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ABSTRACT 

The purpose of this study was to aid the National Park Service at Wilson’s Creek 

National Battlefield with the reported habitat monitoring and management goals through 

vegetation and wildlife surveys within the park. I provided a description of two major 

habitat types that are of ecological concern, which included non-native ruderal grasslands 

and upland deciduous woodlands and forests. I evaluated small mammal communities to 

determine factors that may affect the detection of individual species and examined habitat 

associations with occupancy, as small mammals are good indicators of habitat quality. 

My study highlights the need to manage invasive species such as Japanese honeysuckle 

(Lonicera japonica), hackberry (Celtis occidentalis), and Eastern red cedar (Juniperus 

virginiana). Small mammal detectability was influenced by temperature, precipitation, 

nightly sky illumination, and Julian date, and occupancy was influenced by patch size, 

vegetation composition and micro-habitat structure. Further monitoring of small 

mammals could improve habitat associations and account for dynamic population 

fluctuations. Additionally, the dominance of the white-footed mouse (Peromyscus 

leucopus) in the forests may have implications in disease ecology if stands are not 

managed within this fragmented landscape. 
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OVERVIEW 

 

I examined 3 geographical scales at Wilson’s Creek National Battlefield to 

describe the overall structure of the landscape and how these characteristics potentially 

influence small mammal communities within the park. Chapter 1 describes the level of 

fragmentation by using a standardized land-cover map provided by the Missouri 

Resource Assessment Program and the Heartland Inventory and Monitoring Network in 

software program FRAGSTATS. I also collected field measurements to compare the 

patch characteristics of 4 non-native ruderal grasslands, and 4 upland deciduous 

woodland and forests within the park. 

Chapter 2 describes small mammal communities that were live-trapped at the 

sampled habitat patches from Chapter 1. I used logistic regression models to test 

covariates that may influence the detectability of small mammals. I also used 

presence/absence data to build single-species, single-season occupancy models that tested 

whether the vegetation metrics from Chapter 1 influence habitat selection. This study 

highlights the importance of continued vegetation monitoring in sampled habitat patches 

to identify invasive species as soon as possible, and to determine ecological shifts in 

vegetation and successional state of these patches. Small mammals are good indicators of 

the biotic integrity of these patches, as they respond quickly to disturbance, so continued 

sampling is recommended.
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CHAPTER 1: HABITAT STRUCTURE AT WILSON’S CREEK NATIONAL 

BATTLEFIELD 

 

Introduction 

Grasslands in North America have been diminished to highly fragmented patches 

due to intensive agriculture and urbanization (Mannouris and Byers, 2012), with as little 

as 1% of the pre-European grasslands remaining in some regions such as Iowa 

(Dornbush, 2004). The urgent need for conservation and restoration of remaining 

grasslands has led to ongoing management actions by state and federal agencies, which 

include seeding (Rossiter, et al., 2016), prescribed burning (Clubine and Davis, 1993), 

treatment with herbicides (Robertson, et al., 2013), and mowing (DeJaco and Batzli, 

2013). However, the restoration of prairies requires several centuries (Samson and Knopf, 

1994) and, despite conservation efforts, prairies are still declining (Zylka, et al., 2016). In 

Missouri, less than 36,500 ha of pre-European grasslands remain, as most have been 

converted to agricultural use or native grasses have been replaced by imported cool-

season fescue (Festuca, spp.; DeGolier, et al., 2015; Jacobs et al., 2012; Mulligan, et al., 

2013). 

European settlement also led to extensive deforestation in North America where 

by the 18th and 19th centuries the forests on the Atlantic coast were nearly all cleared for 

anthropogenic development, with rapid destruction spreading westward (Pimm and 

Askins, 1995). In Missouri, deciduous forests have been significantly impacted by 

historical burning, grazing, and intensive logging, leaving only a few low-quality stands 

in the Missouri Ozark region (Missouri Department of Conservation, 2014). Although 
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Missouri forests are now expanding, oaks (Quercus spp.), the typical dominants in this 

region, have been rapidly declining due to insects, disease, weather, and drought (Piva et 

al., 2016). Furthermore, fire suppression has facilitated the replacement of oaks by shade-

tolerant maples (Acer spp.; Cowell, et al., 2010; Nigh, et al., 1985), hackberry (Celtis 

occidentalis L.; Abrams, 1986), and Eastern red cedar (Juniperus virginiana L.) that 

outcompete oak saplings (Piva et al., 2016). Oaks contribute to several ecological 

functions and provide highly nutritional and widely available food for wildlife (Pierce II 

et al., 2013), so the high mortality and low regeneration rates are concerning to land 

managers (Piva et al., 2016). 

Wilson’s Creek National Battlefield (WICR) is a 910ha (D. Peitz, personal 

communication, December, 3rd, 2015; wildlife ecologist for the Heartland Inventory and 

Monitoring Network of the National Park Service at Wilson’s Creek National Battlefield 

(david_peitz@nps.gov)) historical landmark of the 1861 Civil War Battle of Wilson’s 

Creek located in southwest Missouri (Fig. 1; 37.1158° N, 93.4190° W). The historic 

landscape of the park at the time of the battle consisted of oak woodland, tallgrass prairie, 

and dense mesic forests, but by 1861 mostly had been converted to overgrazed 

agricultural land (Annis et al., 2011). WICR now is comprised of about half open and 

half forested areas that are fragmented with much of the native vegetation replaced due to 

fire suppression (Diamond et al., 2012). Native vegetative species are rapidly declining in 

abundance and distribution, and immediate restoration actions have been recommended 

(National Park Service, 2004). The National Park Service has committed to restoring the 

historic conditions of WICR and enhancing visitor experiences by assessing the 
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conditions of each area of the park and taking appropriate management actions (Annis et 

al., 2011; National Park Service, 2003). 

To aid the WICR monitoring and management goals, I provided a description of 

major habitat types within the park that are of ecological concern. I investigated non-

native ruderal grasslands and upland deciduous woodland and forests, addressing two 

dimensions of vegetation 1) structure within the overall landscape and 2) site differences 

between sampled patches with respect to composition. I addressed the question of patch 

dynamics by using program FRAGSTATS (v.4.2.1; McGarigal, 2012. Spatial pattern 

analysis program for categorical and continuous maps. University of Massachusetts, 

Amherst.), and compared field measurements in 8 sites to determine compositional 

differences. 

 

Methods 

Study area. In 2013, restored tallgrass prairie covered less than 20 ha in WICR, 

whereas non-native ruderal grasslands spanned approximately 187 ha (Diamond et al., 

2012). Within and surrounding the park are large areas of tall fescue (Festuca 

arundinacea Schreb.) and successional woodlands (G. Sullivan, personal communication, 

September 9, 2016; chief of resource management of the National Park Service at 

Wilson’s Creek National Battlefield (gary_p_sullivan@nps.gov)), which may act as 

source populations that could lead to replacement and homogenization of current 

vegetative structures absent preventative measures (Annis et al., 2011). The National 

Park Service has been making efforts to monitor the grasslands and restore native 

vegetation through prescribed fire and mowing (Mlekush and James, 2012). 
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Upland deciduous woodland and forests cover approximately 241 ha of WICR 

(Diamond et al., 2012). Almost all of the forest stands are impacted by fire suppression, 

and all stands are characterized by a relatively low oak species basal area, low sapling 

cover, and dominance of early successional species (Annis et al., 2011). Although native 

to Missouri, the invasive spread of Eastern red cedar and hackberry in these forests is 

problematic, as they dominate and homogenize the landscape, reduce ecological 

functions and increase wildfire susceptibility (Piva et al., 2016), especially in areas with 

shallow soils (Fig. 2). In 2011, the WICR management goal was to restore oak 

woodlands by reducing the growth of Eastern red cedar, other shade tolerant mesic tree 

species, and shrubby understory through regular burns (Annis et al., 2011). 

Sample sites. A classified land-cover map of WICR was provided by the 

Missouri Resource Assessment Partnership (MoRAP) at the University of Missouri, and 

the Heartland Inventory and Monitoring Network (HTLN) of the National Park Service 

(Diamond et al., 2012) via the Integrated Resource Management Applications (IRMA) 

data store (https://irma.nps.gov). I selected 4 non-native ruderal grassland and 4 upland 

deciduous woodland patches to survey for small mammals and quantify vegetative 

composition and structure (Fig. 2; Chapter 2). As such, these locations were minimally 

sized to include centrally located 200m line transects, which were placed in each patch 

using ArcMap (v.10.3; Environmental Systems Research Institute (ESRI). 2012. ArcGIS 

Release 10.1. Redlands, CA.), and coordinates were uploaded into a Garmin (GPSMAP® 

64s) unit with the Minnesota DNRGPS software package (v.6.1.0.6; 

http://www.dnr.state.mn.us). I used program ‘R’ (v.3.3.2; R Core Team, 2016) for all 

statistical analyses and used the ‘ggplot2’ (v.2.2.1; Wickham, 2009) package for figures. 
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I converted the WICR vector dataset to a 1m raster dataset in ArcMap to input 

into program FRAGSTATS. I set the FRAGSTATS analysis parameters to use an 8-cell 

neighborhood rule with no sampling strategy selected. I treated water as a background 

feature to avoid including aquatic features in analysis. I then calculated the number of 

patches and the area-weighted mean patch size as landscape-level metrics. 

To account for patch size and isolation, I calculated area-weighted mean patch 

size (PA), patch density (PD), and Euclidean nearest neighbor distances (CI) as class-level 

metrics in FRAGSTATS. These were combined into a single spatial integrity index (SII) 

based upon Kapos et al. (2012), which varies from low (0) to high (10), with higher 

values representing a greater capacity for maintaining species biodiversity. To calculate 

SII, I standardized data using the ‘scale’ function, and implemented a user-defined 

function in program R (Equation 1). 

 

SII = (0.25 × PA) + (0.25× PD) + (0.50 × CI)    Equation 1. 

 

I calculated the area and edge of sampled sites as patch-level metrics in 

FRAGSTATS. I generated a histogram of sampled patch areas within both land-cover 

types, and identified where my sampled patches fell in the overall distribution. Patch area 

and edge are generally correlated variables, so to see if sampled patches followed the 

anticipated trend, I ran Pearson’s correlation tests using the ‘cor.test’ function. 

Field sampling. In the grasslands, I sampled vegetation in each patch 3 times at 

4-week intervals between May and July 2017. However, one of the patches was classified 

incorrectly on the land-cover map, as it had since been converted for agricultural use (G. 
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Sullivan, personal communication, June, 2016) and one patch was initially uploaded into 

the GPS incorrectly. Therefore, new sites were designated during the field season. Thus, 

patch C had a shorter, 2-week interval between sampling periods 1 and 2, and patch D 

had 1-week sampling interval between each period. At 10m intervals, I randomly tossed a 

square meter quadrant and measured the vegetation height using a modified Robel pole 

and proportion of bare ground by ocular estimation within the boundaries. To summarize 

data across the patch, I averaged data from individual sampling points for the entire 

transect during each of the three sampling periods. 

 I determined plant composition during the final week of July because herbaceous 

species are difficult to distinguish when not flowering. I recorded herbaceous vegetation 

within the boundaries of the square meter quadrant, and any tree or shrub species in 

contact with the quadrant that were otherwise too large to fit within the square. Plants 

were keyed to the lowest taxonomic group possible. I summarized vegetation for each 

patch to provide a general inventory of species composition, and to use as a measure of 

richness and diversity. 

Similar to the grasslands, I sampled each forest patch 3 times at 4-week intervals 

from May–July 2017. I used the same methods to measure vegetation height and 

proportion of bare ground in the forests as I did the grasslands. Additionally, I measured 

canopy closure at each sample point using a spherical densitometer and then averaged the 

data from individual sampling points for the entire transect during each of the three 

sampling periods. I counted the number of downed woody materials (DWM) and the 

number of rocks within 5m of each sampling point that were at least 2.5in in diameter. 

DWM can provide habitat for several species and can indicate stand age because older 
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forests typically have more fallen logs (Shirley et al., 1997). I classified fallen log decay 

based on 1) wood color, 2) presence or absence of twigs and branches, and 3) texture of 

decaying portions, and used a rank order from 0 to 5, where higher values indicate overall 

structural integrity (Brown, 1974; Shirley et al., 1997; Waddell, 2002).  

To inventory trees, I used the point-centered quarter method (PCQ) to sample the 

closest tree within 5m per quadrant in which quadrants were defined by cardinal 

directions (Mitchell, 2015). If no tree occurred with 5m of the sample point in a quadrant, 

it was recorded as vacant. For each tree, I recorded the species, diameter at breast height 

(DBH), and height. I classified trees using the US Forest Service Forest Inventory and 

Analysis schema of live trees based upon their trunk diameter: saplings (2.5–12.6cm), 

poletimber trees (12.7–23cm), and sawtimber trees (<23cm; 

https://www.nrs.fs.fed.us/fia/). 

Data analysis. I used the 1m2 quadrant data for grassland patches, and the PCQ 

data for forest patches to calculate Bray-Curtis dissimilarity indices of sampled 

vegetative species with the ‘vegdist’ function in the ‘vegan’ package in program R (v. 

2.4-3; Oksanen et al., 2017). I then performed a cluster analysis of these results by using 

the ‘hclust’ function to visualize compositional similarities. To account for potential 

undetected species, I used the ‘estimateR’ function in the ‘vegan’ package to find 

corrected Chao and ACE metrics. To summarize community structure, I calculated 

Simpson’s diversity indices of each patch with the ‘diversity’ function in the ‘vegan’ 

package.  

For grasslands, I combined community metrics with the FRAGSTATS patch-level 

outputs using principal component analyses (PCA) to identify potential patterns within 
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WICR. Because I had more metrics than observations, I first reduced the dataset by 

removing highly correlated variables and then principal component analysis was 

performed using the ‘prcomp’ function. I set the ‘scaling’ and ‘center’ options to true, to 

adjust for different magnitudes of the measurements that can otherwise can skew the 

PCA transformation, causing misleading results. 

I calculated the absolute density of trees in each forest, and relative importance 

values for individual tree species at each forest patch following abundance procedures 

detailed in Mitchell (2015). Importance values are a composite measure of the relative 

density, relative cover and relative frequency of individual tree species to determine 

dominant species in a forest patch. I used the Warde correction factor to correct for 

vacant PCQ quadrants (Warde and Petranka, 1981). I then classified forests into stand-

size classes (small, medium, or large) based on the average DBH of the dominant tree 

species in each stand (Piva et al., 2016). 

To make site comparisons, I first wanted to emphasize the ecological 

contributions of each oak species encountered in the forests, hackberry, and Eastern red 

cedar, because these are management targets at WICR (Annis et al., 2011). To test for 

differences between patches for the number of rocks, fallen logs, saplings, poletimber, 

and sawtimber trees, I used a series of ANOVAs with the ‘aov’ function. If the ANOVA 

was significant, I used Tukey’s Honestly Significant Difference post hoc tests with the 

‘TukeyHSD’ function to determine what groups were significantly different. Finally, I 

reported the hardwood basal areas, hardwood tree height, and oak basal areas from each 

site and the WICR 2008 values, and target goals of 2011. 
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Results 

There were 329 calculated terrestrial habitat patches, with an area-weighted mean 

of 16.12 hectares. Spatial integrity indices for non-native ruderal grasslands and upland 

deciduous woodland and forest were 7.22 and 5.78, respectively. Patch sizes of the 

sampled non-native ruderal grassland ranged between 2.62 ha and 9.15 ha, with a positive 

correlation with edge (r = 0.99, P = 0.01; Tab. 1). Patch sizes of the sampled upland 

deciduous woodland and forest patches ranged between 6.65 ha, and 22.87 ha, with a 

positive correlation between area and edge (r = 0.98, P = 0.02; Tab. 1). The sampled 

forest and grassland patches represent a breadth of patch sizes within WICR (Fig. 3). 

There were 2 large grassland patches (41, and 48 hectares) that were classified as non-

native ruderal grasslands, but had since been converted for current agricultural use and 

therefore, are not included in the histogram for this reason (G. Sullivan, personal 

communication, June, 2016). 

There were 42 total species found in the non-native ruderal grasslands: 5 tree 

species, 6 shrub species, and 31 herbaceous species (Appendix A.). Average vegetation 

heights ranged between 89–94cm throughout the course of the summer, and the 

percentage of bare ground ranged between 0–22% over the summer (Tab. 1). The Chao 

and ACE estimated species richness for all grasslands was 45 and 50, respectively, and 

estimates for individual patches were relatively equal (Tab. 1). Simpson’s diversity was 

high for all patches and as a collective site estimate (0.95; Tab. 1). For grassland principal 

component analyses, I excluded patch edge, percentage of bare ground, ACE richness, 

and Simpson’s diversity indices because of high intercorrelations of variables, and 

retained patch area, vegetation height, and Chao estimated richness. Principal component 
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1 (PC1), explained 54.5% variation (Fig. 4), with mixed, relatively high component 

loadings for the original variables: patch area, and Chao estimated richness (-0.67 and 

0.61, respectively). The second principal component (PC2) explained 29.9% variation 

(Fig. 4). PC2 also had mixed component loadings with a strong positive correlation with 

vegetation height (0.88), and negative correlation with Chao estimated richness (-0.45). 

Cluster analysis of Bray-Curtis dissimilarity indices showed a forked pattern, where 

patches A and B had similar composition, as did C and D (Fig. 5). 

There were 22 tree species found collectively in the upland deciduous woodland 

and forest sites (Appendix B.) Average vegetation heights ranged between 66–75cm 

throughout the course of the summer, and the percentage of bare ground ranged between 

2.2–30% over the summer (Tab. 1). Collective species richness estimates for both Chao 

and ACE was 24 species, but estimates among individual patches varied (Tab. 1). 

Simpson’s diversity was high for all patches and as a collective site estimate (0.91; Tab. 

1). Forest composition showed a nested pattern where patches E and F had similar 

species composition and H had the least similar composition (Fig. 5). 

The estimated absolute tree density ranged from ~850 trees/ha to over 1000 

trees/ha; patch E had the greatest density of trees, and patch H had the lowest tree density 

(Tab. 2). Hackberry, black walnut (Juglans nigra L.), slippery elm (Ulmus rubra 

Muhlenberg) and Osage orange (Maclura pomifera Rafinesque) were the dominant tree 

species in patch E (Tab. 3). Patch F was characterized by Eastern red cedar, slippery elm, 

hackberry, chinkapin oak (Quercus muehlenbergii Engelmann), black oak (Quercus 

velutina Lamarck), black walnut, and black hickory (Carya texana Buckley; Tab. 3). 

Patch G was mostly comprised of black oak, chinkapin oak, and red oak (Quercus rubra 
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L.), and to a lesser degree, hackberry, sassafras (Sassafras albidum Nuttall), honey locust 

(Gleditsia triacanthos L.) and white ash (Fraxinus americana L.; Tab. 3). Patch H was 

primarily post oak (Quercus stellata Wangenheim) dominant, with Eastern red cedar, red 

oak and black walnut contributing to a much lesser degree (Tab. 3). The patch stand-size 

classifications ranged between medium to large DBH of dominant trees (Tab. 2). 

Hackberry was more dominant in patch E than other sites, while Eastern red cedar 

was more dominant in patches F and H, and individual oak species importance values 

were in the low to middle ranges for all patches, expect in patch H (Fig. 6). There were 

significant differences in the number of saplings (F3,76  = 4.24; P = 0.01) and sawtimber 

trees (F3,76 = 3.72; P = 0.02) between patches, but not poletimber counts (F3,76 = 1.36; P = 

0.26; Fig. 7). Post hoc tests showed there are significant differences in the sapling counts 

between patches H and F (P = 0.03), and H and G (P =0.01; Fig. 7). There were 

significant differences in sawtimber counts between patches G and E (P = 0.07), and 

between H and G (P = 0.03; Fig. 7). There were no significant differences in the number 

of rocks for any patches (P = 0.14; Tab. 2), but there were differences in the number of 

fallen logs (F3,76 = 3.64; P = 0.02; Tab. 2). Post hoc tests revealed the number of fallen 

logs was significantly different between patches E and H (P = 0.03).  

Overall hardwood basal area (m2/ha) included all species besides Eastern red 

cedar (Appendix B). Three of 4 patches had higher values than 2008 and were in the goal 

range of values set in 2011, with patch G the exception in both cases (Tab. 4). Oak basal 

area (m2/ha) was higher than WICR recorded values in 2008, but patches E, F, and G had 

values lower than the management goal set in 2011 (Tab. 4). Average tree height was 

above 2008 reported values, and the 2011 management goals in E, G, and H. 
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Discussion 

Landscape structure. Habitat heterogeneity is an important component of 

landscape composition to support wildlife populations, as there is often a positive 

correlation between resource variation with species diversity and abundance (Heinen and 

Cross, 1983; Tews et al., 2004). High spatial integrity of patches can also be important 

for vegetation species richness in a heterogeneous landscape (Holt, et al., 1995). 

Previously, Annis et al. (2011) characterized the number of patches at WICR, and the 

geometric mean patch size by using a developmental, broad-scale land-cover 

classification system, but with a fine-scale vegetation map. From this report, the 

landscape at WICR was believed to be more fragmented than historic conditions with 

1,819 patches at a geometric average size of 0.44 ha, concerning resource managers 

(Annis et al., 2011). A revised land-cover map was developed in a vegetation-mapping 

and classification initiative described by Diamond et al. (2012), and the number of 

patches and geometric mean sizes were again reported, but at a broader map resolution, 

resulting in 379 polygons with an average size of 2.1 ha (Diamond et al., 2012). My 

analysis of this map using a finer raster resolution characterized the landscape as 329 

polygons with an area-weighted mean of 16.12 ha. This does indicate a fragmented 

landscape, although not to the great extent as previously reported (Annis et al., 2011). 

Additionally, evaluating the patch area-weighted mean is a more ecologically relevant 

metric than the geometric mean, as the continuous area of one large patch has a greater 

ecological impact by outweighing certain edge effects of several small patches (Kapos, et 

al., 2002; Leitao, et al., 2006).  
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Spatial integrity indices can aid WICR park managers in setting reasonable 

management goals, and deliver meaningful information to a broad audience by 

combining three metrics important for sustaining biodiversity (Tierney et al., 2009), 

rather than simply patch count and geometric mean patch size as previous reports (Annis 

et al., 2011). Providing spatial integrity indices for two of the major vegetative 

classification types within the park represents a starting point for assessing the 

biodiversity potential of these habitats (Kapos et al., 2002; Piva et al., 2016). Non-native 

ruderal grasslands had a higher spatial integrity index than the upland deciduous 

woodland and forests, indicating the grassland patches may be larger with greater 

connectivity. 

It is essential to monitor patch-level compositional and ecological trends as 

indicators of successional state and overall health to best manage stands and predict 

future changes in response to invasive species, potential management, and recreational 

activity (Piva et al., 2016). The plots I sampled do not coincide well with the long-term 

vegetation sampling locations at WICR (Diamond et al., 2012; Mlekush and James, 

2012). However, future monitoring of these patches in addition to the existing sites would 

be beneficial, because they represent a wide proportion of the respective sizes within the 

park. 

Habitat characteristics. The principal component analyses in the grassland sites 

identified that patch area contrasted with vegetation richness along the first axis to 

explain the majority of the total variation in PC1. Principal component 2 was explained 

by vegetation height contrasting with Chao richness on the second axis. It appears from 

the results that PC1 scales from large to small patches, and PC2 scales short to tall 
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vegetation heights, while Chao estimated richness further separates sampled patches on 

both axes. However, without enough sample patches to incorporate all of the grassland 

metrics, these are tentative conclusions as there does not seem to be stark differences in 

vegetation height or Chao estimated richness. It is likely patch area explains most of the 

variability between patches, but a larger sample size may indicate further differences. 

Restoring the native prairie vegetation is a primary management goal within the 

park, but non-native ruderal grasslands receive little to no attention. My sampled 

grassland sites have no ongoing or routine management (S. Leis, personal 

communication, December 12, 2016, fire ecologist for the Heartland Inventory and 

Monitoring Network (sherry_leis@nps.gov); J. Bell, personal communication, January 3, 

2017, project manager of exotic plant management for the Heartland Inventory and 

Monitoring Network (jordan_bell@nps.gov)), and the prescribed burns are either 

infrequent or non-existent. Considering the vegetative species composition and the patch 

metrics, the previous burns appear to be ineffective over several years; the most recently 

burned site (A, 2010) has a similar structure to a site (B, 1997) burned just previously to a 

nearby site (D, 1998), which is most similar to site that has not been burned (C). 

My sampled forest patches had varied tree richness and diversity estimates, and 

each were characterized by different dominant tree species. This follows the reported 

trend of upland forests having inconsistent communities across short distances at WICR 

(Diamond et al., 2012). The varied species composition and structure found in my forest 

patches may be beneficial, as diverse forests are often related to disturbance resilience, 

and can be a positive influence on wildlife communities by providing habitat 

requirements for different species (Piva et al., 2016). 



 

16 

 

Although patch E has the smallest area, it had the highest tree density of the 

sampled patches, and the only patch in the medium stand-size classification group. This 

indicates that patch E may be in an earlier successional state than the other sites. Without 

natural or anthropogenic disturbance, the high tree density on such a small patch may 

have negative implications for tree growth, yield, and persistence at this patch as the trees 

increase in volume (Piva et al., 2016). The lower tree density and large stand-size 

classification of patches F, G, and H indicate maturing forests. 

When number of saplings and sawtimber trees are viewed together, each patch 

showed different trends in the proportion of coverage of different tree sizes. The mean 

number of saplings along transect H was significantly different than in patches F and G, 

whereas patch G had significantly different sawtimber trees than patches E and H. This 

indicates that patch H is an older forest where canopy gaps have allowed for tree 

stratification, whereas patches F and G are more even-aged stands. Monitoring the 

changes in size-classifications of these patches can help determine successional changes 

and potential forest sustainability (Piva et al., 2016). 

Presently, my sites appear in overall good health when compared to WICR 

Natural Resource Condition Assessments previously reported. Hardwood basal areas 

were higher than 2008 records, and within the target goals of 2011 for 3 of 4 patches. 

Patch G was lower and this is surprising because it is characterized mainly by hardwoods, 

and had the second highest tree density of all sites. On the other hand, patch F had the 

softwood dominant, Eastern red cedar, but still surpassed the 2011 target. Oak basal area 

is higher than the recorded 2008 values for all 4 patches, but only patch H, which is 

profoundly post oak dominant, had higher values than the management goals of 2011. 
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Average tree height was greater than 2008 in all patches, but in patch F, average tree 

height did not meet the management goals of 2011, potentially due to average heights of 

Eastern red cedar reaching only 17–18m after 50 years (Anderson, 2003). 

Non-native and invasive species. Non-native plants were detected along all 

transects, but perhaps most the problematic grassland discovery was the frequency of the 

invasive Japanese honeysuckle (Lonicera japonica Thunb.) along transect D (Appendix 

A). Japanese honeysuckle is an aggressive and widespread species that can grow rapidly 

under several biotic conditions such as acidic or basic soils, or in different habitat types, 

contributing to reduced species diversity by outcompeting native plants for light gaps and 

nitrogen-use efficiency (Schierenbeck, 2004). Japanese honeysuckle is on the WICR 

park-established watch list, with an estimated park-wide frequency of ~38% as of 2006 

(Young, et al., 2007). Japanese honeysuckle was found on 1/3 of the sampled non-native 

ruderal grassland sites in 2011, Once established, Japanese honeysuckle is difficult to 

remove (Annis et al., 2011), as there are no known native pests or diseases, it is able to 

recover quickly from herbivory, and mowing encourages growth (Schierenbeck, 2004). 

Patch E is mainly characterized by hackberry, which is common in secondary 

growth forests (Mcbride, 1973) and found frequently in upland deciduous woodland and 

forest sites at WICR, although not to this extent previously (Diamond et al., 2012). 

Hackberry may lead to management problems because it is a shade-tolerant, 

opportunistic, and resilient species capable of replacing young oaks in fire suppressed 

forests (Abrams, 1986). Hackberry is a soft-mast producing tree, so dominance in an oak-

hickory forest may be problematic for wildlife species dependent on oak masts (Missouri 

Department of Conservation, 2014). 
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Eastern red cedar was dominant in patch F, but the presence of this species was 

not previously detected in prior vegetation mapping, as the only prior sampling location 

in patch F does not coincide with the location of my transect (Diamond et al., 2012). At 

WICR Eastern red cedar is considered an invasive species that converts the landscape and 

changes vegetative composition across several habitat types, but is most commonly 

associated with encroaching upon old fields, glades, and fire suppressed forested areas 

within the park (Diamond et al., 2012). The discovery of dominant Eastern red cedar 

should be of management concern if oak regeneration is a priority goal within the park, as 

Eastern red cedar is able to outcompete oak saplings in Missouri and can quickly become 

the most abundant tree species (Piva et al., 2016), as demonstrated in patch F. 

Management considerations. Fire suppression has allowed non-native and 

invasive species to replace native vegetation in the grasslands and typical overstory 

dominants in the forests (Annis et al., 2011). My sampled patches reflect the need for 

routine prescribed fires, especially in response to the Japanese honeysuckle in patch D, 

and the Eastern Red cedar in patch F, and surrounding areas. Since these patches are 

close together, the Eastern red cedar is likely to encroach upon the adjacent grasslands, 

eroding soils and washing away native seeds while further facilitating the spread of 

Japanese honeysuckle by shading native vegetation (National Park Service, 2004). In 

addition, management in patch E is recommended as an early response to the dominance 

of hackberry.  

Frequent high-intensity fires (every 2–5 years) followed by herbicidal treatment is 

recommended to control dominant Japanese honeysuckle (Schierenbeck, 2004), and other 

invasive species to facilitate the re-establishment of native grasses that are otherwise 
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inhibited (Annis et al., 2011). My sampled forest sites have never been cut or thinned (J. 

Bell, personal communication, January 3, 2016) and have not been recently burned, but 

are target patches for future management (S. Leis, personal communication, September 

19, 2016). Forests should not only undergo routine fire regimes, but selective thinning 

should facilitate oak regeneration and allow forests to reach the later successional states. 

However, initial stand management to improve spatial integrity of the forests should also 

be a top management priority. 
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Table 1. Patch metrics, observed (OBS.) richness, estimated ACE and CHAO richness, 

and Simpson’s diversity indices for sampled herbaceous vegetation composition at 4 non-

native ruderal grassland patches (A-D), and woody composition at 4 upland deciduous 

woodland and forest patches (E-H), along 200m transects at Wilson’s Creek National 

Battlefield, Missouri; 2016. 

 

Metric A B C D E F G H 

Area (ha) 5.50 9.15 2.62 3.75 6.55 9.88 22.9 12.2 

Edge (km) 2.45 3.22 1.63 2.11 2.40 2.76 10.3 5.38 

Veg Height (cm) 91 89 89 94 67 75 66 66 

Bare Ground (%) 13 22 0.0 0.0 9.5 2.2 30 8.6 

OBS. Richness 18 18 19 15 9 13 19 11 

ACE Richness 25 26 26 27 12 14 25 15 

CHAO Richness 22 23 24 24 12 13 23 14 

Diversity 0.91 0.90 0.93 0.88 0.78 0.89 0.89 0.73 
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Table 2. Site characteristics of sampled upland deciduous woodland and forest patches 

(E-H) at Wilson’s Creek National Battlefield, Missouri; 2016. Stand-size classification 

details (small, S; medium, M; and large, L) are published by the U.S. FOREST 

SERVICE (Piva et al., 2016). 

 

Characteristic E F G H 

Rock Count 149 200 89 190 

Fallen Log Count 79 75 51 41 

Canopy Closure (%) 94 89 93 89 

Tree Density (trees/ha) 1010 867 908 853 

Sapling Count 88 82 74 130 

Poletimber Count 85 110 82 86 

Sawtimber Count 34 20 15 36 

Dominant species1 CEOC JUVI QUVE QUST 

Mean DBH of dominants (cm) 16.36 23.95 39.47 30.23 

Stand-size classification M L L L 

 

1 Includes (Celtis occidentalis; CEOC), Eastern red cedar (Juniperus virginiana; JUVI), 

black oak (Quercus velutina; QUVE), and post oak (Quercus stellata; QUST). 
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Table 3. Relative importance values (IMP) for the top 80% contributing tree species in sampled upland deciduous woodland and forest 

patches (E-H) at Wilson’s Creek National Battlefield; 2016. 

 

E IMP. F IMP. G IMP. H IMP. 

Celtis occidentalis 30.85 Juniperus virginiana 17.82 Quercus velutina 22.30 Quercus stellata 53.29 

Juglans nigra 26.98 Ulmus rubra 16.64 Quercus muehlenbergii 20.02 Juniperus virginiana 12.44 

Ulmus rubra 15.67 Celtis occidentalis 12.96 Quercus rubra 11.35 Quercus rubra 9.37 

Maclura pomifera 7.34 Quercus muehlenbergii 10.56 Celtis occidentalis 6.42 Juglans nigra 6.18 

  Quercus velutina 9.32 Sassafras albidum 5.98   

  Juglans nigra 7.48 Gleditsia triacanthos 5.84   

  Carya texana 6.97 Carya tomentosa 5.40   

    Fraxinus americana 3.73   
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Table 4. Natural Resource Condition Assessments (NCRA’s) of key structural and cover 

attributes in upland deciduous woodland and forest reporting units at Wilson’s Creek 

National Battlefield in 2008, the target management goals of these units as of 2011 

(Annis et al., 2011), and the 2016 reported values in 4 sampled patches (E-H). 

 

Attribute 2008 2011 E F G H 

Oak basal area (m2/ha) 4.3 9–18.2 8.1 5.9 8.8 16.6 

Hardwood Basal Area (m2/ha)  15.0 14–23 33.6 18.2 11.5 20.3 

Mean Hardwood Tree Height (m) 13.5 13–21.3 24.6 14.9 23.7 24.2 
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Figure 1. Location of Wilson’s Creek National Battlefield (37.1158° N, 93.4190° W) in 

Southwest, Missouri. Wilson’s Creek National Battlefield transverses the border of 

Greene and Christian counties. 
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Figure 2. Sampled non-native ruderal grassland sites (A-D) and upland deciduous 

woodland and forest sites (E-H) at Wilson’s Creek National Battlefield, Missouri. The 

year of the most recent burn is listed for each site. For site ‘B’ in the non-native ruderal 

grassland plot, only the eastern half of the patch was burned. Vegetation mapping was 

provided by the Missouri Resource Assessment Partnership (MoRAP) at the University 

of Missouri, and the Heartland Inventory and Monitoring Network (HTLN) of the 

National Park Service (Diamond et al., 2012).
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Figure 3. Patch sizes of all non-native ruderal grassland, and all upland deciduous 

woodland and forest vegetative classifications, and the area distributions of 4 sampled 

grassland patches (A-D), and 4 sampled forest patches (E-H) at Wilson’s Creek National 

Battlefield, Missouri. 
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Figure 4. Principal component analysis of 4 non-native ruderal grassland patches (A-D), 

at Wilson’s Creek National Battlefield, Missouri; 2016. Principal component 1 (PC1) 

contrasts area and Chao richness estimates and principal component 2 (PC2) contrasts 

herbaceous vegetation height (VEGH) and Chao richness estimates. 
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Figure 5. Cluster analysis of Bray-Curtis dissimilarity indices from 4 non-native ruderal 

grassland (A-D), and 4 upland deciduous woodland and forest (E-H) patches at Wilson’s 

Creek National Battlefield, Missouri; July, 2016. 

 



 

33 

 

 
Figure 6. Relative importance values of tree species in four upland deciduous woodland 

and forest patches (E-H) at Wilson’s Creek National Battlefield, Missouri; July, 2016. 

Tree species include hackberry (Celtis occidentalis; CEOC), Eastern red cedar (Juniperus 

virginiana; JUVI), blackjack oak (Quercus marilandica; QUMA), chinkapin oak 

(Quercus, muehlenbergii; QUMU), red oak (Quercus rubra; QURU), post oak (Quercus 

stellata; QUST), and black oak (Quercus velutina; QUVE). 
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Figure 7. Tree cover and estimated canopy closure sampled along a centrally located 

200m transect in four upland deciduous woodland and forest patches (E-H) at Wilson’s 

Creek National Battlefield, Missouri; July, 2016. 
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CHAPTER 2: SMALL MAMMAL COMMUNITIES AT WILSON’S CREEK 

NATIONAL BATTLEFIELD 

 

Introduction 

Anthropogenic disturbance can cause fragmentation of a landscape, resulting in 

smaller remnant patches with varying degrees of isolation (Gaines, et al., 1997). Larger 

patches tend to have greater biodiversity because species with different ecological 

requirements can co-exist, so fragmentation is a recognized problem threatening 

biodiversity (Rybicki and Hanski, 2013). Wilson’s Creek National Battlefield (WICR) is 

a mosaic landscape with high levels of fragmentation (Chapter 1; Annis et al., 2011). If 

suitable habitat patches become more isolated, extirpations are more likely, especially for 

larger animals that require more space (Kapos, et al., 2002) and species that are limited 

by dispersal because they cannot cross the surrounding matrix (Ferrari, et al., 2007; Hu, 

et al., 2012). While restoring the landscape to historic conditions and preserving natural 

vegetation has been a priority of park managers (National Park Service, 2003), it is also 

important to consider small mammal communities in order to reestablish ecological 

functions (DeGolier, et al., 2015). 

Although certain changes in patches may be not be evident, small mammals can 

be good indicators of ecological shifts and habitat quality due to rapid population 

responses to disturbance (Goertz, 1964; Kalies, et al., 2012). Small mammals are not only 

good indicator species, but play key ecosystem roles in forest and grassland habitats 

(Logiudice et al., 2008; Pascarella and Gaines, 1991; Fantz and Renken, 2005; Stephens 
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and Anderson, 2014). However, small mammal surveying was last conducted at WICR in 

2004 (Annis et al., 2011) so more frequent sampling may be beneficial. 

I sampled small mammals to provide WICR with a current estimate of community 

composition within the park. Specifically, I asked: 1) what are the driving forces of small 

mammal community patterns, and 2) how might we be able to predict small mammal 

occupancy in similar habitats? To answer these questions, I examined the relationships 

between habitat area and quality with small mammal habitat selection. I emphasized 

target vegetative patches (Chapter 1) to identify localized presence of small mammals. I 

fit detection models for species ubiquitously captured and fit occupancy models for 

species with enough encounter histories to allow for model convergence. I also examined 

community composition and abundance across sample patches. I performed statistical 

analyses in R (v. 3.3-2; R Core Team, 2016) and used the ‘ggplot2’ package (v.2.2-1; 

Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New 

York. Available: http://ggplot2.org) to generate figures. 

 

Methods 

Study area. Wilson’s Creek National Battlefield has undergone anthropogenic 

alterations including agricultural use and timber management (Diamond et al., 2013). 

Additionally, fire suppression has negatively influenced native communities by allowing 

non-native and invasive species to replace native vegetation (Annis et al., 2011). Today, 

habitats within the park are characterized by several non-native and invasive vegetation 

species (Chapter 1; Diamond et al., 2013), which may be unfavorable to certain small 

mammal species such as the Western harvest mouse (Reithrodontomys megalotis Baird), 



 

37 

 

deer mouse (Peromyscus maniculatus Wagner), Elliot’s short-tailed shrew (Blarina 

hylophaga Elliot), least shrew (Cryptotis parva Say), and the thirteen-lined ground 

squirrel (Matlack, et al., 2008), a species of concern in Missouri (Missouri Department of 

Conservation, 2017). 

I selected 4 non-native ruderal grassland patches and 4 upland deciduous 

woodland patches because of their biological importance to small mammal species 

(Chapter 1; Fig. 2; Gillen and Hellgren, 2013; Nupp and Swihart, 1998; Reed et al., 2005; 

Schweiger et al., 2000). I considered each patch independent of each other because they 

were at least 500m apart, as measured in ArcMap (v.10.3; Lindstedt, et al., 1986; Pe’er et 

al., 2014). In each patch, I sampled a 200m transect with trap stations that consisted of 

one regular size (7.62×8.89×22.86 cm) and one large Sherman-live trap 

(10.16×11.43×38.10 cm) at 10m intervals. Traps were set in ideal locations; i.e. along 

woody debris or the base of trees, or along runways; traps were opened in the evening, 

and checked the following morning before dawn. Trapping was completed May–July 

2016, and each patch was trapped 3 times (primary events) for 4 successive days 

(secondary events), totaling 12 trap nights per patch. 

Small mammals. Upon initial capture, I marked individual rodents with a unique 

ear tag (Model 1001-A, National Band and Tag) and clipped fur in distinct patterns for 

shrews. I recorded the species, sex, pelage color, reproductive status, mass, ear length, 

tail length, and hind foot length for each animal. I combed individuals for two minutes to 

collect ectoparasites, and released the mammals at the capture site. Vouchered mammals 

were prepared as museum specimens and deposited as property of the National Park 

Service at Wilson’s Creek National Battlefield. I stored ectoparasites in ethanol, and 
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identified them at Missouri State University. All trapping and handling procedures were 

approved by the Institutional Animal Care and Use Committee at Missouri State 

University (IACUC ID: 15-026.0) and followed the guidelines of the American Society 

of Mammologists (Sikes et al. 2016). 

Statistical analyses. For small mammal species with at least 4 captures, I 

modeled either occupancy and detection or detection alone (MacKenzie et al., 2006). I 

included Julian date as a detection covariate, as it might be associated with within-season 

variations such as increasing resource availability (Kalies et al., 2012) or population size 

(Moore and Swihart, 2005). I included primary and secondary sampling periods [i.e. 

trapping event (1–3), and successive trap day (1–4) within each trapping event] to 

account for heterogeneous detectability among individuals (trap happy or trap shy). 

Landscape covariates included average, minimum, and maximum temperature (LaZerte 

and Kramer, 2016), nightly sky illumination (Carley, et al., 1970), and precipitation 

within 24 hours of sampling (Thompson, et al., 2010). I obtained moonlight data, 

recorded as the proportion of the moon illuminated at midnight, from the U.S. Naval 

Observatory (http://aa.usno.navy.mil). Moonlight data was omitted from chipmunk 

analyses, as they are mainly diurnal animals (Snyder, 1982). I downloaded daily 

temperature and precipitation estimates coinciding with my sampling periods for Greene 

and Christian Counties from the PRISM climate website (PRISM Climate Group, 2004. 

Oregon State University Climate Data. Available: http://prism.oregonstate.edu). Because 

WICR crosses the border of these counties, I used the mean value of each weather 

variable per day. 
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For species with occurrence in all respective patches (i.e. all forest or all grassland 

patches), I fit logistic regression models to describe variation in detectability. I assumed 

survey histories for each species were a sequence of independent Bernoulli trials and 

generated presence/absence matrices, with detections (i.e. ‘successes’) denoted with a 

one, and non-detection (i.e. ‘failures’) with a zero. I constructed encounter histories for 

small mammals at each trap station. I used the detection covariates Julian date, trap day, 

precipitation, temperature, sky illumination, and trap station as a factor. Models were fit 

with the binomial ‘glm’ function with a logit-link in the ‘stats’ package. I used Hosmer 

Lemeshow goodness-of-fit tests for models with significant coefficients to compare the 

observed data with the predicted probabilities using the ‘hoslem.test’ function in the 

‘ResourceSelection’ package (v.0.3-2; Subhash, et al., 2017). I compared AIC values and 

goodness-of-fit outputs to identify the best predictors of detection. 

For species not detected in each of the respective patches and with a minimum 

number of detections, I modeled occupancy to address which covariates may be 

influencing habitat selection. I used detection covariates as previously noted and 

occupancy covariates included patch size (Vieira et al., 2009), herbaceous vegetation 

height (Washburn and Seamans, 2007), and proportion of bare ground (DeGolier et al., 

2015; Kaminski, et al., 2007) for both grassland and forest patches. For forest patches, 

occupancy covariates also included the number and decay class of fallen logs, the number 

of rocks (Kaminski et al., 2007), saplings, pole, and sawtimber trees, and canopy closure. 

I also included the estimated tree density, tree cover, tree diversity, and the calculated 

importance values for oak species (Quercus spp.), hackberry (Celtis occidentalis L.), and 

Eastern red cedar (Juniperus virginiana L.). 
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As there were varying degrees of magnitude in the variables, they were 

standardized to a comparable scale by using the z-score function ‘scale’ in the ‘base’ 

package. This transformation also is expected to weight models appropriately and 

improve convergence (Fiske and Chandler, 2011; Kéry and Chandler, 2012). To avoid 

multicollinearity, I generated a Pearson’s correlation matrix of covariates with the ‘cor’ 

function in package ‘stats’ (v.3.3-2) and removed one of two highly correlated variables 

(r ≥ 0.70) before model fitting that were of lesser biological importance, or the least 

standardized measure (Stephens and Anderson, 2014). I summarized encounter histories 

at the patch-level, rather than at individual trap locations as done in the detection-only 

species. I fit single-season occupancy models using the function ‘occu’ in the ‘unmarked’ 

package (v.0.11-0; Fiske and Chandler, 2011), which implements the zero-inflated 

binomial formula described by MacKenzie et al (2002).  

I initially estimated detection probabilities by fitting models with either constant 

detection, as singular variables, or as covariate combinations, with only an intercept for 

occupancy. I avoided over-parameterizing my models by first fitting and assessing 

univariate detection covariates, and then fitting combinations of significant variables. I 

used the best-supported detection covariate in occupancy modeling, and repeated the 

same process for model fitting. I fit models to the best of my ability by adjusting the 

optimization method or providing starting values as necessary. I attempted to use any 

equally meaningful previously omitted variable in place of an originally selected variable 

if Markov-Chain-Monte-Carlo (MCMC) methods did not converge or resulted in 

extremely wide standard errors. I compared candidate models using Akaike's Information 
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Criterion adjusted for small sample size (AICC). I chose the preferred model by assessing 

AICC weights, and the standard errors of the slope estimates. 

I fit closed population abundance models in each habitat patch for species with 

enough captures at patch-level to produce reliable estimates. I fit log-linear abundance 

models with ‘closed.p’ function, or the ‘closedp.bc’ function in the ‘Rcapture’ package 

(v.1.4-2; Rivest and Baillargeon, 2015). Both of these models account for heterogeneous 

individual behaviors, allowing for a more relaxed assumption of random sampling. The 

‘closedp.bc’ applies a bias correction by modifying the capture frequencies in a Poisson 

regression to improve abundance estimations and variances when capture probabilities 

are small (Rivest and Lévesque, 2001). 

I used the raw counts of unique individuals of each small mammal species to 

estimate richness and diversity in the each of the grassland and forest patches. To 

estimate species richness I used the ‘estimateR’ function in the ‘vegan’ package v. 2.4-3; 

Oksanen et al., 2017) to find corrected Chao and ACE metrics, which account for 

potential undetected species based on singletons and doubletons, and rare species. To 

summarize community structure, I calculated Simpson’s diversity index for each patch 

with the ‘diversity’ function in the ‘vegan’ package. I created rarefaction curves to 

compare richness among patches at a minimum sample size by using the ‘ggiNEXT’ 

function in the ‘iNEXT’ package (v. 2.0.14; Hseih, et al., 2016). I calculated Bray-Curtis 

dissimilarity indices between patches of a given type to assess differences in small 

mammal species composition. 
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Results 

I captured 129 unique small mammal individuals representing 8 species over the 

course of 3,840 trap nights between May and July 2016 (Tab. 5). The hispid cotton rat 

(Sigmodon hispidus Say) was ubiquitous in all of the grassland patches, and the most 

commonly caught species in 3 of the 4 patches (Fig. 8). The prairie vole (Microtus 

ochrogaster Wagner) was the most common species in grassland patch C, but was 

missing from patch D (Fig. 8). The Western harvest mouse was also frequently captured 

(Fig. 8). In the grassland patches, species rarely encountered were Elliot’s short-tailed 

shrew (2 captures), the deer mouse (1 capture), and the least shrew (1 capture; Fig. 8). 

The white-footed mouse (Peromyscus leucopus Rafinesque) occupied all of the forest 

patches, and was the most commonly caught species across all forest patches (Fig. 9). 

The deer mouse was captured to a lesser extent in patches E and F, but not found in G or 

H, and the Eastern chipmunk (Tamias striatus L.) was captured in 3 of 4 forest patches, 

although not frequently (Fig. 9). In forest patches, rarely encountered species were prairie 

vole, Elliot’s short-tailed shrew, and the least shrew, each captured once (Fig. 9). 

Detection models. I fit detection models for the hispid cotton rat and white-

footed mouse for the grassland and forest patches, respectively. The only significant 

variable influencing the probability of cotton rat detectability was Julian date (Z = 2.24; P 

= 0.02; Tab. 6), but the Hosmer-Lemeshow goodness of fit test indicated the model was 

not a good fit (P(χ2)  < 0.05; Tab. 6). Increased moon illumination had a significant 

influence on the white-footed mouse detectability (Z = 5.6; P = 0.33; Tab. 6), and 

Hosmer-Lemeshow goodness of fit tests indicated the model was a good fit (P(χ2) = 0.33; 

Tab. 6). Average daily temperature had a significant influence (Z = -6.3; P < 0.05) on the 
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white-footed mouse detectability, but the Hosmer-Lemeshow goodness of fit indicated 

the model was not a good fit (P(χ2)  < 0.05; Tab. 6).  

Occupancy models. I fit occupancy models for the Western harvest mouse and 

prairie vole for the grassland patches. I fit occupancy models for the Eastern chipmunk, 

and deer mouse in the forest patches. Although Elliot’s short-tailed shrew and the least 

shrew were captured in both habitats, sample sizes were too small to run occupancy or 

abundance models for either species. 

The model with constant detection and occupancy had the lowest AICC value for 

the Western harvest mouse; however, the MCMC approaches failed to converge well 

when adding occupancy covariates, so this model was omitted. Additionally, MCMC 

approaches failed to converge for detection and occupancy models when multiple 

covariates were included, regardless if individual predictors were able to converge or not, 

so only singular predictors were used. Precipitation within 24 hours of trap night was the 

best-supported detection model that would allow for occupancy model convergence, and 

moon illumination was the next ranked detection model (Tab. 7). Both covariates had a 

positive relationship with Western harvest mouse detection, although neither of the beta 

slope estimates were significant (βPRECIP = 0.5, Z = 1.3, P = 0.2; βMOON = 0.3, Z = 0.7 P = 

0.5; Tab. 7). The best-supported occupancy model included vegetation richness (β = 0.6, 

Z = 0.5, P = 0.57) and the second ranked model included patch area (β = -1.0, Z = 0.6,    

P = 0.54; Tab. 7). 

Precipitation was the strongest predictor of detectability for the prairie vole, 

showing a significant and positive influence (β = 1.3, Z = 2.0, P = 0.04; Tab. 8). The 

detection-only model with moon illumination was ranked second, but the coefficient was 
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not significant and the negative slope estimate approached zero (β = -0.5, Z = -0.9, P = 

0.34; Tab. 8). Vegetation height was included in the preferred occupancy model and 

vegetation richness was included the next ranked model, but both coefficients were not 

significant (βHEIGHT = -3.6, Z = -0.9, P = 0.37; βRICH = -9.9, Z = 0.5, P = 0.61; Tab. 8). 

The MCMC approaches were able to converge for occupancy models with additional 

patch-level covariates, but resulted in wide standard errors that led to uncertain estimates. 

I fit multivariate detection models for the Eastern chipmunk, but Julian date as a 

single predictor was the best-supported model. However, the relationship between Julian 

date and detection was not significant (β = -0.9, Z = 0.9, P = 0.34; Tab. 9). The second 

ranked detection-only model included Julian date and temperature but neither coefficient 

was significant (βJULIAN = -1.0, Z = -1.9, P = 0.34; βTEMP = 0.3, Z = 0.5, P = 0.58; Tab. 9). 

The top-ranked occupancy models were fit with singular predictors. The number of fallen 

logs was the preferred model and oak importance values was the second-best model. Both 

the number of fallen logs and oak importance values had positive coefficients but were 

not significant. (βDWM = 7.4; Z = 11, P = 0.38; βOAK = 7.9; Z = 5.2, P = 0.38; Tab. 9). 

For the deer mouse, the top ranked detection-only model included precipitation as 

a covariate, although the coefficient was not significant (β = -1.0, Z = -1.8, P = 0.06; Tab. 

10). The next ranked model included both precipitation and temperature as covariates. 

Both coefficients were negative, but neither was significant (βPRECIP = -1.0, Z = -1.8, P = 

0.08; βTEMP = -0.9, Z = -1.2, P = 0.24; Tab. 10). The preferred occupancy model included 

tree density and the second ranked model included Eastern red cedar importance values, 

but both positive coefficients were not significant (βTDEN = 1.33, Z = 0.84, P = 0.40; βERC 
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= 0.36, Z = 0.30, P = 0.76), while Eastern red cedar had relatively wide standard errors 

(Tab. 10).   

Abundance models. The grassland species with enough captures to fit abundance 

models were the prairie vole, hispid cotton rat, and Western harvest mouse, while the 

forest species with enough captures were the white-footed mouse, deer mouse, and 

eastern chipmunk. The prairie vole was only captured enough in patch C to estimate 

abundance, and the model had wide standard errors (Tab. 5). The hispid cotton rat and the 

Western harvest mouse had the highest abundance in patch A, but the abundance 

estimates for the Western harvest mouse strongly differed than the observed data, and 

resulted in wide standard errors for individual patches and as a total estimate (Tab. 5). In 

the forests, patch E had the highest abundance estimates for all species, with the white-

footed mouse having the highest observed and estimated abundance (Tab. 5). Patch G 

had the lowest abundance estimate of white-footed mice, while the deer mouse was not 

captured in patches G and H, and the eastern chipmunk was only captured enough times 

to provide abundance estimates in patch E (Tab. 5). 

Community composition. Observed small mammal richness ranged from 1–6 

species for both the grassland and forest patches. Estimated richness in the grasslands 

ranged from 1–21, and estimated richness ranged from 1–10 in the forests (Tab. 11). 

Patch A had the highest estimated grassland richness, while patch D had the lowest 

estimated richness (Tab. 11). In the forests, patch E had the highest richness values, while 

patch H had the lowest values (Tab. 11). ACE richness estimators resulted in higher 

values than Chao estimates, but both had narrow standard errors associated in all patches 

(Tab. 11), and showed similar trends as the observed richness as a function of patch size 
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in the grasslands (Fig. 10), and the forests (Fig. 11). Similarly, small patches had higher 

richness than large patches, but the highest values fell into the mid-range of sampled 

patch sizes in the grasslands (Fig. 10), and forests (Fig. 11). 

There were no differences in the rarefied richness values at a minimum sample 

size of 7 captured individuals in grassland patches A, B, and C (Fig. 12). However, the 

richness values in grassland D did not overlap with the 95% confidence intervals from 

any other patch, regardless of the sample size (Fig. 12). In the smallest subsample of 9 

forest individuals, there are no differences in rarefied richness between patches E, F, and 

G, but there was low estimated richness in patch H (Fig. 13). However, as the sample size 

increases, the forest patches begin to fall out of the 95% confidence intervals of each 

other, and species richness becomes increasingly dissimilar (Fig. 13). 

Simpson’s diversity index values were more variable among grassland patches 

than forest patches (Tab. 11). Index values for grasslands were similar among patches A–

C, but not in patch D; patch A had the highest diversity, while patch D had the lowest 

(Tab. 11). Among forest patches, diversity was highest at patch E, and lowest in patch H 

(Tab. 11). Small mammal community composition showed a nested pattern in the 

grasslands, with patch C being the most dissimilar, and patches B and D showing the 

most similar composition (Fig. 14). Among forest patches, community composition had a 

split pattern, with patches E and F similar, and patches G and H similar (Fig. 14). 

Overall, communities in grasslands differed from those in the forest (Fig. 14). 

The most commonly collected tick was the black-legged tick (Ixodes scapularis), 

with the highest observed abundance in patch E (Tab. 12). The lone-star tick 

(Amblyomma americanum) was the second most common species collected, albeit it was 
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much rarer than the black-legged tick. The American dog tick (Dermacentor variabilis) 

was collected only from forest patch F (Tab. 12). Patch E had greatest number of total 

ticks collected, and no ticks were combed from mammals in patch G (Tab. 12). 

 

Discussion 

Detection models. The model including Julian date was the best-supported model 

of cotton rat detection, but the model did not fit well based on Hosmer-Lemeshow 

goodness-of-fit tests. In Northeast Kansas, cotton rats have a high capture probability 

during the summer months, but it declines in the fall (Slade and Swihart, 1983). It is 

likely the model was a poor fit because cotton rats reach peak density and activity levels 

during the summer breeding season (Foster and Gaines, 1991), so capture frequencies did 

not differ enough during the short trapping period. Cotton rats were captured in all 

sample patches within WICR, as the disturbed nature of the grasslands potentially offer 

preferable habitat (Goertz, 1964). 

Moon illumination had a positive effect on white-footed mouse detection, and the 

model was a good fit. The strength and the direction of the effect is surprising, as rodent 

activity often is decreased during bright nights to avoid predator detection (Fitzgerald and 

Wolff, 1988). White-footed mice had relatively equal detectability regardless of 

temperature, although studies have shown reduced Peromyscus activity when 

temperatures are not within an intermediate range of about 10°–20° Celsius (Marten, 

1973), temperatures that occurred throughout the study period at WICR. Because white-

footed mice are forest generalists (Anderson et al., 2006) and one of the most common 
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Eastern deciduous forest mammals (Wolf and Batzli, 2004), I expected them to occupy 

most, or all of the sampled forest patches.  

Occupancy models. Although the best-supported model containing precipitation 

did not have a significant slope estimate for Western harvest mice, they have been shown 

to be more active during rainy nights (Webster and Jones Jr, 1982). Moon illumination 

had a positive effect on detectability, which was not expected (Carley et al., 1970; 

Webster and Jones Jr, 1982). The negative effect of patch size is in agreement with 

existing literature (Foster and Gaines, 1991), although Western harvest mice do tend to 

have higher persistence rates on larger patches (Foster and Gaines, 1991). Although listed 

as uncommon in the WICR database (https://irma.nps.gov), with the high spatial integrity 

indices of the grasslands (Chapter 1) and the dominance of cool-season grasses (Skupski, 

1995; Webster and Jones Jr, 1982), it is more likely that Western harvest mouse could 

become common and abundant within the park. 

The prairie vole is identified as one of the more common species at WICR 

(https://irma.nps.gov), but during my sampling I did not capture a large number of them. 

Prairie voles had higher detection on rainy nights. Increased activity on dark and rainy 

nights may be a tactic to avoid nocturnal predators during periods of required foraging 

(Carley et al., 1970; Vickery and Bider, 1981). I did not find a significant relationship 

with vegetation height or vegetative richness and occupancy, which may be due to the 

similar covariate values among patches (Chapter 1) and a small sample size. Positive 

relationships would be expected as vegetation cover provides protection from predation 

and abiotic conditions, allowing for successful movement, nesting, and overall 

persistence (Birney, et al., 1976; Smith and Batzli, 2006; Solomon, et al., 2005). Prairie 
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vole populations are negatively associated with the presence and abundance of cotton rats 

(Frydendall, 1969), especially during summer (Glass and Slade, 1980a, 1980b) and in 

smaller areas where space is a limiting factor (Stalling, 1990). Where I found the largest 

number of prairie voles, there also was the lowest number cotton rats. However, my 

dataset is insufficient to test for a negative association at WICR. 

The preferred detection-covariate for eastern chipmunks was Julian date, although 

the coefficient was not significantly different than 0. Downed woody material was 

included in the best-supported occupancy model, although the estimate of the coefficient 

had a large standard error. However, chipmunks do prefer habitats with fallen logs 

(Snyder, 1982) because they provide several functional roles as crevices, physical covers, 

runways, locational markers, and foraging sites (Zollner and Crane, 2003). Oak 

importance values were included in the second ranked model, again without a statistically 

significant coefficient. Eastern chipmunks can reach their highest densities where trees 

such as oak are present (Wolff, 1996), although this was not the case at WICR. 

Detection of the deer mouse was most likely linked with precipitation patterns, as 

it was included in both of the top two ranked models for detection, albeit with a 

coefficient not different from 0. Getting wet increases the rate of heat loss (Vickery and 

Bider, 1981), which may explain why deer mice were more active on dry evenings, 

especially on cooler nights. The deer mouse subspecies that occurs in most of Missouri 

(Peromysucs maniculatus bairdii) tends to occur in grassland habitats rather than forests 

(Schwartz and Schwartz, 2016) whereas P. maniculatus ozarkiarum occurs in 

southwestern Missouri and was noted from grassy areas within a forest matrix (Brown 

1963). Grasslands at WICR are characterized by dense ground cover (Chapter 1), which 
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P. maniculatus bairdii tends to avoid (Clark and Kaufman, 1991), but similar 

observations on P. maniculatus ozarkiarum are lacking. The exact relationships of deer 

mouse occupancy is unclear because coefficients for tree densities and Eastern red cedar 

importance were not different from 0. However, these covariates may play a role in 

predator avoidance on bright nights (Clark, 1983) in the forest patches. 

Community composition. Mid-size patches had the highest observed richness in 

both grasslands and forest patches. Captures of both edge (i.e. chipmunk and white-

footed mouse; Mahan and Yahner, 1998; Wolf and Batzli, 2004) and interior (i.e. deer 

mice and Western harvest mice; Bock et al., 2002) species may have led to higher 

richness and diversity in the mid-size patches (Press et al., 2013). However, rarefaction 

analysis indicates no real difference in richness among patches within habitat types. Both 

Chao and ACE richness estimators suggested incomplete sampling of the communities, 

however. High values of the estimators are due to few captures of rare species which 

could inflate the estimates. Increased sampling effort could yield more reasonable 

estimates for patches A, C, and E. 

Communities differed between grassland and forest patches, although there was 

overlap in small mammal community composition, as there were 4 shared species. Patch 

differences in grasslands were driven by multiple captures of the prairie vole in patch C 

and few if any in the remaining patches in which cotton rat captures were high. 

Differences between A, B, and D can be characterized by a less diverse assemblage from 

in B and D relative to A. In forest patches, the main difference is the presence of deer 

mouse in patches E and F, and its absence in G and H. 
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Improvements to study design. Additional survey effort in terms of the number 

of patches, days, and traps, along with trap placement would lead to more confident 

community composition estimates and models that are more robust. Trapping during the 

spring and autumn months of peak activity may allow increased captures of Western 

harvest mice (Carley et al., 1970; Skupski, 1995; Webster and Jones Jr, 1982; Johnson 

and Gaines, 1988). Additionally, use of elevated traps (Cummins and Slade, 2007; 

Houser and Zollner, 2013) would increase capture success for Western harvest mice. 

Chipmunk capture success should increase by trapping during the daylight hours, as they 

are primarily diurnal (LaZerte and Kramer, 2016; Snyder, 1982). A long-term dataset 

would allow for examination of changes in occupancy due cyclical population dynamics 

or masting events that might be overlooked in a single season model (LaZerte and 

Kramer, 2016). Likewise, chipmunks respond positively to the presence of white oaks 

more than red oaks (Pyare, et al., 1993), so monitoring oak species might provide insight 

into chipmunk occupancy and abundance. Further investigation into the role of vegetative 

composition and interspecific interactions among species, particularly the prairie vole and 

the cotton rat, may show clearer trends and lead to a better understanding of small 

mammal occupancy at Wilson’s Creek National Battlefield.
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Table 5. Unique small mammal individuals captured and (abundance estimates   

standard errors) at Wilson’s Creek National Battlefield, Missouri, May–July, 2016. 

Patches A–D are non-native ruderal grasslands, and patches E–H are upland deciduous 

woodland and forests. Small mammal species include the prairie vole (Microtus 

ochrogaster; MIOC), Elliot’s short-tailed shrew (Blarina hylophaga; BLHY), least shrew 

(Cryptotis parva; CRPA), deer mouse (Peromyscus maniculatus; PEMA), Western 

harvest mouse (Reithrodontomys megalotis; REME), hispid cotton rat (Sigmodon 

hispidus; SIHI), white-footed mouse (Peromyscus leucopus; PELE), and Eastern 

chipmunk (Tamias striatus; TAST). 

 

5a. Non-native ruderal grassland patches A – D. 

 

Species A B C D Total 

MIOC 1 1 5 (17  15) 0 7 (17  15 ) 

BLHY 1 0 1 0 2 

CRPA 1 0 0 0 1 

PEMA 1 0 0 0 1 

REME 7 (30  28) 4 (12  10) 1 0 12 (68  63) 

SIHI 14 (29  8) 5 (8  3) 1 7 (17  10) 27 56  13 ) 

 

5b. Upland deciduous woodland and forest patches E – H. 

 

Species E F G H Total 

MIOC 1 0 0 0 1 

BLHY 1 0 0 0 1 

CRPA 1 0 0 0 1 

PEMA 4 (5  0.1 ) 3 (4  1) 0 0 7 (7  1) 

PELE 26 (35  3 ) 16 (20   2) 10 (13  3) 9 (16   6) 61 (81  5) 

TAST 6 (23  21) 1 1 0 8 (23  21) 
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Table 6. Slope estimates () and standard errors (σx̅) of the best-fit detection models for 

the hispid cotton rat (Sigmodon hispidus) and the white-footed mouse (Peromyscus 

leucopus) at Wilson’s Creek National Battlefield, Missouri; May–June, 2016. 

 

 Covariate 
^ σx̅ Z p(>|z|) χ2 P(χ2) 

Sigmodon hispidus        

 Julian date 0.02 0.01 2.20 0.02 43 < 0.05 

Peromyscus leucopus        

 Illumination 1.75 0.31 5.6 < 0.05 9.2 0.33 

 Temperature -0.09 0.02 -6.3 < 0.05 33 < 0.05 
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Table 7. Detection (p), and occupancy (Ψ) model slope () estimates from best-fit models 

for the Western harvest mouse (Reithrodontomys megalotis) at Wilson’s Creek National 

Battlefield, Missouri; May–June, 2016. Best-fit models were selected based on the 

Akaike's information criterion corrected for small sample size (AICC), and standard 

errors (σx̅). Detection (p) and occupancy (Ψ) covariates include precipitation within 24 

hours of trap night (Rain), moon phase (Illumination), vegetation richness (Richness), 

patch size (Area), and constant detection or occupancy (.). 

 

 
Covariate 

^ σx̅ Z p(>|z|) ΔAICC AICWT K 

Detection         

 p(Rain) Ψ(.) 0.5 0.41 1.3 0.2 0.00 0.24 3 

 p(Illumination) Ψ(.) 0.3 0.48 0.7 0.5 1.15 0.13 3 

Occupancy         

 p(Rain) Ψ(Richness) 0.6 0.41 0.5 0.57 0.00 0.71 4 

 p(Rain) Ψ(Area) -1.0 0.39 0.6 0.54 1.81 0.29 4 
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Table 8. Detection (p), and occupancy (Ψ) model slope () estimates from best-fit models 

for the prairie vole (Microtus ochrogaster) at Wilson’s Creek National Battlefield, 

Missouri; May–June, 2016. Best-fit models were selected based on the Akaike's 

information criterion corrected for small sample size (AICC), and standard errors (σx̅). 

Detection (p) and occupancy (Ψ) covariates include precipitation within 24 hours of trap 

night, vegetation height and richness, and constant detection or occupancy (.). 

 

 
Covariate 

^ σx̅ Z p(>|z|) ΔAICC AICWT K 

Detection         

 p(Rain) Ψ(.) 1.3 0.68 2.0 0.04 0.00 0.66 3 

 p(Illumination) Ψ(.) -0.5 0.57 -0.9 0.34 4.07 0.09 2 

Occupancy         

 p(Rain) Ψ(V. Height) -3.6 4.0 -0.9 0.37 0.00 0.33 4 

 p(Rain) Ψ(Richness) -9.9 19 -0.5 0.61 0.25 0.30 4 
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Table 9. Detection (p), and occupancy (Ψ) model slope () estimates from best-fit models 

for the Eastern chipmunk (Tamias striatus) at Wilson’s Creek National Battlefield, 

Missouri; May–June, 2016. Best-fit models were selected based on the Akaike's 

information criterion corrected for small sample size (AICC), and standard errors (σx̅). 

Detection (p) and occupancy (Ψ) covariates include Julian date (Julian), average daily 

temperature (Temp), number of fallen logs (DWM), patch-level oak importance values 

(Oak), and constant detection or occupancy (.). 

 

 Covariate 
^ σx̅ Z p(>|z|) ΔAICC AICWT K 

Detection         

 
p(Julian) Ψ(.) -0.9 0.4 0.9 0.34 0.00 0.45 3 

 p(Julian+Temp) Ψ(.) 
-1.0 

0.3 

0.5 

0.6 

-1.9 

0.5 

0.06 

0.58 
1.70 0.19 4 

Occupancy         

 p(Julian) Ψ(DWM) 7.4 9.4 11 0.38 0.00 0.41 4 

 p(Julian) Ψ(Oak) 7.9 -4.5 5.2 0.38 0.61 0.30 4 
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Table 10. Detection (p), and occupancy (Ψ) model slope () estimates from best-fit 

models for the deer mouse (Peromyscus maniculatus) at Wilson’s Creek National 

Battlefield, Missouri; May–June, 2016. Best-fit models were selected based on the 

Akaike's information criterion corrected for small sample size (AICC), and standard 

errors (σx̅). Detection (p) and occupancy (Ψ) covariates include precipitation within 24 

hours of trapping (Rain), average daily temperature, tree density (TDEN), patch-level 

Eastern red cedar importance values (JUVI), and constant occupancy (.). 

 

 Covariate 
^ σx̅ Z p(>|z|) ΔAICC AICWT K 

Detection         

 
p(Rain) Ψ(.) -1.0 0.54 -1.8 0.06 0.00 0.25 3 

 p(Rain+Temp) Ψ(.) 
-1.0 

-0.9 

0.57 

0.77 

-1.8 

-1.2 

0.08 

0.24 
1.70 0.19 4 

Occupancy         

 p(Rain) Ψ(TDEN) 1.33 1.59 0.84 0.40 0.00 0.11 4 

 p(Rain) Ψ(JUVI) 0.36 1.17 0.30 0.76 0.89 0.07 4 
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Table 11. Observed and estimated ACE and Chao small mammal richness ( standard 

error), and Simpson’s diversity indices at four non-native ruderal grassland (A–D) and 

four upland deciduous woodland and forest (E–H) sampled patches at Wilson’s Creek 

National Battlefield, Missouri; May–June, 2016. 

 

Metric A B C D E F G H 

Observed 

Richness 
6 3 4 1 6 3 2 1 

ACE  

Richness 

21  

( 2) 

4  

( 1) 

13  

( 2) 

1  

( 0) 

10  

( 1) 

4  

( 1) 

3  

( 1) 

1  

( 0) 

Chao  

Richness 

12  

( 7) 

3  

( 0) 

7  

( 4) 

1  

( 0) 

9  

( 4) 

3  

( 0) 

2 

( 0) 

1  

( 0) 

Simpson’s 

Diversity 
0.60 0.58 0.56 0.00 0.52 0.34 0.17 0.00 
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Table 12. Tick abundance collected from small mammals in four non-native ruderal 

grassland patches (A–D), and four upland deciduous woodland and forest patches (E–H) 

at Wilson’s Creek National Battlefield, Missouri; May–June, 2016. 

 

Species A B C D E F G H 

Black-legged tick (Ixodes scapularis) 7 1 4 2 14 3 0 3 

Lone-star tick (Amblyomma americanum) 3 0 1 0 4 0 0 0 

American dog tick (Dermacentor variabilis) 0 0 0 0 0 2 0 0 
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Figure 8. Small mammal capture events at four non-native ruderal grassland patches (A–

D) at Wilson’s Creek National Battlefield, Missouri, May–July, 2016. Small mammal 

species include hispid cotton rat (Sigmodon hispidus; SIHI), Western harvest mouse 

(Reithrodontomys megalotis; REME), prairie vole (Microtus ochrogaster; MIOC), deer 

mouse (Peromyscus maniculatus; PEMA), Elliot’s short-tailed shrew (Blarina 

hylophaga; BLHY), and least shrew (Cryptotis parva; CRPA).
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Figure 9. Small mammal capture events at four upland deciduous woodland and forest 

patches (E–H) at Wilson’s Creek National Battlefield, Missouri, May–July, 2016. Small 

mammal species include white-footed mouse (Peromyscus leucopus; PELE), deer mouse 

(Peromyscus maniculatus; PEMA), Eastern chipmunk (Tamias striatus; TAST), prairie 

vole (Microtus ochrogaster; MIOC), Elliot’s short-tailed shrew (Blarina hylophaga; 

BLHY), and least shrew (Cryptotis parva; CRPA). 
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Figure 10. Observed (OBS), ACE, and Chao estimated richness of small mammal species 

as a function of patch size in four non-native ruderal grassland patches (A-D) at Wilson’s 

Creek National Battlefield, Missouri; May–July Wilson’s Creek National Battlefield, 

Missouri, May–July, 2016. 
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Figure 11. Observed (OBS), ACE, and Chao estimated richness of small mammal species 

as a function of patch size in four upland deciduous woodland and forest patches (E-H) at 

Wilson’s Creek National Battlefield, Missouri; May–July Wilson’s Creek National 

Battlefield, Missouri, May–July, 2016.  
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Figure 12. Rarefied small mammal species richness, and the associated 95% confidence 

intervals as a function of the number of individuals sampled in four non-native ruderal 

grassland patches (A-D) at Wilson’s Creek National Battlefield, Missouri; May–July, 

2016. 
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Figure 13. Rarefied small mammal species richness, and the associated 95% confidence 

intervals as a function of the number of individuals sampled in four upland deciduous 

woodland and forest patches (E-H) at Wilson’s Creek National Battlefield, Missouri; 

May–July, 2016. 
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Figure 14. Bray-Curtis patch-level comparison of small mammal composition at four 

non-native ruderal grassland patches (A–D), and four upland deciduous woodland and 

forest patches (E–H) at Wilson’s Creek National Battlefield, Missouri between May–

July, 2016. 
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SUMMARY 

 

Continued vegetation monitoring in my sampled patches would be beneficial, as 

they represent a wide breadth of the distribution of similar habitat within the park. Small 

mammal richness is expected to increase if non-native ruderal grasslands are restored 

back to native prairie vegetation (Clark et al., 1998; Mengak, 2004; Schweiger et al., 

2000), but the Japanese honeysuckle in patch D is capable of outcompeting native 

vegetation. Prescribed burning and reseeding should result in small mammal succession 

following that of plant successional stage as specific habitat requirements are met 

(Schweiger et al., 2000). The deer mouse is expected to shift toward recently burned 

plots, whereas the Western harvest mouse, hispid cotton rat (Clark et al., 1998), Elliot’s 

short-tailed shrew (Thompson et al., 2010), and prairie vole (Schweiger et al., 2000) are 

expected to occupy patches in later successional stages. However, if woody vegetation 

such as Eastern red cedar were to encroach upon grasslands from the surrounding forest 

patches, small mammal community structure is expected to shift along the gradient, 

potentially leading to a depauperate community dominated by white-footed mice 

(Horncastle et al., 2005). 

Similar to the grasslands, forest richness is expected to increase with stand 

management (Nupp and Swihart, 2000). However, the low spatial integrity indices of the 

upland deciduous woodland and forests is worrisome because the persistence of many 

species depend upon the population dynamics in the surrounding landscape (Fantz and 

Renken, 2005). Small and isolated habitat patches are not suitable for species sensitive to 

fragmentation and may become homogenized by the white-footed mouse (Nupp and 

Swihart, 2000). This is especially problematic as white-footed mice are primary 
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reservoirs for the Lyme disease spirochete, Borrelia burgdorferi (Ostfeld, et al., 1993). 

Furthermore, density and prevalence of infected ticks can increase with fragmentation of 

woodlands (Keesing et al., 2006; Logiudice et al., 2008; Mize, et al., 2011). Continuous 

habitats with greater biodiversity are more likely to contain non-competent reservoirs of 

B. burgdorferi and lower abundances of white-footed mice, which would reduce risk of 

human infection (Logiudice et al., 2008; Schmidt and Ostfeld, 2001; Turney, et al., 

2014). 

 

  



 

75 

 

ADDITIONAL REFERENCES 

 

Clark, B. K., B. S. Clark, T. R. Homerding, and W. E. Munsterman. 1998. Communities 

of small mammals in six grass-dominated habitats of Southeastern Oklahoma. 

The American Midland Naturalist 139:262–268. 

 

 Horncastle, V. J., E. C. Hellgren, P. M. Mayer, A. C. Ganguli, D. M. Engle, and D. M. 

Leslie. 2005. Implications of invasion by Juniperus virginiana on small mammals 

in the Southern Great Plains. Journal of Mammalogy 86:1144–1155.  

  

Keesing, F., R. D. Holt, and R. S. Ostfeld. 2006. Effects of species diversity on disease 

risk. Ecology Letters 9:485–498. 

  

Mengak, M. T. (2004). Response of small mammal populations to fescue hayfield 

conversion to native warm season grasses in Bath County, Virginia. Virginia 

Journal of Science, 55(4), 170–176. 

  

Mize, E. L., J. I. Tsao, and B. A. Maurer. 2011. Habitat correlates with the spatial 

distribution of ectoparasites on Peromyscus leucopus. Journal of Vector Ecology 

36:308–320. 

  

Nupp, T. E., and R. K. Swihart. 2000. Landscape-level correlates of small-mammal 

assemblages in forest fragments of farmland. Journal of Mammalogy 81:512–526. 

  

Ostfeld, R. S., M. C. Miller, and J. Schnurr. 1993. Ear tagging increases tick (Ixodes 

dammini) infestation rates of white-footed mice (Peromyscus leucopus). Journal 

of Mammalogy 74:651–655. 

  

Schmidt, K. A., and R. S. Ostfeld. 2001. Biodiversity and the dilution effect in disease 

ecology. Ecology 82:609–619. 

  

Turney, S., A. Gonzalez, and V. Millien. 2014. The negative relationship between 

mammal host diversity and Lyme disease incidence strengthens through time. 

Ecology 95:3244–3250. 

 

  



 

76 

 

APPENDICES 

 

Appendix A. Abundance of tree, shrub, and herbaceous (non-grass) species found in 

non-native ruderal grassland patches (A-D) at Wilson’s Creek National Battlefield, 

Missouri; July, 2016. 

Species Common Name A B C D 

Ambrosia spp. Ragweed 0 0 0 1 

Apocynum cannabinum Dogbane 0 1 0 0 

Asclepias syriaca Milkweed 0 1 0 0 

Asclepias tuberosa Butterfly Weed 2 0 0 0 

Asteraceae Asteraceae 3 0 0 1 

Cirsium spp. Native Thistle 2 0 0 2 

Clematis spp. Clematis 0 0 2 0 

Daucus carota Queen Anne’s Lace 0 2 4 4 

Desmodium spp. Legume 0 2 1 5 

Dianthus armeria Deptford Pink 1 0 0 0 

Erigeron spp. Fleabane 0 0 1 1 

Euphorbia spp. Spurge 3 0 1 1 

Eutrochium purpureum Joe Pye Weed 1 1 0 0 

Gleditsia triacanthos Honeylocust 4 2 0 0 

Hypericum perforatum St. Johnswort 1 1 0 0 

Ipomoea hederacea Morning Glory 0 0 2 0 

Juglans nigra Black Walnut 0 0 1 0 

Lespedeza cuneata Sericea Lespedeza 1 8 0 1 

Leucanthemum vulgare Oxeye Daisy 0 0 1 0 

Lonicera japonica Japanese Honeysuckle 0 0 0 10 

Medicago sativa Alfalfa 0 0 1 0 

 

(Appendix continued on next page.) 
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(Appendix A. Continued.) 

 

Species Common Name A B C D 

Monarda citriodora Horsemint 0 3 0 0 

Opuntia humifusa  Eastern Prickly Pear 0 0 2 0 

Passiflora incarnata Purple Passion Flower 8 3 0 0 

Prunus serotina Black Cherry 2 0 0 5 

Rhus copallinum Winged Sumac 0 1 0 1 

Rosa multiflora Multiflora Rose 0 0 2 0 

Rubus occidentalis Black Raspberry 8 10 0 4 

Rudbeckia triloba Brown Eyed Susan 0 0 0 2 

Ruellia humilis Wild Petunia 0 0 1 0 

Solanum carolinense Carolina Horsenettle 3 0 3 1 

Solidago ptarmicoides Goldenrod 0 0 0 1 

Symphoricarpos orbiculatus Coralberry 6 6 1 7 

Teucrium canadense Canada Germander 1 6 0 5 

Tilia americana American Linden 0 0 0 2 

Toxicodendron radicans Eastern Poison Ivy 1 3 0 0 

Tragia spp. Tragia 0 0 2 0 

Ulmus alata Winged Elm 0 1 0 0 

Verbesina alternifolia Wingstem 0 0 1 0 

Vernonia missurica  Missouri Ironweed 2 4 0 0 

Vitis vulpina Frost Grape 0 1 3 0 
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Appendix B. Abundance of tree species found in upland deciduous woodland and forest 

sites (E-H) at Wilson’s Creek National Battlefield, Missouri; July, 2016. 

Species Common Name A B C D 

Carya cordiformis Bitternut Hickory 0 0 1 0 

Carya ovata Shagbark Hickory 0 2 1 0 

Carya texana Black Hickory 1 5 0 0 

Carya tomentosa Mockernut Hickory 0 1 4 3 

Celtis occidentalis Hackberry 21 9 5 2 

Fraxinus americana White Ash 0 0 2 1 

Gleditsia triacanthos Honey locust 0 0 4 1 

Juglans nigra Black Walnut 13 5 1 3 

Juniperus virginiana Eastern Red Cedar 1 10 2 8 

Maclura pomifera Osage Orange 5 3 0 0 

Morus rubra Mulberry 0 2 0 0 

Prunus serotina Black Cherry 0 0 2 3 

Quercus marilandica Blackjack Oak 0 0 1 0 

Quercus muehlenbergii Chinkapin Oak 3 6 16 1 

Quercus rubra Red Oak 1 0 3 5 

Quercus stellata Post Oak 0 1 0 25 

Quercus velutina Black Oak 3 5 8 0 

Robinia pseudoacacia Black locust 0 0 1 0 

Sassafras albidum Sassafras 0 3 5 0 

Tilia americana American Linden 0 0 2 0 

Ulmus americana White Elm 0 0 1 0 

Ulmus rubra Slippery Elm 13 11 1 1 
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