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ABSTRACT 

 

Engineered nanoparticles (ENPs) have recently become common in consumer products, 

and will therefore be entering into both aquatic and terrestrial systems. However, the 

effects of ENPs on animals is not well characterized. For example, to date there has been 

no research on the effects of single walled carbon nanotubes (SWCNTs) and silver 

nanoparticles (AgNPs) (common ENPs) on insects. I examined the effects of pure 

SWCNTs and AgNPs on consumption, growth, food conversion ratio, pupation, survival, 

fecundity, and expression of CYP6BG1 using fourth instar of diamondback moth (DBM) 

larvae with the following concentrations: 8.64, 17.28, 34.56, 69.12 and 138.24 µg/ml 

SWCNTs; and 4.32 and 8.64 µg/ml AgNPs. I measured CYP6BG1 expression with Real-

time PCR. There were no measurable effects of SWCNT on DBM’s consumption, 

pupation, and survival rate, but negative affect on growth, conversion rate and fecundity 

at the highest concentration (138.24 µg/ml). AgNPs had no effect on DBM growth, 

conversion, survival, and fecundity rate, but reduced consumption and pupation rate. In 

my experiments, CYP6BG1 was upregulated at concentrations of 138.24 µg/ml SWCNTs 

and 4.32 and 8.64 µg/ml AgNPs compared to control. My research indicates that there is 

no acute toxicity of SWCNTs on DBM, however further studies are warranted as 

fecundity and CYP6BG1 expression level appear to be affected. AgNPs are acutely toxic 

in terms of consumption, but studies are needed to confirm the hypothesis. My research 

provides insights and a model system for future studies on the effects ENP on insects. 
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1 

 

INTRODUCTION 

 

1.1. Introduction to Nanotechnology and Engineered Nanoparticles 

Nanoparticles that result from human activities (e.g., combustion) or are 

engineered for consumer products and new technologies are probably encountered by all 

organisms (Buzea et. al. 2007). According to the American Society for Testing Materials, 

and the Scientific Committee on Emerging and Newly-Identified Health Risks, 

engineered nanoparticles (ENPs) can be defined as manufactured materials having at 

least two dimensions between 1−100 nm. ENPs can be categorized into different classes; 

for example, metals, metal oxides, non-metals, polymer based, functionalized (Klaine et. 

al., 2008). ENPs can exhibit many novel properties and reactivity because they have high 

surface to volume ratio compared to other larger sized materials with similar chemical 

composition (Hochella et al., 2008; Auffan et al., 2009). ENPs have novel traits in terms 

of their form and function, unique physical and chemical properties, design, potentially 

complicated interactions with biological and environmental agents, potential bio-

persistence in organisms and feed chains, quick dispensability, bioaccumulation, 

penetrability through tissue, and irreversible biochemical activities.  

ENPs are increasingly used in a wide range of products and technologies; from 

electronic devices to renewable energy to cosmetics and medicine (Christian, 2009; 

Fabrega et al., 2011). According to, consumer product inventories (CPI) there were 653 

products in 2007 containing ENPs but there were 1202 consumer products in 2014 

containing NPs (Vance et al. 2015). This number is expected to increase significantly 
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over time. However, there are no data that estimate ENP concentrations or distribution in 

the environment (Klaine et al., 2008).  

Because of their novel properties (size, shape, specific surface area, size 

distribution, chemical composition, and surface structure), some ENPs are thought to be 

potentially toxic (Sahu and Casciano, 2009; Sharifi et al., 2012). Several researchers 

reported that nanoparticles are more toxic than their counterpart microparticles (Shi et al., 

2001; Hoet et al., 2004; Oberdorster, 2004; Yang and Watts, 2005; Borm et al., 2006; 

Hund-Rinke and Simon, 2006; Powell and Kanarek, 2006). Since ENPs do not have any 

natural analog, it is difficult to forecast their fate, transport, reactivity, and toxicity in the 

environmental systems. Therefore, there are concerns about their potential negative 

effects when released into the environment (Maynard et al., 2011; Colvin, 2003; Lowry et 

al., 2012). 

 

1.2. Carbon Nanotubes 

Carbon nanotubes (CNTs) (Iijima 1991) and single walled carbon nanotubes 

(SWCNTs) (Iijima and Ichihashi, 1993) were developed in 1991 and 1993 respectively. A 

CPI report (2013) showed that CNTs are the 3rd most common ENP after silver and 

titanium. CNTs are an allotrope of carbon, and there are three main types of CNTs: 

single-walled CNTs (SWCNTs), double-walled CNTs (DWCNTs) and multi-walled 

CNTs (MWCNTs). These types can be defined by their structure and diameter. The 

synthesis methods for CNTs are mainly carbon-arc discharge, carbon laser ablation, or 

chemical vapor deposition (CVD). CVD and arc discharge are the most commonly used 
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method to produce SWCNTs (Cheng et al., 2007). Raw CNTs can be purified and 

functionalized, which may alter their toxicity (Sun et al., 2002; Bianco et al., 2005).  

 SWCNTs are developed from a single graphite sheet rolled into a cylindrical tube 

(Fako and Furgeson, 2009) and have a diameter of 0.7 to 3.0 nm, with the length can be 

hundreds of micrometers. SWCNTs have extraordinary electrical, mechanical, thermal, 

optical, and chemical properties (Dresselhaus et al., 2001; Baughman, et al. 2002; 

Gracia-Espino et al., 2010). They can have metallic, semi-conductive, and 

superconductive properties and high tensile strength (Avouris, 2002; Baughman, et al. 

2002). SWCNTs can be found in field-effect transistors (Bradley et al., 2003; Snow et al., 

2003; Meitl et al., 2004; Zhou et al., 2004), chemical sensors (Maklin et al., 2007), nano-

electronic devices (Rueckes et al., 2000; Bachtold et al., 2001; Avouris, 2002), hydrogen 

storage cells (Dillon et al., 1997; Liu et al., 1999; Kayiran et al., 2004), sorbents for toxic 

chemicals (Long and Yang, 2001a; Long and Yang, 2001b; Lacerda et al., 2006), in situ 

sensing (Kruss et al., 2013), imaging (Robinson et al., 2012), and for thermal ablation 

(Kosuge et al., 2012). They have a very high surface area which allows for extensive 

molecular loading and multi-functionalization, as well as efficient internalization into a 

cell in a large number (Kostarelos et al., 2007; Boyer et al., 2016). They can also 

transport proteins, oligonucleotides, long nucleotide chains, (Kam et al., 2006) and drugs 

to specific sites in organisms (Bianco et al., 2005). 

Raw SWCNTs are mainly hydrophobic, whereas purified SWCNTs are mainly 

hydrophilic because of the functional groups on their surfaces (Sun et al., 2002). There is 

controversy about whether purification of raw SWCNT reduces (Sayes et al., 2006) or 

increases (Tian et al. 2006) their toxicity; and the effect of functionalized SWCNT on 
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different animals during their early development is still unknown (Philbrook et al., 2011). 

Various functionalization and dispersion methods, as well as their differential fates, could 

increase or decrease their toxicity (Kennedy et al., 2009). 

Concerns about potential risks of organisms exposed to SWCNTs are also 

paralleled with their increasing use, disposal, and diffusion into the environment. At 

present, studies for SWCNTs toxicity are limited (Shvedova et al., 2008; Donaldson et 

al., 2010; Johnston et al., 2010; Castranova and Mercer, 2012; Ong et al., 2016b). To 

date, there have been several studies published that examine the toxicity of SWCNTs on 

vertebrates. On the other hand, very few studies have been conducted on arthropods, yet, 

arthropods will potentially be exposed to SWCNTs in the environment. Concerns about 

environmental risks of SWCNTs and considerations about the research on toxicity testing 

have already been expressed in several reports and review papers (Petersen and Henry, 

2011; Du et al., 2013).  Proactive research for clear understanding about the toxicity of 

SWCNTs toxicity is increasingly important with their production, use and disposal in 

ever larger quantities. 

 

1.3. Silver Nanoparticles 

Another class of engineered nanoparticle that are becoming increasingly common 

are Ag nanoparticles (AgNPs). There is interest in their use for antimicrobial (Lee et al., 

2007a; Demir et al., 2011) and anti-inflammatory (Bar-Ilan et al., 2009) properties. In 

addition, AgNPs are effective against multidrug resistance strains of bacteria such as 

methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa (Palanisamy et al., 

2014), ampicillin-resistant Escherichia coli O157:H7, and erythromycin-resistant 
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staphylococcus pyogenes (Shahverdi et al., 2007). Consequently, AgNPs have advantages 

over other antibiotics (Yamanaka et al., 2005; Lara et al., 2011). 

Because of their properties, they are also increasingly incorporated into consumer 

products such as feed packaging (Edwards-Jones, 2009), deodorants, clothing materials, 

bandages (Chen and Schluesener, 2008), burn treatments (silver sulfadiazine), socks, 

soaps and detergents, water and air filters, washing machines, wet wipes, bedding, 

coating on surgical instruments and medical and industrial textiles (Buzea et al., 2007; 

Chen et al., 2007; Kumari et al., 2010; Liu et al., 2010). They are also used in optical 

microscopy, surface-enhanced Raman spectroscopy (SERS), nanodevices for biological 

sensing (Sun and Xia, 2003). AgNPs are part of HIV, ovulation and pregnancy tests 

(Wagner et al., 2006), and used in cancer and tumor detection (Ong et al., 2016a).  

AgNPs can be infused into synthetic tissue adhesives in ophthalmic applications, as they 

have higher antibacterial properties and greater mechanical strength (Yee et al., 2015). 

With the use of high quantities of AgNPs, the accumulation in the environment 

and the exposure of living tissue of AgNPs are increasing (Chen and Schluesener, 2008). 

There is little information about how Ag from AgNP work inside the cell (Armstrong et 

al., 2013). Some researcher believes that the lethal properties of AgNP to microbial cells 

are also responsible for their toxicity to eukaryotic cells (Buzea et al., 2007). There is 

some evidence that particle size or surface area (Oberdorster et al., 2005; Risom et al., 

2005; Nel et al., 2006; Oberdorster et al., 2007; Rogers et al., 2007; Jiang et al., 2008) is 

mainly responsible for AgNP toxicity, as Ag+ released from the NP surface after oxidation 

could enter into the body and interact with biological molecules (Moore, 2006; Lin et al., 

2010; Park et al., 2010). Several researchers found that ionic Ag is highly toxic to 
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bacteria (Liau et al., 1997), phytoplankton (Ratte, 1999), invertebrates, and fish (Croteau 

et al., 2011). It is also known that, AgNPs interact with proteins (in particular with thiol 

groups) and promote denaturation of proteins (Johnston et al., 2010). Ag also interacts 

with proteins associated with cellular copper homeostasis (Winder and Harris, 1991). 

Surface coatings, functionalization, and stabilization could also influence their toxicity 

and biocompatibility (Bar-Ilan et al., 2009). For example, Posgai et al., (2011) concluded 

that, smaller and uncoated particles were more toxic than larger and coated particles 

respectively. 

 

1.4. Neutral Effects of SWCNT on Animals 

There are a number of studies examining SWCNTs that have not found any 

measurable impact on animals. Lung tissue in rats exposed to 0.03 or 0.13 mg/m3 

SWCNTs in the air was not negatively affected (Morimoto et al., 2012). Rats injected 

with SWCNTs did not show any abnormality in cardiac function (Joviano-Santos et al. 

2014). Mice aspirated with SWCNTs at 40 µg were similarly not negatively affected 

(Kagan et al., 2010). Finally, Philbrook et al. (2011) reported that there were no effects 

on litter sizes, maternal weight, fetal lengths, weight, and viability in pregnant mice 

exposed to 10 mg/kg SWCNTs with >90% purity and functionalized with a hydroxyl (–

OH) group. 

SWCNT contamination in Rainbow trout (Oncorhynchus mykiss) blood (in red 

and white blood cell counts), haematocrit, whole blood hemoglobin did not cause 

negative effects, and; tissue metal levels and ATPase activity in brain were also 

unaffected (Smith et al., 2007). Fraser et al. (2011) reported no significant impact of 500 
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mg/kg SWCNTs on Rainbow trout mortality, consumption, growth, plasma protein, or 

ATPase activity in the gill, intestine, or brain. Cheng et al. (2007) reported no significant 

negative effects of 240 mg/L SWCNT solution on zebrafish on head trunk, body length, 

cell death, regulatory factors (myogenic, notochords and primary sensory neurons), 

pigment development, main blood vessel formation, or hatching success and survival 

rate. Templeton et al. (2006) found no negative effects on developmental, fertilization 

success, life-cycle mortality and growth rate in estuarine copepods Amphiascus 

tenuiremis exposed to 10 mg/L purified SWCNTs. Daphnia magna (48 h of exposure) 

and medaka fish Oryzias latipes (96 h of exposure) exposed to raw SWCNTs (upto 100 

mg/L) did not show any mortality and immobility (Sohn et al., 2014). 

The number of SWCNT toxicity studies conducted on insects is very limited. 

Drosophila melanogaster supplemented with SWCNT feed (1000 µg/g) did not show any 

detectable toxicity on egg to adult survivorship, rather SWCNTs were sequestered in 

tissue (Liu et al., 2009). No significant effect was observed on D. melanogaster fed on 

∼10 ppm of disaggregated SWCNT on their growth, viability, fertility, but SWCNTs was 

incorporated into tissues of the larvae (Leeuw et al., 2007). Lee et al., (2015) found that a 

100 μg/ml SWNT had no effect on larval viability, lifespan, fecundity, pupal viability, 

physical activity of female flies and resistance to starvation stress on D. melanogaster 

larvae fed with carbon nanofiber, CNF. D. melanogaster 0.5%, w/v SWCNTs with >90% 

purity and functionalized with a hydroxyl (–OH) group showed no significant effect on 

fecundity, egg viability, developmental stage, and histology (Philbrook et al., 2011). 
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1.5. Negative Effects of SWCNT on Animals 

Manna et al. (2005) found that human keratinocyte cells exposed to 10 µg/ml 

SWCNTs exhibited increased oxidative stress and cell proliferation inhibition. Cui et al. 

(2005) reported that, 25 µg/ml SWCNTs decreased tyrosinase activity (responsible for 

pigment development) in human embryonic kidney cells (HEK293 cells). Choi et al. 

(2009) reported increased inflammatory responses, and elevated oxidative stress and cell 

membrane damage and Kisin et al. (2007) reported reduction of viability and induction of 

DNA damage in lung fibroblast (V79) due to SWCNT exposure. SWCNTs caused bundle 

formation of actin filaments as well as impairment in proliferative activity (Holt et al. 

2010), induction of DNA damage due to incorporation into centrosome structure (Sargent 

et al. 2009), formation of stable protein complexes and disruption of protein structure 

(Zuo et al., 2010), and damaging of ion channel function due to changes in proteins (Park 

et al., 2003).  

Legramante et al. (2009) reported decreased heart rate in rats due to SWCNTs. 

Mice intratracheally instilled with 0, 0.1, or 0.5 mg of SWCNTs for 7 days induced dose 

dependent epithelioid granulomas and interstitial inflammation (Lam et al., 2004). Mice 

that inhaled 5 mg/m3 SWCNTs produced elevated inflammatory responses, collagen 

deposition, oxidative stress, and fibrosis in the lungs (Shvedova et al., 2008). 

Cardiopulmonary toxicity was reported for mice exposed to aspirated 10 µg or 40 µg 

SWCNTs (Tong et al., 2009). Teeguarden et al. (2011) reported that mice aspirated with 

40 µg SWCNTs twice a week produced severe inflammatory and fibrotic responses. 

Shvedova et al. (2014) found that mice that inhaled 5 mg/m3 pure SWCNTs showed 

histopathological changes in the lungs and tracheobronchial lymph. Philbrook et al. 
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(2011) reported pregnant mice exposed to 10 mg/kg SWCNTs with >90% purity and 

functionalized with a hydroxyl (–OH) group showed higher percentage of resorptions, 

gross morphological defects, skeletal abnormalities, aberrations in tail structure, defects 

in cervical vertebrae and variable ossification of sternebrae. SWCNTs induced dose 

dependent cytotoxicity in alveolar macrophages of guinea pig (Jia et al., 2005). 

Smith et al. (2007) reported dose dependent effects in ventilation rate, gill 

pathologies (oedema, altered mucocytes, hyperplasia), mucus secretion and increased 

ATPase activity of gills and intestine in Rainbow trout (O. mykiss) exposed to SWCNTs. 

Rainbow trout supplemented with 500 mg/kg SWCNTs diet showed significant elevation 

in brain TBARS (an indication of lipid peroxidation) (Fraser et al., 2011). SWCNTs 

caused hatching delay in zebrafish embryos exposed to 120, 240, and 360 mg/L with no 

obvious dose response (Cheng et al., 2007).  

Two freshwater microalgae (Raphidocelis subcapitata and Chlorella vulgaris) 

showed reduced growth rate and biomass exposed to raw SWCNTs (upto 46.10 mg/L) 

(Sohn et al., 2014). SWCNTs were reported to effect ingestion and digestion of bacteria 

(Ghafari et al., 2008), induction of toxic effects on the development of Escherichia coli 

(E. coli) biofilm (Rodrigues and Elimelech, 2010) and bacterial cell death due to 

SWCNTs aggregation (Kang et al. 2007). 

Petersen et al. (2008) reported the accumulation of C-labeled SWCNT in the gut 

of Lumbriculus variegatus, 80% of SWCNTs were purged after 3 days. Mwangi et al. 

(2012), reported that 1 g/L SWCNT reduced the survival rate of an amphipod (Hyalella 

azteca), a midge (Chironomus dilutus), and an oligochaete (Lumbriculus variegatus). 

They also reported accumulation of SWCNTs on their gut. 10 mg/L complex as prepared 
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SWCNTs slowed development, reduced fertilization success and increased mortality of 

estuarine copepods Amphiascus tenuiremis (Templeton et al., 2006). The arthropod D. 

magna showed reduced immobilization and increased mortality when exposed to 100 

mg/L SWCNTs (purity > 60%) (Zhu et al., 2009). Roberts et al. (2007) reported that 

lipid-coated SWCNTs accumulated in the gut D. magna, and the animals suffered acute 

toxicity (reduced survival rate and increased mortality) as a result of exposure at levels up 

to 2.5 mg/L. 

There is very little information published, however, on the effects of CNTs on 

insects. SWCNT reduced climbing activity, overwhelmed the natural grooming 

mechanism, impaired locomotor function, and increased mortality rate in D. 

melanogaster (Liu et al., 2009). Lee et al. (2015) reported that D. melanogaster larvae 

fed on 1000 μg/ml CNF had reduced larval viability, lifespan and fecundity. Male flies 

also had reduced physical activity. They also found that Drosophila larvae developed 

resistance against starvation stress, generated increased number of crystal cells (A type of 

blood cell produced when flies face any immune challenge), and reactive oxygen species. 

 

1.6. Neutral Effect of AgNPs on Animals 

Sprague-Dawley Rats that inhaled AgNPs (1.32×106 particles/cm3,61 µg/m3) for 

28 days had no changes feed consumption, body weight, organ weight, hematology or 

blood biochemical values. However, AgNPs were detected in liver and heart tissue in a 

dose dependent manner (Ji et al., 2007). Feed and water consumption, and female body 

weight of F344 rats fed was not affected by 56 nm AgNPs (up to 500 mg/Kg) in their 

feed (Kim et al., 2010). 
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Lim et al. (2012) found no adverse effect in C. elegans on pmk-1 (km25) mutant 

in case of ROS formation and HIF-1 and GST activation and reproduction rate after 

exposure to AgNPs. Zhao and Wang (2011) found that, 500 μg/ml AgNPs are not acutely 

toxic to D. magna. They also reported no significant toxic effect of AgNPs on mortality, 

but very high amount of accumulated AgNP in gut linings. Kim et al. (2011) reported 

that, AgNPs suspensions excluding Ag+ were not acutely toxic to D. magna.  

Silver-Key et al. (2011) reported that 5%/ ~9000 ppm AgNPs did not affect D. 

melanogaster hatching rates and that 50 mg/L of AgNPs did not affect adult survival, 

metamorphosis, and lifespan of D. melanogaster (Armstrong et al., 2013). 

 

1.7. Negative Effects of AgNPs on Animals 

There are a handful of studies that have found AgNPs toxicity to vertebrates. 

Haase et al. (2011) reported AgNPs strong cytotoxicity and cell death on human 

macrophages (monocytic leukemia cell line THP-1) in dose and time dependent manner. 

They also concluded that the smaller AgNPs are more toxic than larger ones.AgNPs 

caused a significantly higher amount of free radical generation and glutathione content 

reduction in BRL 3A rat liver cells (Hussain et al., 2005). Ahamed et al. (2008) reported 

DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. Kim et al. 

(2008) found significant dose-dependent changes in rats for alkaline phosphatase activity, 

cholesterol level and liver function. Tang et al. (2008) reported accumulation of AgNPs 

into rat brain after 62.8 mg/kg AgNP injection and subsequent neuronal degeneration and 

necrosis. 56 nm AgNPs (up to 500 mg/Kg) fed to F344 rats resulted significant decrease 

in male body weight, slight liver damage and higher incidence of bile-duct hyperplasia 
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(Kim et al., 2010). Rahman et al. (2009) found that 25 nm sized AgNPs (up to 1000 

mg/kg AgNP) induced neurotoxicity in male C57BL/6N mice by altering gene 

expression, generating oxidative stress, and inducing apoptosis. AgNPs were found to 

inhibit the proliferation of mouse spermatogonial stem cells through blocking GDNF/Fyn 

kinase signaling (Braydich-Stolle et al., 2010). Significant negative effects of AgNPs in 

rates were observed for spermatogenic cell number (Miresmaeili et al., 2013), sperm 

abnormalities (Mathias et al., 2014), and spermatocyte development (Han et al., 2016). 

Citrate capped AgNPs (0.04–0.71 nM) transported into the zebrafish embryo 

induced deformities and finally death (Lee et al., 2007b). Bar-Ilan et al. (2009) reported 

that zebrafish exposed to 250 µM AgNPs had decreased survival rates and suffered the 

following abnormalities: stunted growth, opaque and nondepleted yolk, small head, jaw, 

snout, tail and circulatory malformations, and body degradation. Choi et al. (2010) 

reported that AgNPs at a concentration of 250 mg/L AgNPs was lethal to zebrafish. Choi 

et al. (2010) also found induction of metal-sensitive metallothionein 2 (MT2) mRNA in 

liver tissue and reduced levels of oxyradical-scavenging enzymes catalase and 

glutathione peroxidase 1a mRNAs. They also found such cellular alterations as disruption 

of hepatic cell cords and apoptotic changes and increased level of malondialdehyde (a 

byproduct of cellular lipid peroxidation) and total glutathione. They also documented 

increased DNA damage and upregulation of the Bax, Noxa, and p21 genes. Yoon et al. 

(2007) demonstrated that AgNPs were toxic to bacteria. 

Ali et al. (2014) reported lethal (48.10 µg/L) and sublethal (36 µg/L) toxicity of 

AgNP in the fresh water snail Lymnaea luteola L.; at sublethal concentration, AgNPs 

caused higher lipid peroxidation, catalase activity in the digestive gland, DNA damage, 
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and reduced glutathione level, and increases in glutathione peroxidase and glutathione-S-

transferase activities. Meyer et al. (2010) reported AgNPs to be toxic to C. elegans. Kim 

et al. (2012) found reduced survival and reproduction, generation of severe epidemic 

edema and burst (even though there were no evidence of AgNP intake) in C. elegans 

exposed to citrate-coated AgNPs (up to 100 mg/L). C. elegans increased ROS formation, 

expression of PMK-1 p38MAPKand hypoxia-inducible factor (HIF-1), GST enzyme 

activity and decreased reproduction in wildtype (N2) after exposure to AgNPs (Lim et al., 

2012). Zhao and Wang (2011) reported chronic toxicity in D. magna exposed to AgNPs. 

Poynton et al. (2012) reported citrate/PVP coated AgNPs toxicity on D. magna. They 

found disrupted major biological process by AgNPs (i.e. protein metabolism, signal 

transduction); PVP coated AgNPs induced metal responsive and DNA damage repair 

genes. Citrate coated AgNPs were more toxic than same sized PVP coated AgNPs. 

D. melanogaster is the only insect that has been experimentally exposed to 

AgNPs to examine toxicity. Ahamed et al. (2010) reported that D. melanogaster fed with 

100 μg/ml AgNPs responded with the following changes: increased expression of Hsp70, 

p53 and p38 protein (due to increased DNA damage), induction of oxidative stress and 

higher activities of caspase-3 and caspase-9 (apoptosis). Demir et al. (2011) reported that 

AgNPs (10 mM) induced genotoxicity of D. melanogaster larvae. Posgai et al. (2011) 

reported negative, dose dependent (up to 200 µg/ml) effects of AgNP on D. melanogaster 

survivorship, pupation, mating success, and abnormalities in cuticular and melanization 

development. Silver-Key et al. (2011) reported impaired larval developmental 

progression, reduced body pigmentation, shortened life span, abnormal climbing behavior 

and stress induction in D. melanogaster larvae fed with 5%/ ~9000 ppm AgNPs. D. 
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melanogaster showed demelanized adult cuticle, reduced progenies, verticle movement, 

tyrosinase and Cu-Zn superoxide dismutase activity when feed was supplemented with 

50 mg/L of AgNPs (Armstrong et al., 2013). Ong et al. (2016a) reported accumulated 

AgNPs in D. melanogaster gut, reduced viability, slower developmental process, reduced 

fecundity of males and increased level of ROS at the apical tip of the testis when fed with 

5 mg/L AgNPs. 

 

1.8. Measurement of Gene Expression of CYP6BG1  

The cytochrome (CYP) P450 monooxygenases (p450s) are an abundant gene 

superfamily of heme-thiolate proteins, and this group of enzymes is found in almost all 

living organisms (Werck-Reichhart and Feyereisen, 2000). CYP genes can be categorized 

into 4 major clans; CYP2, CYP3, CYP4 and mitochondrial (Nelson, 1998). They are 

involved in the first step of drug metabolism, in detoxification of numerous xenobiotics 

and endogenous substances, and are essential for proceeding to second step of 

detoxification (Pelkonen et al. 1998; Martignoni et al. 2006; Fröhlich et al., 2010).  

In an in vitro study Sereemaspun et al. (2008) reported inhibition of CYP1A2, 

CYP2C19, and CYP3A4 in heterologously expressed human p450s in insect cell 

membrane exposed to 15 nm sized AgNPs. In Rainbow trout, 10 nm sized AgNPs caused 

CYP1A2 induction in gill tissue (Scown et al., 2010). Kulthong et al. (2012) found no 

significant effect of orally administered AgNPs (~180 nm diameter; up to 1000 mg/kg) 

on CYP activities in vivo in Sprague-Dawley rat, but reported inhibition of CYP2C and 

CYP2D activities in vitro. SWCNTs inhibited CYP3A4BR activity in a dose-dependent 
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manner by choking the exit channel of substrate/products through a complex mechanism 

in Bactosomes (El-Sayed et al., 2016).  

The CYP3 clan is the largest clan (Cui et al., 2017) incorporating with CYP6 and 

CYP9 gene families. They are found among insect p450 genes in large clusters 

(Feyereisen, 2006). Gene families from this clan play very important roles in insects via 

inactivation and metabolism of xenobiotic compounds such as insecticides and pesticides 

(Scott, 1999; Feyereisen, 2005; Bernhardt, 2006; Iga and Kataoka, 2012; lin et al., 2013). 

Genes from this clan are referred to as “environmental response genes” (Berenbaum, 

2002). 

Resistance to toxic chemicals in insects are often associated with one or more 

detoxifying genes; e.g., p450s, esterases and glutathione S-transferases (Matambo et al. 

2010; Stevenson et al. 2011; Niu et al. 2011; Martinez-Paz et al. 2012). CYP6B enzymes 

are believed to be mostly responsible to insecticides in caterpillars (Cohen et al., 1992; 

Berenbaum et al., 1996). In several insects, a large number of CYP6 genes have been 

identified, which are associated with toxic chemical resistance. For example,  CYP6A1 

(Carino et al., 1992; Carino et al., 1994), CYP6D1 (Tomita et al., 1995; Liu and Scott, 

1998) and CYP6A12 (Guzov et al.,1998) in housefly; CYP6CM1 (Karunker, et al., 2008) 

in whitefly; CYP6CY3 (Puinean, et al., 2010) in peach aphid; CYP6B3, CYP6B4, 

CYP6B5 (Scott and Wen, 2001) in butterfly Papilio polyxenes; CYP6BQ9 (Zhu et al., 

2010; Zhu et al., 2013) in red flour beetle; CYP6BQ23 (Zimmer et al., 2014) in pollen 

beetle; CYP6ER1 and CYP6AY1 (Bass et al., 2011; Ding et al., 2013; Bao et al., 2016) 

in brown planthopper; CYP6G1 (Daborn et al., 2001; 2008; Hoi et al., 2014) in D. 

melanogaster; CYP6AB11 (Niu et al., 2011) in Amyelois transitella; CYP9G2 (Shen et 
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al., 2004) and CYP6BF1 (Li et al., 2005) in diamondback moth (DBM). More than half 

of CYP P450 genes were upregulated in the resistance strain of Colorado potato beetle 

against imidacloprid pesticide (Zhu et al. 2016). Bautista et al. (2007) reported that, 

permethrin resistance at the fourth instar stage of DBM larvae was associated with 

CYP6BG1 overexpression in resistant strains and inducible in their susceptible 

counterpart. Bautista et al. (2009) confirmed that CYP6BG1 overexpression was due to 

increased metabolism for permethrin detoxification through RNA interference mediated 

gene silencing (RNAi). 

Only few studies examined whether the CYP p450 gene is expressed 

differentially in animals exposed to, presumably, toxic concentrations of ENPs. El-Sayed 

et al. (2016) examined the effect of carboxylated SWCNT on animal CYP activity. 

Fröhlich et al. (2010), Lamb et al. (2010) and Warisnoicharoen et al. (2011) examined 

the effects of AgNPs on CYP activity. 

 

1.9. Research Goals and Questions 

I examined the effects of these ENPs on DBM because it is considered a model 

pest. It is a major pest on cruciferous crops (Talekar and Shelton, 1993) and can migrate 

and reproduce very quickly (Yu et al., 2015). It is remarkably resistant to insecticidal 

toxins (Sun et al., 1986; Sun, 1992; Talekar and Shelton, 1993; Scott and Wen, 2001; 

Furlong et al., 2013), and toxicity to ENPs would indicate that many insects might be 

negatively affected. For example, DMB was the first pest that became resistant to DDT 

(Ankersmit, 1935; Jhonson, 1953). In almost all countries they have evolved resistance 
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against agricultural synthetic insecticides (Talekar et al., 1990), even the bio-insecticides 

based on Bacillus thurengiensis spores (Tabashnik et al., 1997). 

The goal of my research was to examine if SWCNTs or AgNPs are toxic to an 

insect herbivore, the DMB. The first question I addressed was whether these two ENPs 

were a deterrent to DBM feeding. I hypothesized that these ENPs do not deter feeding as 

the larvae consumed ENP feed. The second question I addressed was whether these ENPs 

had an effect on the amount of feed DMB consumed? I then examined if consumption of 

ENPs affected growth. For example, if they consume the same amount of control feed 

and feed with ENPs, will the larvae grow more or less? I then related ENPs consumption 

and growth rate to survival rates, pupation rates and fertility (number of eggs laid). 

Finally, my research examined if there was any evidence for detoxification of the ENPs? 

Specifically, were p450 genes upregulated or downregulated? 
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MATERIALS AND METHODS 

 

2.1. Single Walled Carbon Nanotube Properties 

SWCNTs (COOH-CNT) produced by the catalytic vapor deposition (CVD) 

process were purchased from NanoLab Inc. (Waltham, MA, USA) in powdered from. For 

this study, they were dispersed in 18MΩ deionized water to make the desired 

concentration (290 mg/L or 292 mg/L or 305 mg/L) with more than 95% purity and pH 

of 6.5 -7.5. Initially, 400 mg of SWCNT material were added to 1L of 18MΩ deionized 

water.  A probe sonicator was used for dispersion (twice for 30 min with a 15 minutes’ 

rest in between) followed by ultracentrifugation at 25,000g for 30 min. The supernatant 

collected from the centrifuge tubes and ultracentrifugation was repeated at 25,000g for 30 

minutes. During this process, the concentration decreases due to the removal of 

amorphous carbon and unfunctionalized carbon material and finally yield an approximate 

300 mg/L desired concentration. The SWCNTs have an approximate diameter of 1.5 nm, 

length of 1-5 µm and surface are of 1020.48 m2/g. 

 

2.2. AgNPs Properties 

AgNPs (20 nm PELCO® citrate NanoXact™ AgNPs) were commercially 

obtained from Ted Pella Inc. (Redding, CA, USA). Their diameter was 18.5 ± 3.4 nm and 

their hydrodynamic diameter was 28 nm with 29.0 m2/g surface area (TEM). The 

concentration of the AgNP suspension was 0.021 mg/ml, with a particle concentration of 

6.0E + 11 particle/ml. The AgNP has -43 mV zeta potential and 396 nm absorbance peak 

(λmax) with 3.50 max Optical Density/cm in a solution with 8.1 pH. The particle surface 

was sodium citrate and the aqueous carrier was 2 mM citrate. AgNPs were stored at 4ºC 
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and away from light before use and they were used directly without any processing or 

change before use. 

 

2.3. Artificial Feed Preparation 

The lab benches were sterilized and cleaned with 75% ethanol before the 

preparation of the experimental feed to avoid any infection to DBM larvae through feed 

with any natural microorganism. The artificial feed was a dry mix purchased from 

Southland Products Inc. (Lake Village, AR, USA). The mix was specifically formulated 

for DBM (P. xylostella). The recipe for 250 ml feed was as follows: 40.5 g dry mix and 

1.75 ml raw linseed oil and 232.5 ml deionized boiling water. For SWCNT feed 

preparation, 1.75 ml raw linseed oil was added to 40.5 g dry mix in an Erlenmeyer flask. 

Then SWCNT solution was added in 7.45 ml, 14.89 ml, 29.79 ml, 59.58 ml or 119.2 ml 

volume to generate 8.64 µg/ml, 17.28 µg/ml, 34.56 µg/ml, 69.12 µg/ml and 138.24 µg/ml 

SWCNT feed respectively. The mixture was then combined with deionized boiling water 

(225.05 ml, 217.61 ml, 202.71 ml, 172.92 ml and 113.3 ml respectively) on a magnetic 

stirrer hot plate. After mixing the final suspension for 2-3 minutes, the resulting semi-

liquid feed was poured into labeled Petri dishes and left in room temperature about 15-20 

minutes for solidification. The solidified feed mixture was then partitioned using a small 

corer (1.3 cm diameter) and the remaining feed was stored in the refrigerator at 4ºC. 

To prepare 60 ml AgNP feed, 0.42 ml raw linseed oil was added to 9.72 g dry mix 

in a flask. Then AgNP solution was added in a volume of 12.34 ml and 24.69 ml to 

achieve a final concentration of 4.32 µg/ml and 8.64 µg/ml AgNP feed respectively. It 

was then combined with deionized boiling water (43.46 ml and 31.11 ml respectively). 
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Other steps were the same as SWCNT feed preparation. Nanomaterial free feed were 

used as control feed. There were also two other “control” arenas: 1) No larvae control 

(NLC), feed discs from all treatments without any larvae to determine any differences in 

how fast control and ENP feed discs dry out, 2) No feed control (NFC), starvation arenas 

with larvae but no feed to determine starvation rates. 

 

2.4. DBM Rearing 

Eggs of DBM were purchased commercially from Benzon Research Inc. (Carlisle, 

PA, USA). Eggs on aluminum foil were kept with artificial control feed discs in plastic 

feed boxes under diurnal cycle of 16 h light: 8 h dark to hatch and grow until they are 2nd 

instar larvae. The lab temperature was 25 ± 3ºC with 65 ± 5 % relative humidity. The 

DBM laboratory is licensed by the United States Department of Agriculture to rear and 

3w: P26P-14-02726. 

 

2.5. Artificial Feed Assays 

Four artificial feed discs were placed in each petri plates except for the starvation 

arenas. There were six trials for SWCNT and two trials for AgNP. Details about the 

treatments and number of replicates are given in Table 1. From the artificial feed, the 

larvae were provided with 0.0 mg, 51.3 mg, 85.7 mg, 172.0 mg, 294.6 mg, 557.6 mg 

SWCNT and, 8.2 mg and 15.4 mg of AgNP. 

Fifteen DBM larvae were placed into each Petri dish (treatment arena) except for 

NLC and allowed to consume the feed for about 72 hours (until pupation). Artificial feed 
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consumption by larvae and larval growth were determined by weighing feed discs and 

larval weight every 8-12 hours.  

 

2.6. Measurement of Fecundity 

To collect the eggs, I used cabbage treated aluminum foil. Foil was cut into 10 cm 

X 4 cm pieces and straight parallel lines were drawn into the foil with a needle. Then they 

were dipped into freshly prepared cabbage juice. 26 grams of fresh cabbage were blended 

with 200 ml distilled water and then strained. The foil pieces were then soaked in the 

juice and left to dry. This was repeated at least 5 times and finally the foils were left to 

dry overnight. The foils were folded half (to 5 cm X 2 cm) and hung from the lid of the 

oviposition container, which were prepared from 5.5 oz. cups. 

After the larvae went into pupation, they were transferred into oviposition 

containers. The containers were supplied with fresh artificial feed after adult emergence. 

Folded foils with appropriate leveling were hung from the lid to facilitate egg laying. 

Foils were changed after every 2 days and stored in a refrigerator at 4ºC for about 4-6 

days. Eggs were counted after 9/10 days of adult emergence. 

2.7. Total RNA Extraction, Purification and Quantitation and cDNA Synthesis 

Fourth instar larvae (whole body) were collected and stored at -82ºC. Five larvae 

were collected from each of the five replications of control, and the 138.24 µg/ml 

SWCNT treatment and the 4.32 µg/ml and 8.64 µg/ml AgNP treatment arenas. For total 

RNA extraction, the larvae were placed in liquid nitrogen and crushed using a porcelain 

mortar and pestle. All the equipment’s were cleaned with 70% ethanol and RNase-Away 

(Molecular BioProducts Inc., San Diego, CA, USA) to eliminate contamination. The 
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larvae were then homogenized in 750 µl Trizol Reagent (life technologies, Carlsbad, CA, 

USA). Total RNA was precipitated with 500 µl isopropanol and resuspended in 50 µl 

DEPC treated water. 

Extracted RNA was purified with Qiagen RNeasy® Mini Kit (Thermo Fisher 

Scientific, Eugene, Oregon, USA) following manufacturer’s guidelines. I used Qubit® 3.0 

Fluorometer and Qubit® RNA BR assay kits (Invitrogen, Eugene, Oregon, USA) to 

quantitate the RNA following the manufacturer’s guidelines. The samples were then 

stored at -80ºC until next use. 

Three samples containing RNA at high concentration were selected from each 

treatment and first strand cDNA was synthesized with Qiagen QuantiTect® reverse 

transcription kit (Chatsworth, CA, USA) following the manufacturer’s guidelines. I also 

performed reverse transcription using both oligo dT and random primers, but the 

QuantiTect® kit provided the highest yield of cDNA. All RNA samples were reverse 

transcribed simultaneously to avoid variations in cDNA. The cDNA was then amplified 

by regular PCR and confirmed with agarose gel electrophoresis. cDNA was stored at -

20ºC until next use. 

 

2.8. Quantitative Real-Time PCR (qRT-PCR) Analysis  

Permethrin resistance gene CYP6BG,1 a member of the p450 gene family, was 

used as a target gene, and ribosomal protein L32 (RPL32) was used as a reference gene 

for qRT-PCR. The primer design for CYP6BG1 was reported previously by Bautista et 

al. (2007). Fu et al. (2013) and Gao et al. (2016) reported that RPL 32 is a reliable 
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housekeeping gene. I used the Integrated DNA Technologies website to design the 

forward and reverse primer for RPL 32 (Table 2). 

The qPCR was performed with GoTaq® qPCR master mix (Promega Corporation, 

Madison, WI, USA) in an Mx3000P thermal cycler (Agilent Technologies, Inc. Santa 

Clara, CA, USA) with the help of MxPro qPCR software. 96 well EU thin-walled PCR 

plates (BPCTi inc., Durham, NC, USA) were used for the reaction. To determine PCR 

amplification efficiency, standard curves were generated for both target and reference 

gene using 10-fold serial dilutions. Thermal cycling profiles used in this study were: 95ºC 

for 10 min, followed by 40 cycles of 95ºC for 30 sec, 55ºC for 60 sec, 72ºC for 60 sec. A 

dissociation step cycle at 95ºC for 60 sec, 50ºC for 30 sec and 95ºC for 30 sec was added 

as a final step to generated melting curves. The amplification reaction was done in three 

technical replicates for each biological replicate. No-template controls (NTC) were run 

for every sample to check for DNA contamination. The gene expression level was 

calculated based on cycle threshold (Ct) value by using Pfaffl method (Pfaffl et al., 2002). 

2.9. Statistical analysis 

Data were analyzed using statistical software Minitab 17 (State College, PA; 

USA). I used a general linear model ANOVA to test for treatment effects on feed 

consumption, larval growth, % pupation, % survival, fecundity, and gene expression 

level.  Data are presented as mean ± standard error of mean. Tukey’s test was performed 

for pairwise comparisons when main treatment effects in the ANOVA were statistically 

significant at p<0.05. I started feeding trials using 8.64 µg/ml SWCNT in artificial feed 

(Trial 1). In every subsequent trial, I doubled the concentration until I reached a 

concentration of 138.24 µg/ml SWCNT, the highest concentration that I could 
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incorporate into   the artificial feed. I used untransformed, natural log-transformed and 

Box-Cox transformed data because consumption and growth data are generally not 

normally distributed. However, there was no significant differences in the results. 

Consequently, I present untransformed data.  
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RESULTS 

 

3.1. Effect of SWCNTs on DBM 

3.1.1. Effect of SWCNTs on Feed Consumption. There was no evidence that 

any concentration of SWCNT deterred feeding (Table 3). If the CNT deterred feeding 

than consumption of CNT feed would have always been less then consumption of control 

feed. There were no clear negative or positive effects of CNTs on consumption (Table 3). 

Larval feeding was not consistently affected by any concentration. For example, 

consumption of feed containing 8.64 µg/ml SWCNT was not significantly different than 

control (Appendix parts 1 and 2); consumption of 17.28 µg/ml SWCNT feed was not 

significantly different from the consumption of control feed (Appendix parts 1 and 2). 

However, 69.12 µg/ml and 138.24 µg/ml feed larvae consumed 10% and 4% more food 

than control food. Taken together, while there were some concentration and trials that 

suggested an apparent SWCNTs affects, there was no clear significant negative or 

positive effect detected (Appendix parts 1-6). 

3.1.2. Effect of SWCNTs on growth. SWCNTs did not significantly affect DBM 

growth rate, except at the concentration of 138.24 µg/ml (Table 4 and Appendix parts 1-

6). For example, 8.64 µg/ml and 17.28 µg/ml feed larvae growth rate was same and lower 

(Table 4) compared to control, which cancelled each other’s out. 34.56 µg/ml feed larvae 

growth rate was same compared to control. But, 69.12 µg/ml and 138.24 µg/ml feed 

larvae growth rate was reduced almost 6% and 10% respectively. Since the larva became 

darkened in color (Figure 1) the SWCNTs may have not been metabolized but 

accumulated in their gut. 
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3.1.3. Effect of SWCNTs on the rate of pupation. SWCNTs did not had any 

measurable negative effect on the percentage of DBM pupation (Table 5). For the lowest 

SWCNT concentration of 8.64 µg/ml, there was 100% pupation. However, there was a 

decreasing pupation rate with increasing SWCNT concentrations. For example: 17.28 

µg/ml, 34.56 µg/ml, 69.12 µg/ml, and 138.24 µg/ml SWCNT fed larvae showed 3%, 4%, 

6% and 4% reduction of pupation rate, respectively (Table 5). Even though the results 

were not significant, this reduced pupation rate suggests that there may be some level of 

SWCNT toxicity to DBMs. 

3.1.4. Effect of SWCNT on the rate of survival. There was no significant effect 

of SWCNT on DBM survival rate (Table 6). For lower SWCNT concentrations i.e. 8.64 

µg/ml and 17.28 µg/ml the survival was 100%. However, with the increasing SWCNT 

concentrations the survival rate decreased (Table 6). Survival rate reduced 2% for 34.56 

µg/ml, 6% for 69.12 µg/ml and 3% for 138.24 µg/ml SWCNT treatment. Even though 

the reduced survival rate was not significant, the observed trend warrants further 

investigation.   

3.1.5. Effect of SWCNT on feed conversion. As the SWCNT fed larvae growth 

rate was same or less with same or higher consumption rate compared to control, we 

further investigated their feed conversion ratio; percentage of µg growth for µg feed 

consumption for each larva (Table 7). For example, 8.64 µg/ml, 17.28 µg/ml, 34.56 

µg/ml, 69.12 µg/ml and138.24 µg/ml SWCNT feed larvae converted 10%, 3%, 6%, 16% 

and 12% less compared to control (Appendices 8-13). 

3.1.6. Effect of SWCNT on fecundity. I investigated potential SWCNT effect on 

their fecundity for trial 4,5 and 6 (Table 8). All the SWCNT fed larvae showed reduced 
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fecundity relative to control fed larvae. Fecundity was reduced by almost 17% and 45% 

with elevated SWCNT concentration (69.12 µg/ml and 138.24 µg/ml, respectively) 

which is an indication of a sub-lethal toxic effect. 

3.1.7. Effect of SWCNTs Across All Data. I combined and analyzed the entire 

data set for all the variables (Table 9). Consumption of feed containing SWCNTs was not 

significantly different than consumption of control feed. Growth was statistically 

significantly affected, even though the growth rate had an increasing tendency from 8.64 

µg/ml to 69.12 µg/ml, at highest concentration (138.24 µg/ml) the growth rate decreased. 

For 50 hours, the larvae grew at a similar rate, after which their growth rate ended up at 

around same point (Appendices 22-27). Their pupation rate was not significantly 

different for individual trials. But the accumulated pupation rate is significantly different. 

Except for the lowest concentration (8.64 µg/ml), For all the SWCNTs concentrations 

(17.28 µg/ml, 34.56 µg/ml, 69.12 µg/ml, and 138.24 µg/ml), DBM showed negatively 

correlated with reduced pupation rates, except for 8.64 µg/ml SWCNT. I also examined 

survival rate, which was not statistically affected by SWCNTs. Fecundity (egg/adult) was 

negatively correlated statistically significantly affected, with the increasing with SWCNT 

concentration, fecundity was with an overall reduction of reduced by 45% in fecundity. 

This negative correlation was significant. Conversion rate was statistically significant, 

lower concentrations has lower conversion ratio compared to control, only our highest 

concentration 138.24 µg/ml has higher conversion ratio than control. This might be 

insect’s antioxidant defense response (Lee et al., 2015) 

The regression line for each SWCNT concentration showed that larva fed with 

8.64 µg/ml of SWCNT feed larva grew more as they consumed more feed. ate more, but 
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control larvae the growth rate of the control larvae was stable over time (Figure 2.a). 

Larvae fed with 17.28 µg/ml of SWCNT feed larval growth did not increase with 

increasing amount of feeding (Figure 2.b), whereas, the control feed larvae grew less with 

increased feeing. Control larvae and larvae fed with 34.56 µg/ml of SWCNT and control 

feed larvae had a reduced growth rate was reduced with increasing feeding (Figure 2.c). 

Larvae fed with 69.12 µg/ml and 138.28 µg/ml of SWCNT feed larvae grew parallelly 

with control feed larvae, they ate less and grew less (Figure 2.d and Figure 2.e). 

 

3.2. Effect of AgNP on DBM 

There were two artificial feed assays to investigate the direct effect of AgNPs 

(4.32 µg/ml and 8.64 µg/ml) on DBM. I investigated the effect of AgNPs on 

consumption, growth, survival rate, pupation rate, and fecundity. AgNPs negatively 

affected DBM consumption (Table 10). At the level of both 4.32 µg/ml and 8.64 µg/ml of 

AgNP, larvae ate less AgNP feed than control. DBM showed reduced growth rate for 

both AgNPs concentration, but the reduction was not significant (Table 11). However, 

demelanized and stunted larvae were observed during artificial feed assays (Figure 3). 

AgNP reduced pupation rate by 10% for the 8.64 µg/ml of AgNPs treatment (Table 12). I 

could not measure an impact on survival rate (Table 13) at either concentration of AgNPs 

used. But in my experiments, I tested very low AgNP concentration. Conversion rate 

differences were not significant (Table 14). For both AgNP concentration (4.32 µg/ml 

and 8.64 µg/ml), conversion ratio was both higher and lower (Appendix parts 19 and 18 

respectively) compared to control. For AgNPs, fecundity was not statistically significant 
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(Table 15). In trial 1, both AgNP concentration increased fecundity, where as in trial 2, 

the fecundity remains almost the same. 

For the combined analysis, the consumption and pupation rate were significantly 

reduced on AgNP-fed larvae (Table 16). Consumption reduced significantly for both 

concentrations, but pupation rate was significantly reduced for the 8.64 µg/ml treatment 

only. This suggests sublethal toxicity of AgNPs to DBM. Growth, survival rate, 

fecundity, and conversion rate remained the same with control treatment (Table 16). 

From the regression lines, there was no clear relationship for AgNP-feeding and growth 

(Figure 4).  

 

3.3. Effect of ENPs on CYP6BG1 gene expression level 

I performed qRT-PCR, and calculated relative gene expression levels using the 

Pfaffl method to detect differences in the expression of the CYP6BG1 gene expression 

between treated and control DBM. The efficiency for reference and target gene was 

97.5% and 83.8% (Appendix parts 28 and 29) respectively. The expression level of 

CYP6BG1 gene was higher for all the ENP treatments (Figure 5), but they were not 

significantly different from control DBM (Appendix 21). 
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DISCUSSION 

 

4.1 Effect of SWCNT on DBM 

There was no dose dependent toxic effect of SWCNTs on DBM feeding. Fraser et 

al. (2011) also did not find any significant dose dependent feeding effect of SWCNTs on 

rainbow trout, even though they used very high concentration (500 mg/kg) and different 

sized SWCNTs (outside diameter = 1.1 nm, length = 5–30 mm). To my knowledge, my 

research is the first to examine feeding by a caterpillar on artificial feed containing 

various concentrations of nanomaterials. As the consumption rate of larvae fed on 69.12 

µg/ml and 138.24 µg/ml SWCNT was higher than control, I am speculating that, the 

larvae didn’t receive the same rate of nutrients from the SWCNT food compared to 

control and started compensatory feeding. Probably C molecule inhibiting the larvae from 

metabolizing the SWCNT food. 

I did not find any significant effect of SWNTS on DBM growth rate except at the 

highest concentration (138.24 µg/ml). My results are consistent with the findings of: 

Philbrook et al. (2011), who reported no effect of SWCNT treatment on maternal weight 

of pregnant mice for 10 mg/kg SWCNT with >90% purity and functionalized hydroxyl 

group. Fraser et al. (2011) found no effect of 500 mg/kg SWCNT on rainbow trout 

growth rate; Cheng et al. (2007) reported same body length of zebrafish for 240 mg/L 

SWCNT treatment; Templeton et al. (2006) reported same growth rate of copepods for 

purified or as prepared 10 mg/L SWCNT; and Leeuw et al. (2007) reported same growth 

rate of fruit fly for ∼10 ppm SWCNT. 

 Several researchers have reported that SWCNTs can accumulate in organs and 

the body cavity of animals as diverse as insects and mammals. For example, Holt et al. 
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(2010) reported incorporation of SWCNTs into centromere structure of actin filaments; 

Kang et al. (2007) reported SWCNT aggregation into bacterial cells; Mwangi et al. 

(2012) found accumulated SWCNT into amphipod, midge, and oligochaete gut; Leeuw et 

al. (2007) found accumulated SWCNT on drosophila tissue; Petersen et al. (2008) 

reported accumulated SWCNT into Lumbriculus variegatus gut; Roberts et al. (2007) 

reported deposited SWCNT into daphnia gut. Even though SWCNTs may not be acutely 

toxic and may not hinder growth of animals, except at very high concentration, they are 

being transferred through the feed chain (Roberts et al., 2007). SWCNTs can be 

chronically toxic to animals even in low concentrations (Smith et al., 2007). They are 

suspected to be more toxic to mammals than insects, which suggests that there can be 

biomagnification. 

I found that for the higher SWCNT concentrations I examined (34.56 µg/ml, 

69.12 µg/ml, and 138.24 µg/ml) pupation rate decreased, albeit the effect was not 

significant. One possibility is that this is due to sample size. Experimental report from 

Lee et al. (2015) on fruit fly for CNF supports my result, even though they tested larger 

particle-size (100 nm diameter) and higher concentration (1000 μg/ml) of CNF compared 

to the one used here.  

I found that only the highest concentration of SWCNT may have any impact on 

survival, although it was not possible to measure this effect in a significant manner. There 

are many previous studies that found similar results. For example: Philbrook et al. 

(2011), Fraser et al. (2011), Cheng et al. (2007), Templeton et al. (2006), Leeuw et al. 

(2007), Liu et al. (2009), Lee et al. (2015) and Shon et al. (2014). Some studies also 

reported decreased survival rate and reduced viability. For example, Kisin et al. (2007) 
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reported reduced survival rate in human lung fibroblast cell line; Mwangi et al. (2012) 

reported reduced survival rate of amphipod, midge, and oligochaete; and Templeton et al. 

(2006) found reduce viability of copepods. All these studies used very diverse SWCNTs 

(different size and concentration), which makes it impossible to infer any overarching 

conclusion from these studies. 

As mentioned in the introduction, animals are probably not able to metabolize 

SWCNTs. However, the possibility of chronic toxicity exists, and future research 

examining predators eating DMB feed with or without SWCNTs is warranted. Also, the 

feeding trials lasted for about 60-70 hours: only in 3rd and 4th instars. It is possible that 

this exposure is too short and that these later two instar stages have higher resistance than 

previous stages. 

 In my experiments, I found that fecundity was reduced by almost 45% at the 

highest SWCNT concentration, which is an indication of sub- lethal toxic effects. There 

are several published reports, i.e. Cheng et al. (2007), Templeton et al. (2006) and Lee et 

al. (2015) which supports my findings.  

From all the combined analysis, I can say that SWCNTs have sub-lethal toxicity 

on DBM growth, pupation rate and fecundity. Further experiments on SWCNTs chronic 

toxicity on DBM are warranted. 

 

4.2. Effect of AgNPs on DBM 

AgNPs are deterrent to DBM feeding, even at lowest tested concentration of 4.32 

µg/ml. There are few studies on AgNPs feeding rate. There are numerous studies on 

AgNPs negative effect on growth of various animals: Kim et al., (2010) reported reduced 
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body weight in rats for 500 mg/Kg AgNP; Bar-Ilan et al., (2009) reported stunted growth 

on zebrafish for 250 µM AgNP; and Zhao and Wang, (2011) reported reduced growth 

rate of daphnia for 5 μg/ml AgNP. All these experiments tested higher AgNP 

concentration than I tested in my experiments. Furthermore, I observed deformed, 

demelanized larvae with stunted growth, which is also similar with other experiments. 

For example, Mathias et al. (2014), Bar-Ilan et al. (2009), Lee et al. (2007b), Armstrong 

et al. (2013), Silver-Key et al. (2011) and Posgai et al. (2011). 

I found reduced pupation rate for 8.64 µg/ml AgNP concentration. Posgai et al. 

(2011) also reported similar results but their AgNP concentration was much higher than 

mine. I did not find any AgNP effect on DBM’s survival rate. Armstrong et al. (2013) 

also reported no significant effect of adult survival on drosophila for 50 mg/L; Zhao and 

Wang (2011), reported no mortality of daphnia for 500 μg/ml. There was no significant 

effect of AgNP on DBM’s fecundity. Silver Key et al. (2011) reported unaffected 

hatching rates were on drosophila for 5%/ ~9000 ppm. 

 

4.3. ENPs effect on CYP6BG1 gene expression level 

I found that CYP6BG1 gene expression was higher in DMB feed ENPs than those 

feeding on feed with no ENPs. Even though my results were statistically significant, 

further studies are warranted. Bautista et al. (2007, 2009) reported and confirmed 

upregulation of CYP6BG1 gene due to permethrin resistance in DBM. CYP P450 gene 

family have 36 to 180 genes in insect genome (Feyereisen, 2012; Zhou et al., 2014), 

which makes it very hard to target one or few genes for gene expression assessment due 

to ENPs exposure. 



 

34 

In conclusion, my study provides new insights on the effect of functionalized pure 

(>95%) SWCNT on intact arthropods, relevant to ecotoxicity studies and environmental 

concerns. In my study, I did not find any acute toxicity as determined by measuring 

consumption, growth, % pupation and % survival rate. But I cannot exclude the subtle 

and sublethal toxic effects at different trials. My study provides strong suggestion for 

further study of SWCNT effect on insect fecundity. Also, SWCNT accumulation in insect 

body cavity should be further investigated for their biochemical and genomic toxicity. 

There are many studies on AgNPs toxicity to animals and at higher concentration 

and they were identified as toxic in most cases. Even though, I tested very lower 

concentration, they showed toxicity for consumption and % pupation. Future studies with 

higher concentration is needed to verify their toxicity on arthropods. 

My study on CYP6BG1 gene expression emphasize that, insects specially DBM 

have very strong immunity and CYP P450 family helps insects to metabolize these toxic 

ENPs. De novo expression profile analysis due to ENPs exposure to DBM would be very 

interesting study. 
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Table 1: The concentrations of single walled carbon nanotube (SWCNT) and AgNPs 

tested and the number of replicates for each feeding trial. 

 

ENP Trial Treatments No. of 

replicates 

SWCNT 1 

2 

3 

4 

5 

6 

0 µg/ml, 8.64 µg/ml, 17.28 µg/ml, NLC, NFC 

0 µg/ml, 8.64 µg/ml, 17.28 µg/ml, NLC, NFC 

0 µg/ml, 17.28 µg/ml, 34.56 µg/ml, NLC, NFC 

0 µg/ml, 17.28 µg/ml, 34.56 µg/ml, 69.12 µg/ml, 

NLC, NFC 

0 µg/ml, 34.56 µg/ml, 69.12 µg/ml, 138.24 µg/ml, 

NLC, NFC 

0 µg/ml, 138.24 µg/ml, NLC, NFC 

4x 

4x 

8x 

5x 

5x 

5x 

AgNP 1 

2 

0 µg/ml, 4.32 µg/ml, 8.64 µg/ml, NLC, NFC 

0 µg/ml, 4.32 µg/ml, 8.64 µg/ml, NLC, NFC 

5x 

5x 

 

Table 2: Primer design and properties used for qRT-PCR 

CYP6BG1 Amplicon 
length 

Tm GC 
content 

Forward ACCCTCGAGAAGGGTCTCCGA 111 61.7 61.9 

Reverse ATTCTCCGGCGAAAACCGATC 57.7 52.4 

RPL32  

Forward CAATTTACCGCCCTACCATC 91 53.4 50 

Reverse CGCCAGTTACGCTTTATTTTG 52.7 42.9 
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Table 3: Mean (±SE) consumption by diamondback moths (DMB) of feed without and 

with increasing concentrations of SWCNTs across six trials. Different letters (a- c) 

represent significant differences (* for p≤0.05, ** for P ≤ 0.01 and *** for P ≤ 0.001) 

among different SWCNT concentration (0 µg/ml, 8.64 µg/ml, 17.28 µg/ml, 34.56 µg/ml, 

69.12 µg/ml, and 138.24 µg/ml). 

 

Trial Concentration of SWCNT in artificial feed 

0  

µg/ml 

8.64 

µg/ml 

17.28 

µg/ml 

34.56  

µg/ml 

69.12 

µg/ml 

138.24  

µg/ml 

1 1432.45 

±53.0 

1408.23 

±40.3 

1466.73 

±75.1 

   

2 1577.01 

±40.1 

1596.24 

±11.1 

1564.01 

±15.5 

   

3* 1718.83 

±25.4a 

 1847.16 

±41.5b 

1802.92 

±12.2a, b 

  

4*** 1408.42 

±13.9a 

 1336.4 

1±12.2b 

1307.74 

±16.8b 

1407.75 

±9.3a 

 

5*** 1214.90 

±12.6a 

  1430.51 

±44.9b, c 

1530.31 

±63.9c 

1296.69 

±19.9a, b 

6 1462.22 

±69.7 

    1486.83 

±137 
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Table 4: Mean (±SE) growth of diamondback moths (DMB) feeding on artificial feed 

without and with increasing concentrations of SWCNTs. Different letters (a- b) represent 

significant differences (* for p≤0.05) among different SWCNT concentration (0 µg/ml, 

8.64 µg/ml, 17.28 µg/ml, 34.56 µg/ml, 69.12 µg/ml, and 138.24 µg/ml). 

 

Trial Concentration of SWCNT in artificial feed 

0  

µg/ml 

8.64 

µg/ml 

17.28 

µg/ml 

34.56 

µg/ml 

69.12  

µg/ml 

138.24  

µg/ml 

1* 96.94 

±3.6a 

77.05 

±6.3b 

79.79 

±2.3a, b 

   

2 94.08 

±4.9 

95.90 

±5.9 

93.30 

±6.1 

   

3 95.30 

±4.9 

 100.74 

±4.7 

95.92 

±4.2 

  

4 107.60 

±3.1 

 110.88 

±1.8 

104.88 

±3.0 

110.48 

±2.8 

 

5 108.77 

±3.9 

  104.84 

±4.5 

93.65 

±6.5 

99.07 

±3.2 

6* 110.67 

±3.0a 

    99.90 

±2.0b 
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Table 5: Mean (±SE) % of pupation of diamondback moth (DBM) across six different 

trials for different SWCNT concentration (0 µg/ml, 8.64 µg/ml, 17.28 µg/ml, 34.56 

µg/ml, 69.12 µg/ml, and 138.24 µg/ml). 

 

Trial Concentration of SWCNT in artificial feed 

0  

µg/ml 

8.64  

µg/ml 

17.28 

µg/ml 

34.56 

µg/ml 

69.12 

µg/ml 

138.24 

µg/ml 

1 96.67 

±1.92 

100.00 

±0.00 

95.00 

±1.67 

   

2 100.00 

±0.00 

100.00 

±0.00 

100.00 

±0.00 

   

3 99.17 

±0.83 

 95.00 

±2.44 

96.67 

±2.52 

  

4 100.00 

±0.00 

 94.67 

±3.89 

97.33 

±1.63 

96.00 

±1.63 

 

5 100.00 

±0.00 

  96.00 

±1.63 

92.00 

±4.90 

96.00 

±1.63 

6 100.00 

±0.00 

    96.00 

±2.45 
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Table 6: Mean (±SE) % of survival of DBM across six different trials for different 

SWCNT concentration (0 µg/ml, 8.64 µg/ml, 17.28 µg/ml, 34.56 µg/ml, 69.12 µg/ml, 

and 138.24 µg/ml). 

 

Trial Concentration of SWCNT in artificial feed 

0  

µg/ml 

8.64  

µg/ml 

17.28 

µg/ml 

34.56 

µg/ml 

69.12 

µg/ml 

138.24 

µg/ml 

1 100.00 

±0.00 

100.00 

±0.00 

100.00 

±0.00 

   

2 100.00 

±0.00 

100.00 

±0.00 

100.00 

±0.00 

   

3 100.00 

±0.00 

 100.00 

±0.00 

100.00 

±0.00 

  

4 89.42 

±3.42 

 86.38 

±4.82 

86.38 

±3.61 

92.86 

±3.91 

 

5 100.00 

±0.00 

  97.24 

±1.96 

90.94 

±4.31 

98.57 

±1.43 

6 96.00 

±2.45 

    91.78 

±2.07 
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Table 7: Percentage of µg growth (±SE) per µg consumption for Diamondback Moth 

across six different trials. Different letters (a- c) represent significant differences (* for 

p≤0.05, ** for P ≤ 0.01 and *** for P ≤ 0.001) among different SWCNT concentration (0 

µg/ml, 8.64 µg/ml, 17.28 µg/ml, 34.56 µg/ml, 69.12 µg/ml, and 138.24 µg/ml). 

 

Trial Concentration of SWCNT in artificial feed 

0  

µg/ml 

8.64 

µg/ml 

17.28 

µg/ml 

34.56 

µg/ml 

69.12 

µg/ml 

138.24 

µg/ml 

1* 6.77 

±0.1a 

5.47 

±0.4b 

5.47 

±0.2b 

   

2 5.99 

±0.4 

6.01 

±0.4 

5.97 

±0.4 

   

3 5.54 

±0.3 

 5.47 

±0.3 

5.3 

3±0.2 

  

4 7.64 

±0.2 

 8.30 

±0.1 

8.02 

±0.2 

7.85 

±0.2 

 

5 *** 8.95 

±0.3a 

  7.38 

±0.5b, c 

6.12 

±0.3c 

7.65 

±0.3a, b 

6 7.64 

±0.4 

    6.92 

±0.6 

 

 

Table 8: Number of eggs per adult (±SE) for Diamondback Moth across three different 

trials. Different letters (a-b) represent significant differences (* for p≤0.05) among 

different SWCNT concentration (0 µg/ml, 8.64 µg/ml, 17.28 µg/ml, 34.56 µg/ml, 69.12 

µg/ml, and 138.24 µg/ml). 

 

Trial Concentration of SWCNT in artificial feed 

0 

µg/ml 

8.64 

µg/ml 

7.28 

µg/ml 

34.56 

µg/ml 

69.12 

µg/ml 

138.24 

µg/ml 

4 11.9±4.0  5.7±2.4 13.0±2.8 15.1±6.5  

5* 27.4±4.4a   24.9±3.9a, b 17.6±5.6a, b 9.2±2.9b 

6 19.7±5.7     10.9±3.6 
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Table 9: Mean (±SE) data for different variables of Diamondback Moth across six 

different trials. Different letters (a- c) represent significant differences (* for p≤0.05, ** 

for P ≤ 0.01 and *** for P ≤ 0.001) among different SWCNT concentration (0 µg/ml, 

8.64 µg/ml, 17.28 µg/ml, 34.56 µg/ml, 69.12 µg/ml, and 138.24 µg/ml). In case of 

egg/adult and conversion, its statistically significant, but Tukey t-test at 95% confidence 

interval did not show any grouping (Appendices 7 and 14). 

 

Variables Concentration of SWCNT in artificial feed 

0  

µg/ml 

8.64 

µg/ml 

17.28 

µg/ml 

34.56 

µg/ml 

69.12 

µg/ml 

138.24 

µg/ml 

Consumption 1490.84 

± 33.9 

1502.23 

±40.5 

1599.16 

±50.8 

1561.92 

± 55.1  

1469.03 

±36.7 

1391.76 

±72.6 

Growth* 101.99 

±2.1a 

86.47 

±5.3b 

97.74 

±3.1a, b 

100.89 

±2.5a, b 

102.06 

±4.4a, b 

99.48 

±1.8a, b 

% Pupation** 99.36 

±0.4a 

100 

±0.0a, b 

95.87 

±1.3a, b 

96.67 

±1.2a, b 

94.00 

±2.5b 

96.00 

±1.4a, b 

% survival 97.65 

±9.4 

100 

±0.0 

96.76 

±1.7 

95.45 

±1.7 

91.90 

±2.8 

95.17 

±1.6 

Egg/ Adult* 19.66 

±3.0 

 5.7 

±2.4 

18.94 

±3.0 

16.36 

±4.1 

10.07 

±2.2 

Conversion* 6.99 

±0.2 

5.74 

±0.3 

6.24 

±0.3 

6.49 

±0.3 

6.98 

±0.3 

7.29 

±0.3 

 

Table 10: Mean (±SE) consumption rate of AgNPs on DBM across two different trials. 

Different letters (a- c) represent significant differences (* for p ≤ 0.05, ** for P ≤ 0.01 

and *** for P ≤ 0.001) among different AgNPs concentration (0 µg/ml, 4.32 µg/ml and 

8.64 µg/ml). 

 

Trial Concentration of AgNP in artificial feed 

0 µg/ml 4.32 µg/ml 8.64 µg/ml 

1* 1462.22±69.7a 1309.96±61.3a, b 1182.54±27.3b 

2*** 1617.5±24.9a 1317.6±20.6c 1456.0±22.8b 
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Table 11: Mean (±SE) growth rate of Diamondback Moth across two different trials 

among different AgNPs concentration (0 µg/ml, 4.32 µg/ml and 8.64 µg/ml). 

 

Trial Concentration of AgNP in artificial feed 

0 µg/ml 4.32 µg/ml 8.64 µg/ml 

1 110.67±2.95 92.90±9.61 87.12±8.13 

2 81.41±5.83 68.62±5.60 75.44±5.75 

 

Table 12: Mean (±SE) pupation (%) rate of Diamondback Moth across two different 

trials. Different letters (a- b) represent significant differences (** for p≤0.01) among 

different AgNPs concentration (0 µg/ml, 4.32 µg/ml and 8.64 µg/ml). 

Trial Concentration of AgNP in artificial feed 

0 µg/ml 4.32 µg/ml 8.64 µg/ml 

1** 100.00±0.00a 100.00±0.00a 90.00±3.16b 

2 100±0.00 98.00±2.00 98.00±2.00 

 

Table 13: Mean (±SE) survival (%) rate of Diamondback Moth across two different trials. 

Different letters (a- b) represent significant differences (** for p≤0.01) among different 

AgNPs concentration (0 µg/ml, 4.32 µg/ml and 8.64 µg/ml). 

Trial Concentration of AgNP in artificial feed 

0 µg/ml 4.32 µg/ml 8.64 µg/ml 

1 96.00±2.45 100.00±0.00 95.28±2.90 

2 100±0.00 94.00±4.00 100.00±0.00 
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Table 14: Percentage of µg growth per µg consumption for Diamondback Moth across 

two different trials among different AgNPs concentration (0 µg/ml, 4.32 µg/ml and 8.64 

µg/ml). 

 

Trial Concentration of AgNP in artificial feed 

0 µg/ml 4.32 µg/ml 8.64 µg/ml 

1 7.64±0.42 7.10±0.71 7.32±0.54 

2 5.02±0.31 5.23±0.48 5.18±0.38 

 

 

Table 15: Number of eggs per adult for DBM across three different trials among different 

AgNPs concentration (0 µg/ml, 4.32 µg/ml and 8.64 µg/ml). 

 

Trial Concentration of AgNP in artificial feed 

0 µg/ml 4.32 µg/ml 8.64 µg/ml 

1 19.74±5.69 40.20±10.1 33.42±10.4 

2 29.52±7.65 28.91±3.70 29.32±5.00 
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Table 16: Mean (±SE) data for different variables of Diamondback Moth across two 

different trials. Different letters (a- b) represent significant differences (* for p≤0.05 and 

** for P ≤ 0.01) among different AgNPs concentration (0 µg/ml, 4.32 µg/ml and 8.64 

µg/ml). 

 

Variables Concentration of AgNP in artificial feed 

0 µg/ml 4.32 µg/ml 8.64 µg/ml 

Consumption** 1539.9± 43.5a 1313.8±30.5b 1319.3±48.6b 

Growth 96.04±5.7 80.76±6.62 81.28±5.08 

%Pupation* 100.00±0.0a 99.00±1.0a 94.00±2.2b 

% Survival 98.00±1.3 97.00±2.13 97.64±1.6 

Egg/Adult 24.63±4.8 34.55±5.4 31.37±5.5 

Conversion 6.33±0.50 6.16±0.51 6.25±0.47 
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1.a. Control feed 1.c. SWCNT feed 

  

1.b. Control feed larva 1.d. SWCNT feed larva 

Figure 1: DBM larvae exposed to artificial feed. (1.a.) Control feed with larvae. (1.c.) 

SWCNT feed at higher concentration (138.24 µg/ml) with larvae. The SWCNT feed are 

very much darker than control feed. (1.b.) Larvae feeding on control feed, clear gut. (1.d.) 

Larvae feed on SWCNT feed, accumulated SWCNT on their gut. Evidence that SWCNT 

were taken with feed and accumulated in their body. 
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Figure 2. Scatter plot of growth/larva (µg) for consumption/larva (µg) of diamondback 

moth exposed to different SWCNT concentration. The average of controls for different 

SWCNT concentrations are different, as there were several trials for different 

concentrations.  a) 0 µg/ml and 8.64 µg/ml. b) 0 µg/ml and 17.28 µg/ml. c) 0 µg/ml and 

34.56 µg/ml. d) 0 µg/ml and 69.12 µg/ml). e) 0 µg/ml and 138.24 µg/ml. Solid line 

denotes the regression for 0 µg/ml and dotted line denotes the regression for SWCNT 

concentration. 
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3.a. Control feed 3.c. AgNP feed 

  

3.b. Control feed larva 3.d. AgNP feed larva 

Figure 3: DBM larvae exposed to artificial feed. (3.a.) Control feed with larvae. (3.c.) 

AgNP feed at higher concentration (8.64 µg/ml) with larvae. The AgNP feed are a little 

brownish than control feed. (3.b.) Larvae feeding on control feed, healthy and normal 

length. (3.d.) Larvae feed on AgNP feed, a dying larva with shorter length.  
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Figure 4. Scatter plot of growth/larva (µg) for consumption/larva (µg) of 

diamondback moth exposed to different AgNPs concentration, a) 0 µg/ml and 4.32 

µg/ml, b) 0 µg/ml and 8.64 µg/ml. Solid lines denotes the regression for 0 µg/ml and 

dotted lines denotes the regression for AgNPs. 
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Figure 5: CYP6BG1 gene expression level in DMB feeding on different concentrations 

and types of ENPs  
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APPENDIX 

 

1: Mean (±SE) consumption, growth, pupation, and survival of DBMs feeding on 

artificial food without or with SWCNTs (8.64 µg/ml and 17.28 µg/ml) from feeding trial 

1. For this trial, consumption (df = 2; F = 0.26 and p = 0.779), pupation (df = 2; F = 03.00 

and p = 0.100) and survival was not significantly affected by the presence of SWCNTs in 

the food. Growth (df = 2; F = 6.00 and p = 0.022) was significantly affected by the 

presence of SWCNTs in the food. Different letters (a- c) represent significant differences 

in means within a measured variable and between control and different SWCNT 

concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Consumption/L/H 

(µg) 

0 µg/ml SWCNT 1432.45 53.00 

8.64 µg/ml SWCNT 1408.23 40.30 

17.28 µg/ml SWCNT 1466.73 75.10 

Growth/L/H (µg) * 0 µg/ml SWCNT 96.94a 3.60 

8.64 µg/ml SWCNT 77.05b 6.30 

17.28 µg/ml SWCNT 79.79a, b 2.30 

% Pupation 0 µg/ml SWCNT 96.67 1.92 

8.64 µg/ml SWCNT 100 0 

17.28 µg/ml SWCNT 95 1.67 

% Survival 0 µg/ml SWCNT 100 0 

8.64 µg/ml SWCNT 100 0 

17.28 µg/ml SWCNT 100 0 
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2: Mean (±SE) consumption, growth, pupation, and survival of DBM feeding on artificial 

food without or with SWCNT (8.64 µg/ml and 17.28 µg/ml) from feeding trial 2. For this 

trial, consumption (df = 2; F = 0.4 and p = 0.681), growth (df = 2; F = 0.06 and p = 

0.946), pupation and survival was not significantly affected by the presence of SWCNTs 

in the food. Different letters (a- c) represent significant differences in means within a 

measured variable and between control and different SWCNT concentrations as 

determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Consumption/L/H 

(µg) 

0 µg/ml SWCNT 1577.01 40.10 

8.64 µg/ml SWCNT 1596.24 11.10 

17.28 µg/ml SWCNT 1564.01 15.50 

Growth/L/H (µg) 0 µg/ml SWCNT 94.08 4.90 

8.64 µg/ml SWCNT 95.90 5.90 

17.28 µg/ml SWCNT 93.30 6.10 

% Pupation 0 µg/ml SWCNT 100 0 

8.64 µg/ml SWCNT 100 0 

17.28 µg/ml SWCNT 100 0 

% Survival 0 µg/ml SWCNT 100 0 

8.64 µg/ml SWCNT 100 0 

17.28 µg/ml SWCNT 100 0 
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3: Mean (±SE) consumption, growth, pupation, and survival of DBM feeding on artificial 

food without or with SWCNTs (17.28 µg/ml and 34.56 µg/ml) from feeding trial 3. For 

this trial, growth (df = 2; F = 0.42 and p = 0.661), pupation (df = 2; F = 1.02 and p = 

0.379) and survival was not significantly affected by the presence of SWCNTs in the 

food. Consumption (df = 2; F = 5.08 and p = 0.016) was significantly affected by the 

presence of SWCNTs in the food. Different letters (a- c) represent significant differences 

in means within a measured variable and between control and different SWCNT 

concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Consumption/L/H 

(µg) * 

0 µg/ml SWCNT 1718.83a 25.40 

17.28 µg/ml SWCNT 1847.16b 41.50 

34.56 µg/ml SWCNT 1802.92a, b 12.20 

Growth/L/H (µg) 0 µg/ml SWCNT 95.30 4.90 

17.28 µg/ml SWCNT 100.74 4.70 

34.56 µg/ml SWCNT 95.92 4.20 

% Pupation 0 µg/ml SWCNT 99.17 0.83 

8.64 µg/ml SWCNT 95.00 2.44 

17.28 µg/ml SWCNT 96.67 2.52 

% Survival 0 µg/ml SWCNT 100 0 

17.28 µg/ml SWCNT 100 0 

34.56 µg/ml SWCNT 100 0 
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4: Mean (±SE) consumption, growth, pupation, survival and egg/adult of DBM feeding 

on artificial food without or with SWCNTs (17.28 µg/ml, 34.56 µg/ml, and 69.12 µg/ml) 

from feeding trial 4. For this trial, growth (df = 3; F = 1.06 and p = 0.393), pupation (df = 

2; F = 1.01 and p = 0.412), survival (df = 2; F = 0.60 and p = 0.624, and egg/adult (df = 

3; F = 0.91 and p = 0.457) was not significantly affected by the presence of SWCNTs in 

the food. Consumption (df = 3; F = 14.65 and p ≤ 0.0001) was highly significantly 

affected by the presence of SWCNTs in the food. Different letters (a- c) represent 

significant differences in means within a measured variable and between control and 

different SWCNT concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Consumption/L/H (µg) 

*** 

0 µg/ml SWCNT 1408.42a 13.90 

17.28 µg/ml SWCNT 1336.41b 12.20 

34.56 µg/ml SWCNT 1307.74b 16.80 

69.12 µg/ml SWCNT 1407.75a 9.30 

Growth/L/H (µg) 0 µg/ml SWCNT 107.60 3.10 

17.28 µg/ml SWCNT 110.88 1.80 

34.56 µg/ml SWCNT 104.88 3.00 

69.12 µg/ml SWCNT 110.48 2.80 

% Pupation 0 µg/ml SWCNT 100 0 

17.28 µg/ml SWCNT 94.67 3.89 

34.56 µg/ml SWCNT 97.33 1.63 

69.12 µg/ml SWCNT 96.00 1.63 

% Survival 0 µg/ml SWCNT 89.42 3.42 

17.28 µg/ml SWCNT 86.38 4.82 

34.56 µg/ml SWCNT 86.38 3.61 

69.12 µg/ml SWCNT 92.86 3.91 

Egg/Adult 0 µg/ml SWCNT 11.9 4.00 

17.28 µg/ml SWCNT 5.7 2.40 

34.56 µg/ml SWCNT 13.0 2.80 

69.12 µg/ml SWCNT 15.1 6.50 
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5: Mean (±SE) consumption, growth, pupation, survival and egg/adult of DBMS feeding 

on artificial food without or with SWCNTs (34.56 µg/ml, 69.12 µg/ml and 138.24 µg/ml) 

from feeding trial 5. For this trial, growth (df = 3; F = 1.99 and p = 0.156), pupation (df = 

3; F = 1.45 and p = 0.264) and survival (df = 3; F = 2.73 and p = 0.079) was not 

significantly affected by the presence of SWCNTs in the food. Consumption (df = 3; F = 

11.77 and p ≤ 0.0001) and egg/adult (df = 3; F = 3.63 and p = 0.036) was significantly 

affected by the presence of SWCNTs in the food. Different letters (a- c) represent 

significant differences in means within a measured variable and between control and 

different SWCNT concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Consumption/L/H (µg) *** 0 µg/ml SWCNT 1214.90a 12.60 

34.56 µg/ml SWCNT 1430.51b, c 44.90 

69.12 µg/ml SWCNT 1530.31c 63.90 

138.24 µg/ml SWCNT 1296.69a, b 19.90 

Growth/L/H (µg) 0 µg/ml SWCNT 108.77 3.90 

34.56 µg/ml SWCNT 104.84 4.50 

69.12 µg/ml SWCNT 93.65 6.50 

138.24 µg/ml SWCNT 99.07 3.20 

% Pupation 0 µg/ml SWCNT 100 0 

34.56 µg/ml SWCNT 96.0 1.63 

69.12 µg/ml SWCNT 92.0 4.90 

138.24 µg/ml SWCNT 96.0 1.63 

% Survival 0 µg/ml SWCNT 100 0 

34.56 µg/ml SWCNT 97.24 1.96 

69.12 µg/ml SWCNT 90.94 4.31 

138.24 µg/ml SWCNT 98.57 1.43 

Egg/Adult* 0 µg/ml SWCNT 27.4a 4.40 

34.56 µg/ml SWCNT 24.9a, b 3.90 

69.12 µg/ml SWCNT 17.6a, b 5.60 

138.24 µg/ml SWCNT 9.2b 2.90 
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6: Mean (±SE) consumption, growth, pupation, and survival of DBM feeding on artificial 

food without or with SWCNTs (138.24 µg/ml) from feeding trial 6. For this trial, 

consumption (df = 1; F = 0.3 and p 0.877), pupation (df = 1; F = 2.67 and p = 0.141), 

survival (df = 1; F = 1.74 and p = 0.224) and egg/adult (df = 1; F = 1.69 and p = 0.230) 

was not significantly affected by the presence of SWCNTs in the food. Growth (df = 1; F 

= 9.1 and p = 0.017) was significantly affected by the presence of SWCNTs in the food. 

Different letters (a- c) represent significant differences in means within a measured 

variable and between control and different SWCNT concentrations as determined using 

Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Consumption/L/H (µg) 0 µg/ml SWCNT 1462.22 69.70 

138.24 µg/ml SWCNT 1486.83 137.00 

Growth/L/H (µg) * 0 µg/ml SWCNT 110.67a 3.00 

138.24 µg/ml SWCNT 99.90b 2.00 

% Pupation 0 µg/ml SWCNT 100.0 0 

138.24 µg/ml SWCNT 96.0 2.45 

% Survival 0 µg/ml SWCNT 96.0 2.45 

138.24 µg/ml SWCNT 91.78 2.07 

Egg/Adult 0 µg/ml SWCNT 19.7 5.70 

138.24 µg/ml SWCNT 10.9 3.60 
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7: Mean (±SE) consumption, growth, pupation, survival and egg/adult of DBM feeding 

on artificial food without or with SWCNTs (8.64 µg/ml, 17.28 µg/ml, 34.56 µg/ml, 69.12 

µg/ml and 138.24 µg/ml) from all combined feeding trial. For this trial, consumption (df 

= 5; F = 1.86 and p = 0.109) and survival (df = 5; F = 1.87 and p = 0.108) was not 

significantly affected by the presence of SWCNTs in the food. Growth (df = 5; F = 2.33 

and p = 0.049), pupation (df = 5; F = 3.22 and p = 0.01) and egg/adult were statistically 

significant (df = 4; F = 2.72 and p = 0.041) was significantly affected by the presence of 

SWCNTs in the food. Different letters (a- c) represent significant differences in means 

within a measured variable and between control and different SWCNT concentrations as 

determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Consumption/L/H (µg) 0 µg/ml SWCNT 1490.84 33.90 

8.64 µg/ml SWCNT 1502.23 40.50 

17.28 µg/ml SWCNT 1599.16 50.80 

34.56 µg/ml SWCNT 1561.92 55.10 

69.12 µg/ml SWCNT 1469.03 36.70 

138.24 µg/ml SWCNT 1391.76 72.60 

Growth/L/H (µg) * 0 µg/ml SWCNT 101.99a 2.10 

8.64 µg/ml SWCNT 86.47b 5.30 

17.28 µg/ml SWCNT 97.74a, b 3.10 

34.56 µg/ml SWCNT 100.89a, b 2.50 

69.12 µg/ml SWCNT 102.06a, b 4.40 

138.24 µg/ml SWCNT 99.48a, b 1.80 

% pupation* 0 µg/ml SWCNT 99.36a 0.40 

8.64 µg/ml SWCNT 100.00a, b 0.00 

17.28 µg/ml SWCNT 95.87a, b 1.30 

34.56 µg/ml SWCNT 96.67a, b 1.20 

69.12 µg/ml SWCNT 94.00b 2.50 

138.24 µg/ml SWCNT 96.00a, b 1.40 

% survival 0 µg/ml SWCNT 97.65 0.94 

8.64 µg/ml SWCNT 100.0 0 

17.28 µg/ml SWCNT 96.76 1.67 

34.56 µg/ml SWCNT 95.45 1.73 

69.12 µg/ml SWCNT 91.90 2.76 

138.24 µg/ml SWCNT 95.17 1.64 

Egg/Adult* 0 µg/ml SWCNT 19.7 3.00 

17.28 µg/ml SWCNT 5.7 2.40 

34.56 µg/ml SWCNT 18.9 3.00 

69.12 µg/ml SWCNT 16.4 4.10 

138.24 µg/ml SWCNT 10.1 2.20 

 

 



 

78 

8: Mean (±SE) conversion ratio (percentage of µg growth for µg food consumption for 

each larva) of DBM feeding on artificial food without or with SWCNTs (8.64 µg/ml and 

17.28 µg/ml) from feeding trial 1. For this trial, conversion (df = 2; F = 7.53 and p = 

0.012) was significantly affected by the presence of SWCNTs in the food. Different 

letters (a- c) represent significant differences in means within a measured variable and 

between control and different SWCNT concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean   

Conversion* 0 µg/ml SWCNT 6.771a 0.142 

8.64 µg/ml SWCNT 5.465b 0.40 

17.28 µg/ml SWCNT 5.466b 0.22 

 

 

9: Mean (±SE) conversion ratio (percentage of µg growth for µg food consumption for 

each larva) of DBMs feeding on artificial food without or with SWCNTs (8.64 µg/ml and 

17.28 µg/ml) from feeding trial 2. For this trial, conversion (df = 2; F = 0.00 and p = 

0.998) wasn’t significantly affected by the presence of SWCNTs in the food. Different 

letters (a- c) represent significant differences in means within a measured variable and 

between control and different SWCNT concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Conversion 0 µg/ml SWCNT 5.994 0.42 

8.64 µg/ml SWCNT 6.007 0.36 

17.28 µg/ml SWCNT 5.970 0.41 
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10: Mean (±SE) conversion ratio (percentage of µg growth for µg food consumption for 

each larva) of DBMs feeding on artificial food without or with SWCNTs (17.28 µg/ml 

and 34.56 µg/ml) from feeding trial 3. For this trial, conversion (df = 2; F = 0.18 and p = 

0.835) wasn’t significantly affected by the presence of SWCNTs in the food. Different 

letters (a- c) represent significant differences in means within a measured variable and 

between control and different SWCNT concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Conversion 0 µg/ml SWCNT 5.544 0.27 

17.28 µg/ml SWCNT 5.471 0.27 

34.56 µg/ml SWCNT 5.326 0.24 

 

 

11: Mean (±SE) conversion ratio (percentage of µg growth for µg food consumption for 

each larva) of DBMs feeding on artificial food without or with SWCNTs (17.28 µg/ml, 

34.56 µg/ml and 69.12 µg/ml) from feeding trial 4. For this trial, conversion (df = 3; F = 

2.2 and p = 0.128) wasn’t significantly affected by the presence of SWCNTs in the food. 

Different letters (a- c) represent significant differences in means within a measured 

variable and between control and different SWCNT concentrations as determined using 

Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Conversion 0 µg/ml SWCNT 7.642 0.27 

17.28 µg/ml SWCNT 8.297 0.12 

34.56 µg/ml SWCNT 8.022 0.22 

69.12 µg/ml SWCNT 7.846 0.17 
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12: Mean (±SE) conversion ratio (percentage of µg growth for µg food consumption for 

each larva) of DBMs feeding on artificial food without or with SWCNTs (34.56 µg/ml, 

69.12 µg/ml and 138.24 µg/ml) from feeding trial 5. For this trial, conversion (df = 3; F = 

11.29 and p ≤ 0.0001) was significantly affected by the presence of SWCNTs in the food. 

Different letters (a- c) represent significant differences in means within a measured 

variable and between control and different SWCNT concentrations as determined using 

Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Conversion*** 0 µg/ml SWCNT 8.948a 0.27 

34.56 µg/ml SWCNT 7.376b, c 0.45 

69.12 µg/ml SWCNT 6.117c 0.38 

138.24 µg/ml SWCNT 7.651a, b 0.29 

 

 

13: Mean (±SE) conversion ratio (percentage of µg growth for µg food consumption for 

each larva) of DBMs feeding on artificial food without or with SWCNTs (138.24 µg/ml) 

from feeding trial 6. For this trial, conversion (df = 1; F = 1.02 and p = 0.342) wasn’t 

significantly affected by the presence of SWCNTs in the food. Different letters (a- c) 

represent significant differences in means within a measured variable and between 

control and different SWCNT concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Conversion 0 µg/ml SWCNT 7.642 0.42 

138.24 µg/ml SWCNT 6.920 0.58 
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14: Mean (±SE) conversion ratio (percentage of µg growth for µg food consumption for 

each larva) of DBMS feeding on artificial food without or with SWCNTs (8.64 µg/ml, 

17.28 µg/ml, 34.56 µg/ml, 69.12 µg/ml and 138.24 µg/ml) from all combined feeding 

trial. Conversion (df = 5; F = 2.33 and p = 0.049) was significantly affected by the 

presence of SWCNTs in the food. Different letters (a- c) represent significant differences 

in means within a measured variable and between control and different SWCNT 

concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Conversion* 0 µg/ml SWCNT 6.986 0.25 

8.64 µg/ml SWCNT 5.736 0.27 

17.28 µg/ml SWCNT 6.238 0.29 

34.56 µg/ml SWCNT 6.492 0.34 

69.12 µg/ml SWCNT 6.982 0.34 

138.24 µg/ml SWCNT 7.285 0.33 
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15: Mean (±SE) consumption, growth, pupation, and survival of DBMs feeding on 

artificial food without or with AgNP (4.32 µg/ml and 8.64 µg/ml) from feeding trial 1. 

For this trial, growth (df = 2; F = 2.70 and p = 0.107), survival (df = 2; F = 1.35 and p = 

0.297) and egg/adult (df = 2; F = 1.34 and p = 0.299) wasn’t significantly affected by the 

presence of AgNPs in the food. Consumption (df = 2; F = 6.28 and p = 0.014) and 

pupation (df = 2; F = 10.00 and p = 0.003) was significantly affected by the presence of 

AgNPs in the food. Different letters (a- c) represent significant differences in means 

within a measured variable and between control and different AgNP concentrations as 

determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Consumption/L/H 

(µg) * 

0 µg/ml AgNP 1462.22a    69.70 

4.32 µg/ml AgNP 1309.96a, b  61.30 

8.64 µg/ml AgNP 1182.54b 27.30 

Growth/L/H (µg) 0 µg/ml AgNP 110.67 2.95 

4.32 µg/ml AgNP 92.90 9.61 

8.64 µg/ml AgNP 87.12 8.13 

% pupation** 0 µg/ml AgNP 100.00a 0.00 

4.32 µg/ml AgNP 100.00a 0.00 

8.64 µg/ml AgNP 90.00b 3.16 

% Survival 0 µg/ml AgNP 98.00 1.33 

4.32 µg/ml AgNP 97.00 2.13 

8.64 µg/ml AgNP 97.64 1.58 

Egg/Adult 0 µg/ml AgNP     19.74 5.69 

4.32 µg/ml AgNP     40.20 10.10 

8.64 µg/ml AgNP     33.43 10.40 
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16: Mean (±SE) consumption, growth, pupation, and survival of DBMs feeding on 

artificial food without or with AgNP (4.32 µg/ml and 8.64 µg/ml) from feeding trial 2. 

For this trial, growth (df = 2; F = 1.25 and p = 0.321), pupation (df = 2; F = 0.50 and p = 

0.619), survival (df = 2; F = 2.25 and p = 0.148) and egg/adult (df = 2; F = 0.00 and p = 

0.997) was not significantly affected by the presence of AgNPs in the food. Consumption 

(df = 2; F = 43.16 and p ≤ 0.0001) was significantly affected by the presence of AgNPs in 

the food. Different letters (a- c) represent significant differences in means within a 

measured variable and between control and different AgNP concentrations as determined 

using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Consumption/L/H 

(µg) * 

0 µg/ml AgNP 1617.5a 24.9 

4.32 µg/ml AgNP 1317.6c 20.6 

8.64 µg/ml AgNP 1456.0b 22.8 

Growth/L/H (µg) 0 µg/ml AgNP 81.41 5.83 

4.32 µg/ml AgNP 68.62 5.60 

8.64 µg/ml AgNP 75.44 5.75 

% pupation 0 µg/ml AgNP 100.00 0.00 

4.32 µg/ml AgNP 98.00 2.00 

8.64 µg/ml AgNP 98.00 2.00 

% survival 0 µg/ml AgNP 96.0 2.45 

4.32 µg/ml AgNP 100.0 0.0 

8.64 µg/ml AgNP 95.28 2.90 

Egg/Adult 0 µg/ml AgNP 29.52 7.65 

4.32 µg/ml AgNP 28.91 3.70 

8.64 µg/ml AgNP 29.32 5.00 

 

 



 

84 

 

17: Mean (±SE) consumption, growth, pupation, and survival of DBMs feeding on 

artificial food without or with AgNP (4.32 µg/ml and 8.64 µg/ml) from all combined 

feeding trial. Growth (df = 2; F = 2.19 and p = 0.131), % survival (df = 2; F = 0.09 and p 

= 0.917) and egg/adult (df = 2; F = 0.93 and p = 0.405) was not significantly affected by 

the presence of AgNPs in the food. Consumption (df = 2; F = 9.64 and p = 0.001) and 

pupation (df = 2; F = 5.26 and p = 0.012) was significantly affected by the presence of 

AgNPs in the food. Different letters (a- c) represent significant differences in means 

within a measured variable and between control and different AgNP concentrations as 

determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Consumption/L/H (µg) 

** 

0 µg/ml AgNP 1539.9a 43.50 

4.32 µg/ml AgNP 1313.8 b 30.50 

8.64 µg/ml AgNP 1319.3b 48.60 

Growth/L/H (µg) 0 µg/ml AgNP 96.04 5.77 

4.32 µg/ml AgNP 80.76 6.62  

8.64 µg/ml AgNP 81.28 5.08 

% pupation* 0 µg/ml AgNP 100.00a 0.00 

4.32 µg/ml AgNP 99.00a 1.00 

8.64 µg/ml AgNP 94.00b 2.21 

% survival 0 µg/ml AgNP 100.0 0.0 

4.32 µg/ml AgNP 94.0 4.0 

8.64 µg/ml AgNP 100.0 0.0 

Egg/Adult 0 µg/ml AgNP 24.63 4.78 

4.32 µg/ml AgNP 34.56 5.43 

8.64 µg/ml AgNP 31.37 5.50 
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18: Mean (±SE) conversion ratio (percentage of µg growth for µg food consumption for 

each larva) of DBMs feeding on artificial food without or with AgNP (4.32 µg/ml and 

8.64 µg/ml) from feeding trial 1. For this trial, conversion (df = 2; F = 0.23 and p = 

0.798) wasn’t significantly affected by the presence of AgNPs in the food. Different 

letters (a- c) represent significant differences in means within a measured variable and 

between control and different AgNP concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Conversion 0 µg/ml AgNP 7.64 0.42 

4.32 µg/ml AgNP 7.10 0.71 

8.64 µg/ml AgNP 7.32 0.54 

 

 

19: Mean (±SE) conversion ratio (percentage of µg growth for µg food consumption for 

each larva) of DBMs feeding on artificial food without or with AgNPs (4.32 µg/ml and 

8.64 µg/ml) from feeding trial 2. For this trial, conversion (df = 2; F = 0.08 and p = 

0.927) wasn’t significantly affected by the presence of AgNPs in the food. Different 

letters (a- c) represent significant differences in means within a measured variable and 

between control and different AgNP concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Conversion 0 µg/ml AgNP 5.02 0.31 

4.32 µg/ml AgNP 5.23 0.48 

8.64 µg/ml AgNP 5.18 0.38 
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20: Mean (±SE) conversion ratio (percentage of µg growth for µg food consumption for 

each larva) of DBMs feeding on artificial food without or with AgNP (4.32 µg/ml and 

8.64 µg/ml) from all combined feeding trial. Conversion (df = 2; F = 0.03 and p = 0.972) 

wasn’t significantly affected by the presence of AgNPs in the food. Different letters (a- c) 

represent significant differences in means within a measured variable and between 

control and different AgNP concentrations as determined using Tukey’s test. 

 

Variable Treatment Mean SE Mean 

Conversion 0 µg/ml AgNP 6.33 0.50 

4.32 µg/ml AgNP 6.16 0.51 

8.64 µg/ml AgNP 6.25 0.47 

 

 

21: Mean (±SE) gene expression of CYP6BG1 of DBMs feeding on artificial food 

without or with SWCNT (138.24 µg/ml) and AgNP (4.32 µg/ml and 8.64 µg/ml) from 

feeding trial 6 and 1. Gene expression (df = 3; F = 1.43 and p = 0.252) wasn’t 

significantly affected by the presence of SWCNT and AgNP in the food.  

 

Variable Treatment Mean SE Mean 

Fold change of 

gene  

0 µg/ml  1.0 0.0 

138.24 µg/ml SWCNT 1.43 0.47 

4.32 µg/ml AgNP 2.53 0.76 

8.64 µg/ml AgNP 1.44 0.62 
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22: Larval growth (µg) along with time for trial 1 for control and different SWCNT 

concentration food. 
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23: Larval growth (µg) along with time for trial 2 for control and different SWCNT 

concentration food 



 

88 

T3

Hour

0 10 20 30 40 50 60 70

u
g

 g
ro

w
th

/la
rv

a

1

2

3

4

5

6

7

8

9

0 ug/ml

17.28 ug/ml

34.56 ug/ml

 

24: Larval growth (µg) along with time for trial 3 for control and different SWCNT 

concentration food 
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25: Larval growth (µg) along with time for trial 4 for control and different SWCNT 

concentration food 
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26: Larval growth (µg) along with time for trial 5 for control and different SWCNT 

concentration food 
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27: Larval growth (µg) along with time for trial 6 for control and different SWCNT 

concentration food 
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28: Standard curve for reference gene RPL 32 

 

 

 

29: Standard curve for target gene CYP6BG1 
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