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ABSTRACT 

Ferritin is an iron-storage globular protein with an ability to uptake, mineralize and 

release iron ions in a controllable manner.  The globular hollow shell allows storage of 

mineralized iron, with several channels responsible for the transit of ions into the shell 

and out of it. Understanding of the detailed molecular functioning of ferritin is required 

for rational design of biomimetic conjugate nano-biosystems containing ferritin-like 

constituents. In this work, ferritin was investigated both numerically by all-atom 

molecular dynamics (MD) simulations, and experimentally by Raman spectroscopy. 

Molecular dynamic simulations of a model system comprising iron ions (Fe2+) and a 

ferritin trimer expressing a three-fold channel responsible for the ion transport, have 

revealed a quick entering of ions in the channel. The transit of iron ions through the 

channel was thoroughly investigated. The transit was found to be driven by both 

electrostatic charge of ferritin, and interaction between the ions. Exit (expulsion) of an 

iron ion from the channel was observed at a condition that at least one more ion is present 

in the channel. Raman characterization of an iron-loaded ferritin solution revealed 

pronounced bands attributable to iron, as expected. However, Raman spectra of apo-

ferritin, which does not contain an iron mineral, also exhibited similar bands. Based on 

the results of MD simulations, it was hypothesized that apo-ferritin retains iron ions in its 

three-fold channels, and these ions may produce the observed Raman bands. The study of 

molecular mechanisms involved in the iron ion transit elucidates the pathways of iron 

uptake and release in ferritin. 
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CHAPTER 1: INTRODUCTION 

 

The work described here is dedicated to computational and experimental studies 

of ferritin, a cage protein involved in iron ion storage and release processes. Applications 

of ferritin include rational design of biomimetic conjugate nano-biosystems, synthesizing 

nanodot arrays, protein crystallization to form nano-porous membranes, transport of drug 

delivery agents, and many others.  

In this work, all-atom molecular dynamics simulations of a fragment of ferritin 

cage are done in order to better understand detailed functioning of ferritin. The fragment 

considered expresses a three-fold channel, which is responsible for transport of iron ions 

in and out of ferritin globule. The molecular dynamics procedures, including energy 

minimization, equilibration, and production simulations were done using the GROMACS 

molecular dynamics package. Transit of iron ions through the three-fold channel was 

thoroughly analyzed.  

In experimental studies of ferritin, Raman spectroscopy was used. The advantage 

of Raman spectroscopy is that it allows capturing unique vibrational fingerprints of 

molecules. In this work, Raman spectra of iron-loaded ferritin solution were collected. 

Raman spectra of apo-ferritin were also acquired. Colloidal Au nanoparticles were 

employed in one of the experimental setups in order to achieve surface enhanced Raman 

scattering of ferritin samples. Results of Raman characterization of the various samples 

of ferritin were interpreted in light of molecular mechanisms revealed by the 

computational studies. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1. Biotic and Abiotic Nanomaterials 

Conventionally the term “nano” is attributed to an object of 100 nm dimensions or 

below. Nevertheless, FDA and IUPAC suggest that any particle under one micrometer 

with dimension-dependent property could be identified as a nanoparticle.1 The 

conjugation of abiotic nanostructures with nanostructured biological species has 

significant applications in various areas including drug delivery systems, bioimaging, 

nanofabrication, bioenergy and biofuels, medicine, and biomimetic conjugate nano-bio 

systems. The key aspect of both naturally occurring and processed biotic materials is their 

biocompatibility inside living organisms. Abiotic nanostructures, in turn, act as a 

constituent for characterization of biomolecules. For instance, Au and Ag nanoparticles 

can greatly enhance the Raman scattering of biomolecules, a technique known as Surface 

Enhanced Raman Spectroscopy (SERS) 2,3.  

Nanoparticles can be found in nature or they can be synthesized artificially. 

Natural nanoparticles are a result of natural phenomena, such as volcanic eruption or 

forest fire 4,5. Synthesized nanoparticles can be prepared in different ways, such as 

hydrothermal synthesis, gas condensation, chemical vapor deposition, dispersion in 

solvent, synthesis by colloidal techniques, etc.6,7 Nucleation and growth processes play a 

key role in nanoparticle synthesis6. Synthesized nanoparticles have tremendous 

applications facilitated by their physical properties. One of the important applications is 

detection of proteins and DNA5.  

While discussing biotic- abiotic nanostructures, one of the most important criteria 

would be size requirements. One of the aspects is size compatibility between 
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nanoparticles and biological species. To understand intra and inter cellular mechanisms, 

which is important to interpret many functions of biological species, size compatibility 

would be a significant factor. Average cell size of bio-organisms is approximately 10 μm. 

The cell constituents are in a nm range; for instance, protein size is typically less than 100 

nm. Incorporating nanoparticles of similar size as a probe is a promising technique to 

understand cell mechanisms at a molecular level.  

There is a wide range of applications for nanomaterials in biological sciences, 

such as fluorescent tags for bio-detection, protein characterization, drug delivery, DNA 

probing, enhancement of MRI contrast agents, or cancer cell detection.8 Besides the size 

compatibility, interactions between nanoparticles and biomolecules are also important. 

One interacting media is coating - for example, a biopolymeric coating that acts as 

binding agent between biological and inorganic surfaces.  

 

2.2 Raman and Surface Enhanced Raman Spectroscopy 

Raman spectroscopy is a versatile non-destructive characterization technique 

involving an extraordinary phenomenon called Raman scattering. It involves inelastic 

scattering of photons from a molecule upon exposure to light. Raman spectra are 

representative of vibrational characteristics of a material. Since Raman spectroscopy can 

detect different modes of molecular vibrations, it shows unique vibrational fingerprints of 

many materials including crystalline solids, non-crystalline solids, biological species, 

liquids, thin films, etc. Raman effect was discovered by C.V. Raman in 1928, for which 

he received his Nobel prize in 1930. Since then Raman spectroscopy is such a broadly 
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used characterization technique, that the Raman effect was granted the status of National 

Historic Chemical Landmarks by American Chemical Society in 19989.  

The Raman scattering is an inelastic scattering of light by materials. Various types of 

light scattering are shown in Figure 2.1. These include:  

➢ Rayleigh scattering (elastic)  

➢ Stokes Raman scattering (inelastic)  

➢ Anti- Stokes Raman scattering (inelastic) . 

➢ Fluorescence (inelastic) 

 

 

Figure 2.1: Raman scattering types. Adapted with permission from Ref. 10.   

 

The diagram in Figure 2.2 explains the difference between some of these 

scattering processes. Rayleigh scattering is elastic scattering, such that the same 
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wavelength is reflected as of the incident beam. In contrast, Stokes Raman scattering has 

a longer wavelength of scattered light than the incident beam, and anti-Stokes scattering 

has a shorter wavelength. The Raman shift is the difference between the incident and 

reflected wavenumbers. Raman spectra may comprise both Stokes and anti-Stokes 

Raman scattering, with the exclusion of Rayleigh scattering. Fluorescence is a different 

inelastic emission phenomenon resulting from absorption of light. When an atom relaxes 

from an exited energy state to ground state, the energy is released as a photon, which 

constitutes fluorescence. In distinction from narrow Raman bands, fluorescence produces 

a broad background in the spectra.   

 

 

 

Figure 2.2: Energy level diagram for Raman and Rayleigh scattering.  

 

When nano sized metallic species are incorporated in a sample, the Raman 

scattering is enhanced. This phenomenon is known as Surface Enhanced Raman 
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Scattering (SERS). The mechanism of surface enhanced Raman scattering is not yet fully 

understood. The enhancement can be explained electromagnetically, based on localized 

surface plasmon resonance (LSPR). Localized surface plasmons are oscillations of 

conduction electron system in metal nanostructures, which are smaller in comparison 

with incident light’s wavelength.11 When light incidents upon such metal nanostructures, 

this results in excitation of surface plasmons. Maximum excitation happens when 

plasmonic frequency is in resonance with incoming beam frequency. It is analogous with 

constructive interference. The incident light excites the electron cloud resulting in LSPR. 

Excitation of LSPR in metal nanostructures contributes to a buildup of local 

electromagnetic field around the nanostructures, creating so called hot spots.  Raman 

scattering of light occurring in the area of a hot spot is significantly enhanced.   Thus, hot 

spots are the SERS enhancement sites. Raman scattering by molecules will experience an 

enhancement when that molecule is in close proximity of a hot spot. Silver and gold 

nanoparticles are particularly efficient as LSPR active nanostructures. Since Raman 

spectroscopy may have orders of magnitude smaller scattering cross section than 

fluorescence cross section12, the enhancement is important for sensitivity of Raman 

characterization. 
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Figure 2.3: Scheme of Localized Surface Plasmon Resonance excitation by incident 

monochromatic light. Reproduced with permission from Ref. 13.  

 

The strongest hot spots are created when two or more neighboring nanoparticles 

are at a distance of several nanometers14,15. Possible ways to obtain hot spots are 

reviewed in many publications, for example by Xu et al.16 This may include adding 

aggregation agents17, heat enabled self- assembly18,  or hydrophobicity driven 

aggregation19. 

Two types of SERS applications can be distinguished - intrinsic and extrinsic16,20. 

Intrinsic SERS is a direct acquisition of Raman spectra that represents inherent 

vibrational signatures of biomolecules. Intrinsic SERS is also known as label-free 

detection of biomolecules. This label-free detection enables direct characterization of 

sample molecules. The examples include detection of glucose21,22, antioxidants23, amino 

acids24, proteins16 and DNA25. Extrinsic or labeled SERS detection is an indirect way of 

detection where a Raman-active label or probing particle is attached to sample molecules, 

and Raman spectra are obtained from the probing particle, not the molecules Thus, it is 

an indirect way of characterizing the system. Extrinsic SERS applications involve 

characterization of living cells26, including cancer cells27.  
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2.3 SERS of Biological Samples 

In recent years Raman spectroscopy and SERS have been widely used for bio-

detection12,28–31. SERS enables label free chemical quantification of materials16,32. Wide 

range of biomolecules such as proteins, lipids, or nucleic acids have been successfully 

detected by SERS technique in recent years33,34. Being a non-destructive technique, 

SERS also provides an opportunity of avoiding cumbersome sample preparation 

techniques or performing complex chemical reactions. Portable SERS detectors can be 

used to detect chemical and biological hazards and contaminants32. 

Most noteworthy for biological materials characterization by SERS is the 

capability of attaining Raman spectra from nano-sized volumes. Especially single 

molecule Raman characterization capability makes SERS unique for biodetection13,32. In 

comparison with using fluorescent tags for bio-characterization, SERS is much more 

efficient than fluorescent tags. SERS provides vibrational information specific to 

molecules, that fluorescence cannot capture.  

The SERS method usually involves a usage of LSPR active noble metal 

components such as Au or Ag.  Such SERS substrates play a crucial role in signal 

enhancement. For example, a layer of colloidal Au or Ag nanoparticles of size ranging 

from 10 nm to 100 nm is a good surface enhancer12. Besides, there are examples of using 

salts with SERS active sites for surface enhancement agent35. Examples of Ag ion 

clusters with iodide complex ions acting as a SERS active surface can be found in the 

literature36,37. Evaporated films of Au or Ag or nanostructures of these metals also 

provide SERS enhancement. In one of SERS applications, Au or Ag electrodes are used 

to study biological processes19.  
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In most cases, evaporated films and colloidal nanostructures of Au and Ag have a 

larger enhancement than bulk electrodes. The significance of SERS active electrodes is 

the possibility to vary the surface potential, which can be used to study charge transfer 

mechanism between target molecules and metal surface.  

SERS substrates for biological materials should meet certain requirements of size 

and shape, and also be compatible with the biomolecules. As a noble metal, gold is inert 

against most chemical species, which is a valuable property for SERS biodetection. 

Generally, silver is a stronger enhancer than Au, however it oxidizes quickly, for which 

reason gold nanoparticles are more suitable for SERS biodetection38. 

Numerous examples of Raman and SERS biodetection can be presented. For example, 

SERS allows detecting fragments of DNA, along with identification of individual bases 

Adenine, Guanine, Cytosine, or Thymine39. 

Raman or SERS characterization can be performed on entire living cells12,40,41. 

Drug delivery within the cell and drug- nucleic acid complex have been characterized by 

SERS technique with silver nanoparticles12. Moreover, SERS mapping can reveal 

inhomogeneous structure of the cell, detailing nucleus and cytoplasm constituents by 

respective bands. The cells remained alive after SERS experiments12 and showed all 

functional characteristics. Thus, structural morphology of single cell can be evaluated by 

SERS technique. This may facilitate probing of chemical changes in the cell, which may 

result in a physiological impact. An important application involves detecting cancer cells’ 

physio-chemical characteristics in order to rationally combat cancer diseases. 

Raman and SERS detection of proteins is particularly important17,33,34,42,43. As 

stated before, label free or intrinsic SERS characterization gives vibrational 
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characteristics of the sample biomolecule directly. For proteins, this label free detection 

has been widely used in recent years16. Important advantages of intrinsic SERS detection 

of proteins are the sensitivity and specificity of the spectra. Sensitivity of SERS depends 

on morphology of the surface of metal nanoparticles. Designing NPs with more “hot 

spots”16 allows a higher probability of finding proteins close to hot spots, which enables a 

more sensitive detection. However, a challenge involves reproducibility of SERS spectra 

from experiment to experiment. Variability in Raman spectra of same protein from 

different experiments may be attributed to interfacial properties of nanoparticles, 

adsorption orientation or laser induced reactions16. Reproducibility of Raman and SERS 

spectra is a challenge. It was found that44 DNA covered Au nanoparticles form 

nanobridged Au structures which can produce uniform and reproducible SERS spectra. 

Improved reproducibility of SERS spectra of a protein in aqueous solution due to 

weakening of laser-induced reaction has been reported17. Whether the protein remains in 

its native state or not during Raman experiments is another much addressed point. 

Sometimes, SERS and Raman spectra are somewhat different.  

Proteins in aqueous media retain their native state, as inside living organism 

proteins are always in solution. If immersed in proper aqueous media, proteins would be 

representative of their native conditions. SERS spectra taken on dry protein may result in 

somewhat different Raman bands. Also, protein vibrations may experience a change as a 

result of binding with metal NPs45. The general knowledge is that it is better to take 

Raman or SERS spectra of proteins in a liquid45. Also, in aqueous solution, SERS can be 

used to detect protein’s conformational changes.  
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2.4 Molecular Dynamics Simulations   

Molecular dynamics (MD) simulation is a classical N-body simulation, which 

represents processes in molecular systems, by solving Newton’s equations of motion. 

Numerical solution of Newton’s equations of motion generates a sequence of snapshots, 

representing positions of all atoms in a molecule at selected moments of time. Forces 

between the atoms and their potential energy are calculated using classical interatomic 

potentials. A potential that determines the functional of potential energy with respect to 

distance is central for molecular dynamics simulations. In MD applications, this energy 

information is known as the force field.  

MD simulations can provide a detailed representation of molecular movements, 

which can predict or explain mechanisms of physical and chemical processes such as 

diffusion, mechanical properties, protein folding, molecular level morphologies, etc. 

Especially in molecular biology, modeling and simulations are of particular interest as 

many biological processes are difficult to study experimentally in molecular detail. 

Molecular dynamics studies are widely used in theoretical physics, materials science, 

biophysics, physical chemistry, molecular biology, electrical engineering, mechanical 

engineering, and materials science - in almost all fields of science and technology.46–53 

Emphasis on biomolecules will be done in my current work.  

Examples of MD simulations in biological materials include protein 3D structure 

refinement that is obtained from XRD or NMR spectroscopy, biophysical process 

analysis by MD simulation of macromolecular species (proteins or nucleic acids) 

movement, drug delivery mechanisms, diffusion of atoms in fuel cells, motion of dopant 

atoms in crystals, motor protein transport, study of protein- ligand complexes,46–51,54 etc. 
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As MD simulations can express positions of atoms as a function of time, it is very useful 

to interpret properties of molecular systems. Biophysical phenomena are the best 

examples.  

Clearly, computational models used in MD may have limitations. Experimental 

techniques can be employed to check the validity of numerical predictions. Comparison 

between experimental and simulation results either confirms the findings, or serves to 

improvement of simulation protocols50,55. 

As the potential, or force field, is a key aspect of MD simulations, defining an 

approximation of forces between interacting atoms is one of the first steps in MD 

protocols. The potentials are editable, i.e. user can change various parameters of the 

potential, or force field, according to the needs of the system under consideration. 

Outcome of the simulations are accessible by visual software and images of molecular 

structure; video of simulation process and data analysis of parameters are the medium of 

interpretation of a computational study56. 

Karplus et al. suggested three types of applications57 of molecular dynamics in 

mesoscopic systems. The first one is determining or refining of structure of a system with 

experimentally known parameters using MD. Second usage is describing the system at 

equilibrium. The properties that simulation describes are primarily structural and 

statistical-mechanical properties. The third application is interpreting the actual dynamics 

of a system where particle motion with time is described. First two types can conceivably 

be done by kinetic Monte Carlo simulations, whereas the third application is only 

possible with an MD simulation.  
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Molecular dynamics simulations for biological materials are made possible by 

very powerful and fast computers now-a-days, which enable working with thousands of 

atoms, whereas in early days such simulations were limited to a few hundred or even less 

atoms. Multiple simulations can be done in parallel to achieve a reliable statistics. There 

are many software packages available to simulate not only biological systems, but also 

many other complex systems; such as CHARMM, AMBER, GROMACS, NAMD, 

YASARA etc.  

To understand protein behavior, molecular dynamics is a very efficient tool. As a 

protein is a dynamic system that experiences changes of conformations with time, 

vibrations of proteins are an interesting subject to investigate. Classical MD can predict 

and interpret protein’s dynamic motion. Such detailed molecular-level analysis is difficult 

to do experimentally58. Furthermore, the interaction of protein with solvent and ions is 

also possible to represent by molecular dynamics simulations. MD simulation can 

interpret the solvent dynamics by analyzing motion of individual molecules or ions. The 

mechanisms of protein dynamics puzzled scientists for decades. By combining 

experimental and simulation techniques, it is now possible to understand dynamical 

properties of proteins in details.  

 

2.5. Ferritin and Other Cage Proteins 

Ferritin is an intracellular globular cage protein that is found in almost all living 

cells. Ferritin consists of 24 sub-units or monomers59–61. Each monomer has four large α-

helices and a also a shorter helix, as shown in Figure 2.4. The monomers self-assemble in 

a 4-3-2 symmetric fashion62. In living cells, ferritin works as an iron storage protein59–61 
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being able to uptake, mineralize and release iron in a controllable manner. Ferritin stores 

iron in a form of mineral known as ferrihydrite inside its hollow space. When there is a 

deficiency of iron in the cell, ferritin releases iron, and when there is abundance of iron, 

ferritin stores extra iron in it. Figure 2.5 shows stored iron mineral cluster inside of a 

globule.  

The atomic mass of horse ferritin is 440 kDa. It can store up to 4500 iron ions 

inside it in the mineralized form. The inside diameter of ferritin’s shell is 8 nm and 

outside diameter is 12 nm. The shell is approximately 2 nm thick.  

 

 

Figure 2.4: Ferritin monomer, PDB ID 5CZU.63 The image was generated using 

PYMOL64. 

 

As ferritin consists of 24 monomers, there are three possible structural features on 

ferritin surface. They are known as two-fold symmetric junction, three-fold symmetric 

junction, and four-fold symmetric junction65. The three and four fold channels form 

funnel-like passageways59 that connect interior space with exterior surroundings of the 
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protein, as shown in Figure 2.6. The three-fold channels are hydrophilic in nature, thus 

having the ability of passing ions and water molecules, whereas four-fold channels are 

hydrophobic, and therefore less efficient in passing charge-bearing species59–61.  

The technological significance of ferritin is that it is regarded as an important 

constituent for rational design of biomimetic conjugated nano-bio systems. As iron ions 

 

 

Figure 2.5: Ferrihydrite mineral inside ferritin cage and SEM image of iron loaded 

ferritin. Reproduced with permission from Ref. 66.   

 

inside ferritin are stored as ferrihydrite minerals, fully loaded ferritin can work as a 

superparamagnetic nanoparticle62. Furthermore, as the ferritin cage has a definite size and 

shape, the cavity can incorporate inorganic particles of specific size, making possible 

synthesizing nanodot arrays inside the cage65 as Figure 2.7 shows. This way, ferritin can 

be used as a template for nanostructure synthesis. The size and shape of nanoparticles 

influence electrical, magnetic, optical and other properties. Fabrication process involving 
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Figure 2.6: Ferritin’s 3-fold channel (left) and 4-fold structure (right), PDB ID 5CZU. 

The image was generated using JMol67.  

 

ferritin can ensure a uniformity of structure-dependent properties. Many nanoparticles 

such as  Au, Ag, Pt, Co, Cr, and Zn have already been successfully synthesized utilizing 

ferritin-like cavities59,68–70. Crystallized ferritin-like proteins can also act as a membrane, 

as the channels can pass ions, atoms, or small nanoparticles65. Ferritin is the most 

abundant  member of the ferritin superfamily. However, there are many other ferritin-like 

cage proteins. The interior hollow space of cage proteins may carry various inorganic 

particles, thus making cage proteins a suitable template for nanoparticle synthesis71–74.  

Perhaps one of the most promising utilizations of cage proteins is in drug 

delivery75. Several advantages enable efficient drug delivery using protein cages. 

Nanoparticles are used for drug delivery because of their unique properties related to 

small size and surface morphology31,75–77. A narrow size distribution of NPs allows 

uniform drug dosing75. However, conventional NPs have some limitations, such as 

occasionally wide size distribution, low rate of drug transfer and sometimes instable 
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structure. Caged proteins encapsulating nanoparticles overcome some of these 

difficulties31,75,78–80. 

Caged proteins are formed by self-assembly of monomers into hollow spherical 

globules with uniform interior size. A protein cage may form by monomers of a single 

protein, such as ferritin; or by monomers of multiple proteins, for example cowpea 

mosaic virus (CPMV)81. Since protein cages have evolved in vivo, their utilization would 

involve primarily a selection of functional drug materials to be bonded in three distinct 

regions: interior surface, exterior surface, or inter-monomeric interfaces75,79. Control over 

functioning of cage proteins facilitates attaining a more efficient drug encapsulation. 

Also, by knowing detailed molecular structure and function of the cage channels, it is 

possible to control the amount of drug released, and its position in cage proteins82. 

 

2.6. Goals And Objectives Of The Work 

The main goal of the work is to improve understanding of structure, dynamics, 

and function of ferritin at the molecular level. Specific objectives include the following: 

• Performing all-atom molecular dynamic simulations of the interaction of iron ions 

with a model of three-fold channel of ferritin responsible for ions’ transport; 

 

• Analysis of molecular details relevant to transport of the ions through the channel 

in ferritin; 

 

• Characterization of vibrational properties of iron-loaded ferritin and apo-ferritin 

using Raman spectroscopy; 

 

• Comparative analysis of Raman bands of the different ferritin samples, and 

interpretation of the results in light of findings of the computational studies; 

 

• Proof-of-principle SERS characterization of ferritin using colloidal gold 

nanoparticles for enhancement of Raman signal.  
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Figure 2. 7: Nanodot synthesis using ferritin as a template. Reproduced with permission  

from Ref. 65 .    
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CHAPTER 3: EXPERIMENTAL METHODS  

 

3.1. LabRAM HR 800 Evolution Raman Spectroscope  

In my work, the Raman characterization was done with Horiba LabRAM HR 800 

Evolution Raman spectroscope. A 532 nm green laser was used for the excitation, and the 

Stokes scattering was received with edge filter. Among the various types of scattering, 

the LabRAM HR Evolution instrument can detect both Stokes and anti-Stokes Raman 

scattering, and also fluorescence background. Elastic Rayleigh scattering is blocked by an 

Edge filter. Stokes Raman scattering has higher wavelength than the incident beam, and 

anti-Stokes scattering has lower wavelength. Band-pass filter of Raman spectroscope 

passes only certain wavelengths and absorbs other wavelengths. Edge filter can pass the 

Stokes Raman scattering, and notch filter can pass both Stokes and anti-Stokes Raman 

scattering. Since in my experiment I used edge filter, only Stokes scattering was detected. 

The characterization parameters were optimized for Raman characterization of 

liquid samples. Using a 10X microscopic lens facilitated proper focusing of the sample. 

A 10 seconds exposure time enabled the laser excitation of the samples. Upon rejection 

of elastically scattered light by the edge filter, the light passed through a 300 µm diameter 

confocal pinhole upon entering the spectrometer. The Horiba LabRAM 800 Evolution 

Raman spectroscope used in my work is shown in Figure 3.1, and a schematic diagram of 

Raman spectroscopic technique is shown in Figure 3.2.  
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Figure 3.1: Horiba LabRAM HR 800 Evolution Raman spectrometer.   

 

 

Figure 3. 2: Schematic diagram of Raman spectroscope.   
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3.2. Sample Preparation 

The samples in my experimental work involve liquid solution of iron-loaded 

ferritin, lyophilized apo-ferritin powder, and ammonium iron (II) sulfate, or Mohr’s salt. 

All these components were purchased from Sigma-Aldrich. The liquid sample contained 

purified ferritin from horse spleen in a 0.15 M saline solution (Sigma-Aldrich product no. 

F4503), dark red to brown in color. Total molecular weight of this ferritin is 440 kDa. 

According to supplier’s specifications, the concentration of ferritin in the solution was 

under 125 mg/mL. The solution has been stored at temperature of 4-7 °C. 

The lyophilized powdered apo-ferritin was also purified from horse spleen 

(Sigma-Aldrich product no 178440). The powder might contain 0.01% or less of iron. 

The powder was kept refrigerated. According to the supplier’s specification, apo-ferritin 

is soluble in  water or buffers up to a concentration of 1 mg/mL. 

Ammonium iron (II) sulfate hexahydrate, also known as the Mohr’s salt, has a 

chemical formula (NH4)2Fe(SO4)2 · 6H2O and molecular weight of 392.14 g/mol (Sigma 

Aldrich product no. 203505). The salt is in crystalline powder form colored light blue. 

Mohr’s salt is a common source of iron ions in lab experiments. Figure 3.3 shows these 

samples.  

SERS of ferritin was enabled by surface enhancement with colloidal Au 

nanoparticles. 80 nm sized, citrate-stabilized Au nanoparticles in an 0.1 mM phosphate 

buffered saline (PBS) solution were purchased from Cytodiagnostics (GRF-80-20).  

Concentration of nanoparticles in the solution was 0.05 mg/mL. According to the 

specifications, individual Au nanoparticle’s average volume was 2.68×105 nm3, and their 

average surface area was 2.01×104 nm2.  However, my SEM characterization has 
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indicated that Au nanoparticles tended to aggregate with each other. As the SEM image 

in Figure 3.4 shows, some of the nanoparticles have coalesced into aggregates up to an 

approximately 350 nm size. 

    

                           A                                                  B                                           C 

Figure 3.3: Samples of (A) liquid ferritin, (B) solid powdered ferritin, and (C) Mohr’s 

salt. 

 

Figure 3.5. shows a typical set up for liquid sample characterization in Raman 

spectroscope, with a droplet of liquid on a substrate.  Au coated glass slides and silicon 

wafers were used as the substrates. Au coatings on glass slides were prepared by JVIC 

staff using magnetron deposition technique, with a thickness of the coating of 10 nm.  

Several methods were implemented in my work to obtain the best Raman 

characterization of my samples. In one setup, a ferritin solution droplet was deposited on 

the substrate as illustrated in Figure 3.6. The lyophilized ferritin powder was either 

placed on a substrate and characterized directly, or powder ferritin was dissolved in 

HPLC water and subjected to Raman characterization from the solution. In some 

experiments, I did incubation of powder ferritin samples in water in a Petri dish for about 



 

23 

18 hours. Figure 3.7 shows the schematic of a Petri dish cross section. A two-

compartment Petri dish is an ideal setup for incubation. One compartment contained DI 

water to maintain humid environment. The other compartment contained a substrate with 

liquid droplet on it. Humid atmosphere prevented the liquid of evaporation during the 

incubation.   

 

       

                                 A                                                                  B 

Figure 3.4: 80 nm Au nanoparticles in PBS solution, and SEM image of the deposited Au 

NPs on PBS solution on a 10 nm Au coated glass substrate.  

 

Figure 3.5: Experimental setup for liquid sample Raman characterization. 
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Figure 3.6: Raman spectroscopy setup showing incident laser on sample on a substrate.    

 

 

 

 

Figure 3.7: Incubation setup and cross-sectional schematic of a Petri dish with a sample. 
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3.3. Acquisition Of Raman Spectra  

Calibration of Raman spectra is an important phase of the experiment, as 

temperature or humidity of a day may have an effect on Raman fingerprints obtained 

from the sample. Calibration of the spectrometer was performed using Si wafer as the 

characteristic Si peak is known, to be located at 520.7 cm-1. After focusing of the 

microscope, the sample is ready for Raman characterization. Since Raman microscope is 

an optical microscope, the sample is focused with white light. A 10X optical zoom lens is 

used in my experiments. Precautions are taken so that the lens tip does not touch the 

liquid sample’s upper surface.  

Raman characterization was done with a 532 nm laser excitation wavelength. 325 

nm and 785 nm lasers were also attempted, however the 532 nm laser was the most 

approptiate for Raman spectroscopy of ferritin.  

It is very important to note that laser exposure excites the sample, increasing its 

temperature. Elevated temperatures would lead to evaporation of the liquid with time. To 

avoid evaporation of liquid samples, I used a short 10 second exposure time, as exposing 

for too long would evaporate the samples.  

NGS LabSpec software was used to display and store the data. A .txt file saved 

from the NGS LabSpec software contains the obtained Raman spectra information. To 

analyze the spectra, background subtraction was done by OriginPro 8.5.1 software. 

Subtraction was performed using a 5th order interpolation.  
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CHAPTER 4: COMPUTATIONAL METHODS 

 

4.1. The GROMACS Molecular Simulation Package 

GROMACS83–89, which is an abbreviation from GROningen MAchine for 

Chemical Simulations , is a computational package dedicated to molecular dynamics 

simulation of biomolecules such as proteins, lipids, and nucleic acids in aqueous 

environments. GROMACS solves Newton’s equations of motions for large systems that 

may comprise millions of atoms. GROMACS was first designed in 1991 at the 

Department of Biophysical Chemistry, University of Groningen, Netherlands, in 

association with Computer Science department of the same university, and has been 

developed in Groningen University until 2001. Since 2001 it is developed by the 

GROMACS development team based in KTH Royal Institute of Technology, Stockholm 

University, and Uppsala University in Sweden.  

GROMACS’ fast performance is enabled by neighbor search optimization and 

inner loop performance optimization.85 The GROMACS package has no built-in force 

field of its own; however it is compatible with many force fields such as GROMOS-

9690,91 , OPLS-AA92,93, CHARMM94 and AMBER.95 The forces and energies between 

atoms that GROMACS calculates are of three kinds, bonded interaction, non-bonded 

interaction and special interaction85. Bonded interaction is the interaction between 2, 3 or 

4 atoms following harmonic, cubic or Morse potential. Nonbonded interactions are binary 

inter-atomic interactions, obeying a 6-12 Lennard-Jones potential. Special interactions 

impose restraints on position, angle or distance of constituents. Position restraints are 

important for liquid systems. Decreasing position restraints of a macromolecule in 
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aqueous solution allows the entire system to gradually gain a stable configuration, so that 

during subsequent computations the macromolecule remains stable in solution.    

GROMACS utilizes a “command line interface”- a text-based command input 

system. The user writes text commands, known as scripts. Also, many files containing 

topologies and parameters can be used for input and output. Thus, GROMACS is very 

user friendly. Errors are instantly detected in the GROMACS platform, and help is 

provided in the help section.96 GROMACS gives estimated time of arrival (ETA) 

feedback during the simulation processes, indicating how much time is left to complete 

the task and when it will be completed. As an output, it generates a trajectory file 

containing positions and velocities of atoms in the course of the simulations. 

Conventional simulation conditions involve a rectangular simulation box with periodic 

boundary conditions, although GROMACS also supports triclinic boxes with periodic 

boundary conditions. 

GROMACS is an open-source software package, published and distributed with 

source codes and documentations under the GNU General Public License85. GROMACS 

is mostly run in Linux operating systems. However, from GROMACS 4.5 version, the 

program has been extended to be used in Windows OS platform87. 

In my work, I used GROMACS 5.1.1 on a Linux cluster equipped with 24 quad-

core - Intel Xeon E5462 CPUs with 2.80 GHz clock-speed, and total RAM of 384 GB. 

Along with this, part of my work was done in STAMPEDE2 supercomputer cluster on 

Texas Advanced Computing Center (TACC), using GROMACS 5.1.2. STAMPEDE2 is 

also a Linux based cluster with Intel Xeon E5-2680 v4 CPUs with 2.40GHz clock speed, 
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and each node having 68 cores. The memory of each node is 96 GB DDR RAM and 16 

GB high speed Multi-Channel DRAM, or MCDRAM.  

 

4.2. Preparation Of Model For Simulation  

The goal of my MD simulations is to understand how iron ions enter into the 

ferritin globular cage and how the iron ions exit from that cage; a long-sought question 

that still puzzles the scientific community.  

The initial coordinates of atoms in ferritin were obtained from Protein Data Bank, 

PDB ID 5CZU.63 After downloading PDB file 5CZU, the file was analyzed. It contained 

some hetero atoms (HETATM) which were removed for setting up my system. 

Corresponding CONNECT entries were removed as well. This pdb file has a resolution 

of 1.6 Å and no atoms or residues were missing, making it an ideal structure to start the 

simulation. PDB ID 5CZU is a modified ferritin molecule.63 Residue alanine (Ala119) 

was replaced with cysteine. Newly incorporated Cys119 is located close to the C3 

symmetric channel of ferritin, and contains Sulphur, which can bind gold surface. 

Although binding of modified ferritin to gold is not explored in this work, this capability 

is important for future applications. Another cysteine (Cys126) was replaced with alanine 

to exclude a possibility of conjugation with a ligand63. The structure was visually 

inspected by using visualization software PyMOL64 and VMD56.  

PDB ID 5CZU, as downloaded from the database, contains coordinates of one 

subunit. Using PyMOL64, I generated the 3-fold trimeric structure using a symexp 

command (Figure 4.1). The command generates neighboring units by utilizing the 

symmetry information embedded in the pdb file. This way, from the monomer of ferritin, 

one can generate 3-fold trimer, 4-fold tetramer, and even the whole 24-meric globule.  
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Figure 4.1: PyMOL generated 3-fold ferritin structure. 

 

One important input file for GROMACS operation is the topology file. The 

default name of topology file is topol.top. Topology file contains force field information 

required to describe a molecule in the simulation system. At the very beginning, it calls 

parameters from the force field that is selected. In my work, I chose an OPLS-AA force 

field for the protein92,93 and an SPC explicit water model97. A script for protein’s force 

field is written as follows:  

#include “oplsaa.ff/forcefield.itp”.  

The script calls parameters from the OPLS-AA force field. Then, the topology defines the 

protein structure with chains. In my case, since there are 3 chains, itp files are included 

that contain additional information on position restraints. Position restraints let heavy 

atoms remain in a fixed position during minimization and equilibration, unless the force 

acting on them exceeds a specified level.   

For solvent, a GROMACS’ spc216.gro model is used in this work. This is a three 

point water model. The script for water topology in topology filereads as follows:  

#include "oplsaa.ff/spc.itp". 
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For iron ions, no forcefield is available in GROMACS. I  have determined a non-

bonded force field for iron ions based on recently published, extensively optimized 

Lennard-Jones parameters98. A GROMACS-format van der Waals radius of 0.24127 nm 

and well depth of .039861 kJmol-1 were derived from these data19.  

In my simulation work, a 11.24 nm cubic solvation box with periodic boundary 

conditions was used. The pdb file with co-ordinates of ferritin’s trimer is transformed into 

a GROMACS format “gro” by using a “gmx pdb2gmx” command. The same command 

also generates the topology file. The unit cell is constructed using a “gmx editconf” 

command. Solvation included addition of water molecules using the “gmx solvate” 

command. As the entire system should be charge neutral, I added nine Fe2+ ions, to 

neutralize the -18e charge of my system. Ions were added in PyMOL, by using a 

“pseudoatom” command. 

 

4.3. Energy Minimization 

The purpose of energy minimization is to relax the protein structure. Before 

adding any water in the solvation box, in-vacuo energy minimization was performed with 

position restraints to avoid distortion of protein structure. The force constant for each 

non- hydrogen atom in protein molecule was equal to 100000 kJmol-1nm-2 during in-

vacuo minimization, which is a very strong position restraints required to keep the protein 

stable in vacuum. The minimization had a converging limit of 10 kJmol-1nm-1 maximum 

force.  

After the water molecules and ions were added, energy minimization of the 

solvated system was done with six gradually decreasing position restraints on non-
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hydrogen atoms of ferritin. Position restraints involved a force constant value decrement 

of 10 times in each successive step except for the last one, where no restraints were 

applied. The force constants were equal to 100000, 10000, 1000, 100, 10  and 0 kJmol-

1nm-2 in the respective six steps of minimization. Starting with a strong position restraint 

on protein atoms, the minimization proceeded with gradually weakening position 

restraints. Each minimization involved a maximum number of 3000 steepest descent 

steps. Minimization may converge before reaching the maximum number of steps, and in 

my case, this happened in later steps. The steepest descent step size was 0.01 nm, up to 

allowing a maximum force of 10 kJmol-1nm-1.  

Energy minimizations were executed by first using “gmx grompp” command with 

a minimization parameter .mdp file. The command “gmx grompp” assembles the protein 

structure, topology of the system and all simulation parameters into a binary input file 

called tpr file. Then the minimizations are done in GROMACS MD engine, executing 

with “gmx mdrun” command. The command “gmx mdrun” initiates GROMACS MD 

engine to run the molecular dynamics. Using the flag “-v” in the script is an optional flag, 

used to show when the simulation will end and show progression of steps as well, the 

ETA feedback capability of Gromacs I mentioned earlier. The “&” symbol at the end of 

the script is used to run the process in background. So that I can log off from the server 

but still the simulation will continue.  

After the energy minimization process, a .gro file containing minimized structure 

is generated. 
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4.4. Equilibration  

After energy minimization is completed, the system is ready for equilibration. 

Energy minimization provided an initial relaxation of the protein structure. Now, it is 

important to equilibrate water molecules and iron ions added in the system. Equilibration 

ensures stability of the system during subsequent production molecular dynamics 

simulations. In the course of equilibration, temperature is gradually increased in the 

system up to the level of 310K, at which production MD will be done. Pressure will be 

also maintained at 1 bar.  

I applied the NVT ensemble (number of particles, volume, and temperature 

constant) using a thermostat with velocity rescaling99. Initial velocities of atoms in the 

system were set at random using a procedure called seed generation. Varying seed 

generation results in simulations with similar initial positions, but different initial 

velocities of atoms. In my work, three trajectories with different seed generation were 

generated for each model. During the first NVT equilibration step, temperature was 

raised to 310K. After the initial NVT step, I used six successive NVT equilibration steps 

with decreasing position restraints on non-hydrogen atoms of the protein. Similarly, as 

for energy minimization. The force constants in each step were similar as for energy 

minimization: 100000, 10000, 1000, 100, 10 and 0 kJmol-1nm-2. The temperature 

coupling time for each NVT equilibration was equal to 0.01 ps.  The number of MD steps 

for the first NVT equilibration was 50000, i.e. 100 ps; and each subsequent NVT 

equilibration comprised 25000 MD steps, i.e. 50 ps each; making the entire NVT 

equilibration process 400 ps long.  
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Next, NPT ensemble (number of particles, pressure, and temperature constant) 

was used for equilibration  at 1 bar with Parinello-Rahman barostat100,101, also using 

velocity rescaling to maintain temperature at 310 K. 50000 integration steps were 

performed,  totaling 100 ps of NPT equilibration. The temperature and pressure coupling 

time in NPT equilibration were equal to 0.1 pseach. The compressibility was equal to 

0.000045 bar-1.  

To do NVT and NPT equilibration, a “gmx grompp” command was used to 

generate a binary edr file. Then “gmx mdrun” command started the GROMACS MD 

engine for equilibration. During NPT equilibration, while using a “gmx grompp” 

command, an additional “-t” flag was used to load velocities generated during previous 

NVT steps, and other parameters. The resulting structure was ready for production MD 

simulations.  

The entire process flow chart of the MD simulation is summarized in Figure 4.2. 

 

 

 
 

Figure 4.2: Process flow chart of molecular dynamics simulation. 
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4.5. Production MD Simulations  

After successful equilibration, molecular dynamics simulations were  performed 

to generate time series of all atoms’ positions and velocities, known as MD trajectories. 

The GROMACS MD engine was used. The protocol was similar to the equilibration 

steps, involving “gmx grompp” and “gmx mdrun” commands. The output (checkpoint) 

file generated after NPT equilibration was loaded as an input using a “-t” flag.  

 An integration time-step of 2 fs was used for all MD simulations. For neighbor 

searching in MD process, a Verlet cutoff-scheme was employed. An 1.4 nm cutoff radius 

was used for van der Waals and short-range electrostatic interactions. Long range 

electrostatic interactions were accounted for with a particle-mesh Ewald (PME) 

summation using a 4th-order interpolation and a maximum grid dimension of 0.135 nm. 

The neighbor list was updated after every 10 integration time-steps, or 20 fs. The LINCS 

algorithm102 with 4th order expansion and 2 iterations was used to constrain bond lengths 

for the protein. Water molecules were constrained with the SETTLE algorithm103. 

In my production MD simulations, a physiologically relevant temperature of 310 

K was maintained using a velocity rescaling thermostat with a stochastic term99 ensuring 

a proper canonical ensemble. Protein and non-protein groups were coupled separately to 

respective temperature baths. Pressure of 1 atm was maintained with a Parrinello-Rahman 

barostat100,101. Other details of maintaining temperature and pressure can be found in 

Section 4.4. 

Production MD was performed long enough to obtain a desired duration of MD 

trajectories. Continuation of interrupted simulation is possible by loading output data 

from previous production MD runs. 
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Output generated after production MD simulations includes a binary full precision 

trajectory file containing time dependent coordinates and velocities of each atom. 

Visualization software such as VMD reads this file, displays graphical animation of the 

process, and provides analysis of the results. 

 

4.6. Visualization And Analysis Softwares  

Data files that are used in GROMACS for input or output are either ASCII or 

binary, and they contain coordinates and velocities information. Analyzing this 

information reveals the nature of chemical or physical processes represented by the 

simulation. Initial step in this analysis is to visually inspect the process under 

investigation. Table 4.1 lists visualization software that was extensively used in my work, 

and specific functions that I used. A lot of analyses beyond simple visualization can be 

done in each software. Note that sometimes, one software is better suited than other to 

perform a certain task.  

Using VMD 1.9.2, I rendered the trajectory animation as a movie by using VMD 

movie maker extension tool. VMD is also extensively used in my work for post 

simulation analyses. Using snapshot rendering mode with trajectory loading settings, I 

used VMD to take screenshots of each timesteps and then by using VideoMach software, 

those screenshots were compiled together to create the movie. Also, by using VMD, I 

visually represented the protein in many user controlled ways- varying atom rendering 

options in different ways and by applying different colors in each atom-type or residue-

type or any other subset of similar atoms. I utilized VMD’s graphical interface for 

performing structural analysis. Also, VMD’s text interface enabled by Tcl embeddable 
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parser were extensively used. This interface allows inputting script commands for 

complex functions, such as selecting atoms up to certain distance form a reference point, 

removing particular molecules or residues, measuring distance between two atoms, 

zooming in the chemical structure with same magnification, etc. It was used to 

specifically show secondary structures, side chains, solvent accessible surface area 

(SASA), electrostatic potential on the surface, diffusion path of an ion or atom, etc. It 

should be noted that, merely visualizing protein in different ways is only a small part of 

vast analyses possible to do in VMD. For example, radial pair distribution function and 

RMSD trajectory tool were also used in my work to generate RDF and RMSD plots of 

water molecules and iron ions respectively. RDF is enabled by an extension tool, 

measuring distribution of one atom type with respect to another atom type. I measured 

g(r), the radial pair distribution function of oxygen atom of water molecules with respect 

to iron ion that enters into the channel. The result of my RDF analysis of water solvation 

shell is briefly discussed in chapter 5. This RDF plot is generated over a time frame, 

which can be specified in VMD command prompt. I also used RMSD trajectory tool to 

generate RMSD plot of iron ions. The tool is capable of skipping time frames, thus 

accommodating large trajectories with many MD steps, for example in my case around 

24 ns of simulation trajectories. “All to all” RMSD is possible, i.e. all molecules against 

all molecules or all frames against all frames. I did RMSD of iron ion that enters the 

channel, with respect to its first frame against all frames. Multiplot VMD plugin 

composes the coordinate data file, accessible as .txt format for MS Excel. No selection 

modifiers were used in my analysis as the analysis is limited to one ion at a time.104,105 
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The STRIDE algorithm106 as implemented in VMD was used to identify protein’s 

secondary structures. 

 

Table 4.1: Visualization and analysis software for MD analysis 

Name of software Functions usable in protein simulation 

PyMOL Visually observing pdb file and gro file as 

3D, ion addition, doing symmetry 

operations to form multimers, rendering 

images. 

 

VMD (Visual Molecular Dynamics)  Observing pdb file and gro file in 3D, 

RMSD plot generation, RDF plot 

generation, rendering solvent accessible 

surface area (SASA) of protein, trajectory 

animation view, electrostatic potential 

coloring, rendering images and movies.  

 

PV (Protein Viewer)  JavaScript viewer to visualize 3D proteins 

in web browsers, rendering images.  

 

JMOL HTML5 viewer to visualize 3D chemical 

species 

 

Adaptive Poisson-Boltzmann Solver 

(APBS) in the PDB2PQR server 

To illustrate electrostatic potential on 

protein structure.  
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CHAPTER 5: COMPUTATIONAL RESULTS 

 

5.1. Transport Of Fe Ions Through Ferritin’s Channel  

The ferritin monomer of PDB ID 5CZU was used to construct the 3-fold structure 

expressing the channel responsible for transport of iron ions, as described in Sect. 4.2. 

The trimer structure contains only atoms of the protein. Some atoms belong to main chain 

of the protein, and others to side chains.  

After solvation, 9 Fe2+ ions were added in the solvation box. In one setup, ions 

were added outside the hypothetical ferritin globule, i.e. on the convex side of the 3-fold 

channel, as shown in Figure 5.1(A, B). The approximate distance of Fe2+ ions from the 

channel was 0.5-1.1 nm. In another setup, I added Fe2+ ions on the concave side of the 

channel, mimicking ions added inside the hypothetical ferritin globule. In the course of 

NPT and NVT equilibrations the ions have moved, still remaining in close vicinity of the 

channel (Figure 5.2). 

As I applied three different sets of initial velocities of atoms with the same initial 

positions, three statistically independent MD trajectories were produced for each 

structure. I denote the three trajectories for ions added outside of the trimer by OA, OB, 

and OC. Similarly, three trajectories for ions added inside are denoted by IA, IB, and IC. 

Table 5.1 lists the six trajectories obtained. At least 20 ns of simulations were completed 

for each of the trajectories. I found similar result for all three sets in most cases. Unless 

otherwise mentioned, I are displaying results of OA and IA trajectories as a 

representative outcome of my simulations.  
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Figure 5.1: Initial structures of ferritin’s trimer with nine iron ions before equilibration: 

A) Fe2+ ions added outside of the ferritin trimer, B) side view of ions outside the trimer, 

C) Fe2+ ions added inside of the ferritin trimer, D) side view of ions inside the trimer. 

Iron ions are shown with red spheres. 

 

Figure 5.3 shows snapshots from production MD trajectory OA. It can be seen 

that at 1.4 ns, one of the ions almost entered the channel, and a second ion approached it. 

During subsequent simulations, the first ion remained in the channel, and the second one 

continued approaching it. The second ion entered the channel after approximately 1.5 ns 

from the beginning of production simulations.   
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Figure 5.2: Iron ion positions after equilibration: A) ions added outside of the trimer, B) 

ions added outside side view, C) ions added inside of the trimer, D) ions added inside 

side view. Ions are shown by red spheres.  

 

As the second ion moves into the channel, it repeals the first ion inside the 

channel. At approximately 11.8 ns, the first ion completely exited from the channel, 

expelled by the second ion. Simulation up to 20 ns shows a complete expulsion of the 

first ion.  A similar trend was observed in two other trajectories OB and OC, with ions 
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entering the channel in less than 2 ns.  In trajectory OC  the first ion did not yet fully exit 

by 20 ns, however it was in the process of ejection from the channel. In trajectory OB the 

first ion completely exited from the channel by approximately 8.8 ns, expelled by the 

second ion; and the third ion entered the channel at 4.2 ns. By 20 ns both the second and 

the third ion remained inside the channel, following the path of the first ion.   

 

Table 5.1: Sets of production MD simulations. 

Ion position  Production MD simulation set  Simulation time  

 

Ions added 

outside of the 

trimer 

 

OA 

 

OB 

 

OC 

 

20 ns 

 

Ions added 

inside of the 

trimer 

 

IA 

 

IB 

 

IC 

 

20 ns 

 

Ions added inside of the ferritin trimer showed a similar trend, as one can see in 

Figure 5.4. In trajectory IA, the first ion entered the channel at around 1.3 ns. However, a 

second ion did not enter into the channel in any of my simulations with ions added inside 

of the trimer. In trajectory IA two ions, the second and the third one, are seen in close 

proximity of the channel at 20 ns, following the first ion that is already in the channel. 

However, I did not observe entering of the second and third ion in the channel. In 

simulations IB and IC, only one ion followed the first ion, but the second one did not 

enter the channel. By 20 ns of the simulation, the first ion remained in the channel, and 

the second ion was in close proximity of the first ion, yet outside of the channel.  
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Figure 5.3: Snapshots of the trimer with Fe2+ ions added outside at different simulation 

times.   
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Figure 5.4: Snapshots of the trimer with Fe2+ ions added inside. Ions are shown with red 

spheres.   
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Analysis of root-mean-square deviation of atomic positions (RMSD) plots of the 

iron ions as they travel through the channel helps understanding this process better. 

Figure 5.5 depicts an RMSD plot of the first ion from trajectory OA, computed with 

respect to initial position of the ion after equilibration. The RMSD plot illustrates how the 

ion moves during the entire simulation. When after equilibration the ion was approaching 

the channel, the RMSD plot exhibits a quick increase. When the ion entered into the 

channel at around 1.4 ns, the plot reaches a plateau. Although random fluctuations due to 

diffusional nature of ion’s motion are visible, the average deviation remains uniform 

from this point. When the ion exited the channel at 11.8 ns, I can see that the RMSD 

increases again, due to ion’s displacement away from its initial position.  

 

 

Figure 5.5: RMSD plot of the first ion that entered the channel from outside, as illustrated 

in figure 5.3. 
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Figure 5.6 depicts an RMSD plot of ion added inside of the trimer from trajectory 

IA. The plot shows that the ion approached the channel and entered it at approximately 

1.3 ns. While remaining inside the channel, the ion continued moving predominantly 

forward until approximately 8 ns. Then, after some random walking, the ion started 

moving back at approximately 12 ns. This reverse motion occurred until ~18 ns, when the 

ion started moving forward again. Note that the second ion approached the channel at 3 

ns, and the third ion approached the channel at 14.4 ns. I hypothesize that the third ion’s 

arrival in the vicinity of the channel ion might cause the return of forward motion.  

 

 

Figure 5.6: RMSD plot of the first ion that entered the channel from inside, as illustrated 

in figure 5.4. 
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5.2. Electrostatic Potential Around Ferritin’s Channel 

 As the results in Section 5.1 indicate, iron ions tend to quickly approach ferritin’s 

channel and enter it from either side. To better understand driving forces of this process, 

electrostatic potential of ferritin was calculated. For this purpose, I used Adaptive 

Poisson-Boltzmann Solver (APBS) software package in the PDB2PQR server107. This 

software calculates electrostatic properties of molecules using PDB files as the input. 

 

 

 

Figure 5.7: Electrostatic potential, color-coded and mapped onto the solvent-accessible 

surface of ferritin trimer after equilibration (left), and when at least one iron ion entered 

the channel (right). The ions are shown as yellow spheres. Two panels on the top show 

outer surface of the trimer, and those on the bottom show inner surface.   

 

Figure 5.7 shows electrostatic potential, color-coded and mapped onto the 

solvent-accessible surface of ferritin’s trimer immediately after equilibration, and later 

when at least one ion entered the channel. As it can be seen in the color scale of the 

figure, blue color shows positively charged regions, and red color shows negatively 

charged regions. The surface of the channel is negatively charged, and the channel is 
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surrounded by extensive negatively charged regions. The presence of negative charge in 

the vicinity of the 3-fold channel of ferritin explains the quick entering of iron ions in the 

channel that I observe. The negative regions attract the iron ions near the channel, 

eventually driving the ions’ entering in it. 

 

 

5.3. Coordination Of Fe Ions In The Channel 

Figures 5.8 and 5.9 show a Fe2+ ion in a stable position inside ferritin’s channel. 

The ion is found in close proximity of carboxylate groups from residues Glu130 

(Glutamic acid) of the three chains of ferritin, as shown in the figures. This is not 

surprising, as such groups are negatively charged. However, the ions always remain at a 

distance from these groups. The reason is clarified by a close-up of iron ion in the 

channel shown in Figure 5.9. Water molecules, shown by V-shaped “licorice” models, 

are surrounding the iron ion. This solvation shell results in the iron ion’s maintaining of a 

distance with respect to ferritin’s residues. 

Visualization of the Solvent Accessible Surface (SAS) of ferritin’s channel further 

supports the above argument. Figure 5.10 (A) depicts SAS in the region of the iron ion 

inside the channel, and figure 5.10 (B) shows SAS around the ion when it exits from the 

channel. All throughout, a clear hollow space between iron ions and the channel’s SAS is 

evident.  
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Figure 5.8: Iron ion (red sphere) surrounded by carboxylate group of Glu130 residue in 

the 3-fold channel of ferritin. 

 

 

 

Figure 5.9: Close-up of Glu130 residues of three chains of ferritin and water solvation 

shell surrounding a Fe2+ ion in the channel of ferritin. 
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                               A                                                                                 B 

 

Figure 5.10: Solvent Accessible Surface (SAS) of ferritin’s channel with Fe2+ ion in the 

channel at 1.4 ns (A), and the ion exiting the channel while second ion approaching at 

11.8 ns of the simulation for ions added outside of the trimer. 

 

Since water molecules surrounding the ion in the solvent-accessible space appear 

to play an important role in the ion transport through the channel, radial distribution 

functions (RDF) of water molecules around the ions were calculated. The RDF of water 

molecules allows quantifying solvation shells around the iron ion. Figure 5.11 shows 

solvation shells for different iron ion positions, computed with reference to oxygen atoms 

of water molecules for the trajectory OA of ions added outside.  

As shown in Figure 5.11, two solvation shells surround the iron ion. The narrow 

strong peak at a 0.21 nm distance from the ion is the first solvation shell. This shell 

remains unchanged all the way throughout the ion’s path. The smaller and broader peak 

with a maximum at 0.43 nm represents the second solvation shell. The second solvation 

shell experiences slight changes over the ion’s trajectory. From 0 to 0.8 ns, when the iron 

ion approaches the channel, but is still outside of the channel, the average number of 

water molecules in the second solvation shell is the highest. From 0.8 to 1.6 ns, the ion 
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entered into the channel. Narrow channel pathway results in slightly lesser average 

number of water molecules in the second solvation shell. The ion exits the channel 

between 11 and 11.8 ns, and the RDF plot shows an increased number of water 

molecules. After 20 ns, I can see more water molecules surrounding the ion.  

Figure 5.12 presents an RDF plot of trajectory IA (ions added inside of the trimer), 

calculated for the iron ion that entered the channel, with reference to oxygen atoms of 

water molecules. Two solvation shells are clearly visible. The first solvation shell 

remains unchanged throughout the trajectory, and the second one exhibit slight changes. 

When the ion enters I channel, I can see more water molecules in second solvation shell. 

During subsequent simulations, ion remains inside the narrow channel, resulting in a 

somewhat lesser number of water molecules in second solvation shell.  
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Figure 5.11: RDF of iron ion entering the channel from outside.  
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Figure 5.12: RDF of iron ion entering the channel from inside. 
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CHAPTER 6: EXPERIMENTAL RESULTS 

 

6.1. Raman Spectra Of Ferritin  

Raman spectra of ferritin solution were acquired on Si substrates. A baseline 

subtracted Raman spectrum of ferritin solution is shown in Figure 6.1. The bands of 

Raman spectra were attributed to various functional groups of ferritin, and also iron 

compounds. Table 6.1 lists the hypothetical band assignments. These assignments were 

done based on published literature16,108–116. 

 

 

Figure 6.1: Baseline subtracted Raman spectrum of ferritin on Si substrate. 
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Table 6.1: Hypothetical Raman band assignments of ferritin solution (from Refs. 16, 108-

116) 

Raman shift (cm
-1

) 
Band assignment  

230.4, 342.9, 420.8 Iron compounds 

560.6 Phe, Tyr 

653.95 Tyr 

713.2 CH
2
 

747.3 Trp ring 

787.8 CH
2
 rocking 

853.44, 906.3 C-C, C-O-C, Tyr, Trp 

1000.6 Phe 

1043.34 C-C, Phe ring bend  

1105.8 C-N, C-O 

1264.2 Asp, Glu 

1351.7 Trp 

1435.4 CH
2
 deformation; CH, CH

2
, CH

3
 bending 

1491.9 Phe, C-C ring 

1529.3 Double bonds of C=C, C=N, C=O 

1607.2 Phe, aromatic rings 

1669.04 Amide I, C-O, C=C 

1737.85 Asp 

1880- 1970 C=C, C=N, C=O 

 

 (Tyr, C9H9NO2). Additionally, Phe has four more band assignments in the 

spectrum at 1000.6 cm-1, 1043.34 cm-1, 1491.9 cm-1, and 1607.2 cm-1; specifically, 

1043.34 cm-1 is expected to originate from Phe’s benzene ring bending. Tyr has three 

more bands observed in the spectra- 653.95 cm-1, 853.44 cm-1, and 906.3 cm-1. 
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Tryptophan (Trp, C11H10N2O), has characteristic peaks at 747.3 cm-1, 853.44 cm-1, 906.3 

cm-1, and 1351.7 cm-1, where the band at 747.3 cm-1 is assigned to Trp ring. Aspartic acid 

(Asp, C4H5NO3) and Glutamic acid (Glu, C5H7NO3) both have Raman bands at 1264.2 

cm-1. Additionally, Asp has another Raman band at 1737.85 cm-1. Other Raman peaks, as 

indicated in the table, are expected to originate from C, N, and O bonds.   

The low-shift bands at 230.4 cm-1, 342.9 cm-1, and 420.8 cm-1 have been 

hypothetically attributed to vibrations of Fe–O coordination bonds of iron ions present in 

ferritin.  

Interestingly, Raman spectra of powdered apo-ferritin without ferrihydrite mineral 

on a Si substrate shows similar bands, with some occasional peak shifts or intensity 

variations. For example, the peak at 853.44 cm-1, representing C-C, C-O-C, residue Tyr, 

and residue Trp, is not present in powdered apo-ferritin. I can see only a very small peak 

in that region, whereas in ferritin solution, this peak is well pronounced. Similarly, 

Raman band at 1529.3 cm-1 representing vibrations of double bonds is very weak in 

powdered apo-ferritin. The Raman band at 1264.2 cm-1 that I attribute to Phe and Glu in 

ferritin solution has shifted to 1275.2 cm-1 in powdered ferritin. For residue Phe and 

vibrations of aromatic rings, I can also see a shift from 1607.2 cm-1 in ferritin solution to 

1614.1 cm-1 in powdered apo-ferritin.  

Instead of the three low-shift peaks at 230.4 cm-1, 342.9 cm-1, and 420.8 cm-1 that 

have been attributed to iron compounds, in apo-ferritin, I observe three peaks at slightly 

different positions, 228.6 cm-1, 341.4 cm-1, and 424.8 cm-1. A possible interpretation is 

that the lyophilized powdered ferritin sample still contain some iron ions.  
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Figure 6.2: Raman spectrum of powder apo-ferritin on Si substrate. 

 

In the next experiment, a drop of DI water was deposited on powdered apo-

ferritin on a Si slide, and the sample was incubated for approximately 18 hours in a 

humid environment in two-compartment Petri dish at room temperature. This prevented 

evaporation of water during the incubation, and powdered ferritin remained in water. 

Raman spectra were obtained in two ways. Initially no filter were applied, which 

corresponded to a 50 mJ laser energy on the sample (Figure 6.3). During this experiment, 

the water evaporated due to laser exposure. In another experiment, a filter with 50% 

reduction of excitation power was applied, and the water remained on the slide (Figure 

6.4).  
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Figure 6.3: Raman spectra of powered apo-ferritin in water after incubation. No filter was 

used during laser excitation, and water evaporated from the sample.  

 

Both laser settings resulted similar spectra with very close positions of peaks. The 

shifts in the Raman bands are only minor. Raman bands assigned to CH
2
 deformations 

and CH, CH
2
, CH

3
 bending were observed in all the spectra that I obtained. In ferritin 

solution, the band appeared at 1435.4 cm-1, in apo-ferritin at 1444.7 cm-1, and in 

incubated apo-ferritin at 1448.7 cm-1 and 1438.9 cm-1 respectively without filter and with 

D1 filter blocking half of the laser power. I also observed the Phe and aromatic ring 

vibration’s characteristic peak at slightly different positions ranging from 1602 cm-1 to 

1614 cm-1in the four samples. While using a filter for incubated apoferritin, I have 

observed C=C, C=N, and C=O bond’s vibration bands at 1880-1970 cm-1. These peaks 

are not strong while using maximum laser power.  
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Figure 6.4: Raman spectra of powered apo-ferritin in water after incubation. A 50% filter 

was used during laser excitation, and water did not evaporate. 

 

The positions and intensities of the three low-energy bands attributed to iron 

compounds are of special interest. In all cases, these bands experience an increase in 

intensity with the Raman shift. In ferritin solution, I observe the peaks at 230.4 cm-1, 

342.9 cm-1, and 420.8 cm-1. The peak positions are slightly different in powdered ferritin, 

where they are observed at 228.6 cm-1, 341.4 cm-1, and 424.8 cm-1. The incubated ferritin 

powder in solution shows the three peaks in almost similar positions. The first peak 

appears at 226.9 cm-1 in the spectra without any filter, and at 228.9 cm-1 in the spectra 

with a filter that reduces the power by 50%. The two other peaks appear at 340.1 cm-1 and 
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423.3 cm-1 in the spectra without filter. Applying the filter results in the peaks appearing 

at 341 cm-1 and 421.6 cm-1.  

 

6.2. Raman Characterization Of Mohr’s Salt 

Mohr’s salt (Ammonium iron (II) sulfate hexahydrate) is a common laboratory 

source of iron ions. Raman spectroscopy of Mohr’s salt was performed in order to clarify, 

whether the three low-shift bands that were observed in different ferritin samples indeed 

should be attributed to iron ions’ bonds with other compounds.  

The experiment on Mohr’s salt was done in two ways. In one setup, I used the 

powdered Mohr’s salt on a Si substrate, and exposed the sample directly to the laser in 

order to acquire the Raman spectrum. In another setup, the Mohr’s salt was incubated in 

Petri dish for about 18 hours at room temperature, on a similar Si substrate.  

Figure 6.5 depicts a Raman spectrum of powdered Mohr’s salt, and Figure 6.6 

shows a Raman spectrum of incubated Mohr’s salt solution. The spectrum of powder 

Mohr’s salt exhibits three distinct low-shift bands at 191.9 cm-1, 326.05 cm-1, and 472.09 

cm-1, as shown in Figure 6.5. The incubated Mohr’s salt solution shows three low-shift 

bands as well, at 183.23 cm-1, 318.2 cm-1, and 462.62 cm-1. Thus, after incubation in 

water the bands are observed at lower Raman shifts.  

I expect that the described bands originate from Fe-O bond vibrations. Iron oxides 

are known to produce low-shift Raman bands below 600 cm-1.113–115 For example, 

exposure of Fe3O4 to a 514.5 nm laser light yields a peak116 at 474 cm-1. In my 

experiments, I observe a very close peak at 472.09 cm-1 (Figure 6.5) and 462.62 cm-1 

(Figure 6.6), in both setups.  
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Figure 6.5: Raman spectra of Mohr’s salt on Si substrate.  

 

 

Figure 6.6: Raman spectrum of Mohr salt incubated in HPLC DI water on Si substrate.   
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Overall, these experiments indicate that indeed iron ions may produce thee strong, 

Raman bands in the low-shift region below 500 cm-1. Specific positions of these bands 

may be influenced by presence of water, and other details of interactions of the ions with 

their surroundings. 

 

6.3. Tentative SERS Characterization Of Ferritin  

I did tentative proof-of-principle experiments on surface-enhanced Raman 

spectroscopy (SERS) of ferritin solution. For this purpose, I added a solution containing 

colloidal Au nanoparticles to my ferritin sample.  

The 80 nm- sized Au nanoparticles were citrate-stabilized. Citrate anions form a 

negatively charged shell around each Au nanoparticle, preventing coalescence of the 

particles. Figure 6.7 represents a Raman spectrum of Au nanoparticles’ solution on a 

silicon substrate for a reference. The spectrum exhibits several relatively weak bands at 

416-431 cm-1, 748.9 cm-1, 826-880.9 cm-1, 956.7 cm-1, 1258.9 cm-1, 1644.9 cm-1, and 

1825.9 cm-1, which I attribute primarily to citrate shells of Au nanoparticles. A strong 

band at 520 cm-1 originates from silicon substrate. 
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Figure 6.7: Raman spectrum of citrate-stabilized Au nanoparticles’ solution on a Si 

substrate.  

 

Preparation of a mixture of ferritin and Au nanoparticles solution was very 

simple. Using a micropipette, a droplet of ferritin solution was deposited on the surface of 

a substrate; then a droplet of citrate-stabilized Au nanoparticles in a PBS solution was 

deposited onto the same region. The ratio of ferritin solution and Au NPs solution was 

1:2. For substrates, Au coated glass slides were used in these experiments.  

Figure 6.8. shows raw Raman spectra of two samples, a regular ferritin solution, 

and a mixture of ferritin solution with Au nanoparticles. A pronounced enhancement of 

inelastic scattering is evident in the 50-1000 cm-1 range. 

Figure 6.9 shows a background-subtracted Raman spectrum of ferritin solution 

with Au nanoparticles. The band assignments from table 6.1 are applicable to this graph 
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Figure 6.8: Raw Raman spectra of ferritin solution with Au nanoparticles (red line), and 

of regular ferritin solution without nanoparticles (blue line) on Au coated glass substrate. 

These spectra were not background-subtracted. 

 

as well. I can see a significant enhancement of the signal in the low-shift part of the 

spectrum below 750 cm-1. The three peaks that I tentatively attribute to iron ion 

compounds have undergone the strongest enhancement. There is a small peak at 270.5 

cm-1, presumably originating from Au nanoparticles, as in Figure 6.7, smaller peaks are 

visible around a 250 cm-1 region. However, all major peaks from 550 cm-1 to 1440 cm-1 

and from 1600 cm-1 to 1880 cm-1 are very closely positioned to their counterparts in the 

Raman spectra of ferritin solution, ferritin powder, and incubated ferritin samples from 

Section 6.1.  
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Figure 6.9: Background-subtracted Raman spectrum of ferritin solution containing Au 

nanoparticles.   
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CHAPTER 7: DISCUSSION  

 

The Raman spectra of ferritin solution acquired in my experiments exhibit three 

distinct bands, at 230.4 cm-1, 342.9 cm-1, and 420.8 cm-1. These bands are tentatively 

attributed to vibrations of iron ions containing compounds. In iron-loaded ferritin, 

vibrations of Fe–O bonds in ferrihydrite nanoparticles are a natural explanation. My 

Raman spectrum of Mohr’s salt also contain three low-energy bands in the same region 

between approximately 180 cm-1 and 480 cm-1. This supports my interpretation of the 

three distinct peaks in ferritin as originating from bonds of iron ions. Interestingly, in my 

SERS characterization of ferritin solution containing 80 nm Au nanoparticles, I achieved 

a significant enhancement of the iron-associated Raman bands. This indicates a strong 

potential of SERS as a method of investigating iron-loaded ferritin.  

Surprisingly, the three characteristic bands were also present in Raman spectrum 

of apo-ferritin that does not contain ferrihydrite nanoparticles. The bands were observed 

in dry apo-ferritin powder, as well as after incubation of the powder in water.  

The computational part of my work addresses the mechanism of transit of iron 

ions in and out of the ferritin’s cage. my simulations indicate that ions located either side 

of ferritin’s three-fold channel quickly enter into the channel in less than 2 ns, due to 

electrostatic attraction of negatively charged regions around the channel. In simulations 

with iron ions positioned on the outer side of the channel, the second and in one case, 

even the third ion entered the channel in the course of only 20 ns. These other ions seem 

to expel the first ion out of the channel by electrostatic repulsion. In two simulations out 

of the three, the first ion exited from the channel due to repelling action of another iron 

ion.  In simulations with ions added on the inner side of the channel, one ion entered the 
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channel and remained there. The second ion approached closely, but did not enter the 

channel. In one trajectory, two ions approached the channel from inside. However, the 

second and third ions did not enter the channel, and the first ion did not exit in any of the 

three simulations with ions positioned inside.  

In all cases, ions that enter the three-fold channel of ferritin are found in a stable 

position, and may remain there for a long time. From electrostatic potential analysis, I 

saw that three-fold channels are negatively charged. The positively charged iron ion is 

stable surrounded by acidic groups from ferritin’s side chains. For an iron ion to exit from 

the channel, it needs a repulsion from second or possibly even third ion. In the absence of 

the other ions in the channel, the first ion does not exit.  

The described computational results help explain why, in my experiments, apo-

ferritin exhibits three distinct low-shift Raman bands, which are attributable to iron 

compounds. I hypothesize that these bands may originate from iron ions caught in, or 

closely positioned to three-fold channels of apo-ferritin. my molecular dynamics results 

indicate that iron ions in the channel are stable and can remain there for a significant 

time.  
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK  

 

8.1. Conclusions  

An important cage protein, ferritin, has been investigated both computationally and 

experimentally. The following conclusions can be drawn. 

• Results of my molecular dynamics simulations suggest that positively charged 

iron ions enter the three-fold channel of ferritin spontaneously, driven by 

attraction of negatively charged regions around the channel. A second ion, and 

sometimes more, were found to approach the channel. Some of these other ions 

entered the channel, following the first ion.  

• In case of iron ions added outside of the channel, exit of the ion from the inner 

opening of the channel was observed. The second ion repeals the first ion toward 

its complete expulsion from the channel. The effect of the second ion is critical 

for the expulsion of  the  first one. 

• During their travel through the channel, iron ions remain surrounded by water 

solvation shells. The first solvation shell is very stable, and the second one 

undergoes only minor changes.  

•  Ion travelling through the channel are found in close proximity of carboxylate 

groups from Glu130 residues in the channel area, which attract the ions 

electrostatically. Mediation through water molecules seems to play an important 

role in this interaction.  

•  Without expulsion by a second ion, the first ion would remain in the channel. 
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• In my experimental work, Raman spectra of iron-loaded ferritin solution were 

obtained. The spectra contain three low-shift Raman bands, which have been 

attributed to vibrations of bonds in iron containing compounds.  

• Raman spectra of apo-ferritin also exhibited similar low-shift bands. Based on the 

results of MD simulations, these bands are thought to originate from interactions 

of iron ions in ferritin’s channels.  

• Raman characterization of ferritin solution with the addition of colloidal Au 

nanoparticles has demonstrated a pronounced Raman signal enhancement in the 

low-shift area, promising a strong potential of SERS for characterization of 

ferritin.  

 

8.2. Future Work  

Investigating interactions of iron ions inside ferritin’s globule is important to 

elucidate details of ferritin functionality. The function of iron storage and release of 

ferritin can be extended to different nanoparticles storage and release, employing 

modified ferritin-like cage proteins. Molecular dynamics case studies of such proteins 

will also be useful.  

For future works, the author suggests extending molecular dynamics simulations 

to even longer time. Also, adding more ions in simulation boxes, while balancing the 

charge though negative counterions, may allow observing more than two ions entering in 

the channel. Increasing the simulation box size would also be required to decrease the 

number of ions per unit volume, in order to observe a complete ion expulsion from the 

channel. 
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Raman characterization, on the other hand, could be extended to different 

modified ferritins, such as PDB ID 5CZU, which can be synthesized and undergo Raman 

or SERS characterization. Modified ferritins may have improved engineered 

functionalities. For instance, 5CZU has Sulphur containing side chains in three residues 

near the three-fold channel on the outside of the cage. These Sulphur groups may be used 

to bind ferritin to gold nanoparticles, enabling an efficient SERS enhancement is 

achieved in the region of three-fold channel.  

Many applications that use nanoparticles, such as for example cancer therapies, 

require transport of caged NPs, making detailed vibrational characterization and 

molecular dynamics studies of ferritin and ferritin-like proteins very much important for 

future advancement of materials science.  
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