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ABSTRACT 

Captive culture of Unionoid mussels is complicated by the parasitic larval stage, which 

normally requires a host fish for metamorphosis.  Alternatively, some mussel species can 

metamorphose in vitro, i.e. in an artificial medium in Petri dishes.  Most workers have 

used 5% CO2 atmosphere and bicarbonate to stabilize pH, requiring a specialized 

incubator.  In the present study, in vitro metamorphosis success of Anodonta oregonensis 

and other species were higher or similar in air than in 1%, or 5% CO2.  The nutritional 

role of the medium was tested by substituting physiological saline without nutrients at 

varying intervals before metamorphosis was complete. Pyganodon grandis 

metamorphosed without external nutrition during more than half of the incubation period, 

suggesting that development, once triggered, can continue largely on internal reserves.  

Post-metamorphic growth rates of P. grandis from medium, from saline, and from host 

fish were similar.  Previous studies indicate that species which grow substantially during 

metamorphosis are unsuccessful in vitro.  It was hypothesized that higher nutrient use by 

these species might result in local diffusion-limited depletion of the growth medium, 

which might be alleviated by circulation. However, initial attempts to metamorphose 

Leptodea fragilis glochidia in media circulated by a slow rocker system were 

unsuccessful. 
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INTRODUCTION 

 

Freshwater mussels (Unionoida) are unique organisms that live unobtrusively in 

the substrate of rivers and lakes. To the casual observer these living rocks appear to be 

nothing more than a dirty shell, but these inconspicuous invertebrates contain much more 

than meets the eye. Mussels hold both historical and ecological significance for the 

freshwater ecosystems of the world, serving as a crucial trophic link between the water 

column and the benthos (Vaughn & Hakenkamp, 2001). The North American mussel 

fauna is of specific concern due to conservation status (Lydeard et. al., 2004). More than 

2/3 of the 297 described species of North American freshwater mussels are classified as 

endangered, threatened, or of special concern (Williams et. al., 1993). Ancient, formerly 

stable mussel populations throughout North America have been plummeting in the last 

century.  The causes for this decline are complex, but all are anthropogenic at their 

source. Pollution, damming, and nonindigenous mussel introductions are a few of the 

factors responsible for the deterioration of mussel populations (Williams et. al., 1993). 

 

Life History of Freshwater Mussels  

The life cycle of freshwater mussels makes them sensitive to many changes 

people have made to fluvial systems. The Order Unionoida is unique among bivalves in 

having parasitic larvae. Males release sperm into the water column that are then filtered 

out by females and used to fertilize thousands of eggs. The zygotes are then stored in 

marsupial portions of the hollow ctenidia (mussel gills) as they develop into the glochidia 

larvae (Wächtler et. al., 2000).  Glochidia are obligate parasites on fish or amphibians.  
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They are released from the female and attach, by closing their valves, on host gills or skin 

where they become encapsulated.  

The symbiotic relationship between fish and mussels has evolved over the course 

of 200 million years, resulting in complex mussel- host relationships (Watters, 2000).  

The impressive diversification of the North American taxa has been driven by adaptations 

that attract host fish, including many forms of mimicry of host prey by mantle lures and 

conglutinates.  These adaptations act to limit the taxonomic range to that of the fish that 

glochidia encounter (Haag & Warren, 2003) and probably thereby facilitate the evolution 

of host specificity (Dodd et. al., 2005; Barnhart et. al., 2008). Host specificity varies, but 

most mussels can use only one or a few closely related species of host to complete 

metamorphosis (Isom & Hudson, 1984; Eckert, 2003).  

 Glochidia are morphologically simple bivalves with a single adductor muscle.  

Their function is to close when they contact host tissue, gripping gill or fin tissue between 

the shell valves (Hoggarth, 1999).  Glochidia can be triggered to close by both 

mechanical and chemical cues. The glochidia that are successful in attachment will 

become encapsulated by a migration of host epithelial cells, called keratocytes (Rogers-

Lowery & Dimock, 2006). Encapsulation can occur within as little as 4 hours of 

glochidium attachment (Arey 1932a). The ensuing parasitic period varies among mussel 

taxa from days to months (Arey, 1932b; Kat, 1984; Barnhart et.al., 2008). During the 

parasitic period, glochidia undergo metamorphosis into juvenile mussels, capable of 

independent existence.  Following excapsulation from their hosts, juvenile mussels settle 

in the substrate and thereafter live independently feeding on bacteria, algae, and fine 

particulate organic material (FPOM) (Neves & Widlak, 1987).   
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Glochidium morphology and size vary tremendously among species and reflect 

the dispersal and attachment strategies of the different species (Hoggarth, 1999; Barnhart 

et. al., 2008).  North American glochidia of the family Unionidae can be placed into three 

morphological groups: Hooked subtriangular, unhooked semi-elliptical, and axe-head 

(Lefevre, 1910; Wächtler et. al., 2000).  These three types are associated with the 

subfamily Unioninae, most of the subfamily Ambleminae, and the genus Potamilus, 

respectively (Hoggarth 1999).   Hooked glochidia are generally large (300-380µm) and 

typically attach to fins or other exposed epithelium on the host fish. Semi-elliptical 

unhooked glochidia are smaller in size (60-280µm) and typically attach to gills. Axe-

headed glochidia have an elongated axe or adze-shape and are usually large (Graf, 2006; 

Lefevre, 1910; Barnhart et. al., 2008).  

 

Glochidia Development 

Most mussel larvae do not grow during encapsulation. However, taxa with 

unusually small larvae, including Margaritifera, Leptodea, Truncilla and some Quadrula 

species, grow 25-100 times in mass while encapsulated (Barnhart et. al., 2008). It is 

therefore clear that these larvae must derive nutrition from their hosts (Denic et. al., 

2015).    However, there is evidence that, even in the absence of growth in linear 

dimensions, glochidia derive nutrition from the host (Fritts et. al., 2013; Denic et. al., 

2015). Glochidia of Lampsilis cardium do not grow, but showed significant shifts in δ13C 

and δ15N of glochidia, toward the isotope ratios characteristic of the fish host, after 

metamorphosis.  Comparison of the δ15N of juveniles, glochidia and fish host suggested 

that 57.4% of juvenile nitrogen content could be sourced to the host fish (Fritts et. al., 
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2013). The route of nutrient uptake may be via pores that can be observed in the 

glochidium shell (Fisher & Dimock 2002a).  Secretory granules observed in several 

studies during the early stages of metamorphosis suggest that extracellular digestion of 

host tissue may occur (Fisher & Dimock, 2002a; Scharsack, 1994; Mathers, 1972, 1973).    

Chester Blystad (1923) was among the first to study the development of Anodonta 

glochidia. He proposed three stages of development: encapsulation (or encystment), 

mushroom body formation, and juvenile structure formation. Juvenile structures include 

the ctenidia, paired adductor muscles, and foot.  More recently, Fisher and Dimock 

(2002a) described two stages of glochidia development in Utterbackia imbecillis.  Stage 

1 includes breakdown of the larval adductor muscle along with the formation of the 

mushroom body from the mantle cells during days 3-4 of metamorphosis. Stage 2 

involves the generation of juvenile mussel structures including the two separate adductor 

mussels, the digestive glands, gills, nerves and foot. The mushroom bodies described by 

these workers are formed as outgrowths of the larval mantle on both sides. They remain 

throughout the parasitic period, only disappearing one day after the complete 

metamorphosis.  The cells that make up the mushroom body show structural similarities 

to the digestive gland cells of adult mussels, and it has been suggested that the mushroom 

body may be instrumental in energy storage and the digestion of the larval adductor 

muscle and fish host tissues trapped between the shell of the glochidium (Fisher and 

Dimock 2002b).    
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Propagation 

Work to propagate and culture freshwater mussels has been ongoing for over 100 

years. Around the year 1886 an experienced German button cutter named J. F. Boepple 

came to the Mississippi River basin in search of North American mussels, a resource that 

he believed would support the growth of an industry. Mussel harvest on an industrial 

scale began as early as 1889 resulting in millions of mussels extracted from the rivers of 

the Mississippi basin (Pritchard 2001). The uncontrolled exploitation of freshwater 

mussels for shell was exacerbated when competition made it profitable to produce only 

the highest quality buttons. This meant that fewer buttons could be punched out of one 

shell and lead to an even faster pace of harvest.  

By the year 1899, declines in mussel populations were widely recognized.  

However, work to conserve the resource did not begin until 1914 with the opening of the 

U.S. Bureau of Fisheries’ Biological Station at Fairport, Iowa (Coker, 1916; Pritchard, 

2001). Mussel propagation and culture was attempted in order to sustain the button 

industry. As a result, many advances in the knowledge of the basic biology of Unionida 

were made. Unfortunately, financial support for scientific interest in mussels dried up 

with the decline of the mussel industry. After lying fallow for decades, interest and 

research on mussels underwent resurgence with the enactment of the U.S. Endangered 

Species Act of 1973 (Pritchard, 2001).  The conservation of endangered species provided 

a new source of motivation and funding for research into the biology of Unionida and 

into captive culture for research and population restoration.   

  Mussel propagation has been a particularly arduous task due to the parasitic life 

cycle of Unionida.  However, great progress has been made over the last four decades 
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with advances in knowledge of fish hosts and technical advances in handling and grow-

out of juveniles (reviewed by Haag, 2012). Today, propagation has become an important 

part of conservation efforts aimed at preventing further declines and extinctions of 

freshwater mussel species. Propagation is used both for population restoration and to 

provide subjects for toxicology and life history investigations. Nonetheless, glochidia 

metamorphosis and early juvenile culture remain bottlenecks of most propagation efforts. 

Metamorphosis In Vivo on Fish Hosts. The earliest efforts at artificially 

propagating mussels on fish hosts (in vivo metamorphosis) began around 1899 at the 

University of Missouri when Winterton C. Curtis attempted artificially infest carp with 

Anodonta and Lasmigona. The biggest advances in mussel culture came when the 

charismatic George Lefevre began working with Curtis at the University of Missouri and 

later the Fairport Biological station from 1908 to 1914 (Pritchard, 2001). Further progress 

was made by Robert E. Coker as the director of the Fairport Biological Station in the late 

1920s (Pritchard 2001).  These early efforts were focused on producing mussels on an 

industrial scale by artificially infesting fish with glochidia. Large groups of fish captured 

by seining from flood backwaters were placed in tanks with glochidia extracted from 

gravid females.  After the glochidia attached, the fish were released in the main body of a 

river with the expectation that the glochidia could complete their life cycle naturally with 

this simple assistance (Coker et. al., 1921).  

In vivo metamorphosis on fish hosts is still the predominant propagation method 

today.  Modern techniques focus on efficient use of hosts and glochidia and on accurate 

measures of metamorphosis success. The number of glochidia is quantified and the 

intensity of the infection adjusted to an efficient level (Barnhart, 2002). The infested fish 
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are then housed in specialized recirculating aquarium systems to collect juveniles 

(Barnhart, 2003; Dodd et. al., 2005).  These systems allow efficient use of host fish and 

glochidia, which is important when working with rare mussel species.   

In vivo metamorphosis works best for mussel species that utilize a robust and 

easily accessible fish host such as largemouth bass, catfish, or trout.  However, in cases 

where the host fish are small, rare, or hard to house this method is particularly 

challenging. For example, the California floater (Anodonta californiensis) uses Three-

spined Stickleback (Gasterosteus aculeatus) as their host. These fish are only 3-4 cm in 

length and are highly aggressive so that they must be isolated from one another. An over-

infestation of glochidia can cause the fish host to die before the transformation is 

complete. One Three-spined Stickleback produces only around 50 juveniles (E. Glidewell 

and M. C. Barnhart personal communication). Minnows and darters have also been a 

challenge to use in this method as they are similarly small, sensitive to stress and must be 

collected in the wild.  

A second problem with in vivo metamorphosis is that fish that are effective 

physiological hosts for juvenile production may not be the ecological hosts that the 

mussel would normally use in nature (Levine, 2009).  Hypothetically, mussels that use 

multiple host species might be genetically polymorphic, with some individuals suited for 

one host over another.  If so, artificial selection might occur during captive propagation, 

producing individuals that are suited for the production host rather than the ecological 

host.  This is particularly concerning with rare mussel species, as any selected types 

introduced into a natural population would likely outnumber the native genotypes. Other 
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challenges that surround in vivo methods include; the space required to adequately house 

the fish host, ability to treat various fish diseases, and acquiring hosts. 

 In Vitro Metamorphosis. Max Mapes Ellis, a physiologist at the University of 

Missouri, School of Medicine began to work at the Fairport Biological Station in 1925.  

In 1926, Ellis published a note in Science magazine where he claimed to have developed 

an artificial method of propagating freshwater mussels without a host.  Ellis was 

attempting to create a controlled environment where glochidia development could be 

better studied (Ellis, 1926). This early work involved removing encapsulated Lampsilis. 

fallaciosa glochidia from its host fish Lepisosteus platostomus after encystment periods 

of 18 and 96 hours, and placing them in an undescribed nutrient solution. The mussels 

reared in the best solution had survival rates similar to controls that were left on the fish 

gills (Ellis, 1926). Shortly after this publication, Ellis claimed that he could transform 

glochidia taken directly from a brooding female mussel rather than a host fish. He began 

developing a device that housed the nutrient solution he had developed and would be able 

to yield, in his estimation, millions of juvenile mussels. He also claimed to have devised a 

method of sterilizing glochidia to reduce the loss due to microorganism infection.   

Archival evidence suggests that Ellis did produce juveniles; however, no pictures, 

diagrams, or recipes for the artificial culture medium survived (Pritchard, 2001). Mussels 

at that time were big business, and Ellis might have feared that his work would be stolen 

by commercial parties. In 1942, the US Bureau of Fisheries stopped funding Ellis’ mussel 

propagation work possibly due in part to Ellis’ reluctance to document his methods.  All 

detailed knowledge of the artificial propagation technique was lost when Ellis died in 

1953. 
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In the 1980s, Billy G. Isom and Robert G. Hudson began to reexamine Ellis’s 

work and developed their own culture medium allowing for the metamorphosis of 

glochidia without the fish host. This culture medium included physiological salts; amino 

acids, dextrose, antibiotics (carbenicillin, gentamicin sulfate, and rifampin), antimycotic 

(amphotericin B), and fish blood plasma (Isom & Hudson, 1982).  Fish blood plasma was 

identified as a critical medium component without which metamorphosis would not 

begin.  Isom and Hudson (1984) later reported that the species of fish plasma used was 

not important, but that use of bovine and fetal bovine serum was unsuccessful.   Keller 

and Zam (1990) tested several commercially available sera and other protein sources, 

including neonatal calf serum, horse serum, salmon liver, fish plasma, rabbit pancreas, 

and casein. They found that both neonatal calf serum and horse serum provided higher 

mean percentage transformation than the fish plasma.  Successful use of mammalian sera 

was also confirmed by Hudson and Shelbourne (1990).   

The number one problem plaguing in vitro culture is contamination of culture 

dishes by bacteria or fungus. It is very difficult to isolate glochidia free from 

microorganisms.  Therefore, antibiotic and antimycotic components are needed to 

minimize growth of contaminant organisms.  The original mix of carbenicillin, 

gentamicin sulfate, rifampin, and amphotericin B, as well as a mix of penicillin, 

streptomycin and amphotericin B have been effective (Loveless et. al., 1999). However, 

both penicillin and amphotocerin B are potentially toxic to glochidia (Owen, 2009).  

Comparisons of juveniles metamorphosed in vitro and in vivo found that in vitro 

juveniles had lower levels of triglycerides and cholesterol that might be an effect of 

amphotericin B (Fisher & Dimock, 2006).   
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Useful improvements were developed by Owen (2009, 2010).  These include 

frequent (2-day) medium changes, lowered concentration of amphotericin B, and added a 

lipid supplement- menhaden oil following the suggestions of Tankersley (2000).  Owen 

found that mixing serum, menhaden oil, and rifampicin improved incorporation of these 

components into the mixture.  

Early versions of the in vitro method adopted the high bicarbonate and high CO2 

(5%) concentrations used for mammalian cell culture (Isom & Hudson, 1982; Keller & 

Zam, 1990).  The high PCO2 and high bicarbonate concentrations used in mammalian cell 

culture reflect the physiological condition of mammal body fluids.  CO2 and bicarbonate 

are in equilibrium according to the Henderson-Hasselbach equation:   

pH = pK’ + log ([HCO3-]/ S*PCO2)  

where pK’ is the first dissociation constant of carbonic acid, and S is the solubility of 

CO2.  The CO2-bicarbonate system acts to buffer pH because CO2 is volatile and PCO2 is 

held constant by equilibrium with the atmosphere to which the culture medium is 

exposed.  As acid or base equivalents are added by metabolism, the change in pH is less 

because of conversion of bicarbonate to or from CO2.  However, the levels of CO2 and 

bicarbonate used in cell culture are much higher than would normally occur in fish or 

mussels, because aquatic organisms operate at much lower PCO2 and bicarbonate levels 

than mammals.  Keller and Zam (1990) recognized the potential convenience of culturing 

glochidia in medium equilibrated with air.  They compared transformation success of 

Utterbackia imbecillis in 5% CO2 and in air, and with the use of organic buffer systems 

(HEPES and MOPS).  The results were equivocal, but in some tests, equivalent success 

was obtained with air, and they recommended further testing (Keller & Zam 1990). There 
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has been a recent change in common culture practices that results in reduced NaHCO3 

and CO2 (to 1%) despite the establishment of 5% CO2 as the optimal value by Isom and 

Hudson (1982) and Hudson and Shelborne (1990).  

 

Goal and Objectives 

The overall goal for this study is to simplify and improve the efficacy of in vitro 

propagation methods, and to extend the method to a wider variety of species than 

previously tested.  The specific objectives are as follows:  

 The pH of the culture medium is an important variable.  The typical approach to 

in vitro metamorphosis requires a CO2 incubator and presents non-physiological 

conditions because fish regulate much lower levels of CO2 and bicarbonate than 

mammals (Dejours, 1981).  Therefore, tests were conducted using 5%, 1%, and 0.04% 

CO2 (ambient air) to develop a low CO2 approach.   

 Metamorphosis is a developmental process and the time to completion depends on 

species, temperature, and probably other variables.  Glochidia that attached to the host at 

the same time may exit the host fish over a period of several days or even weeks.  In the 

in vitro method, a decision must be made when to transfer all of larvae from the medium 

to water.  Experiments to test effects of duration of incubation on success of 

metamorphosis were completed.  Additionally, morphological and behavioral signs that 

indicated completion of metamorphosis were identified.  

 Lebovitz’s L-15 medium is an alternative to M199 that utilizes phosphates and 

free base amino acids instead of sodium bicarbonate to balance the pH of the solution and 
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is commonly used in the culture of fish cells. This alternative medium was tested to 

determine if it would increase metamorphosis success.  

 Blood serum is consistently cited as one of the most essential components of the 

culture medium. It is a source of protein and perhaps other factors affecting growth. 

Several studies compared results using sera from different vertebrates and rabbit serum 

generally gives good results (Keller & Zam, 1990; Hudson & Shelborne, 1990; Isom & 

Hudson, 1984; Owen, 2009; Owen et. al., 2010) Rabbit serum from two different 

manufacturers was tested to determine if both were equally suitable, because supplies are 

sometimes inconsistent. 

 The importance of nutrition from the fish host or culture medium during 

metamorphosis is unclear and may vary among species.  At least one species, Lasmigona 

subviridis, is capable of direct development within the egg (Barfield & Watters, 1998; 

Lellis & King, 1998).  A test was performed with Pyganodon grandis, in which the 

nutrient medium was replaced with physiological saline during development to determine 

if development, once initiated, can continue without continued nutrition.  

 The glochidia of most mussel species do not grow during encapsulation on their 

fish hosts.  However, several genera with unusually small glochidia (Truncilla, Leptodea, 

Margaritifera, Cumberlandia) and one with oddly shaped glochidia (Potamilus) grow 

substantially during encapsulation (Barnhart et. al., 2008). Glochidia resting in a dish, in 

static, liquid medium, might experience local nutrient depletion. Therefore, the effect of 

agitating the medium during incubation was tested, using Leptodea leptodon, a species 

that grows during metamorphosis. 



 

13 

METHODS 

 

Mussel Collection and Care 

Brooding females were obtained from wild populations. The species tested 

included Anodonta oregonensis, Anodonta californiensis, Pyganodon grandis, 

Utterbackia imbecillis, and Lampsilis siliquoidea (Table 1). The species tested were all 

long-term brooders that normally carry mature glochidia during the winter months for 

release in the spring.  Mussels were collected by Missouri State University staff or by 

collaborators and shipped to Missouri State University, where they were housed unfed in 

a temperature-controlled recirculating aquarium system at 10°C until use.  Water used for 

housing females was filtered (5 µm) James River water collected from Creighton Access.  

Water chemistry (ammonia, pH, hardness) was monitored and maintained with regular 

water changes.   

Glochidia were extracted from females just before placing the larvae into culture 

dishes.  Several approaches were used during extraction to minimize contamination of the 

glochidia with bacteria and fungi.  Female shells were washed with dilute bleach, taking 

care to avoid contact of bleach with the mantle margin.  Washed females were then 

placed in 1-2 changes of sterile-filtered (0.45µm) water for up to an hour, to allow the 

marsupia to perfuse with clean water.  Glochidia in most cases were extracted from the 

female gill by injecting the marsupia with sterile-filtered water from a syringe to flush out 

the larvae.  In some tests, the female was sacrificed and entire marsupial gills were 

dissected out into sterile-filtered culture medium.  The isolated gills continued to perfuse, 

so that glochidia closed while still within the gill.  This procedure seemed to reduce the 
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proportion of larvae that closed on other larvae.  For a few species, glochidia were 

collected after natural release from the female.  Isolated glochidia were rinsed 1-3 times 

in sterile filtered water after extraction and before placing into culture dishes. 

 

Media Preparation 

 Medium was mixed according to recommendations of Christopher Owen (2009, 

2010, and personal communication) (Appendix A). Ingredients were stored frozen          

(-80°C) or refrigerated (3-5°C) according to product recommendations.  Ingredients were 

kept on ice while preparing solutions. Glassware and other items used were sterile-

packaged or were rinsed with 95% ethanol and sterile-filtered water before use. Mixing 

procedure was as follows: 

1) M199 medium.  Add 100 grams of the dry powder to 900ml of sterile DI water.  Mix 

and then fill to final volume of 1000ml. 

 

2) Titrate using CaOH to pH 7.6.  

3) Add the following ingredients (no specific order): 70mg L-alanine, 20mg L-ornithine, 

40mg L-proline, 80mg taurine, 20mg L-threonine, 1ml EAA mixture, 1ml NEAA 

mixture, 1ml MEM vitamin mixture, 2.25g D-galactose, 2g glucose, 1ml lipid 

mixture 1, 100mg Sodium pyruvate, 150mg Gentamicin, 150mg Carbenicillin, and 

1.5ml Amphotericin B solution.  

 

4) Stir until all components are in solution, and NaOH is used to titrate the mixture to 

achieve a pH of 7.65 at 22°C. 

 

5) Serum solution.  In a separate 1000 ml flask, mix 500ml of thawed rabbit serum, 1ml 

menhaden oil and 150mg Rifampicin.   

 

6) Add the serum solution to the M199 solution while stirring.  

7) Store the complete medium in 50ml aliquots at -80 °C to be thawed as needed.   
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Loading Culture Dishes   

Culture was carried out in 3-inch (6 x 1.5 cm) polystyrene Petri dishes (Fisher 

AS402).  Transfers of medium and larvae into dishes were carried out under a class II, 

type A2 biological safety cabinet (Model no. NU-425-300).  Each dish was loaded with 5 

ml of medium.  Medium was added to each dish from a 60 ml syringe through a sterile 

0.45µm syringe filter (Fisher: SCHA033SS).   Each dish was loaded with approximately 

100-300 glochidia.  Larvae were transferred using sterile transfer pipettes (Fisher 13-711-

20, 1 ml).  It was important to minimize the volume of water transferred into the medium 

when adding glochidia to the culture dish.  This was accomplished by drawing 

approximately 100-300 larvae into the transfer pipette, then holding the pipette vertically 

to allow the glochidia to drift to the tip before dispensing.  This procedure minimized the 

volume of suspension added to the medium. 

The medium in each dish was changed every other day. Approximately 3ml of 

medium was removed and 3ml were added to each dish during each change. Records 

were kept of dishes that became infected at any point during incubation.  If a dish became 

infected the following actions were taken depending on the severity of the contamination. 

For a light infection, the foreign growth and all medium was removed from the dish and 

replaced with 5ml of fresh sterile medium. If the foreign growth could not be removed, or 

if the dish had been previously treated, the healthy glochidia were removed, rinsed 3 

times with sterile medium, and placed into a new sterile dish.   

Culture dishes were stored in glass boxes with tight fitting lids.  The boxes were 

either unventilated or ventilated with sterile-filtered air or gas mixtures.  Incubation 

temperature was 21-22˚C. 
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Judging Survival, Metamorphosis and Growth 

Photographs were taken of each dish of glochidia after loading the culture dishes 

and before each medium change.  The photos were taken through the transparent lid 

(without opening the dish) on top of a light box using a Canon Eos Rebel T3i camera 

with a Canon Macro lens EF-S 60mm mounted to a copy stand. Photos were taken using 

the Eos Utility and were examined to determine the number of open and closed 

individuals and anatomical features.  In some cases, maximum length was measured from 

photos using Image J software.    

The survivorship of glochidia and larvae was determined at 3 times during 

experiments.  First, initial viability of the glochidia (L0) was determined as the percent of 

glochidia that closed when initially exposed to the culture medium.  Second, the 

percentage of glochidia that survived during in vitro culture (LIV) was measured as the 

percent of individuals that remained closed at the end. Dead larvae usually open because 

the elastic ligament of the shell opens the valves if not opposed by the adductor muscle.  

Lastly, the percent survival of juveniles in water (LW) was measured 1-4 days after 

transfer to river water.  Survival in water was judged by foot movement.  Each of these 

survival counts was calculated as a percent of the previous count.  That is, LIV was 

calculated based on viable glochidia (L0) and LW was calculated based on those that had 

survived in vitro (LIV)   

During each medium change, reasonable attempts were made to insure that no 

glochidia live or dead were removed with the extracted media; however, some may have 

been lost. Some transfer loss of individuals was also possible during the transition of 
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glochidia to filtered river water from culture media. If a dish was infected, the likelihood 

of transfer loss was higher as it was deemed more beneficial to remove live or dead 

glochidia that were in direct contact with the contaminating growth. Any time glochidia 

were transferred to a new dish there was risk of transfer loss, glochidia can end up stuck 

to the side of a transfer pipette if it is not carefully inspected.  By comparing numbers 

between counts, these losses were estimated to be less than 3%.   

  

Experiments  

 Three experiments were conducted to test effects of CO2 level on metamorphosis 

success.  In these experiments, the dishes were exposed to filtered air or air+CO2 

mixtures.  The treatment groups of dishes were placed in glass boxes with fitted plastic 

lids (Figure 1).  They were ventilated with treatment gas at about 100 ml/minute via a 

connection attached to the lid.  The lids were tight fitting but vented the gases under 

slight positive pressure.  Gas samples drawn from the boxes by syringe were analyzed 

with an infrared CO2 analyzer to confirm the test gas concentrations. Before dispensing to 

dishes, the medium was equilibrated with the gas mixture for 1-4 hours by vigorous 

stirring in a ventilated Erlenmeyer flask.  The medium was then titrated using NaOH to a 

pH of 7.65 while continuing stirring with the gas.  Medium was considered to be 

equilibrated if the pH held steady for 30 min at the atmospheric CO2 of the treatment. 

In experiment #1 on the Effect of Atmospheric CO2 Levels, there were 2 

treatments, air or 1% CO2.  The CO2 mixture was prepared using a Matheson 

DynaBlender® gas mixing system and an infrared CO2 analyzer.  In each treatment 

group, there were 17 dishes of glochidia, randomly chosen, from a single Anodonta 
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californiensis female. L0 was calculated within 4 hours of introduction to medium. LIV 

was calculated on the 8th day in media. LW was calculated after 24hrs in river water for a 

random selection of five dishes in each treatment.  ANOVA was used to compare LIV and 

LW of air (0.04% CO2) and 1% CO2. 

 In experiment #2 on the Effect of Atmospheric CO2 Levels, there were two 

treatments, air or 1% CO2, similar to experiment #1. In each treatment group, there were 

17 dishes of glochidia loaded with glochidia from a single Utterbackia imbecillis female. 

L0 was calculated within 4 hours of introduction to medium. LIV was calculated on the 8th 

day in media.  ANOVA was used to determine differences between the LIV in air and 1% 

CO2. 

 In experiment #3 on the Effect of Atmospheric CO2 Levels, there were three 

treatments, air, 1% CO2, and 5% CO2.  The CO2 mixtures were delivered from 

commercial mixed gas cylinders. In each treatment group, there were 12 dishes of 

glochidia, with four dishes randomly chosen from each of three Anodonta oregonensis 

females. One day after the appearance of the adductor muscles, LIV was calculated and 

juveniles were moved into 5um filtered river water after being rinsed. LW counts were 

taken after 24hrs unfed in river water. ANOVA was used to compare LW among the 

treatments and among females.     

  In the experiment Lebovitz versus M199, there were two treatments, Leibovitz L-

15 and M199 medium, incubated in air (no added CO2).  In each treatment group, there 

was a total of 12 dishes of glochidia, with 4 dishes, randomly chosen, from each of three 

Anodonta oregonensis females. Medium was mixed for this experiment using the same 

recipe; the only substitution was the Lebovitz (Appendix B) for M199 (Appendix C) 
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according to the recommendations on the label for mixing 1L of medium. One day after 

the appearance of the adductor muscles, LIV was calculated and juveniles were moved 

into 5um filtered river water after being rinsed. LW counts were taken after 24-48hrs 

unfed in river water. An ANOVA was used to determine if there was a difference in LW 

between the treatments. 

 In the experiment Commercial Sera Source, the treatments were media made with 

rabbit serum from two different commercial sources, Gibco and IMB.  In each treatment 

group, there were a total of 12 dishes of glochidia, with 4 dishes, randomly chosen from 

each of three Lampsilis siliquoidea females.  A single batch of medium was mixed 

through Step 4, and then divided in half before adding serum.  One day after the 

appearance of the adductor muscles, LIV was calculated and juveniles were moved into 5 

µm filtered river water after being rinsed. LW counts were taken after 24-48 hours, unfed, 

in river water. ANOVA was used to compare LW between a) treatments and b) infection 

during incubation on LW. 

 In the experiment Duration of Incubation, the treatments were duration of 

incubation in medium before transfer to water. 39 dishes were loaded with glochidia from 

a single Anodonta oregonensis female and incubated in filtered air. Three dishes were 

randomly chosen for transfer to water at selected time intervals. L0 was calculated within 

4 hours of introducing the glochidia to medium. Dishes were removed at intervals that 

became more frequent after 6 days in media corresponding with an observation of the 

complete absorption of the larval adductor (stage 2 of development).  Records of dishes 

that became infected at any point during incubation were kept. LIV of each group was 
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calculated on the last day in media.  LW was calculated after 4 days in filtered river water. 

ANOVA was used to test effects of the duration of incubation in medium.  

 In the experiment Duration in Saline, culture medium was replaced by saline 

(Appendix D) during metamorphosis of Pyganodon grandis glochidia.  48 dishes were 

loaded with glochidia from a single Pyganodon grandis female and incubated in filtered 

air.  Treatments consisted of substituting saline for medium in groups of four dishes, 

randomly chosen, at time intervals of 0, 1, 24, 48 72, 96, 120, 144, 168, 192, 216, and 

240 hours.   LIV was calculated on the 8th day, before transfer to 5um filtered river water.  

LW was calculated after 3 days in water.  ANOVA was used to compare among treatment 

groups. 

 For Long-term Culture Between In Vitro & In Vivo, Pyganodon grandis juveniles 

from the saline experiment above were cultured to determine long-term survival and 

growth.  The four replicates were pooled within each saline treatment and then divided 

into 2 replicates per treatment for grow out.  The replicate groups were kept in separate 

containers in the culture system.  Additionally, a cohort of in vivo metamorphosed 

juveniles was cultured for comparison.  These in vivo juveniles were derived from the 

same pool of glochidia and were metamorphosed on host fish (Betta splendens).  Eight 

replicate in vivo groups (~ 34 individuals per group) were cultured.  After 5 months of 

culture, replicates were pooled by treatment and survival and growth was recorded for 

each treatment. ANOVA was used to compare among culture methods.    

 In the experiment Effect of Agitation of Culture Medium on L. fragilis, there were 

two treatment groups: stirred and static.  24 dishes were loaded with glochidia from a 

single female Leptodea leptodon, a species that grows during metamorphosis.  Half of the 
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dishes were kept in a static condition on the bench top.  The other dishes were stirred on a 

rocker table that was designed to produce a 1-inch tilt over 1 minute. To determine 

growth and survival in the dishes, a gridded track with three lanes of 6.35 by 6.35 mm 

boxes was created to span the width of the dish. A random number table was used to 

select which lane would be counted every 6.35 mm across the dish.  In total, 16 boxes 

were counted for every dish to determine L0, and LIV. Image J was used to measure a 

subset of the dishes in each treatment to determine the average growth of the glochidia. 
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RESULTS 

 

 In Experiment #1 on the Effect of Atmospheric CO2 Levels : Anodonta 

californiensis survival in vitro (LIV) was significantly higher using air than using 1% CO2 

(P= <0.005, Table 2, Figure 2,). The difference was evident after 4 days and increased by 

8 days incubation (Figure 2).  Juveniles from air-incubation also had higher survival 

during 24 h in water (LW), but the difference was insignificant (Figure 3, Table 3). 

Experiment #2: Utterbackia imbecillis LIV was slightly higher in air but not significantly 

different from 1% CO2 (Figure 4, Table 4). LW of Utterbackia was not determined.   

Experiment #3: Anodonta oregonensis LIV was similar among different CO2 levels (Table 

5) but juvenile survival in water (LW) was highest following incubation in air (84%) 

compared to 1% CO2 (74%) and 5% CO2 (68%) (Figure 5, Table 6, P=0.030).   

 In the experiment Lebovitz versus M199, Anodonta oregonensis cultured with an 

M199 base had a higher LIV than those cultured in Lebovitz’s L-15 (P= 0.028, Table 7, 

Figure 6). However, LW was significantly higher among juveniles cultured in M199 

based medium (P=0.025, Table 8, Figure 7).  

 In the experiment Effect of Serum Sources, the LW of Lampsilis siliquoidea 

cultured using rabbit sera from two different suppliers did not differ significantly.  This 

experiment also compared and found no difference in LW of juveniles “rescued” from 

contaminated dishes with those from continuously healthy dishes.   However, LW 

generally in the experiment was low and varied widely among dishes (p=0.098, Table 9, 

Figure 8).   
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 In the experiment Duration of Incubation, LW of Anodonta oregonensis was near 

zero if the period in medium was less than 144 hours (6 days).  LIV was variable among 

dishes but was generally high throughout the 228 h (9.5 day) incubation (Figure 10, Table 

10).  LW increased significantly with longer duration of incubation (P=<0.005, Table 11, 

Figure 9).     

 In the experiment Duration in Saline, Glochidia that were placed into a 

physiological saline appeared to produce an exudate after three days.  This exudate would 

obscure the margins of the glochidia making it harder to classify them as closed or open 

during the LIV count. A similar exudate was noted by Kovitvadhi et. al. 2012 in Hyriopsis 

myersiana.  LIV and LW of Pyganodon grandis were significantly higher with time spent 

in culture medium (P=<0.005, Table 12, P=0.005, Table 13).  However, both LIV and LW 

were largely independent of time in culture medium after about 50 hours (Figures 11 and 

12).   After 5 months of juvenile culture, there was no significant difference in survival or 

growth of juveniles derived from the different treatments (Table 14, Table 15, Figure 13, 

Figure 14). Average lengths ranged from 1.64-2.80mm (Table 16). 

 For Long-term Culture Between In Vitro & In Vivo, juveniles were cultured post 

metamorphosis for 5 months and there was no significant difference in survival or growth 

of the in vivo P. grandis compared to the in vitro derived juveniles from the saline 

experiment (Table 17, Table 18, Figure 15). 

 In the experiment, Effect of Agitation of Culture Medium on L. fragilis, the 

glochidia failed to grow in culture after 3 weeks in culture medium. No differences were 

observed between the glochidia housed on the stable benchtop vs. the rocker table. The 

experiment was terminated.  
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DISCUSSION 

 

CO2, pH, and Medium Formulations 

 For the species tested, it was not beneficial to utilize high levels of atmospheric 

CO2 during in vitro incubation. Glochidia that were cultured in air (approximately 0.04% 

CO2) had equal or higher survival compared to those cultured in 1% or 5% CO2. 

Eliminating the need for an expensive CO2 incubator makes in vitro metamorphosis more 

economical and accessible. However, it should be noted that all but one of the species 

reported herein are of one taxonomic tribe (Anodontini) and that tribe is characterized by 

relatively quick metamorphosis and good success rates in vitro.  Representatives of two 

other taxonomic tribes (Lampsilis siliquoidea (Lampsilini) and Quadrula cylindrica 

(Quadrulini) were also metamorphosed in air, but survival was low and the juveniles of 

these species did not thrive in subsequent culture.  Future studies should include a wider 

range of taxa.  

 Bicarbonate was omitted from the medium, which was titrated to pH 7.65 while 

equilibrated with air, 1% CO2, or 5% CO2. The use of lower bicarbonate and CO2 

concentrations without other buffers might be expected to compromise pH control in the 

culture medium during incubation.  Color change of phenol red indicated that the pH in 

the culture dishes became more basic but rose no higher than 8.0 between medium 

changes.  Evidently, this change did not have substantial effect on survival or 

metamorphosis. In contrast, contaminated dishes became more acidic (yellow) 

presumably because of metabolic products of the contaminant bacteria or fungi.  A 

previous study of Anodonta suborbiculata found that success in vitro was highest at the 
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lowest pH (7.6) and the highest level of CO2 tested (5% CO2) (Roberts 1997).  However, 

that study also had good metamorphic success without elevated CO2, if pH was kept low.   

Lebovitz’s L-15 medium was designed for cell culture without elevated CO2 by 

including phosphate to buffer pH.  The pH changes were less in the L-15 dishes.  

However, L-15 did not increase juvenile survival in this study.  HEPES buffered medium 

also reduced success in a previous study (Roberts, 1997).  Based on these results, 

medium that includes M199 without sodium bicarbonate presently appears to be the best 

option for in vitro metamorphosis in air.  The M199-based medium used in this study 

(Appendix A) was supplemented with a number of nutritional components, some of 

which are present at lower concentrations in the stock M199 (Appendix B).  The 

formulation was based on recommendations but more work could be done to ensure that 

the extra ingredients are necessary.  Lipid accumulation has been used as a metric for 

metamorphic juvenile health (Lima et. al., 2004; Fisher & Dimock, 2006) and dietary 

lipid is thought to be important for growth and survival of post-metamorphic juveniles 

(Gatenby et. al., 1996).   

It is interesting that both M199 and L-15 media include 400 mg KCl/liter.  

Metamorphosed juvenile mussels in water are relatively sensitive to potassium.  The 96 

hour LC50 (concentration lethal to half of newly metamorphosed juveniles) is equivalent 

to 72-116 mg KCl/liter (Ivey et. al., 2013).  It is likely that the parasitic stage of mussels 

is less sensitive to K, but future studies should test media with lower potassium.   

Although there was no difference in results using blood serum from two suppliers, 

the experiment was equivocal and should be repeated.  Other labs have reported trouble 

with Gibco sera (Monte McGregor personal communications).  The utility of fish sera 



 

26 

versus mammalian sera is still debated. A recent study comparing transformation of 

Hyriopsis myersiana among plasma from horse and several fish species found that Carp 

(Cyprinus carpio) serum produced the highest transformation rate and suggested that this 

might be related to high concentrations of citrulline, glutamine, leucine, proline, 

threonine and alanine (Uthaiwan et. al., 2001).  However, the inconvenience of preparing 

fish sera may outweigh minor effects on metamorphosis success relative to commercially 

available mammalian sera. Additionally, not all fish sera sources were equally successful 

when used in culture. Hyriopsis myersiana had lower in vitro efficiency when fish 

species that were not good hosts were used as a plasma source (Uthawain et. al., 2002, 

2003; Lima et. al., 2012). 

 

Optimizing In Vitro Incubation 

 One of the challenges of in vitro metamorphosis is determining the optimum 

duration of incubation before transferring the juveniles from medium to water. Anodonta 

oregonensis that were removed from media early were relatively slow to “wake up” in 

water and remained closed tightly in water for 24-48 hours before showing foot 

movement.  Early removal was detrimental to juvenile survival and glochidia that were 

removed from medium before entering stage 2 of metamorphosis did not survive.  Based 

on this work, the best policy for removing glochidia from the dish is to wait one to two 

days after the appearance of the juvenile adductor muscles.  Some researchers have used 

foot movement in the culture medium as an endpoint for culture (Uthaiwan et. al., 2001; 

Owen, 2009; Lima et. al., 2006).  In the present study, juveniles allowed to “wake up” in 
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culture medium did not generally thrive in subsequent culture during routine propagation 

work (personal observations).   

 

Developmental Triggers and Nutrition during Development 

Mussels that are long-term brooders retain glochidia for months in a state of 

developmental arrest.  At least one mussel species, the Green Floater (Lasmigona 

subviridis) is able to complete development within the female marsupium without a fish 

host (Barfield and Watters 1998, Lellis and King 1998).  Development and 

metamorphosis of most species, however, will not occur unless the glochidia attach to a 

host fish or are placed in a suitable culture medium.  The factor(s) that trigger 

metamorphosis have not been identified.  In this study, glochidia of Pyganodon grandis 

did not develop when they were placed directly in a physiological saline solution.  

However, brief exposure to medium triggered development, and some of the glochidia 

were able to successfully metamorphose in saline after having spent only 48 hours in 

culture medium (Figure 11).  One or more components of the medium, perhaps in the 

blood serum, must trigger development and metamorphosis. 

The results of substituting saline for medium showed that development of P. 

grandis continued without external nutrition during about 2/3 of the normal development 

period.  Substituting saline for medium could be advantageous in some situations.  The 

most promising application is as a potential treatment for contaminated culture dishes. If 

a dish becomes contaminated, moving the glochidia to nutrient-free saline would 

interrupt growth of the microorganisms. Shortening the time spent in culture medium 

would also reduce the cost of in vitro culture. This experiment should be repeated with 
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other species. Future research should include the rate of the nutrient uptake in glochidia 

as well as isolating the necessary proteins and growth factors for development so that the 

medium recipe can be further refined. 

 

Quality of In Vitro vs. In Vivo Juveniles 

 It is important to know whether juveniles produced in vitro are of similar quality 

to those that metamorphose normally on fish hosts.  In this study, there was no difference 

after 5 months of lab culture in the survival or growth of P. grandis that were 

metamorphosed in vivo vs in vitro. This result supports the suitability of juveniles 

produced in vitro in both restoration and toxicology work.  

  

Effect of Agitation of Culture Medium on L. fragilis 

 Apparently, no mussel species that grows during metamorphosis has yet been 

successfully metamorphosed in vitro.  Possibly species that grow during metamorphosis 

require high rates of nutrient uptake. The hypothesis that high rates of uptake could lead 

to local nutrient depletion and diffusion-limitation was tested by stirring the culture 

medium, but stirring had no evident effect on Leptodea fragilis. The glochidia never grew 

or lost the larval adductor muscle in stirred or unstirred culture. Future studies should 

investigate the potential stimulus that initiates development in these species. Other labs 

have reported that the larvae of Cumberlandia monodonta will grow during in vitro 

incubation, but none have survived metamorphosis (personal communication Monte 

McGregor, Kentucky Department of Fish and Wildlife and Diane Waller, USFWS).  
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Measuring Success of In vitro Culture   

 There is no standard metric from measuring the success of in vitro culture. 

Juvenile survival recorded as the percentage of juveniles with foot movement after a 

number of days in water is the most common metric used in the literature.  Uthawain et. 

al. used a somewhat different metric: in vitro efficiency (the percent of live juveniles 

after 6-12 days out of the total number of larvae used) in their 2002 study that resulted in 

32-94% efficiency for Hyriopsis myersiana using various fish plasma sources. 

Kovitvadhi et. al. (2008) reported 84% success of Hyriopsis myersiana using fish serum.  

Lima et. al. (2006) reported juveniles of Anodonta cygnea completed metamorphosis 

with a mean of 61% using fish serum.  Owen (2009) reported nearly perfect 

metamorphosis success for Utterbackia imbecillis and Anodonta suborbiculata using 

rabbit serum. The juvenile yield efficiencies of the present study fall within these ranges 

(A. californiensis 61%, A. oregonensis 70%, 74% and 86%; P. grandis 45-65% and L. 

siliquoidea 37%).    

 In this study, survival after incubation (LIV) was measured and again after several 

days in water (LW).  It is tempting to use the LIV count as a measure of metamorphosis 

success, because it is easy to determine if a glochidium is closed with adductor mussels in 

a clean dish from a picture that can be processed at any time.  Survival in water is more 

problematic.  Juveniles in water may be reluctant to move.  LW counts can be highly 

variable based on the timing of the counts. Counts of foot movement taken immediately 

upon removal of the dish will be much lower than those taken at 24 to 48 hours in water 

due to the variation in amount of time it takes for juveniles to “wake up” and begin 

movement.  Another measure of survival is growth of the shell margin, which can be 
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evident after 24 hrs. The presence of marginal growth after 48 hours could be a better 

metric for metamorphosis success while a culture period of one month with foot 

movement would provide information on juvenile survival to account for juveniles that 

cannot survive the initial transition to water.    

  In summary, in vitro metamorphosis is a viable and useful method for producing 

metamorphic juveniles of many mussel species.  Elevated CO2 and CO2 incubators are 

not required for the in vitro culture of species of the tribe Anodontini. More work should 

be done with other taxa to confirm efficacy. Lampsilis siliquoidea and Quadrula 

cylindrica also completed metamorphosis without elevated CO2 but the juvenile survival 

was lower in these species. The method requires good sterile technique and a laminar 

flow hood for success. Limitation of fluid transfer is the most consistent and successful 

method for reducing loading contamination. The quality of culture medium may vary 

depending on manufacturer and lot numbers. Waiting 48 hours after the first appearance 

of the juvenile adductor mussels is a good end point for Anodonta oregonensis, but this 

should be investigated across a wider range of taxa. Incubation in physiological saline 

solution may provide a new method of infection control in culture dishes and a way of 

reducing use of expensive medium.   
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Table 1. Species and collection localities of mussels used for experiments. 

Experiment Species  Collection site 

Effect of CO2 #1 Anodonta californiensis Pajaro River, CA 

Effect of CO2 #2 Utterbackia imbecillis Swope Park Lagoon, Kansas City, MO 

Effect of CO2 #3 Anodonta oregonensis Hayes Island Upper Columbia River, WA 

Lebovitz versus M199  Anodonta oregonensis Hayes Island Upper Columbia River, WA 

Serum Source Lampsilis siliquoidea Silverfork of Perche Creek, Boone Co MO 

Duration of Incubation Anodonta oregonensis Hayes Island Upper Columbia River, WA 

Duration in Saline  Pyganodon grandis Tablerock Lake, MO 

Long-term Culture Pyganodon grandis Tablerock Lake, MO 

Agitation of Medium Leptodea fragilis Pomme de Terre River, MO 

 

 

 

Table 2 . Effect of CO2 #1. ANOVA of percent survival of Anodonta californiensis in 

medium (LIV) versus CO2 concentration. 

 

Source DF Adj ss Adj ms F-Value P-Value 

CO2 1 2274 2273.59 58.52 <0.005 

Error 32 1243 38.85 
  

Total 33 3517 
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Table 3. Effect of CO2 #1. ANOVA of percent survival of Anodonta californiensis in 

water (LW) versus CO2 concentration. 

 

Source DF Adj ss Adj ms F-Value P-Value 

CO2 Treatment 1 477.6 477.6 4.39 0.069 

Error 8 869.6 108.7   

Total 9 1347.1    

 

 

 

Table 4. Effect of CO2 #2.  ANOVA of percent survival in vitro  

(LIV) of Utterbackia imbecillis versus CO2 concentration.  

 

Source DF Adj ss Adj ms F-Value P-Value 

CO2 Treatment 1 1643 1643 0.96 0.335 

Error 54888 1715 
   

Total 56531 
    

 

 

 

Table 5. Effect of CO2  #3.  ANOVA of percent survival in vitro (LIV) of 

Anodonta oregonensis among 3 treatment concentrations of CO2 and 

among females within treatments. 

Source DF Adj ss Adj ms F-Value P-Value 

CO2 Treatment 2 18.16 9.079 1.87 0.173 

Female(treatment) 6 44.26 7.377 1.52 0.209 

Error 27 130.85 4.846 
  

Total 35 193.27 
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Table 6. Effect of CO2  #3.  ANOVA of percent survival in water (LW) of 

Anodonta oregonensis among 3 treatment concentrations of CO2 and 

among females within treatments. 

Source DF Adj ss Adj ms F-Value P-Value 

CO2 Treatment 2 1447 723.4 3.99 0.030 

Female(treatment) 6 1734 289.0 1.59 0.188 

Error 27 4900 181.5 
  

Total 35 8081 
   

  

 

 

Table 7. Lebovitz versus M199 Medium.  ANOVA of percent survival in 

vitro (LIV) of Anodonta oregonensis among base medium, within 

medium, and among females. 

Source DF Adj ss Adj ms F-Value P-Value 

Treatment 1 79.49 79.49 5.71 0.028 

Female(Treatment) 4 125.16 31.29 2.25 0.104 

Error 18 250.71 13.93 
  

Total 23 455.36 
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 Table 8. Lebovitz versus M199 Medium.  ANOVA of percent survival in vitro (LIV) of  

Anodonta oregonensis among base media, contaminated versus uncontaminated  

within medium, and among females. 

 

Source DF Adj ss Adj ms F-Value P-Value 

Treatment 1 4251 4250.5 6.02 0.025 

Female(Treatment) 4 3895 973.8 1.38 0.281 

Error 18 12712 706.2 
  

Total 23 20858    

 

 

 

Table 9. Effect of Commercial Serum Source.  ANOVA of percent survival in water 

(LW) among serum sources, and comparing contaminated versus uncontaminated dishes, 

for Lampsilis siliquoidea. 

 

Source DF Adj ss Adj ms F-Value P-Value 

Treatment 1 1413.0 1412.98 2.95 0.098 

Contamination 1 1005.0 1004.98 2.10 0.160 

Error 25 11955.8 478.23 

  
Lack-of-Fit 1 12.0 12.04 0.02 0.878 

Pure Error 24 11943.8 497.66  

Total 27 14127.5 
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Table 10. Effect of duration of incubation in medium before transfer to water  

for Anodonta oregonensis. ANOVA of percent survival in vitro (LIV) comparing 

contaminated versus uncontaminated dishes, and duration of incubation in medium. 

 

Source DF Adj ss Adj ms F-Value P-Value 

Incubation Hours 14 75.16 5.369 0.4 0.96 

Error 25 331.89 13.276 
  

Total 39 407.05 
   

 

 

 

Table 11. Effect of duration of incubation in medium before transfer to water for 

Anodonta oregonensis. ANOVA of percent survival in water (LW) comparing 

contaminated versus uncontaminated dishes, and duration of incubation in medium. 

 

Source DF Adj ss Adj ms F-Value P-Value 

Incubation Hours 14 22965 1640.3 4.89 <0.005 

Error 25 8395 335.8 
  

Total 39 31359    

 

 

 

Table 12. Effect of Duration in Saline. Substituting fish saline for 

medium after varying duration of incubation of Pyganodon grandis. 

ANOVA of percent survival in vitro (LIV) comparing contaminated 

versus uncontaminated dishes, and duration of incubation in medium 

before substituting saline. 

Source DF Adj ss Adj ms F-Value P-Value 

Hours in Medium 11 17267 1569.70 4.90 <0.005 

Error 36 11537 320.50 
  

Total 47 28804   
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Table 13. Effect of Duration in Saline. Substituting fish saline for 

medium after varying duration of incubation of Pyganodon grandis. 

ANOVA of percent survival in water (LW) comparing duration of 

incubation in medium before substituting saline. 

Source DF Adj ss Adj ms F-Value P-Value 

Hours in Medium 11 17520 1592.70 5.66 <0.005 

Error 36 10131 281.40 
  

Total 47 27651 
   

 

 

 

Table 14. Effect of Duration in Saline after Long-term Culture. 

Substituting fish saline for medium after varying duration of incubation 

of Pyganodon grandis.  ANOVA of average shell length after 5 months 

in culture among treatments (duration in medium before substituting fish 

saline). 

Source DF Adj ss Adj ms F-Value P-Value 

Hours in Medium 6 1.136 0.1893 0.97 0.507 

Error 7 1.368 0.1954 
  

Total 13 2.503 
   

 

 

Table 15. Effect of Duration in Saline after Long-term Culture. Substituting fish 

saline for medium after varying duration of incubation of Pyganodon grandis.  

ANOVA of survival after 5 months in culture among treatments (duration in 

medium before substituting fish saline).  

Source DF Adj ss Adj ms F-Value P-Value 

Hours in Medium 7 4306 615.2 0.52 0.797 

Error 8 9433 1179.2 
  

Total 15 13740 
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Table 16. Average length of P. grandis after 5 months in lab culture.  In vitro 

hours in medium before substituting saline, or in vivo juveniles from fish host. 

Numbers are mean ± SD (number of individuals measured).  

 

 

Table 17. Pyganodon grandis survival during 5 months in culture.  ANOVA of 

culture survival between juveniles metamorphosed in vitro and in vivo. All in 

vitro treatment groups were included. Variability among culture beakers 

(replicates) was also tested.  

Treatment Average length (mm) N 

In vitro, 5 h 1.62 1 

In vitro, 6 h 1.64 ± 0.604  8 

In vitro, 7 h 2.35 ± 0.765  24 

In vitro, 8 h 2.80 ± 0.696  18 

In vitro, 9 h 2.02 ± 0.623  18 

In vitro, 10 h 2.11 ± 0.744  44 

In vitro, 11 h 2.45 ± 0.712   32 

In vitro, 12 h 1.98 ± 0.826  55 

In vivo, from fish host 2.16 ± 0.728  55 

Source DF Adj ss Adj ms F-Value P-Value 

Culture Method 1 1092 1092 2.61 0.126 

Error 16 6699 418.7 
  

Total 17 7791 
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Table 18. Pyganodon grandis growth in mm during 5 months in culture.  

ANOVA of growth in juveniles metamorphosed in vitro and in vivo. All 

in vitro treatment groups were included. Variability among culture 

beakers (replicates) was also tested.  

Source DF Adj ss Adj ms F-Value P-Value 

Culture Method 1 0.03778 0.03778 0.24 0.628 

Error 20 3.12316 0.15616 
  

Total 21 3.16094 
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Figure 1.  Set-up for incubating dishes in controlled atmosphere.  Air-CO2 mixtures were 

supplied from mass flow controllers (Matheson) or premixed commercial cylinders. Gas 

mixtures were passed through ventilated boxes containing the culture dishes. CO2 

fraction was monitored using an Ametek infrared analyzer.  
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Figure 2.  Effect of CO2  #1.  Effect of two levels of atmospheric CO2 on survival of 

Anodonta californiensis in vitro  (LIV) during 8 days of incubation.  Bars represent means 

and 95% confidence intervals, 17 dishes per treatment. 
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Figure 3. Effect of CO2   #1.  Effect of atmospheric CO2 used in vitro on subsequent 24-h 

survival of Anodonta californiensis in water (LW). Bars represent 95% confidence 

intervals (N=5). 

 

  



 

48 

Atmospheric CO2 

Air 1%

L
IV

 (
%

)

0

20

40

60

80

100

 

Figure 4. Effect of CO2  #2.  Effect of atmospheric CO2 on survival of Utterbackia 

imbecillis in culture medium (LIV). Bars represent means and 95% confidence intervals 

(N=17).  
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Figure 5. Effect of CO2  #3. Effect of atmospheric CO2 used for in vitro metamorphosis 

of Anodonta oregonensis on subsequent 24-h survival in river water. Bars represent 

means and 95% confidence intervals (N=17). 
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Figure 6. Lebovitz versus M199 Media . Effect of base medium used for in vitro 

metamorphosis of Anodonta oregonensis on survival at the end of incubation in culture 

media (LIV). Bars represent means and 95% confidence intervals (N=13). 
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Figure 7. Lebovitz versus M199 Media.  Effect of base medium used for in vitro 

metamorphosis of Anodonta oregonensis on subsequent 24-h survival in water (LW). Bars 

represent means and 95% confidence intervals (N=13). 
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Figure 8. Commercial Sera Source. Effect of sera manufacturer of rabbit sera used for in 

vitro metamorphosis of Lampsilis siliquoidea on subsequent 24-h survival in water (LW). 

Bars represent means and 95% confidence intervals (N=14).  
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Figure 9. Duration of Incubation. Effect of duration of incubation in culture medium on 

survival in water (LW) of Anodonta oregonensis.  TM= Time in culture medium. LW= the 

percentage surviving after four days in water. Points represents LW of individual dishes 

and the dashed line represents the end of stage 1 of development and the beginning of 

stage 2. 
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Figure 10. Duration of Incubation. Effect of duration of incubation in culture medium on 

survival in vitro (LIV) of Anodonta oregonensis TM= Time in culture medium.  Points 

represent LIV of individual dishes. 
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Figure 11. Duration in Saline. Effect of substituting physiological saline for culture 

medium on survival in vitro (LIV) of Pyganodon grandis.  TM= Time in culture medium 

before switching to saline. LIV was measured after 240 hours in vitro. Points represent LIV 

in individual dishes.  
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Figure 12. Duration in Saline. Effect of substituting physiological saline for culture 

medium on post-metamorphic survival in water (LW). TM= Time in culture medium 

before switching to saline.  All juveniles were transferred to water after 240 h in vivo.  

LW= survival of Pyganodon grandis after 3 days in water. Points represent LW in 

individual dishes.  
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Figure 13.  Duration in Saline after Long-term Culture . Survival of saline-incubated 

Pyganodon grandis juveniles after 5 months in laboratory culture (LC).  TM = time in 

culture medium before switching to saline.  Points represent LC in replicate groups that 

were cultured separately.  
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Figure 14.  Duration in Saline after Long-term Culture. Growth (average shell length) of 

saline-incubated Pyganodon grandis juveniles after 5 months in laboratory culture.  TM = 

time in culture medium before switching to saline.  Points represent mean shell length in 

replicate groups that were cultured separately.   
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Figure 15. Long-term Culture Between In Vitro & In Vivo (Shell Length). Comparing 

mean shell length between P. grandis juveniles metamorphosed in vitro and in vivo after 

5 months of culture.  In vitro N=199, in vivo N=184 individuals measured.   
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APPENDICES 

 

 

Appendix A. In Vitro Culture Medium Composition. Components are per 1.5 liter of 

medium.  

  

Salts and nutrients  Amino Acids and Vitamins 

M199 Powder  10 g  L-Alanine 70 mg 

Sodium Pyruvate 100 mg  L-Ornithine  20 mg 

Glucose 2 g  L-Proline 40 mg 

D-Galactose 2.5 g  Taurine 80 mg 

Salmon Oil Extract  1 ml  L-Threonine  20 mg 

Menhaden Oil 1 ml  EAA  1 ml 

Rabbit serum  500 ml  NEAA 1 ml 
   MEM Vitamin 1 ml 

     

Anti-microbials  Titration solutions 

Rifampicin  150 mg  CaOH   

Gentamicin  150 mg  NaOH   

Carbenicillin  150 mg  HCl   

Amphotericin B  1.5 ml      
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Appendix B. Lebovitz’s Medium components (ThermoFisher)  

 

Inorganic Salts mg/L  Amino Acids mg/L 

CaCl2  (anhydrous) 140  Glycine 200 

MgCl2 (anhydrous) 93.7  L-Alanine 225 

MgSO4 (anhydrous) 97.7  L-Arginine 500 

KCl 400  L-Asparagine 250 

KH2PO4 monobasic  60  L-Cysteine 120 

NaCl 8000  L-Glutamine 300 

Na2HPO4 dibasic 190  L-Histidine 250 

   L-Isoleucine 250 

Vitamins mg/L  L-Leucine 125 

Choline chloride 1  L-Lysine 75 

D-Calcium pantothenate 1  L-Methionine 75 

Folic Acid 1  L-Phenylalanine 125 

Niacinamide 1  L-Serine 200 

Pyridoxine hydrochloride 1  L-Threonine 300 

Riboflavin 5'-phosphate Na 0.1  L-Tryptophan 20 

Thiamine monophosphate 1  L-Tyrosine 300 

i-Inositol 2  L-Valine 100 

     

Other Components mg/L    

D+ Galactose 900    

Phenol Red 10    

Sodium Pyruvate 550    
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Appendix C. Components of M199.  (M5017-10X1L - Medium 199 Sigma-Aldrich) 

 

Inorganic Salts  mg/L  Vitamins  mg/L 

CaCL2 (anhydrous) 200  Ascorbic acid  0.05 

Fe(NO3)-9H2O 0.72  Biotin  0.01 

MgSO4 (anhydrous)  97.7  D-calcium pantothenate  0.01 

KCl 400  Choline chloride  0.5 

NaCL  6800  Ergocalciferol  0.1 

NaH2PO4-H2O 140  Folic acid  0.01 

NaHCO3 2200  i-inositol  0.05 

    Menadione 0.01 

Amino Acids mg/L  Niacin  0.025 

L-alanine  25  Niacinamide  0.025 

L-arginine HCl  70  PABA  0.05 

L-aspartic acid  30  Pyridoxal HCl  0.025 

L-cysteine HCI monohydrate  0.1  Pyridoxine HCl  0.025 

 L-cystine 2HCI  26  Riboflavin  0.01 

L-glutamic acid  67  Thiamine HCl  0.01 

L-glutamine  100  DL-α-tocopherol phosphate 2Na  0.01 

Glycine 50  Vitamin A acetate  0.14 

L-histidine HCl monohydrate  21.8    

Hydroxy L-proline  10  Other   

L-isoleucine  20  Adenine sulfate dihydrate  10.98 

L-leucine  60  AMP monohydrate  0.2 

L-lysine HCl  70  ATP 2Na trihydrate  1.098 

L-methionine  15  Cholesterol (synthetic)  0.2 

L-phenylalanine  25  2-Deoxy-d-ribose  0.5 

L-proline  40  Dextrose anhydrous  1000 

L-serine  25  L-glutathione reduced  0.05 

L-threonine  30  Guanine HCI monohydrate  0.3 

L-tryptophan  10  Hypoxanthine sodium salt  0.354 

L-tyrosine 2Na dihydrate  57.7  Phenol red sodium salt  21.24 

L-valine  25  D-Ribose  0.5 

   Thymine  0.3 

   TweenTM 80  20 

   Uracil  0.3 

   Xanthine sodium salt  0.344 
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Appendix D. Fish saline (Holmes and Stott, 1960)  

 

Components (g) 

NaCl 7.41 

KCl 0.37 

NaH
2
PO

4
•H

2
O 0.40 

NaH2PO4•2H
2
O 0.20 

NaHCO
3
 0.31 

KH
2
PO

4
 0.17 

MgSO
4
•7H

2
O 0.31 
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