a Thermo Scientific Barnstead E-Pure water purification 

system (18 MΩ-cm) was used for all dilutions and solution preparations.  

 

Instrumentation 

ICP-AES. The basis of inductively coupled plasma-atomic emission spectrometry 

(ICP-AES) involves the nebulization of a sample which is then transported to a plasma 

torch that causes atomization and excitation of the sample. When relaxation occurs, an 

intensity of light is emitted and is measured optically at wavelengths that are specific to 

the element of interest. This measurement is compared to a standard which enables the 

determination of amount of analyte present in the sample (22). ICP-AES has detection 

limits ranging between 100 to 0.1 ppb depending on the element (23). Specific to the 
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elements of interest, ICP-AES ideally has a detection limit around 0.1 ppb for cadmium, 

1 ppb for lead, and 0.2 ppb zinc (23), though actual detection limits are often higher. 

The primary instrument used for this work was a Varian Liberty 150 AX Turbo 

ICP-AES at Missouri State University (MSU). This instrument was ~20 years old and 

was run with a DOS software program. The program was initially set up to analyze zinc, 

lead, and cadmium relative to an internal standard, scandium. The greatest intensity 

wavelengths were chosen for lead (220.353 nm), cadmium (228.802 nm), and scandium 

(361.384). The second most sensitive wavelength was chosen for zinc, 334.502 nm, since 

it had much higher concentrations in the samples. The instrument ran three sequential 

scans and reported an average concentration, which was used as the sample measurement.  

ICP-MS. Inductively coupled plasma – mass spectrometry is an instrumental 

method related to ICP-AES.  Like ICP-AES, ICP-MS (in the format employed here) uses 

a plasma torch to atomize a nebulized sample.  At the high temperatures of the plasma, a 

significant amount of sample atoms are ionized, and these ions are directed through an 

interface into a mass spectrometer.  Elements are identified and quantified by the mass to 

charge ratios of the ions and their abundances relative to standards.  ICP-MS generally 

has significantly lower detection limits than ICP-AES.  

Due to the low cadmium content, it was necessary to use an instrument with lower 

detection limits than MSU’s ICP-AES. Missouri State had recently acquired a graphite 

furnace atomic absorption spectrophotometer (GFAA). GFAA’s have detection limits for 

cadmium down to 2 ppt, or 50 times lower than ICP-AES’s (23). However, the GFAA 

never become operational during the course of this research. So, arrangements were made 

with connections at the local Blackman Water Treatment facility (operated by City 
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Utilities of Springfield, MO) to use their ICP-MS. The instrument was a Thermo 

Scientific iCAP-Q. The staff at Blackman helped to set up a method to run samples for 

zinc, lead, and cadmium. Samples and standards were prepared at MSU and brought to 

Blackman, where they were put in autosampler tubes. The method was able to run on its 

own after initial setup. 

AAS. Atomic absorption spectrophotometry (AAS) is a commonly-used method 

for measuring element (mainly metal) concentrations.  In its most commonly used form, 

the sample solution is aspirated and nebulized, where the sample is mixed with a fuel-

oxidant combination (most commonly acetylene-air) and burned in a “slot burner” where 

samples are atomized.  Measurements are based on the absorbance of light at a specific 

wavelength characteristic of the element of interest.  Light sources are normally hollow 

cathode lamps, which are designed to produce atomic emission from a target composed 

on the specified element.  AAS measurements are generally somewhat less sensitive than 

ICP-AES or ICP-MS methods. 

Extract 4, the organic matter-bound fraction, was largely composed of hydrogen 

peroxide and nitric acid. The ICP-AES repeatedly gave inconsistent readings. It was 

believed that the issue related to nebulization of the solution, but the exact cause of this 

issue was never fully isolated. Since the metal concentrations in this fraction were rather 

high, they were able to be run on the AAS. The AAS used was a Varian SpectrAA 

220FS. The wavelengths used on this instrument were 213.9 for zinc, 217.0 for lead, and 

228.8 for cadmium. 
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Field Sampling and Sample Preparation 

The sampling sites from which sediment samples were taken were located 

throughout Aurora, MO. Many samples were taken along Chat Creek which runs directly 

through the town. Samples were taken close to known chat piles and both upstream and 

downstream in attempt to examine mobility of the metals. Samples were also taken from 

smaller side streams in and around Aurora. Much of the sampling was performed by 

previous researchers who had performed preliminary analysis on sediment samples. 

Sediment samples were collected from 74 different locations in this previous of the 

research. Samples were sifted through 1 mm mesh, and a portion of each sample was sent 

to an outside laboratory, ALS Minerals, for 35 metal analysis by aqua regia digestion.  

This researcher sampled the area again to gain additional sediment samples, but 

mainly to focus on the collection of plant samples in order to create a better picture of 

metal bioavailability. Several water samples were also collected at this time. A total of 15 

plant samples, 8 water samples, and 3 sediment samples were collected from areas along 

Chat Creek and side streams. Sites were marked with GPS coordinates which were added 

to the previously constructed map of sampling sites (Figure 6). Sediment samples were 

dug shallowly from areas along creek beds with a stainless-steel trowel to avoid metal 

contamination. Both aquatic (fully underwater) and terrestrial (along the creek sides) 

were collected. Plants were either pulled or snipped with garden snips. Water samples 

were collected by submerging 500 mL sample bottles into the surface of the water. 

Sediment and plant samples were added to quart-sized Ziploc bags.  After collection was 

complete samples were transported back to the lab. Each site appeared to have somewhat 
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distinct vegetation (and some sites had no visible aquatic plants that were readily 

accessible), so it was not possible to collect the same types of plants at each site. 

 

 

Figure 6. Map of Aurora, MO and surrounding area with sampling sites denoted by dots. 

 

 

Upon return to the laboratory, water samples were acidified with 2 mL of 

concentrated nitric acid (per ~500 mL sample) and placed in the refrigerator to await 

analysis. Samples were analyzed by ICP-AES.  

Plant samples were washed thoroughly with tap water until water was no longer 

brown. The point was to remove as much sediment from the plant samples as possible. 
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This was followed by several rinses with deionized water. Aquatic plant samples required 

much more rinsing to remove sediments than other types. It was difficult to remove 

sediment from the roots of plants. Samples were then transferred to evaporating dishes or 

beakers and dried in an oven at ~75oC for ~3 days. Slight charring was observed on some 

of the samples upon removal from the oven. Dried plant samples were ground in a coffee 

grinder until a fine material was achieved. Samples were stored in plastic sandwich bags 

to await ashing via muffle furnace. 

One-gram dried ground plant samples were weighed into 15 mL nickel crucibles 

and 2 mL 50% (w/v) magnesium nitrate solution was added to each sample. Samples 

were place in an oven at 120oC for 1 hour to evaporate off water. Samples were then 

placed into a programmable muffle furnace. Samples were brought to 200oC and held 

there for 3 hours. The furnace temp then increased to 400 oC and held for an additional 3 

hours. Finally, the oven temperature was increased to 550 oC where it was held for 18 

hours, after which the furnace decreased to room temperature and samples were allowed 

to cool before they were removed. Upon cooling to room temperature, samples were 

transferred to Falcon centrifuge tubes (15 mL) and filled to the 10 mL mark with 50% 

(v/v) nitric acid. Samples were sonicated until dissolution of dry ash residue was 

achieved. Samples were then centrifuged to compact any undissolved ash components, 

then analyzed by ICP-AES.  

Sediment samples were frozen upon return to the lab until they could be dried. 

Three days after freezing sediment samples were transferred into beakers and placed in 

an oven at 60oC for about 2 days. After cooling, sediments were passed through a 1 mm 
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sieve to achieve appropriate size and placed in plastic bags until they could be digested 

via sequential extraction procedure with the other previously collected sediments.  

Total metal analysis was performed by ALS Minerals, an outside commercial 

laboratory. ALS Minerals determined total metal content in the sediment for 35 metals by 

aqua regia digestion and ICP-AES analysis.  

 

Standards 

Standards were made in order to calibrate the instrument. Standards were made in 

the same matrix as the samples, however they were not digested under identical 

conditions. A set of standards was prepared for each individual extract with matrix 

matching. Four standards and a blank were prepared for each extract. Standard A 

contained 200 ppm of zinc and lead and 10 ppm cadmium. Standard B contained 20 ppm 

of zinc and lead and 1 ppm cadmium. Standard C contained 2 ppm of zinc and lead and 

0.1 ppm cadmium. Standard D contained 0.2 ppm zinc and lead and 0.01 ppm cadmium. 

Each standard was spiked with scandium to give a concentration of 5 ppm scandium. 

Only standards A and B were used in the calibration of zinc because the lower standards 

were throwing off the calibration curve. For the same reasons, only standards B and C 

were used in the calibration of lead, and only B, C, and D were used for cadmium. 

 

Quality Control 

To assure quality control, several measures were taken throughout this research: 

blank checks, laboratory control checks (LCC), laboratory duplicates (LD), field 

duplicates (FD), matrix spikes (MS), and method blank (sand) checks.  
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Blanks checks were prepared by in the same matrix as each of the extracts. Blanks 

were not added to any sediments, nor were they exposed to any metals. Therefore, they 

should ideally show concentrations of zero for zinc, lead, and cadmium and serve as a 

background reference to samples 

Laboratory control checks were prepared for each extraction step using the same 

matrix as samples. The LCCs were prepared to be equivalent to 20 ppm zinc, 20 ppm 

lead, and 1 ppm cadmium. The purpose of the LCC was to have a known concentration in 

a sample to measure in order to confirm the accuracy and precision of the analysis.  

Laboratory duplicates were made by taking two samples from the same sediment 

sample. These two samples are then digested separately and treated as independent 

samples. The agreeability of these can help to measure precision of the digestion process 

and analysis. 

Field duplicates were made by taking two separate samples from the same field 

site. This also provided a degree of measuring precision, but due to the heterogeneity of 

sediments it was expected that field duplicates would have much less agreement than lab 

duplicates. 

To prepare matrix spikes, laboratory duplicates were made from select samples, 

and the duplicates were spiked with a known concentration of metals (50 ppm zinc, 50 

ppm lead, and 10 ppm cadmium). These samples were subjected to the same digestion 

procedures and analysis. Upon analysis, the MS should ideally show a higher metal 

concentration than its counterpart by the amount of the spike.  

Method blanks prepared from sand served a purpose similar to that of the blank 

checks. Laboratory grade sand should contain no zinc, lead, or cadmium. Three sand 
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samples were prepared and treated in the same manner as the sediment samples. It was 

expected that these sand samples should show no metal content upon analysis. This can 

help serve as a background sample and aid in the identification of any contamination that 

may occur during digestion.  

  

EPA Methods 

There are a variety of methods that are used to analyze metal content in a sample. 

Methods can be qualitative to test for any presence of a metal, quantitative to test for 

specific concentration of a metal, or semi-quantitative methods that give an estimate of 

metal concentration. With the passage of the Clean Water Act in (CWA) 1972 the EPA 

approved specific test methods that can be used for metal analysis (24). The CWA was an 

amendment to the Federal Water Pollution Control Act of 1948, the first major United 

States law that addressed water pollution. EPA approved chemical test methods are 

subdivided into categories for determination of inorganic nonmetals, organics, and 

metals. Determination of metals in environmental samples can be found in the 200 series 

methods (24). In 1992, the EPA published 13 different analytical laboratory methods for 

metals in Methods for the Determination of Metals in Environmental Samples (25). These 

analyses use different instruments including inductively coupled plasma atomic emission 

spectroscopy (ICP-AES), ICP-mass spectrometry (MS), atomic absorption spectroscopy 

(AAS), graphite furnace AAS, ion chromatography (IC), and high performance liquid 

chromatography (HPLC).  
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Sequential Extraction Procedure 

The Tessier method was selected as a model for this extraction procedure. The 

Tessier method is a sequential extraction procedure designed to characterize the metal 

concentration in different geochemical fractions. Tessier separates five different 

geochemical fractions:  

1) easily exchangeable, extracted with 1 M NaC2H3O2 or 1 M MgCl2 

2) bound to carbonates, extracted with 1 M NaC2H3O2/HC2H3O2 pH = 5 

3) bound to Fe-Mn Oxide, extracted with 0.3 M Na2S2O4 + 0.175 M Na-citrate +  

0.025 M H-citrate + heat (96oC) or 0.04 M NH2OH.HCl in 25% (v/v) HC2H3O2 +  

heat (96oC)  

4) bound to organic matter, extracted with 0.02 M HNO3 + 30% H2O2 pH = 2  

with HNO3 + heat (85oC) + 3.2 M NH4C2H3O2 in 20% (v/v) HNO3  

5) residual, extracted with HF-HClO4 mixture (26) 

Several other sequential extraction procedures were examined that closely resembled 

Tessier. A method by Favas et al. (27) describes six different fractions, which are only 

slightly modified from the Tessier method. For the exchangeable fraction, Favas uses 

ammonium acetate instead of sodium acetate. The bound to Fe-Mn oxides fraction is 

divided into two: easily reducible and moderately reducible; the latter uses 0.1 M 

ammonium oxalate at pH=3. The other fractions are essentially the same, using hydrogen 

peroxide, nitric acid, and ammonium acetate for what Favas calls the “sulfidic/organic” 

fraction and a mixture of hydrofluoric, perchloric, and nitric acids for the residual (27). 

Several other authors, including Krupadam et al. (28), Cappuyns et al. (29), and 

Rodrigues et al. (30) detail methods that are similar/slightly altered forms of the Tessier 

method. 
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In this research the residual fraction was not extracted. Instead, it was 

approximated by finding the difference between the total metal aqua regia digestion 

performed by ALS Minerals and the four other fractions.  

Samples were digested in Fisherbrand sterile, disposable, 50 mL, polypropylene 

centrifuge tubes. Approximately 2 g of each sediment was weighed out (actual mass 

recorded) and placed in appropriately labeled centrifuged tubes. Samples were then 

digested sequentially in the aforementioned media (details provided below). After the 

extraction of each of these fractions, samples were centrifuged for 30 minutes, decanted, 

and filtered through Fisherbrand G4 glass fiber filters. Samples were then analyzed by 

ICP-AES, AAS, or ICP-MS. 

Internal Standard. Originally, it was thought best to measure metal 

concentrations against an internal standard. To select an appropriate metal to use as an 

internal standard, the results from previous total metal analysis were examined. It was 

found that scandium was in very low concentrations in every sample. The average 

concentration of scandium in dried sediments was 1.77 ppm. Since there would be no 

significant interference from metal concentrations this low in sediments, scandium was 

selected as the internal standard. Extract one was made in accordance to the 

aforementioned procedure. Twenty-mL of 1000 ppm scandium standard was added to 1 L 

of extract one solution, giving the solution a concentration of 20 ppm scandium. Since the 

first extract was 1M sodium acetate it was known from previous tests that it would have 

to be diluted fourfold in order for it to give an accurate and precise reading on ICP-AES. 

The amount added would result in a desired concentration of 5 ppm scandium in each of 

the samples. The ICP-AES was set up with an internal standard program with scandium 
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as the selected element for the metals concentration to be measured against. After 

completion of the first extraction, samples were measured on ICP-AES. Metal 

concentration readings for zinc, lead, and cadmium were unexpectedly high by orders of 

magnitude. Intensity of the peaks for scandium were significantly lower than they had 

been in initial testing. In order to determine the root of this cause, a series of sediment 

samples was prepared. The amount of time the sediment samples spent in the extractant 

was varied and scandium concentrations were then measured. Results showed that as the 

amount of time that sediments spent in the extract with the internal standard increased, 

the intensity of the scandium peak decreased on ICP-AES. This showed that scandium 

was likely binding to the sediments in the sample or precipitating out of solution. 

Therefore, accurate and precise concentrations of internal standards could not be 

recovered. This gave inaccurately high readings of the other metals: zinc, lead, and 

cadmium. At this point, it was decided that the internal standard method should be 

discarded and metal concentrations would be measured directly. While this was not ideal, 

accurate measures of metal concentrations could still be determined by a direct 

measurement method. 

Extractable Fractions. Four fractions of metals (described earlier) were 

extracted from the sediments. These fractions may also be referred to as extracts in this 

thesis. The first fraction was digested by adding 16 mL of 1 M sodium acetate 

(NaC2H3O2) to each sample. Samples were vortexed then continuously agitated for 1 

hour at room temperature. After decanting, each sample was preserved with 2 mL of 

concentrated nitric acid and stored in the refrigerator before analysis. Because of the high 

salt (sodium acetate) content, initial sample readings on the ICP-AES were unstable. 
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Samples were diluted 4-fold with deionized water (10 mL sample and 30 mL of water), 

which solved this issue. The high sodium acetate also made the torch dirty very quickly. 

The torch had to be disassembled and cleaned by soaking in aqua regia several times. 

Without cleaning, concentrations were much more erratic, and the torch would frequently 

go out. The high salt content may have also been interfering with effective nebulization. 

Upon optimization of the measurement of extract 1, it was discovered that it had 

rather low concentrations of lead and especially cadmium and could not be confidently 

measured on AES. These, and a few samples from extract 2 and 3 with low metal 

concentrations, were run on ICP-MS. The ICP-MS that was used was located at 

Blackman Water Treatment Plant (City Utilities of Springfield) that is responsible for 

providing clean drinking water to a large portion of the population of Springfield, MO. 

These low concentration samples were further diluted to 10:1 from the original volume of 

the extracts to get within range of the ICP-MS and to minimize interference from high 

salt content. Since both samples and standards were diluted by the same factor, the 

concentrations measured by the instrument were still actual concentration and not diluted 

ones. This exempted the need for an extra dilution calculation. The staff at Blackman 

aided in setting up the instrument method. An autosampler was used, so after the method 

was set up and samples were poured into autosampler tubes, the program ran itself. 

Results were automatically compiled into an excel file, which were email to this 

researcher. 

The second fraction obtained metals that were bound to carbonates, using an 

extractant consisting of 1 M acetic acid/sodium acetate adjusted to pH 5 with glacial 

acetic acid. To the sediment residues of the first extraction step, 16 mL of extractant was 
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added.  Samples were vortexed the agitated continuously for 2 hours at room 

temperature. Samples were diluted 2-fold before metal concentrations were measured on 

ICP-AES.  

The third fraction, bound to Fe-Mn oxides, was extracted with a reducing agent 

solution that was 0.04 M NH2OH.HCl (hydroxylamine hydrochloride) in 25% (v/v) 

HC2H3O2. Forty milliliters of this extractant was added to the residues from the second 

fraction. Samples were shaken and vortex then added to hot water bath (~96oC). Samples 

were kept in the bath for 6 hours with occasional agitation via vortexing. Samples were 

then centrifuged then decanted. Decantation of each sample yielded about 40 mL 

solution, to which 1 mL of nitric acid was added to deter precipitation or molding. 

Samples were filtered through Fisherbrand G4 glass fiber filters after digestion and 

decantation to avoid clogging of the ICP-AES nebulizer. All standards and samples in 

extract 3 were diluted 2-fold with deionized water. Since standards were diluted as well, 

concentration readings were autocorrected on the instrument and did not require dilution 

calculations.  

The fourth fraction was digested in an oxidizing agent. To the residues of the third 

fraction were added 6 mL of 0.02 M nitric acid and 10 mL of 30% H2O2 (hydrogen 

peroxide) adjusted to pH = 2 with concentrated nitric acid. Samples were vortexed, 

shaken then added to a hot water bath (85oC), and heated for 2 hours with occasional 

vortexing. After 2 hours, another 6 mL portion of 30% H2O2 (pH = 2 with nitric acid) 

was added to each sample. Samples were heated for 3 additional hours with occasional 

vortexing. After cooling, 10 mL of 3.2 M NH4C2H3O2 (ammonium acetate) in 20% (v/v) 

nitric acid was added to each sample, and samples were diluted to 40 mL. Then, samples 
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were continuously agitated for 30 minutes. When this fraction was run on ICP-AES, the 

concentration reading (measured intensity) of the laboratory control checks and samples 

would dramatically decrease (up to 75 percent) over a short period of time, apparently 

due to nebulization issues. It was theorized that the high concentration of hydrogen 

peroxide was likely interfering with nebulization. So, samples from this fraction were 

analyzed by AAS, which gave consistent intensities and concentrations. This was 

possible because concentrations were rather high in extract 4, so the lower detection 

limits of ICP-AES were not necessary. Two different sets of standards were made up, one 

for zinc and one for lead and cadmium to account for differences in concentrations in 

samples. Two benefits of using the AAS as opposed to the AES, is that AAS had an 

autosampler and a sample introduction pump system (SIPS) which made auto-dilutions of 

samples when necessary.  
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RESULTS AND DISCUSSION 

 

Quality Control 

Any evaluation of data for samples must be carried out with recognition of the 

limitations to the analytical methodologies employed. The following quality control 

measures were taken to evaluate the reliability of analysis.  

Laboratory Control Checks. The laboratory control checks (LCCs) showed 

close agreement with the theoretical values. The percent error/difference of the LCC 

serves as a guide to give a measure of the accuracy of the measurement of samples. 

Percent error is calculated by the following equation:  

 

% 𝐸𝑟𝑟𝑜𝑟 =  
|𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑|

𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑
 ×100 % 

 

where expected is the actual value of the LCC that was expected, and observed is the 

actual value given by the instrument.  

The coefficient of variation (CV) was also calculated for the LCC, which serves 

as a measure of precision. CV is calculated by the following equation: 

 

𝐶𝑉 =  
𝜎

µ
 

 

where σ is the standard deviation of the LCC and µ is the average of the LCC.  
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The average percent error of the LCC for the four fractions was between 5 and 6 

percent for all 3 metals. Environmental LCC may be considered accurate if their percent 

error is less than 15-25 percent. Table 2 shows the average percent errors in LCC values 

for each fraction.  

 

Table 2. Average Percent Error in LCC Values. 

Fraction Zn Pb Cd 

1 4.7 7.4 3.5 

2 7.1 6.3 2.5 

3 1.5 1.6 5.5 

4 10.4 5.1 8.6 

Average 5.9 5.1 5.0 

 

 

 

Blanks and Detection Limits. The detection limits were calculated from the 

blanks by the following equation: 

 

𝐷. 𝐿. = 3×𝜎 

 

where σ is the standard deviation of the blanks. The blank averages and detection limits 

are summarized in Table 3 from Fractions 2 through 4. Fraction 1 was analyzed by ICP-

MS, which did not run blank checks in the same manner. 

Duplicates. Both lab and field duplicates were run in this analysis. Duplicates can 

be found in Table 4. The percent difference between the duplicates had some variation. 

Most of the samples were fairly consistent. The larger percent differences come from 

samples with very low metal concentrations approaching the detection limits, where 
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consistent measurements are not expected. In these cases, a few ppb could change percent 

error by 100 percent. 

 

Table 3. Averages for Blanks and Detection Limits ([M] (mg/L)). Table includes each 

metal from fractions 2-4. D.L. = detection limit, Std Dev = standard deviation. 

 

  Fraction 2  Fraction 3  Fraction 4 

Zn Average 0.1389  0.3050  -0.014 

Zn Std Dev 0.4078  0.1137  0.025 

Zn D.L. 1.2233  0.3411  0.074 

 

Pb Average 0.0011 

 

0.0323 

 

0.052 

Pb Std Dev 0.0398  0.0083  0.082 

Pb D.L. 0.1194  0.0249  0.246 

 

Cd Average -0.0010 

 

0.0021 

 

-0.009 

Cd Std Dev 0.0010  0.0010  0.010 

Cd D.L. 0.0029  0.0031  0.030 

 

 

 

Matrix Spikes. Analysis of matrix spikes can be found in Table 4. Percent 

recovery is calculated by the following equation: 

 

% 𝑅 =  
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑣𝑎𝑙𝑢𝑒

𝑎𝑐𝑡𝑢𝑎𝑙 𝑣𝑎𝑙𝑢𝑒
 ×100% 

 

where the observed value is the measured value of the MS measured by the instrument, 

the background value is the value of the unspiked sample, and the actual value is the 

value of the MS added by which the sample concentration should have increase. Ideally, 

percent recovery would be 100 percent. 
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Table 4. Reproducibility of Lab Duplicates. ND = not detected. 

 

Fraction 1  Fraction 2  Fraction 3  Fraction 4 

Sample Zn Pb Cd  Zn Pb Cd  Zn Pb Cd  Zn Pb Cd 

4 32.5 1.3 0.2  698.1 199.5 1.6  248.4 164.0 0.8  ND 19.4 2.7 

4-LD 33.6 1.3 0.2  634.7 177.4 1.8  224.7 172.5 0.9  ND 19.8 2.6 

[Average] 33.1 1.3 0.2  666.4 188.5 1.7  236.6 168.3 0.8  ND 19.6 2.6 

% diff. 3.4 5.2 3.5  9.5 11.7 8.0  10.0 5.1 6.9  ND 2.3 3.5 

 

10 4.1 ND ND 

 

15.2 0.6 0.1 

 

12.1 1.1 ND  3.1 0.5 ND 

10-LD 2.8 ND ND  15.3 0.5 0.1  12.8 1.1 ND  6.0 0.7 ND 

[Average] 1.8 ND ND  13.1 0.9 0.1  11.8 0.9 ND  4.6 0.6 ND 

% diff. 23.8 ND ND  19.8 2.7 5.3  3.1 2.2 ND  63.1 45.4 ND 

 

13 2.1 0.1 ND 

 

11.8 0.9 0.1 

 

11.6 0.9 ND  8.2 0.3 ND 

13-LD 1.6 ND ND  14.4 0.9 0.1  12.0 0.9 ND  7.9 0.3 ND 

[Average] 3.4 ND ND  15.3 0.5 0.1  12.4 1.1 ND  8.0 0.3 ND 

% diff. 38.9 ND ND  0.4 17.4 10.2  5.8 4.3 ND  3.6 6.5 ND 

 

27 15.8 ND ND 

 

85.2 0.4 ND 

 

126.3 1.0 0.4  126.3 1.0 0.4 

27-LD 14.7 ND ND  88.2 0.4 ND  133.5 1.0 0.5  108.3 0.7 4.4 

[Average] 15.3 ND ND  86.7 0.4 ND  129.9 1.0 0.5  117.3 0.9 2.4 

% diff. 6.8 ND ND  3.4 0.4 ND  5.5 8.7 10.1  15.4 43.8 164.3 

 

38 39.7 1.8 4.5 

 

433.2 18.2 5.4 

 

134.4 9.4 0.4  134.4 9.4 0.4 

38-LD 38.6 1.6 4.2  437.7 18.5 5.3  158.2 11.7 0.5  79.0 0.5 0.2 

[Average] 39.2 1.7 4.4  435.5 18.3 5.4  146.3 10.6 0.4  106.7 4.9 0.3 

% diff. 2.8 11.6 9.0  1.0 2.0 0.8  16.3 21.9 23.8  51.9 181.7 83.3 

 

17 3.9 ND ND 

 

45.7 1.1 ND 

 

134.5 2.4 0.4  134.5 2.4 0.4 

17-FD 5.6 ND ND  39.0 1.6 ND  140.9 2.3 0.3  72.2 1.2 1.4 

Average 4.7 ND ND  42.3 1.4 ND  137.7 2.3 0.4  103.4 1.8 0.9 

% diff. 37.3 ND ND  15.6 30.6 ND  4.6 5.4 31.0  60.2 67.3 106.9 

 

S1 2.1 ND ND 

 

0.3 0.1 ND 

 

24.2 0.6 ND  0.2 0.2 ND 

S1-FD 1.5 ND ND  8.4 0.1 ND  3.7 0.4 ND  0.2 0.2 ND 

Average 1.8 ND ND  4.4 0.1 ND  14.0 0.5 ND  0.2 0.2 ND 

% diff. 38.7 ND ND  184.3 48.6 ND  146.5 47.4 ND  8.1 33.3 ND 

 

 

 

The percent recovery on the matrix spikes varied widely and some of the percent 

recovery was rather poor, mostly in the first fraction. However, metal contribution from 
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the first fraction is rather minor, so this does not significantly reflect the overall 

interpretation of the data. After digestion, it was realized that the matrix spikes were 

spiked with too low of a concentration of metals. This can cause a small fluctuation in the 

instrument to result in an extremely large percent recovery. This is most likely the issue 

in the high percent recovery in the matrix spikes. 

 

Table 5. Matrix Spikes and Percent Recovery (mg/L). ND = not detected. Avg. = 

Average. 

 

 
Fraction 1  Fraction 2  Fraction 3  Fraction 4 

 
Zn Pb Cd  Zn Pb Cd  Zn Pb Cd  Zn Pb Cd 

15 4.2 ND ND  22.6 0.8 0.1  15.0 1.3 ND  6.7 0.5 ND 

15-MS 148.9 85.4 20.7  94.4 95.4 7.6  48.3 37.6 3.1  59.2 66.7 5.3 

% R 289 171 206  144 189 75  67 73 31  105 133 53 

    
 

   
 

   
 

   
28 6.1 ND ND  48.0 1.2 ND  91.5 1.6 0.9  25.5 0.5 0.3 

28-MS 142.3 51.7 9.2  134.8 117.6 3.8  118.2 36.5 6.7  81.8 61.4 6.3 

% R 272 104 92  174 233 38  53 70 58  113 122 60 

    
 

   
 

   
 

   
46 17.6 ND ND  76.7 1.1 0.2  32.7 1.6 0.4  9.0 0.4 ND 

46-MS 193.7 58.9 18.4  132.2 110.1 7.6  50.3 34.3 3.5  61.0 33.7 5.2 

% R 352 118 184  111 218 75  35 66 30  104 67 51 

                

Avg. 305 131 161  143 213 63  52 69 40  107 107 55 

 

 

Sample Results 

The average concentrations of zinc, lead, and cadmium in each of the four 

geochemical fractions are summarized in Table 6. The total metal concentration as 

determined by the outside lab is given along with action levels determined by the EPA 

during the Oronogo-Duenweg mining belt site cleanup in Jasper County, MO. The 



 

40 

average total metal concentration in the sediment is below the action level for soil 

remediation (with the exception of the ALS total for lead). However, several individual 

fraction concentrations for lead and cadmium exceed these totals, as well as several total 

concentrations for zinc. The average concentrations for fractions 2 through 4 exceed the 

actions levels for remediation in tributary sediments. 

 

Table 6. Average Metal Concentration in Geochemical Fractions (mg/kg). ALS total 

contains the average concentrations of metals as determined by the external laboratory 

which performed total metal analysis. AL (action levels) are the levels above which 

media required clean up in the EPAs Oronogo-Duenweg Missouri mining remediation 

project. 

 

Metal 

 

Fraction 

1 

Fraction 

2 

Fraction 

3 

Fraction 

4 

Total 

 

ALS 

Total 

Soil  

EPA AL 

Sediment 

EPA AL 

Zn 100.8 879.3 1782 1187 3949 6053 6,400 250 

Pb 6.0 102.4 164.4 39.8 312.6 563.1 400 70 

Cd 1.0 2.0 8.3 11.2 22.5 32.4 40 2 

 

 

 

Among the four fractions, 73.5 percent of zinc, 54.0 percent of lead, 73.4 percent 

of cadmium were recovered (Table 7). The reminder of the metals is in the residual 

fraction and likely could be recovered using the fifth extract of the Tessier method, HF-

HClO4, a mixture of hydrofluoric and perchloric acids.  

Figures 7, 8, and 9 show the concentration of zinc, lead, and cadmium 

respectively amongst the four exchangeable fractions. The graphs are ordered relative to 

the flow of Chat Creek and surrounding streams. Chat Creek shows much higher 

concentrations of metals than surrounding streams. This shows a significant contribution.  
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of metals from the former mining operations in Aurora. The highest concentrations of 

metals are present in fraction 3. 

 

Table 7. Average Percentage of Metals Recovered during Sequential Extraction. 

 

Metal Fraction 1 Fraction 2 Fraction 3 Fraction 4 Total 

Zn 3 17.2 33.9 19.4 73.5 

Pb 0.6 12.2 30.5 10.7 54.0 

Cd 3.5 9.8 30.6 29.5 73.4 

 

 

 

Zinc is most readily exchangeable in the Fe-Mn oxide-bound fraction for most 

sediment samples (Table 7). This fraction was digested using the reducing agent hydroxyl 

amine. This means that the majority of the zinc in the collected sediments becomes most 

mobile in reducing environments (e.g. environments with high organic matter). The 

highest contamination is shown along the main section of chat creek that was sampled 

near the former chat piles. More specifically, samples along the middle section of Chat 

Creek that was sampled, showed the highest concentrations of zinc. When compared to 

the concentration of zinc present in the smaller creeks within Aurora, samples 9-15, it is 

clear that the contamination along chat creek is significantly higher than natural levels. 

Lead, like zinc, shows the highest exchangeability in the Fe-Mn oxide bound 

fraction (Table 7). The middle section of Chat Creek (samples 1-5 and 43-45) showed 

high levels of lead that were significantly higher than even the samples slightly upstream 

in Chat Creek. Lead also appears to show lower percent exchangeability than either zinc 

and cadmium in both easily exchangeable and bound to organic matter fractions (Table 

7). The lower percentage of lead recovery is likely due to its presence as galena, or PbS 
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Figure 7. Concentration of zinc in sediment samples by fraction. Samples are represented 

by numbers on the y-axis and are ordered from upstream to downstream along Chat 

Creek and other creeks. Graph is segmented by creek areas. Appendix A, contains data 

used to construct this figure. 
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Figure 8. Concentration of lead in sediment samples by fraction. Samples are represented 

by numbers on the y-axis and are ordered from upstream to downstream along Chat 

Creek and other creeks. Graph is segmented by creek areas. Appendix B, contains data 

used to construct this figure. 
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Figure 9. Concentration of cadmium in sediment samples by fraction. Samples are 

represented by numbers on the y-axis and are ordered from upstream to downstream 

along Chat Creek and other creeks. Graph is segmented by creek areas. Appendix C, 

contains data used to construct this figure. 
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(lead sulfide). Galena is the major ore of lead and is highly insoluble in water.  

Cadmium shows a contamination distribution similar to zinc among the sampling 

sites with the major contamination along the main section of Chat Creek. Along Chat 

creek, most cadmium shows mobility only in Fe-Mn bound and organic matter bound  

fractions. Cadmium presence in the other two fractions is mostly minor. The organic 

matter-bound fraction contains more cadmium than the Fe-Mn oxide-bound fraction, 

unlike zinc and lead. Cadmium mobility was expected to be higher. However, this was 

found to be fraction dependent. Cadmium had the greatest mobility in both easily 

exchangeable and organic matter-bound fractions. Cadmium may still have been more 

mobile in general and may have been previously washed away from stream sediments. 

This might explain the low concentrations in the first two fractions. 

Correlations. A simple statistical correlation analysis was run on each fraction 

using Microsoft Excel. The correlation was run to see which metals were indicative of 

one another. Zinc appeared to have the highest correlation with each of the other two in 

every fraction with the exception of fraction 3 (Table 8). In fraction 3 (bound to Fe-Mn 

oxides), the highest correlation exists between zinc and lead (0.59), followed by the lead-

cadmium correlation (0.23), then lastly zinc and cadmium (0.18). In the other fractions 

zinc has the highest correlative values. The highest correlation in all fractions other than 

fraction 1 is between zinc and lead. Fraction one has the highest correlation between zinc 

and cadmium (0.49), but only slightly greater than zinc and lead (0.43). The largest 

correlation overall is between zinc and lead in fraction 2 (Table 8).  

Fraction 3 was metals bound to Fe-Mn oxides. Table 9 shows the correlation of 

zinc, lead, and cadmium with iron and manganese. A very strong correlation exists 
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between lead and manganese (97 percent). This shows that the majority of lead was 

indeed bound in manganese oxides. The correlation between manganese and lead is very 

close to the correlation between manganese and iron, showing that about two-thirds of 

lead was bound to both iron and manganese oxides together. 

In the second fraction, bound to carbonates, the strongest correlation is between 

calcium and cadmium (57 percent) (Table 9).  

 

Table 8. Correlation of Metals. The correlation of zinc, lead, and cadmium in each of the 

four geochemical fractions: 1) Easily Exchangeable, 2) Bound to Carbonate, 3) Bound to 

Fe-Mn Oxides, 4) Bound to Organic Matter. 

 

    

Fraction 2 

  Zn Pb Cd 

Zn 1.00 

  Pb 0.90 1.00 

 Cd 0.59 0.30 1.00 
 

Fraction 1  

  Zn Pb Cd  

Zn 1.00 

  

 

Pb 0.43 1.00 

 

 

Cd 0.50 0.12 1.00  

 
Fraction 3 

Zn Pb Cd 

1.00 

  0.59 1.00 

 0.18 0.23 1.00 

   

Fraction 4 

Zn Pb Cd 

1.00 

  0.65 1.00 

 0.40 0.36 1.00 

   
 

  

 

Table 9. Correlation of Exchangeable Metals in Fraction 2 with Ca and Fraction 3 with 

Fe and Mn. 

 

 

Zn Pb Cd Mn Fe 

Mn 0.37269 0.96882 0.19007 1 

 Fe 0.03984 0.67545 -0.1731 0.69838 1 

Ca 0.14079 -0.0813 0.57371   

 

  



 

47 

Plant and Water Samples 

Plant samples showed elevated levels of metals (Table 10). Sampling sites with 

both plant and sediment samples are compared in Table 11. Table 10 was grouped by 

types of plant. Aquatic samples showed significantly higher levels of all three metals. 

The highest concentration of zinc was 709 ppm in sample S3-B. Sample S4-B had the 

highest levels of both lead (116 ppm) and cadmium (8.2 ppm). There are two 

explanations for these elevated levels: 1) these plants have accumulated metals by up 

taking them from a heavily contaminated environment or 2) sediments were not 

completely removed from plants during washing and the high metal concentration is a 

false reading given by measuring the metals in the sediments instead of the plants. 

Further research would need to be conducted in order to provide a definite conclusion. It 

should be noted that both of these highest samples were aquatic plants, which were more 

difficult to fully remove sediments from roots. However, elevated levels also exist in 

other types of plant samples that were easier to clean. Metal concentrations are generally 

higher among those taken from Chat Creek. However, not many samples were taken from 

other creeks and more samples should be taken in order to show a significant correlation. 

Botanological expertise was lacking in this research and specific plant type 

bioavailability was unaccounted for and was beyond the scope of this research.  

Quality control on plant samples showed that the sample measurements were well 

above the detection limits (Table 12), and LCC showed that measurements were both 

accurate and precise (Table 13). MS recovery was low at 57%, but still reasonable (Table 

14). Lab duplicates showed good agreement with a low percent difference 14% (Table  
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Table 10. Concentration of Metals in Dried Plants Samples ([M] (mg/kg)). 

Type Sample Zn Pb Cd Creek 

P S1 95.4 0.55 0.098 Other 

P S4-C 240.5 12.9 0.48 Chat 

  

 

Average 168 6.73 0.29   

 

G S2-A 207 5.75 0.29 Chat 

G S2-B 174 0.96 0.081 Chat 

G S3-C 117 1.24 0.13 Chat 

G S4-A 441 31.8 1.7 Chat 

G S5-A 188 10.3 0.21 Chat 

G S6 64.2 0.51 0.071 Other 

G S7 198 2.32 0.35 Other 

 

  Average 199 7.56 0.40   

 

A S3-A 509 5.52 1.75 Chat 

A S3-B 709 17.0 1.70 Chat 

A S4-B 631 116 8.15 Chat 

A S5-B 272 13.8 0.33 Chat 

 

Digestion Blanks 

 

 

Tea 23.5 0.39 0.028 

 

  Blank 10.5 0.33 0.044  

* The types of plants are designated “G” for grass, “A” for aquatic plants, 

and “P” for other types of plants. Samples included roots (and stems for P  

samples). 

 

15). Cadmium had the poorest results for both MS and LD, which brought down the 

better results of zinc and lead.  

Water samples showed no significant contamination from metals (Table 16). Most 

water samples were below the detection limits. Samples over the detection limits were 

only barely above them. Tables 17 and 18 show quality control of analysis. 
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Table 11. Metal Concentration in Sediment (mg/kg) versus Plant Samples. Comparison 

of the concentration of plant samples relative to their respective sediments. 

 

 

Sediment Samples  Plant Samples 

Sample Zn Pb Cd  Zn Pb Cd 

S1 506.1 14.6 0.2  95.0 0.6 0.1 

S7 1428.6 15.2 3.4  198.0 2.3 0.4 

 

 

 

Table 12. Plant Sample Blanks ([M] (mg/L)). 

 

Blank Zn Pb Cd 

1 0.005 0.007 0.0005 

2 0.013 -0.023 -0.0006 

3 0.010 -0.002 -0.0010 

4 -0.058 -0.004 -0.0025 

5 0.004 0.032 0.0000 

6 -0.004 0.015 -0.0009 

7 0.213 0.023 0.0001 

Average 0.026 0.007 -0.0006 

Std Dev 0.086 0.018 0.0010 

D.L. 0.26 0.055 0.0030 
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Table 13. Plant Sample Laboratory Control Checks. Prepared/theoretical LCC 

concentrations are shown in parentheses after metal. 

 

 

[LCC] (mg/L)   Percent Difference (%) 

LCC Zn (0.2) Pb (0.2) Cd (0.01)   Zn Pb Cd 

1 0.196 0.220 0.0108   2.1 10.1 8.2 

2 0.185 0.179 0.0092   7.5 10.8 7.7 

3 0.174 0.167 0.0094   12.9 16.3 5.6 

4 0.130 0.187 0.0088   34.9 6.4 12.2 

5 0.160 0.165 0.0080   20.0 17.6 19.6 

6 0.171 0.172 0.0080   14.4 14.0 19.7 

7 0.228 0.191 0.0080   13.8 4.7 19.6 

Average 0.18 0.18 0.01   15.1 11.4 13.2 

Std Dev 0.03 0.02 0.001   10.39 4.84 6.31 

CV 0.17 0.10 0.12   0.69 0.42 0.48 
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Table 14. Matrix Spike Recovery of Plant Samples ([M] (mg/L)). 

Sample Zn Pb Cd 

S2-B 20.70 0.12 0.012 

S2-B-MS 18.13 3.39 0.115 

% Recovery 51 66 20 

    S4-B 56.72 12.13 0.831 

S4-B-MS 60.97 17.46 1.282 

% Recovery 85 107 90 

    S5-A 18.71 1.02 0.021 

S5-A-MS 22.92 3.56 0.150 

% Recovery 84 51 26 

    S6 6.37 0.05 0.007 

S6-MS 10.63 3.13 0.205 

% Recovery 85 62 40 

    S8-B 23.82 0.93 0.011 

S8-B-MS 24.31 4.04 0.114 

% Recovery 10 62 20 

 

Average 63 69 39 

 

Total Average % Recovery 57 
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Table 15. Plant Samples Lab Duplicates ([M] (mg/L)). 

 

Sample Zn Pb Cd 

S3-C 12.43 0.13 0.016 

S3-C-LD 10.99 0.12 0.010 

Average 11.71 0.12 0.013 

% Difference 12.3 13.2 47.9 

    

S4-A 44.40 3.28 0.167 

S4-A-LD 45.27 3.20 0.178 

Average 44.84 3.24 0.173 

% Difference 1.9 2.4 6.3 

    

S5-B 31.42 1.41 0.031 

S5-B-LD 22.95 1.36 0.034 

Average 27.19 1.38 0.033 

% Difference 31.2 3.5 7.1 

    

S7 20.16 0.22 0.040 

S7-LD 20.01 0.25 0.030 

Average 20.09 0.23 0.035 

% Difference 0.7 11.9 28.5 

    

Average % Difference 14 

  

 

 

 

Table 16. Metal Concentration in Water Samples ([M] (mg/L)). ND = not detected. 

 Sample Zn Pb Cd 

S2 0.7564 0.0018 0.0028 

S3 0.3779 0.0051 ND 

S4 0.3888 ND 0.0009 

S6 0.3921 0.0036 ND 

S8 0.0518 ND ND 

Average 0.3934 0.0014 0.0005 

Std Dev 0.2494 0.0032 0.0014 
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Table 17. Water Samples LCC. 

 

 
[M] (mg/L) 

  
Percent Difference (%) 

Sample Zn Pb Cd 
 

       Zn Pb Cd 

LCC 1 0.217 0.2 0.0096 

 

       8.7 0.1 4.3 

LCC 2 0.232 0.229 0.0083 

 

      16.2 14.7 17.1 

Average 0.225 0.215 0.0089 

 

      12.4 7.4 10.7 

Std Dev 0.011 0.021 0.0009 

 Total Average  

% Difference 10.2 
CV 0.047 0.097 0.102   

 

 

 

Table 18. Water Samples Blanks ([M] (mg/L)). 

 Sample Zn Pb Cd 

Blank Check 1 -0.0009 -0.0001 -0.0001 

Blank Check 2 -0.0024 0.0018 -0.0009 

Average -0.0016 0.0009 -0.0005 

Std Dev 0.0010 0.0013 0.0006 

D.L. 0.0031 0.0040 0.0019 
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CONCLUSION 

 

Significant contamination still exists along Chat Creek. Relative to other creeks in 

and around Aurora, Chat Creek shows elevated levels of zinc, lead, and cadmium from 

the former mining operations within the town. Former mining holes and chat piles are in 

close proximity to the elevated levels of metals along Chat Creek. 

The majority of sediment samples show greatest exchangeability within Fe-Mn 

oxide and organic matter bound fractions. Zinc and lead have the largest mobility in the 

Fe-Mn oxide bound fractions, leading to the greatest mobility and bioavailability of these 

two metals under reducing conditions. Cadmium has the largest exchangeability in the 

organic matter-bound fraction, making cadmium most mobile and bioavailable under 

oxidizing conditions. Easily exchangeable and carbonate bound fractions contain a much 

lower percentage of metal contamination than the other two. Metals released under these 

conditions would be in much lower amounts than the other two fractions.  

Plant samples taken from Chat Creek showed slightly higher concentrations of 

metals than samples from other creeks. However, few samples were taken and it was 

difficult to remove all sediment from plant roots. So, there is not enough evidence to 

confidently state the bioavailability of metals regarding analysis of plant samples. Water 

samples did not show elevated metal contamination during analysis.  

Three instruments were used in this analysis. ICP-MS was used in the analysis of 

metals concentrations from fraction 1, which contained the lowest concentrations. 

Fractions 2 and 3 were analyzed on ICP-AES. Fraction 4 was analyzed on AAS due to 

nebulization issues on ICP-AES. 
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This research provides a large data set on which further research can build. Future 

research that could help to further develop this research could be the analysis of iron, 

manganese, and calcium in these sediment fractions. Measurement of these metals could 

increase the significance of correlation between zinc, lead, and cadmium in fractions two 

and three.   
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APPENDICES 

 

Appendix A  

Zinc Concentration in Geochemical Fractions (mg/kg). Percentages (%) of total metal 

content from previous outside analysis are shown in parenthesis. Percentages above 100 

are believed to be due to contamination or heterogeneity of low contaminant samples. ND 

= not detected. 

 

Sample Fraction 1 Fraction 2 Fraction 3 Fraction 4 Total 

1 123.4 (0.8) 2689 (17.4) 3291 (21.2) 4050 (26.1) 10154 (65.5) 

2 117.1 (1.2) 809.3 (8.2) 2993 (30.2) 4050 (40.9) 7969 (80.4) 

3 115.1 (1.2) 765.9 (7.8) 2941 (29.8) 3760 (38.1) 7581 (76.7) 

4 297.4 (0.6) 5968 (11.6) 5041 (9.8) 7034 (13.6) 18348 (35.5) 

4-LD 261.6 (0.5) 5618 (10.9) 4998 (9.7) Error NA 

4-LD-2 268.1 (0.5) 5059 (9.8) 4478 (8.7) Error NA 

5 1.6 (0.2) 116.3 (16.3) 194.3 (27.2) 206.3 (28.9) 518.5 (72.6) 

6 3.1 (0.5) 147.9 (22.7) 178.5 (27.4) 170.2 (26.1) 499.8 (76.8) 

7 133.9 (2) 1975.3 (29.8) 1957 (29.6) 905.6 (13.7) 4972 (75.1) 

8 153 (1.9) 2728 (34.5) 1915 (24.2) 1204 (15.2) 5999 (75.8) 

9 29.7 (1.5) 185.5 (9.2) 237.8 (11.8) 479.9 (23.9) 932.9 (46.4) 

10 16.3 (2.1) 93.6 (11.9) 230.1 (29.2) 162 (20.5) 502.1 (63.6) 

10-LD 12.8 (1.6) 113.6 (14.4) 236 (29.9) 155.5 (19.7) 517.9 (65.6) 

11 24.9 (2.9) 104 (12.3) 202.2 (23.9) 124.6 (14.7) 455.7 (53.8) 

12 13.7 (2.8) 432.4 (87) 407 (81.9) 93.5 (18.8) 946.7 (191) 

13 33 (5.6) 122.1 (20.8) 242.2 (41.2) 62.9 (10.7) 460.2 (78.3) 

13-LD 22.2 (4) 122 (21.9) 255.5 (45.8) 120.4 (21.6) 520.1 (93.2) 

14 32.4 (4.8) 140.5 (20.8) 270.5 (40) 82.3 (12.2) 525.8 (77.7) 

15 32.9 (3.8) 178.8 (20.6) 296.6 (34.2) 132.8 (15.3) 641.1 (73.9) 

16 56.5 (1) 377.1 (6.9) 2467 (45.3) 925.1 (17) 3826 (70.2) 

17 30.2 (0.5) 356.8 (5.9) 2628 (43.4) 1277 (21.1) 4293 (70.8) 

17-FD 45 (0.7) 311.9 (5.1) 2814 (46.4) 1443 (23.8) 4614 (76.1) 

18 46.7 (0.8) 319.3 (5.7) 2658 (47.2) 1009 (17.9) 4033 (71.6) 

19 44.4 (0.8) 273.6 (4.7) 2583 (44.1) 1291 (22.1) 4192 (71.7) 

20 48.9 (0.8) 417.7 (7) 2936 (48.8) 720.6 (12) 4123 (68.6) 

21 57.1 (0.8) 458.1 (6.5) 3236 (45.6) 1353 (19.1) 5104 (71.9) 

22 69.1 (1.2) 403.3 (7.1) 2537 (44.4) 1476 (25.8) 4485 (78.4) 

23 61.7 (0.9) 423.3 (6.1) 2820 (40.9) 1731 (25.1) 5036 (73) 

24 133.9 (2.3) 782.4 (13.7) 2250 (39.3) 768.3 (13.4) 3935 (68.7) 

Appendix A continued on next page. 
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Appendix A continued 

Sample Fraction 1 Fraction 2 Fraction 3 Fraction 4 Total 

25 88.1 (2.1) 560.4 (13.2) 1711 (40.3) 616.8 (14.5)   2976 (70.2) 

26 97.3 (1.7) 549.8 (9.7) 2768 (49.1) 590.5 (10.5)   4006 (71) 

27 125.7 (1.7) 678.5 (9.2) 2514 (34.3) 1990 (27.1)    5308 (72.3) 

27-LD 118 (1.6) 705.8 (9.6) 2672 (36.4) 2166 (29.5) 5662 (77.1) 

28 48.9 (1.3) 385.3 (10.1) 1838 (48) 512 (13.4) 2784 (72.7) 

29 37.7 (0.9) 248.2 (6.1) 1986 (48.6) 578.2 (14.1) 2850 (69.7) 

31 119.8 (2.3) 952.5 (18.7) 1886 (37.0) 678.1 (13.3) 3636 (71.3) 

32 110.5 (4.4) 431.7 (17.3) 1010 (40.6) 280.3 (11.3) 1833 (73.6) 

33 194.6 (3.6) 1103 (20.3) 1383 (25.4) 1330 (24.5) 4012 (73.7) 

34 170.5 (2.3) 543.9 (7.3) 2291 (30.5) 1572 (21.0) 4577 (61.0) 

36 276.0 (3.7) 921.5 (12.4) 2529 (34.1) 1318 (17.8) 5044 (68.0) 

37 154.5 (3.6) 815.5 (19.1) 1311 (30.8) 825.5 (19.4) 3107 (72.9) 

38 318.3 (2.7) 3471 (28.9) 2692 (22.4) 1320 (11.0) 7802 (65.0) 

38-LD 307.5 (2.6) 3485 (29.0) 3150 (26.3) 1573 (13.1) 8516 (71.0) 

42 287.0 (1.6) 4433 (24.5) 3674 (20.3) 4271 (23.6) 12665 (70.0) 

43 113.8 (2.6) 932.1 (21.5) 1307 (30.2) 925.5 (21.4) 3278 (75.7) 

44 126.6 (5.0) 516.5 (20.3) 1085 (42.5) 447.1 (17.5) 2175 (85.3) 

45 215.3 (2.7) 1321 (16.6) 2399 (30.2) 1986 (25.0) 5921 (74.5) 

46 140.0 (6.7) 611.3 (29.4) 652.5 (31.4) 179.3 (8.6) 1583 (76.1) 

47 263.0 (4.6) 1011 (17.6) 1746 (30.5)) 1241 (21.7) 4261 (74.4) 

S1 17.1 (29.4) 2.7 (4.7) 481.7 (831) 4.6 (7.9) 506.1 (873) 

S1-FD 11.6 (9.7) 67.3 (56.6) 74.7 (62.8) 4.2 (3.6) 157.9 (133) 

S7 50.1 (1.8) 983.8 (34.5) ND (0.0) 394.8 (13.9) 1429 (50.1) 

Average 108.1 (2.8) 1065 (16.7) 1878 (50.8) 1549 (18.6) 4600 (89.3 

  



 

61 

Appendix B  

Lead Concentration in Geochemical Fractions (mg/kg). Percentages (%) of total metal 

content from previous outside analysis are shown in parenthesis. ND = not detected. 

 

Sample Fraction 1 Fraction 2 Fraction 3 Fraction 4 Total 

1 13.7 (0.4) 882.4 (25.6) 475.9 (13.8) 84.9 (2.5) 1457 (42.2) 

2 4.5 (0.4) 81.4 (7.9) 201.7 (19.6) 55.5 (5.4) 343.1 (33.3) 

3 5.7 (0.7) 106.0 (12.5) 213.7 (25.3) 65.2 (7.7) 390.6 (46.2) 

4 15.6 (0.2) 1149 (14.0) 3390 (41.3) 400.4 (4.9) 4955 (60.4) 

4-LD 10.3 (0.1) 1606 (19.6) 3300 (40.2) 389.5 (4.8) 5305 (64.7) 

4-LD-2 10.7 (0.1) 1414 (17.2) 3438 (41.9) 394.8 (4.8) 5257 (64.1) 

5 0.7 (0.3) 11.4 (5.8) 81.5 (41.8) 34.1 (17.5) 127.7 (65.5) 

6 2.3 (1.0) 38.0 (17.5) 115.1 (53.0) 32.2 (14.8) 187.6 (86.4) 

7 60.0 (4.4) 383.2 (28.3) 409.2 (30.2) 126.1 (9.3) 978.6 (72.2) 

8 66.7 (3.9) 487.9 (28.7) 299.6 (17.6) 102.2 (6.0) 956.5 (56.3) 

9 0.5 (0.6) 37.2 (46.5) 31.1 (38.9) 8.2 (10.3) 77.0 (96.3) 

10 0.5 (0.9) 7.1 (13.4) 18.0 (34.0) 6.3 (12.0) 32.0 (60.3) 

10-LD ND  (0.0) 6.9 (13.0) 17.6 (33.1) 5.9 (11.2) 30.2 (57.3) 

11 ND  (0.0) 4.0 (6.1) 28.2 (42.7) 12.0 (18.1) 43.1 (66.9) 

12 ND  (0.0) 4.4 (6.2) 24.8 (35.4) 8.4 (12.0) 37.4 (53.6) 

13 ND  (0.0) 4.5 (6.8) 22.0 (33.4) 9.2 (14.0) 34.9 (54.2) 

13-LD 0.1 (0.1) 3.7 (5.2) 21.0 (29.2) 14.6 (20.2) 39.4 (54.7) 

14 ND  (0.0) 3.9 (5.4) 24.4 (33.9) 11.0 (15.2) 38.8 (54.5) 

15 ND  (0.0) 6.5 (8.3) 26.2 (33.2) 9.7 (12.3) 42.1 (53.7) 

16 ND  (0.0) 9.5 (6.9) 42.7 (31.0) 14.7 (10.6) 66.6 (48.5) 

17 ND  (0.0) 8.9 (5.7) 46.4 (29.6) 15.6 (10.0) 70.6 (45.2) 

17-FD ND  (0.0) 12.4 (7.9) 45.0 (28.6) 23.6 (15.0) 81.0 (51.6) 

18 ND  (0.0) 5.5 (4.8) 36.1 (32.0) 12.6 (11.1) 53.7 (48.0) 

19 ND  (0.0) 8.1 (6.3) 37.7 (29.2) 16.1 (12.5) 61.8 (48.0) 

20 ND  (0.0) 4.8 (3.8) 35.6 (27.8) 12.4 (9.7) 52.6 (41.3) 

21 0.2 (0.1) 4.5 (3.3) 36.2 (26.6) 14.6 (10.7) 55.4 (40.7) 

22 ND  (0.0) 7.8 (6.5) 33.7 (28.1) 15.5 (12.9) 56.3 (47.4) 

23 ND  (0.0) 7.3 (4.9) 36.8 (24.9) 14.4 (9.8) 58.1 (39.5) 

24 0.2 (0.1) 17.1 (8.7) 56.9 (29.0) 14.9 (7.6) 89.2 (45.5) 

25 0.1 (0.1) 20.7 (11.2) 56.2 (30.5) 12.4 (6.7) 89.3 (48.6) 

26 ND  (0.0) 11.6 (7.8) 45.7 (30.9) 9.2 (6.2) 66.0 (44.9) 

27 ND  (0.0) 3.5 (4.0) 20.8 (23.4) 12.3 (13.9) 36.3 (41.2) 

27-LD ND  (0.0) 3.5 (4.0) 19.2 (21.6) 13.4 (15.1) 35.7 (40.6) 

28 ND  (0.0) 9.9 (9.7) 32.8 (32.1) 10.4 (10.2) 52.9 (52.1) 

Appendix B continued on next page. 
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Appendix B continued. 

Sample Fraction 1 Fraction 2 Fraction 3 Fraction 4 Total 

29 0.3 (0.3) 8.5 (9.1) 28.4 (30.2) 11.4 (12.2) 48.6 (51.7) 

30 0.1 (0.2) 5.3 (11.6) 15.0 (32.7) 9.6 (20.9) 30.1 (65.4) 

31 2.1 (1.0) 41.8 (20.4) 55.0 (26.8) 11.9 (5.8) 110.8 (54.1) 

32 ND (0.0) 5.7 (7.4) 24.9 (32.8) 9.0 (11.9) 39.6 (52.1) 

33 5.0 (1.8) 57.9 (20.5) 73.2 (26.0) 10.9 (3.9) 147.1 (52.2) 

34 0.9 (0.4) 9.7 (4.9) 30.6 (15.6) 26.2 (13.3) 67.3 (34.3) 

36 0.4 (0.3) 7.5 (4.2) 28.0 (15.8) 19.3 (10.9) 55.3 (31.2) 

37 7.6 (2.8) 76.4 (27.8) 61.4 (22.3) 16.0 (5.8) 161.5 (58.7) 

38 14.3 (2.2) 145.4 (22.3) 188.2 (28.9) 9.8 (1.5) 357.8 (55.0) 

38-LD 12.6 (1.9) 147.5 (22.7) 233.2 (35.8) 9.0 (1.4) 402.2 (61.8) 

42 74.9 (3.1) 751.6 (30.8) 527.1 (21.6) 156.8 (6.4) 1510 (61.9) 

43 0.5 (0.1) 115.9 (17.8) 209.6 (32.1) 112.5 (17.3) 438.5 (67.3) 

44 4.4 (1.2) 56.2 (15.2) 100.5 (27.1) 84.9 (22.9) 246.0 (66.3) 

45 8.5 (0.7) 156.0 (12.8) 347.6 (28.5) 188.5 (15.5) 700.7 (57.4) 

46 0.3 (0.3) 9.2 (11.9) 31.5 (40.9) 7.8 (10.1) 48.7 (63.2) 

47 1.2 (0.6) 22.4 (11.2) 56.6 (28.4) 19.1 (9.6) 99.2 (49.8) 

S1 ND (0.0) 0.7 (4.9) 11.4 (81.1) 3.0 (21.3) 14.6 (107.3) 

S1-FD ND (0.0) 1.1 (5.4) 7.0 (33.5) 4.2 (20.0) 12.0 (58.9) 

S7 ND (0.0) 4.5 (9.3) 5.2 (10.9) 6.0 (12.5) 15.2 (32.8) 

Average 6.0 (0.6) 150.9 (12.3) 278.4 (30.8) 50.9 (11.1) 486.1 (54.9) 
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Appendix C  

Cadmium Concentration in Geochemical Fractions (mg/kg). Percentages (%) of total 

metal content from previous outside analysis are shown in parenthesis. Percentages above 

100 are believed to be due to contamination or heterogeneity of low contaminant 

samples. ND = not detected. 

 

Sample Fraction 1 Fraction 2 Fraction 3 Fraction 4 Total 

1 ND  (0.0) 1.0 (1.9) 11.9 (23.8) 21.1 (42.3) 34.0 (68.1) 

2 ND  (0.0) 0.1 (0.2) 3.4 (7.0) 0.4 (0.8) 3.9 (8.0) 

3 ND  (0.0) 0.1 (0.3) 4.5 (8.8) 41.4 (81.7) 46.0 (90.8) 

4 2.0 (0.7) 10.5 (3.7) 19.8 (7.1) 41.8 (14.9) 74.1 (26.4) 

4-LD 1.8 (0.6) 13.1 (4.7) 16.0 (5.7) 53.4 (19.0) 84.2 (30.0) 

4-LD-2 1.8 (0.6) 14.1 (5.0) 16.9 (6.0) 51.1 (18.2) 83.9 (29.9) 

5 0.1 (2.7) 0.4 (17.9) 0.5 (24.9) ND (-4.5) 0.9 (41.0) 

6 0.1 (4.0) 0.3 (18.8) 0.4 (21.3) 0.6 (34.3) 1.4 (78.3) 

7 1.8 (14.4) 3.4 (27.7) 3.5 (28.6) 1.2 (9.7) 10.0 (80.4) 

8 0.2 (1.7) 2.8 (21.7) 4.8 (36.7) 1.8 (14.0) 9.6 (74.2) 

9 0.1 (1.5) 0.5 (5.9) 0.6 (8.0) 1.7 (21.8) 2.9 (37.3) 

10 0.1 (4.8) 0.4 (16.1) 0.4 (17.0) 0.4 (15.9) 1.3 (53.8) 

10-LD 0.1 (3.3) 0.4 (16.9) 0.4 (16.3) 0.4 (17.4) 1.3 (53.9) 

11 0.1 (4.6) 0.4 (16.3) 0.3 (12.6) 0.3 (12.3) 1.2 (45.8) 

12 0.1 (10.8) 0.4 (30.8) 0.4 (29.3) 0.1 (8.2) 0.9 (79.1) 

13 0.2 (12.8) 0.4 (29.2) 0.3 (23.4) ND (-2.9) 0.9 (62.4) 

13-LD 0.2 (12.3) 0.5 (32.2) 0.3 (24.7) 0.3 (21.4) 1.3 (90.5) 

14 0.2 (12.3) 0.4 (29.5) 0.4 (26.8) 0.0 (1.3) 1.0 (70.0) 

15 0.2 (10.5) 0.7 (32.2) 0.4 (21.0) 0.2 (9.4) 1.5 (73.2) 

16 ND  (0.0) ND  (0.1) 10.6 (34.8) 13.4 (43.9) 24.0 (78.8) 

17 ND  (0.0) ND  (0.0) 8.4 (23.4) 20.5 (57.1) 28.9 (80.6) 

17-FD ND  (0.0) ND  (0.0) 6.3 (17.5) 28.3 (78.9) 34.6 (96.4) 

18 ND  (0.0) ND  (0.0) 9.0 (30.1) 16.3 (54.4) 25.2 (84.5) 

19 ND  (0.0) ND  (0.1) 6.3 (17.7) 21.2 (59.9) 27.5 (77.8) 

20 ND  (0.0) ND  (0.0) 14.7 (42.4) 11.8 (34.1) 26.5 (76.5) 

21 ND  (0.0) ND  (0.0) 9.3 (22.7) 45.8 (111) 55.1 (134) 

22 ND  (0.0) ND  (0.0) 5.0 (14.7) 29.1 (85.3) 34.1 (100.1) 

23 ND  (0.0) ND  (0.1) 7.0 (18.3) 22.1 (57.4) 29.2 (75.8) 

24 ND  (0.1) 0.3 (0.8) 17.7 (49.3) 7.1 (19.7) 25.1 (69.9) 

25 ND  (0.0) 0.3 (1.3) 13.9 (55.9) 3.1 (12.4) 17.3 (69.6) 

26 ND  (0.0) 0.2 (0.5) 26.6 (55.0) 9.4 (19.5) 36.3 (74.9) 

27 ND  (0.0) 0.3 (0.3) 8.5 (8.5) 84.5 (84.5) 93.3 (93.3) 

Appendix C continued on next page 
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Appendix C continued. 

Sample Fraction 1 Fraction 2 Fraction 3 Fraction 4 Total 

27-LD ND  (0.0) 0.4 (0.4) 9.5 (9.5) 87.4 (87.4) 97.3 (97.3) 

28 ND  (0.0) 0.1 (0.4) 17.2 (53.3) 5.6 (17.4) 22.9 (71.0) 

29 ND  (0.0) ND  (0.0) 13.0 (39.0) 14.4 (43.1) 27.3 (82.1) 

30 ND  (0.0) ND  (0.2) 14.1 (68.9) 2.9 (14.0) 16.9 (83.2) 

31 ND (0.0) 0.6 (1.4) 23.4 (56.7) 4.9 (11.8) 28.9 (70.0) 

32 ND (0.0) 0.1 (1.0) 7.2 (54.1) 1.3 (9.8) 8.6 (64.8) 

33 1.5 (4.5) 4.1 (12.4) 13.8 (42.0) 5.0 (15.3) 24.4 (74.2) 

34 ND  (0.0) ND (0.0) 5.4 (15.7) 18.2 (52.7) 23.7 (68.4) 

36 ND  (0.1) 0.1 (0.4) 9.6 (25.1) 16.3 (42.9) 26.0 (68.5) 

37 2.2 (7.5) 7.5 (25.3) 8.4 (28.6) 5.0 (16.8) 23.1 (78.2) 

38 36.4 (44.2) 43.1 (52.3) 7.8 (9.5) 2.1 (2.6) 89.5 (109) 

38-LD 33.1 (40.2) 42.5 (51.5) 9.9 (12.0) 3.2 (3.9) 88.6 (108) 

42 0.1 (0.3) 2.5 (5.6) 16.9 (38.0) 10.5 (23.7) 30.0 (67.5) 

43 0.2 (1.4) 1.6 (12.6) 5.7 (43.7) 1.6 (12.6) 9.2 (70.4) 

44 0.5 (4.2) 2.4 (18.9) 6.0 (47.5) 0.8 (6.3) 9.7 (76.8) 

45 0.3 (0.8) 2.0 (6.2) 17.0 (52.1) 3.9 (11.9) 23.2 (71.0) 

46 0.2 (1.5) 1.3 (10.4) 8.7 (68.9) 0.7 (5.4) 10.9 (86.2) 

47 2.4 (5.8) 5.7 (13.7) 18.3 (43.9) 6.3 (15.1) 32.7 (78.5) 

S1 ND  (0.0) ND  (0.0) 0.5 (0.0) ND (0.0) 0.2 (0.0) 

S1-FD ND  (0.0) ND  (0.0) ND  (0.0) ND  (0.0) ND  (0.0) 

S7 0.4 (7.6) 1.1 (23.7) 0.1 (1.5) 1.9 (40.6) 3.4 (73.4) 

Average 1.6 (4.2) 3.1 (10.8) 8.3 (28.4) 13.6 (29.2) 26.7 (72.6) 
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