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ABSTRACT 

The Great Falls Tectonic Zone (GFTZ) is a northeast trending zone of high angle faults 
and lineaments extending from northeastern Idaho into Saskatchewan, Canada. The 
GFTZ is believed to have facilitated the collision between the Archean Wyoming and 
Hearne cratons.  Previous geophysical studies have analyzed seismic refraction data 
across the boundary between the Paleoproterozoic GFTZ and Archean Wyoming Craton 
(WC), this indicated  the lower crustal layer thickens as it dips beneath the boundary 
towards the WC. In this study, three 2 dimensional (2D) gravity models that crossed the 
central region of the GFTZ were produced using constraints from existing geologic and 
geophysical studies. The construction of a complete Bouguer gravity anomaly map, 
regional and residual (band-pass filtered) gravity and magnetic maps, as well as the 
generation of 2D magnetotelluric electrical resistivity profiles greatly aided in the 
interpretation of areas of interest. Coupled with the newly developed maps, the models 
provide otherwise unavailable constraints on the extent and geometries of the GFTZ/WC 
boundary region. Additional geophysical analysis of these features may substantiate the 
findings and help redefine the subsurface extent of the GFTZ/WC boundary. Low 
resistivity values in the upper mantle may be related to release water formed during 
subduction of cratonic material during the Paleoproterozoic. 
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1.0  INTRODUCTION 

1.10 Setting 

 It is generally accepted that the geological age of the Earth is approximately 4.60 

billion years old (Ga). During that time, the continents have undergone several different 

configurations. Roughly 200 million years ago the supercontinent Pangaea began to break 

apart. By approximately 90 million years ago, the continents of North and South America 

began separating from Pangaea forming what is now the Atlantic Ocean region. The 

oldest tectonic element within the North American continent, the Wyoming Province, is 

within the northwestern region of the United States and includes regions in Wyoming and 

Montana. The Archean provinces within Wyoming, Montana, and southern Alberta have 

endured periods of Proterozoic rifting (2.45-2.10 Mya.), collisional amalgamation (1.96-

1.83 Mya.), and volcanic pulses (~1.9-1.77 Mya.), along with intense deformational 

events during the Laramide and Sevier orogenies (Whitmeyer and Karlstrom, 2007). 

 A key element to Laurentia’s assembly includes the incorporation of the Archean 

provinces of Wyoming, Medicine Hat Block, and Hearne (Chamberlain et. al. 2003; 

Whitmeyer and Karlstrom, 2007). The incorporation of these cratonic blocks into the core 

of Laurentia has provided researchers with an extraordinary tapestry of some of the most 

interesting and complex geology within the North American continent. 

 The Great Falls Tectonic Zone (GFTZ) is a northeast-trending zone of faults and 

lineaments extending from Saskatchewan into northeastern Idaho (Boerner et. al. 1998). 

The GFTZ is an important geologic feature since it facilitates the interaction of the 

Wyoming and Medicine Hat Block cratonic provinces; however, the true nature of the 

GFTZ and the Wyoming Province remains unknown due to Phanerozoic sediments 
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completely covering the region (Mueller et al. 2002). The relationship between the 

Proterozoic-aged GFTZ and the surrounding tectonic provinces are illustrated in Figure 1. 

On the western edge of the cratons lies the Belt Basin, which includes both Archean and 

Proterozoic-aged rocks (Mueller and Frost, 2006), with the Paleoproterozoic Trans-

Hudson (Dakota) Orogen on its eastern border (Foster et al. 2006).  

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 1. Archean and Proterozoic provinces of the study area which illustrates the 
relationship between the GFTZ and the surrounding features, modified from Foster et al. 
(2006) 
 

Current theories regarding the origin of the GFTZ include: 1) it marks the 

Paleoproterozoic collision between the Wyoming, Medicine Hat Block, and Hearne 

provinces (Whitmeyer and Karlstrom, 2007), 2) it is a reactivated Archean intracratonal 
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shear zone (Boerner et al. 1998), and 3) it is another type of geologic feature, such as a 

strike slip region or a suture zone between the Wyoming and Hearne provinces 

(Whitmeyer and Karlstrom, 2007). 

1.20 Previous Studies 

 The limited information that is known about the region has been acquired through 

commercial drilling exploration, limited regional geophysical experiments and scattered 

Archean and Proterozoic outcrops within Montana and northern Wyoming (Chamberlain 

et al. 2003).  Figure 2 shows the limited outcrops within the study due to the few 

Laramide-aged uplifts.  

 

Figure 2.  Location of Archean rocks in the study area exposed by Laramide deformation.  
Modified from Chamberlain et al. (2003). 
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1.30 Previous Seismic and Magnetotelluric Studies 

 The regional geophysical studies conducted in the study area have included 

various seismic reflection and refraction studies (Gorman et al. 2000; Clowes et al. 2002), 

gravity studies of the GFTZ and magnetotellurics (MT) studies in the Trans Hudson 

region (Boerner et al. 1998; Mickus, 2007).    

 There are two main, regional seismic refraction experiments that provide 

information of the crust and mantle structures within the Medicine Hat Block, GFTZ, and 

northern Wyoming Province regions. The Southern Alberta Refraction Experiment 

(SAREX) was carried out in conjunction with the Deep Probe seismic experiment 

(Gorman et al. 2000; Clowes et al. 2002), (Figures 3 and 4). These studies determined the 

velocity structures of the crust and upper mantle of the Archean regions as well as 

Phanerozoic altered regions of the western North American continent (Gorman et al. 

2000; Clowes et al. 2002). 

The SAREX experiment was recorded over the Western Canada Sedimentary 

Basin (WCSB) which extends into northeastern Montana (Clowes et al. 2002). There are 

approximately 2000m of sedimentary rocks overlying the crystalline basement within the 

WCSB which considerably affects seismic wave arrival times. The final velocity model 

from the SAREX experiment determined upper crystalline crustal velocities of 6.0-6.5 

km/s that remained consistent to depths of approximately 20 km (Figure 5). These upper 

crustal velocities also remained consistent laterally along the profile, with the exception 

of a remarkable trough-like feature at depths between 20-30 km in the northern half of 

the profile. These trough-like features range in velocity from 6.5-7.0 km/s and are 
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Figure 3.  Location of the SAREX and Deep Probe experiments overlain on the tectonic 
province of the region.  The star labeled 49 is SAREX 1 & Deep probe shot 49.  
Numbered circles are reflection profiles compared directly to SAREX results.  The 
triangles represent SAREX shot points.  Modified from Clowes et al. (2002). 

 

interpreted to be deformed lower crustal material. On the southern end of the profile, 

beginning just north of the USA-Canada border, there is a higher velocity layer extending 

at least 300km southward under the Wyoming Province with velocities of 7.5 km/s. This 

high velocity layer, labeled LCL in Figure 5, is interpreted to be a Proterozoic ultramafic 

underplated body. Consequently, the WP extends to a depth of approximately 57-60 km 

with the addition of the ultramafic underplating, which on average is 20km thicker than 

the global crustal thickness beneath other cratonic features (Gorman et al. 2002). 
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Figure 4.   Locations of SAREX and Deep Probe shot locations.  Single digit numbered 
triangles represent SAREX shot points, double digit numbered stars represent Deep Probe 
shot points.  Medicine Hat Block-MHB; Vulcan Structure-VS; Great Falls Tectonic 
Zone-GFTZ.  Grey lines indicate regional tectonic boundaries.  Modified from Gorman et 
al. (2000). 
 

The Deep Probe experiment, (Gorman et al. 2000) was carried out in conjunction 

with the SAREX experiment. The Deep Probe experiment was a state of the art seismic 

refraction-wide angle reflection (R/WAR) experiment. While there have been other 

R/WAR experiments, only those by Iyer et al. (1969), Thybo and Perchuc (1997), 

Németh and Hajnal (1998) have extended long enough to provide velocity sections for 

the entire lithospheric mantle of the continents. The final velocity model from the Deep 
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Figure 5.  SAREX seismic model.  (a) 1:1 nonvertically exaggerated velocity model with 
the various colors representing different velocities.  (b) 4:1 vertically exaggerated 
velocity model showing ray trace paths.  Numbers represent ray travel times in km/s.  (c) 
geological representation of their velocity model based on both SAREX and Deep Probe 
data.  Lower crustal layer-; black diamonds are xenolith samples; tonalite gneiss-TG 
garnet paragneiss-GP; mafic granulite-MG.  Numbered circles, triangles, and stars 
represent various shot locations.  Modified from Clowes et al.(2002). 
 
 
Probe experiment is shown in Figure 6.  The Deep Probe and SAREX models appear 

comparable at first glance; however, there are several variations and additional 

conclusions due to both processing methods and added Deep Probe shot data points 

(Clowes et al. 2002, Gorman et al. 2000).  
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Figure 6.  Final seismic model of the Deep Probe experiment.  Stars and triangles 
represent shot points.  Lower crustal layer-LCL; f1 and f2 represent floating mantle 
reflectors; Vulcan structure-VS; Medicine Hat Block-MHB; Great Falls Tectonic Zone-
GFTZ.  Modified from Gorman et al. (2000). 
 
 
 Like the SAREX model, the Deep Probe model depicts four basic rock layers; an 

upper and lower crust, an underplated layer, and finally the mantle layer. Seismic 

velocities between both models remain consistent, although Gorman et al. (2000) note 

that the underplating layer produced two distinct velocities from 7.0-7.5 km/s. The two 

most significant differences between the models are: 1) the representation of the 

underplating layer that extend approximately 600 km southward underneath the 

Wyoming Province before beginning to pinch out and 2) the presence of two north 

dipping reflectors.  
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 Both velocity models, Figures 5 and 6, place the Moho depth beneath the 

Wyoming and Medicine Hat Block Provinces between 55 and 60 km. Both velocity 

models also indicate a high velocity ultramafic underplated layer, as well as a severely 

deformed lower crustal layer which perhaps marks the collision between the Medicine 

Hat Block and Hearne Archean provinces (Clowes et al. 2000; Gorman et al. 2000). 

 Magnetotellurics (MT) is a passive source geophysical technique that measures 

naturally occurring electrical and magnetic fields and can be used to model the electrical 

properties of the crust and mantle. Boerner et al. (1998) performed a MT experiment just 

northeast of the study area where the GFTZ intersects the Trans-Hudson Orogen (THO) 

in southern Alberta. The study showed that there was no preferred electrical strike 

direction except at mid-crustal depths where they became weakly 2-dimensional with 

conductive structures striking northeast (Boerner et al. 1998) parallel to the GFTZ.  These 

strike direction results are consistent with the aeromagnetic anomaly fabric trends of the 

GFTZ (Boerner et al. 1998). 

 The Earthscope project, sponsored by the National Science Foundation, is a major 

seismic/MT experiment extending over the United States. Preliminary models from the 

MT data have shown a large resistive region between 150-250 km in depth that loosely 

coincides with the GFTZ (Meqbel et al. 2011). A similar resistive region has been imaged 

beneath the Slave Craton, with the possibility of being linked to economically important 

diamond sources (Jones et al. 2003).  
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1.40 Petrophysical Studies  

 Various studies have shown that some Archean cratons have experienced different 

geologic episodes of deformation and as a consequence, particular segments of a craton 

can have significantly different geochemical and isotopic characteristics (Mueller and 

Frost, 2006; Mueller, 2010). Isotopic differences are particularly useful in determining 

the sequence of events during which a craton has been created (Foster et al. 2006). 

 Based on isotopic data, early cratons have been divided into three different types: 

type I, type II, and type III. The Wyoming Province is an excellent example of a type III 

craton (Mueller, et al 1988). Type III cratons are highly differentiated, having undergone 

little to no early metamorphism and developing high 207Pb/204Pb ratios under these 

conditions (Mueller and Frost, 2006). 

 The Beartooth Mountains located on the northern edge of the Wyoming Province 

(Figure 1) exhibit enriched Pb isotopic compositions which indicate that the Wyoming 

Province has undergone a type of crust and mantle mixing that is found on Archean-aged 

cratons. The Beartooth Mountains range in composition from andesite to granite, 

however previous studies (Mueller and Frost, 2006) note that the andesite is of mantle 

origin, which supports the suggestion of a subduction environment.  When considering 

the possibility of subduction, previous studies compared the isotopic signatures found 

within the Beartooth Mountains to modern subduction environments such as in Bali and 

Java. All three-share similar Pb isotopic characteristics and high field strength element 

depletion, which are linked to subduction related environments (Mueller et al, 1988). 
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1.50  Scope of Work 

 The lack of existing geophysical data present an opportunity to compile and 

analyze newly collected gravity, magnetic and MT data specifically focusing on the 

boundary between the Wyoming Province and the GFTZ.  The GFTZ is a major tectonic 

feature formed between the collision of the Archean Wyoming Province and the 

Medicine Hat Block. The GFTZ may preserve the structural remnants of an ancient 

subduction environment extending under the Wyoming Province: interpreting the 

subsurface extent of this boundary relative to the adjacent and underlying Archean and 

Proterozoic structures is the focus of this study.  

 To provide gravity constraints on the subsurface structure of the boundary region, 

new gravity stations were collected at an interval that would allow for more detailed 

modeling and mapping across boundary between the Wyoming Province and the GFTZ.  

To aid in the interpretation of the gravity and magnetic data, horizontal derivative, band-

pass filtered, and upward continuation maps were constructed.  To obtain a more 

comprehensive representation of the subsurface across the boundary, two-dimensional (2-

D) models were generated.   The models and anomaly maps were interpreted in terms of 

the crustal and mantle structures within this region and are offered as one possible 

solution to the observed gravity and magnetic fields within the boundary. 

 Magnetotelluric data were also collected in conjunction with the new gravity 

transects to provide additional constraints. MT models provide additional information by 

measuring the electrical conductivity structure within the subsurface. To better 

understand the electrical structure, 2-D models were created. 



12 

 Conducting such comprehensive geophysical analysis of the subsurface structure 

of this boundary has provided important constraints on the interaction of these structures 

relative to each other and their extent under the Phanerozoic cover. The findings of these 

models and the interpretation of the maps will be available for use in future studies within 

the region. This study investigates the major lithospheric blocks and their interactions in 

Northern Wyoming and Montana including the Wyoming Province, the THO, and the 

GFTZ.    
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2.0  GEOLOGIC HISTORY 

2.10 Wyoming Province 

 The earliest origins of the Wyoming Province remain unknown due to the limited 

Archean outcrops and lack of deep geophysical studies within the Wyoming Province. In 

spite of these limitations there have been several interpretations, including; 1) the 

Wyoming Province is the southern continuance of the Archean Hearn Province in 

Canada, 2) it is an Archean microcontinent, or 3) it is a rifted portion of the Superior 

Craton that migrated westward while rotating 180° to its current orientation (Mueller and 

Wooden, 1988; Foster et al. 2006; Whitmeyer and Karlstrom, 2007). 

 The Wyoming Province is an Archean-aged craton located in the northwestern 

region of the United States (Figure 1). The core of the Wyoming Province is comprised 

of older (3.6-3.3 Ga) gneisses, that contain detrital zircons dating to 4.0 Ga (Chamberlain 

et al. 2003; Foster et al. 2006; Whitmeyer and Karlstrom, 2007) suggesting the existence 

of a craton at 4.0 Ga. 

 There have been numerous studies of the Wyoming Province and these studies 

have divided the craton into 3-5 distinctive terranes based on late Archean histories, see 

Figure 7; 1) the Montana Metasedimentary Province, 2) the Beartooth-Bighorn magmatic 

zone, and 3) the Southern Accreted Terranes. Other terranes include the Sierra Madre-

Medicine Bow block (SM-MB) and the Hartville Black Hills, both of which are possibly 

allocthonous to the WP (Chamberlain et al. 2003; Mueller and Frost, 2006).  

 The Montana Metasedimentary Province is located in the northwestern section of 

the Wyoming Provinceand encompasses the oldest known Early to Middle Archean rocks 

of the Wyoming Province. Compositionally, the Montana Metasedimentary Province 
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contains quartzites, pelites, and carbonate rocks intermixed with older (3.50-3.30 Ga) 

quartzofeldspathic gneisses which are isotopically similar to the rest of the Wyoming 

Province (Chamberlain et al. 2003) (Figure 7).  Shear zones along the southern edge of 

the terrane representing both the limit of magmatism from 2.9-2.75 Ga, and also marking 

the boundary of the subprovince (Chamberlain et al. 2003). 

 

Figure 7.  The location of the various terranes within the Wyoming Province.  Archean 
rocks occur north of the Cheyenne Belt-DB and southeast of the Great Falls Tectonic-
GFTZ.  The Oregon Trail structural belt-OTSB separates the older rocks older rocks of 
the Beartooth-bighorn Magmatic zone-BBMZ and Montanta Metasedimentary province-
MMP from the Southern Accreted Terranes-SAT.  North Madison Range –NMR; South 
Madison Range – SMR; Tobacco Root Mountains-TR; Black Rock Mountain-BLK 
Rock; Rattlesnake hills-R Hills.  Modified from Frost et al. (2003). 
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 The Bighorn subprovince, which loosely coincides with the Beartooth-Bighorn 

magmatic zone, is located within the center of the WP (Figure 7).  The Bighorn 

Mountains are one of the largest uplifts of the region with an Archean core (Mueller and 

Frost, 2006).  Encompassing the northern region is the Bighorn batholith, dated to 2.8 Ga 

using U-Pb dating techniques, which is comprised of tonalite, granodiorite, granite, and 

quartz monzanites. Mineralogically and geochemically similar to the gneisses in the 

central Bighorn Mountains, the central and southern regions consist of gneissic terranes 

divided into three separate units; older quartzofeldspathic gneiss, a younger granitic 

intrusive complex, and a migmatite sequence in contact with the Bighorn batholith (Frost 

and Fanning, 2006).  

 Slightly younger magmatic and tectonic belts encompass the southern edge of the 

Wyoming Province with the SAT recording later Archean calc-alkalic magmatic and 

tectonic activity in three distinctive pulses between 2.71-2.50 Ga (Mueller and Frost, 

2006).  East to northeast directed subduction from 2.71-2.67 Ga resulted in a continental 

magmatic arc formation currently exposed in the Wind River Mountains along with a 

mafic dike swarm thought to represent a back-arc setting.  Magmatism in this region 

continued from 2.65-2.50 Ga, in two distinct pulses.  The first pulse occurring from 2.65-

2.62 Ga in a more north directed subduction complex and the second pulse, from 2.55-

2.50 Ga, was more extensive throughout the entire Wyoming Province but of less 

tectonic significance in terms of comparative volume of magmatism to the region (Frost 

et al. 2006).  These later Archean sequences are composed of mafic and felsic 

metavolcanic rocks, metagraywacke, pelitic schist, minor quartzites, and iron depositions 
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which are believed to have originated as older detritus from possibly the BBMZ or MMP 

(Mueller and Frost, 2006). 

 The final two terranes within the Wyoming Province, the Sierra Madre-Medicine 

Bow Mountains and the Hartville-Black Hills uplifts, are suggested to be allocthonous 

based on basement gneiss ages found within each of the terranes (Chamberlain et al. 

2003). It is believed that the Sierra Madre-Medicine Bow Mountains were accreted to the 

Wyoming Province by 2.62 Ga.  Deformation during the Archean within the Phantom 

Lake suite may reflect the accretion to the craton in the form of southward dipping 

reflectors, evidenced in the CD-ROM experiment (Chamberlain et al. 2003). The Sierra 

Madre-Medicine Bow also experienced rifting between 2.1-2.0 Ga which caused thinning 

of the region along with numerous mafic dykes and sills throughout the region.  The 

Hartville-Black Hills block is dominated by meta-sedimentary rocks. The Hartville-Black 

Hills uplifts underwent western directed deformation during the Proterozoic (2.62 Ga). 

The timing of these events are believed to be nearly coeval with the Medicine Bow 

orogeny within the Cheyenne Belt (Chamberlain et al. 2003; Frost et al. 2006). 

 2.20 Surrounding Archean and Proterozoic Terranes  

 The Wyoming Province is surrounded mainly by Late Archean- to Proterozoic-

aged collisional belts and orogens including: 1) the THO, 2) Cheyenne belt, 3) Selway 

Terrane, 4) Belt Basin, and the 5) GFTZ. (Chamberlain et al. 2003; Foster et al. 2006; 

Mueller and Frost, 2006).  The only non-Archean or Proterozoic terrane bordering the 

Wyoming Province is the basalts of the Snake River Plain (Figure 8) along its 

southwestern boundary. 
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Figure 8.  The Wyoming Province and its relationship to surrounding orogens and 
Precambrian provinces.  Areas shown in black are Precambrian exposures.  AI, Antelope 
Island; BH, Bighorn Mountains; BT, Beartooth Mountains; LR, Laramie Range; MB, 
Medicine Bow Mountains; RR-A-GC, Raft River – Albion – Grouse Creek Mountains; 
SM, Sierra Madre; T, Teton Range; WR, Wind River Mountains.  Modified from Mueller 
and Frost, (2006). 
 
 The THO amalgamated to the Wyoming, Hearne, and Superior cratonic regions 

during the Proterozoic (1.82-1.78 Ga.) (Chamberlain et al. 2003; Foster et al. 2006; 

Whitmeyer and Karlstrom, 2007). The THO marks the closure of the Manikewan Ocean, 

an oceanic plate that once separated the Superior and Rae cratonic provinces (Whitmeyer 

and Karlstrom, 2007). The THO extends from South Dakota into northern Canada, in 

some regions widening to almost 500 km. 

 To the south lies a steeply dipping northeast-trending zone termed the Cheyenne 

Belt. The Cheyenne Belt is a Precambrian suture zone that helps form the southern 
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boundary between the Wyoming Province and the accreted Proterozoic terranes to the 

south. Occurring between 1.78-1.75 Ga. the Cheyenne Belt records the Proterozoic 

collision between the arc terranes with the Wyoming Province (Hoffman, 1988; 

Whitmeyer and Karlstrom, 2007). 

 The Farmington Canyon Complex is along the southwestern margin of the WP 

and constitutes the largest exposure of early Paleoproterozoic crust in the region.  The 

FCC is comprised of quartzofeldspathic gneisses, migmatites, and metasedimentary 

rocks. While these are mostly Archean-aged rocks, zircons have been found that indicate 

deposition during the Early Paleoproterozoic (Foster et al. 2006). 

 Just to the north of the Farmington Canyon Complex lies the Selway Terrane. The 

Selway Terrane was proposed by Foster et al. (2006). The Selway Terrane covers the 

region underlain by Paleoproterozoic rocks west of the Laramide-aged uplifts of 

southwestern Montana. These Paleoproterozoic rocks crop out in north-south trending 

mountain ranges occurring along the eastern edge of the Sevier fold and thrust belt 

(Chamberlain et al. 2003). 

 The Snake River Plain is a northeast-trending volcanic region marking the path of 

the North American continent as it has migrated westward over the Yellowstone hotspot 

over the last 17 m.y.  The Snake River Plain overprints portions of the Selway Terrane as 

well as a small portion of the western edge of the Archean Wyoming province in northern 

Wyoming (Leeman 1982) (Figure 8). 

 The GFTZ is a northeast trending zone of reactivated Archean rocks extending 

from southeastern Idaho, through Montana, and into southern Saskatchewan.  The GFTZ 

is presumed to be the collisional point of the Wyoming Province and the Medicine Hat-
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Hearne provinces.  The western region of the GFTZ within the Little Belt Mountains, 

contain 1.86 Ga. calc-alkaline meta-igneous rocks exhibiting Nd isotope signatures 

suggestive of a convergent margin environment (Boerner et al. 1998; Foster et al. 2006).  

 The Belt Basin is geographically located in Idaho and western Montana and 

extends slightly into Canada. The Belt Basin was formed between 1500 to approximately 

1320 Ma during the breakup of Rodinia and is associated with extensional faulting and 

magmatism that occurred during the accumulation history of the basin. It ranges in 

thickness from 2.5 km at the eastern end to approximately 12km thick in the Purcell 

Mountains (Sears, 2007; Winston and Sears, 2013). 

 The last major tectonic event occurring within the study region is the Laramide 

Orogeny.  The Laramide Orogeny is a late Cretaceous to Paleocene (80-55Ma) orogenic 

event that is believed to be the result of flat slab-style subduction of the Kula-Farralon 

plate.  The Laramide Orogeny involved Precambrian metamorphic basement rocks and 

affected areas as far as 750-1500 km inland from the nearest convergent margin. 
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3.0  GEOPHYSICAL DATA 

3.10 Data Collection 

  G.P.S. Data Collection. In order to obtain the desired accuracy of the gravity 

readings of ± 0.1 mGal, the latitude and longitude of a gravity station must be known 

within 10 meters and the elevation within 1 meter.  These types of accuracies can be 

accomplished using a differentially-corrected GPS (global positioning system) receiver 

capable of achieving ± 0.02-meter accuracy. 

 To obtain the above accuracies, GPS base stations must be used and permanent 

stations that occur throughout the survey region were used. The permanent GPS station at 

Lewistown, Montana maintained by the National Oceanographic and Atmospheric 

Agency (NOAA), as well as the six absolute base stations (Figure 9) were used to correct 

the data collected for this study. Base stations are needed to correct the station GPS data 

for atmospheric effects at the local station that will degrade the accuracy of the horizontal 

and vertical values. The processed GPS elevation data were then converted to geoidal 

elevations using the 2006 North American geoid.   

Gravity Data Collection. The gravity data used for this study were obtained from 

two different sources.  Figure 9 shows the location of the absolute base stations within the 

study area.  The majority of the data were obtained from the National Geospatial and 

Imaging Agency (NGA), while the remaining data were collected by the author along the 

three profiles shown in Figure 10. The NGA data station spacing varies from 1 to 7 km, 

while the newly collected data have a station spacing varying from 1 to 2 km. The new 

data were acquired during June 2011 using a Lacoste and Romberg (L&R) Model G 

gravimeter with locations determined by a concurrent GPS survey.  In order for the  
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Figure 9.  The six absolute gravity base station locations used to correct the data collected 
during the survey. 
 
 
collected data to be included into the national databases the data must be corrected using 

the International Gravity Standardization Net 1971 (IGSN 71), along with a known  

absolute gravity station. Additionally, a local base station is also needed. The local base 

station is used to correct for gravimeter drift throughout the day as data are collected.  

The local base stations were collected twice each day, at the beginning and ending of 

each day. At least once during the survey the local base station must be tied into the 

absolute gravity station (Figure 10).  
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Figure 10.  The distribution of all gravity points within the study area, both from existing 
databases and the newly acquired profiles.  Red lines show the location of the newly 
collected data.  
 
 
   Magnetic Data Collection. The aeromagnetic data were obtained from the USGS 

(Bankey et al. 2002).  The data were merged from numerous airborne surveys into a 1 km 

grid with flight spacing ranging from 4 to 8 km. In this survey, the regional effects of the 

earth’s magnetic dipole were removed such that the residual magnetic anomalies 

represent variations in the subsurface mineralogy and petrography. The data were 

processed by the USGS source to remove the effects of the earth’s main dipolar field 

using the International Geomagnetic Reference Field (IGRF).   
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   Magnetotelluric Data. The MT method uses time-varying electromagnetic fields.  

These fields are produced by two different sources: 1) the interaction between the sun’s 

solar winds with the earth’s magnetosphere and ionosphere, and 2) variations produced 

by storms on the surface of the earth, in the form of lightning storms. These field 

variations, depending on the frequencies recorded, are capable of penetrating to upper 

mantle depths. 

 For this study, MT data were obtained through the IRIS Data Management Center 

(DMC) and were recorded by the NSF Earthscope project. IRIS DMC is the access point 

for data received from the US Array, Earthscope’s transportable array MT component.  

 Data collection was facilitated through the use of a Narod Intelligent 

Magnetotelluric System (NIMS), which is a digital recording long period MT receiver 

with a data logger. The nominal bandwidth of the NIMS is from 2 to 36,000 seconds, and 

can be configured to record at either 1 Hz or 8 Hz. The remaining components of the 

Earthscope transportable array are a three-component magnetometer and two horizontal 

electric dipole receivers. MT data were collected over a period of 21 days at each station 

with stations spaced in a 70x70 km grid (Figure 11). 

3.20 Data Processing 

 Gravity Data Processing. Before the raw gravity data can be used to interpret 

Earth structures, all known gravitational effects must be removed. The L&R gravimeter 

uses an internal metal spring to measure the gravitational field at each station. 

Throughout the day this spring will undergo elastic creep related to thermal expansion 

and contraction, along with mechanical tensioning and releasing, therefore these 

variations must be accounted for during processing. By establishing a local base station,  
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Figure 11.  The location (+) of the Earthscope transportable MT stations through 2009.  
The shaded area shows station locations used for this study. 
 
 
the meter drift can be calculated and corrected.  By calculating the difference in the 

beginning and ending values, the remaining survey points are adjusted upward or 

downward to obtain the corrected meter reading. Once collected and translated into 

usable values (corrected for daily instrumental drift) and referenced to the 1971 IGSN 

Net, the data are ready to be processed to produce Bouguer gravity anomaly values. 

 Because the Earth is an oblate spheroid, with the radius being greater at the 

equator, gravitational forces are directly proportional to the distance from the center of 

the earth. To correct for the variations in gravity due to latitudinal variation the 1967 

International gravity formula was applied using latitude data gathered from the GPS 
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survey.  The latitude data were processed using the World Geodetic System 1984 

geographic coordinate system. 

 Just as there are variations in gravity due to changes in latitude, there exist 

variations due to changes in elevation. The changes result from increasing distance from 

the geoid. To account for these changes, the free-air-correction (FAC) was applied to the 

observed gravity values. The FAC is the difference between gravity recorded at sea level 

and that measured at a certain distance above the reference elevation with no rock in 

between (Reynolds, 1997). For most surveys, the reference elevation is mean sea level. In 

order to correctly apply the FAC, the exact station elevation must be known. For this 

survey the elevation was obtained from the GPS survey as illustrated in Figure 12.  

 

Figure 12.  The concept of the Bouguer gravity correction.  Reynolds (1977). 
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 The Bouguer correction is implemented to compensate for the increased 

gravitational forces exerted by a rock slab of “h” thickness, of density ρ (kg/m3) (Figure 

12). Since the Bouguer correction overestimates the density of g (obs) it must be subtracted 

out for stations above sea level. To calculate the Bouguer correction value the following 

equation is used (Reynolds, 1997): 

 Bouguer Correction (δgB) =2ΠGρh=βρh (g.u.), where: 

 Β=2ΠG=0.4192 g.u.  

 G=6.67 x 10-8 m3 Mg-1 s-2 and density (ρ) measured in Mg m-3 and height (h) is 

measured in meters. 

 In surveys where there are minor topography variations, the FAC and Bouguer 

corrections are sufficient to compensate for variations in gravity. However, there are few 

regions without variations in topography. The Bouguer correction assumes an infinite 

slab of uniform density; it negates any variations from nearby hills and valleys, 

necessitating a terrain correction. The effects of topography are shown in Figure 13. 

 

Figure 13.  Diagram illustrating the effects of a hill and valley on gravity measurements 
and the need corrections.  Modified form Reynolds (1977). 
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 To correct for these variations in topography, the physical deviations of each 

station site are recorded on Hammer Terrain Correction charts (Hammer charts) (Figure 

14).  The Hammer chart is superimposed over a topographic map and the average 

elevation is estimated within each zone.  When surveys are performed above sea level the 

Hammer chart values are added to the final Bouguer anomaly value (Hammer, 1938) 

(Figure 14).  For this survey the terrain corrections within the zones of B and C were 

estimated in the field, the terrain corrections for the outer zones were estimated using 10 

and 30-meter digital elevation models (DEM) and a computer algorithm (Nagy, 1966). 

The end result is the complete Bouguer gravity anomaly.  

 

Figure 14.  Typical Hammer Chart, with only the inner segments, B and C, were recorded 
in the field.  Modified from Reynolds, (1997), 
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  Magnetotelluric Data Processing. The objective of MT data processing is to 

extract smooth, repeatable functions representing the earth’s response from raw noise-

like signals and to use the resulting data to create interpretations of earth’s conductivity 

structure. All initial noise processing followed a technique developed by Egbert (1997).  

   Sounding curves were plotted as log-log plots that relate apparent resistivity and 

phase variations as a function of period.  Longer periods correspond to greater depth 

penetration resulting from longer wavelengths; however, the increased depth penetration 

results in increasingly inaccurate data.  The majority of errors typically occurred in the 

longer wavelength soundings which extended out to periods of 10,000 to 30,000 seconds 

(Figure 15).  Data points with large errors were removed from subsequent analyses. 

 

 

Figure 15.  Figure shows an example of the sounding curves produced during processing.  
The upper plot shows apparent resistivies (dots) in ohms-meter, 
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4.0 DATA ANALYSIS 

 The recently collected gravity data from within the GFTZ and surrounding area 

were combined with existing data, gridded, and contoured to produce a complete 

Bouguer gravity anomaly map (Figure 16).  To aid with regional interpretation, magnetic 

intensity data were gridded and contoured to produce a magnetic map (Figure 17).  These 

maps, along with the regional MT profiles, illustrate the geophysical characteristics of the 

Wyoming Province and GFTZ regions and the surrounding terranes.  

To assist in interpreting the gravity and magnetic data numerous methods can be used to 

enhance anomaly features.  These include isostatic gravity residual anomalies, 

upward/downward continuation, wavelength filtering, and horizontal derivatives. 

Although different methods were incorporated for this study, only those maps that 

highlighted particular features are included here.  The following pages discuss the 

interpretations of the complete Bouguer gravity anomaly and residual gravity and 

magnetic anomaly maps.  

4.10  Regional Gravity  

 As illustrated on the Bouguer gravity anomaly map in Figure 16, the study area 

has strong gravity gradient variations. Perhaps the most prominent attribute of the map is 

the large scale southwest to northeast broad semi-linear gentle trend that crosses the 

entire region; trending from gravity minimum (low mGal) values in the southwest region, 

anomaly A-which corresponds to the WP, and continuing as a broad linear pattern to the 

northeast region of the map where the gravity maximum values occur, anomaly B-which 

corresponds to the THO. These broad low gradient trends are associated with long 

wavelength anomalies, which may be associated with deeper seated crustal features 
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(Reynolds, 1997). Anomaly C corresponds to the GFTZ and is believed to trend as it 

extends from southern Saskatchewan, through Montana, and southeast into Idaho. 

 

   

Figure 16.  Bouguer gravity anomaly map.  The major features are:  A) the Wyoming 
Province, B) the Trans-Hudson Orogen, and C) the Great Falls Tectonic Zone.  Contour 
interval is 10 mGal. 
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4.20 Magnetics 

 The regional magnetic intensity map does not appear to share the same broad 

trending anomalies as seen on Bouguer gravity anomaly map. Although not as apparent, 

distinctive magnetic anomalies are distinguishable.  In Figure 17, two distinctive linear 

anomalies can be identified, along with a centrally located circular feature. Occupying the 

central region of the map is anomaly A, a large circular feature.  This circular anomaly is 

interpreted as the outline of the WP. Anomaly B is a north-south linear trending anomaly 

corresponding to the THO. The boundary for the THO extends from Saskatchewan 

southwest along the western border of South and North Dakota, adjacent to the Black 

Hills. 

  Anomaly C is a southwest-northeast linear trending anomaly representing the 

GFTZ. Linearity of the anomaly patterns can often be an indicator of the strike direction 

of structures, and commonly can be associated with MT-generated electrical strike 

directions. Interestingly one can also see where the THO trend truncates that of the GFTZ 

right around 106° longitude and 50° latitude, indicating that the THO is younger than the 

GFTZ. 

4.30  Residual Gravity and Magnetics 

       Residual Gravity. A useful technique in map analysis and interpretation is 

wavelength filtering. The most common method is band-pass filtering where user defined 

(either short or long) wavelengths can be either enhanced or eliminated. Low pass filters 

are designed to remove shorter wavelength anomalies and this type of filtering is useful 
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Figure 17.  Total field magnetic intensity map of the study region.  The major features 
outline are:  A) the Wyoming Province, B) the Trans-Hudson Orogen, and C) the Great 
Falls Tectonic Zone.  Contour interval is 100 gammas. 
 

for smoothing out noisy data and to enhance deeper density structures. High pass filtering 

removes long wavelength anomalies generally associated with deeper seated features 

(Reynolds, 1997) and enhances shallow crustal generated anomalies. 
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      Figure 18 presents a residual gravity anomaly map produced through band-pass 

filtering. This map was produced by passing wavelengths between 10 and 100 km in an 

attempt to remove the deeper-seated features related to Archean-aged structures. The 

remaining anomalies are related to Laramide-age deformation (anomalies A to F). The 

most prominent feature is the positive anomaly related to the Beartooth Mountain range, 

a 2.80-3.00 Ga composition of trondhjemite-tonalite-granodiorite rocks (anomaly A). 

Other notable anomalies are associated with the Laramide uplifts including the Wind 

River Mountains (anomaly B), the Laramide Range (anomaly C), the Sierra Madre 

(anomaly D), the Hartville Uplift (anomaly E) and the Black Hills uplift (anomaly F).  

Although high-pass filtering removes long wavelength anomalies, this technique was 

unable to remove Laramide-aged anomalies completely, possibly as a result of the 

involvement of underlying basement rocks during deformation, or by the large-scale 

nature of the features themselves with wavelengths long enough to overshadow Archean 

age gravity effects. 

Residual Magnetics.  Figure 19 presents the results from applying the 

wavelength filtering method to the magnetic maps, thereby producing a residual magnetic 

anomaly map. On this map, wavelengths from 25-50 km were passed, however this filter 

did not produce dramatically different results from the regional magnetic anomaly map 

(Figure 17). On Figure 19, the four labeled anomalies (A-D) are enhanced slightly. Both 

of the linear anomalies, the THO (B) and GFTZ (C), are easily identifiable, most notably 

in the area where the THO truncates the GFTZ. 
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Figure 18.  Residual gravity anomaly map created by using bandpass filtering were 
wavelengths between 10 and 100 km were passed.  Contour intervals are 10 mGal.  
Major features identified are the A, Beartooth Mountains; B, Wind River Mountains; C, 
Laramide Range:  D, Sierra Madre:  E. Hartville Uplift; F, Black Hills; the THO, and 
GFTZ features.  Black crosses depict MT station locations.                                 



35 

 

Figure 19.  Residual magnetic anomaly map created using bandpass filtering.  
Wavelengths of 25 and 50 km were removed.  Contour interval is 100 gammas.  The 
major features outlined are:  A) the Wyoming Province, B) the Trans-Hudson Orogen, C) 
the Great Falls tectonic Zone, and D) a magnetic high. 

 

   Figure 20 presents a second, band-pass filtered map where wavelengths between 

150 and 250 km were passed. This map emphasizes deeper or broader magnetic sources. 

The GFTZ remains identifiable through the strong linearity that is still visible suggesting  
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Figure 20.  Residual magnetic anomaly map created using bandpass filtering.  
Wavelengths 150 and 250 km were passed.  Contour interval is gammas. 

 

it is a deep-seated feature.  The GFTZ and the THO remain somewhat identifiable as well 

as anomaly D from the previous band-pass map (Figure 19).                                                      

4.40 Upward Continuation of Gravity   

 Upward continuation transforms the potential field that is measured at one surface 

to the field that is measured on another (Reynolds, 1997).  Upward continuation attempts 

to attenuate the shorter wavelength features, the shorter the wavelength, the greater the 
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attenuation. As mentioned earlier, one of the problems with performing gravity and 

magnetic transformation codes on gravity data in this region results from the high 

amplitude anomalies caused by Laramide-aged deformation.  Because the Laramide 

deformation resulted from flat slab subduction, the basement rocks within the WP were 

involved to a greater degree than normal subduction would have been.  Trying to filter 

out Laramide deformation related anomalies resulted in filtering out anomalies caused by 

some Archean features as well.  Figure 21 shows an upward continuation gravity 

anomaly map, where the gravity anomalies were continued upward 5km. However, due 

to the deep-seated nature of the Laramide deformation the upward continuation filtering 

could not separate out Archean features from the Laramide deformation. 

4.50 Horizontal Derivative Gravity Maps  

     The horizontal derivative gravity maps are produced to assist in delineating edge 

effects or subsurface boundary features of varying densities (Fedi and Florio, 2001). The 

edge delineation procedure was applied to the complete Bouguer gravity anomaly 

gridded data. The result of the enhanced horizontal gradient (EHG) shows gradient as 

mGal/km, and high density contrasts within the subsurface are displayed as higher values. 

In Figure 22, the horizontal derivative map highlights remnants of; the THO, the 

Beartooth Mountains, the Wind River Mountains, the Hartville Uplift-Black Hills, the 

Sierra Madre Mountains.  
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Figure 21.  Residual gravity anomaly map created by upward continuing the Bourger 
gravity anomaly data to 5 km.  Contour interval is 10 mGal. 
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5.0 MODELING AND DISCUSSION 

 In order to develop a more complete understanding of the region three two-

dimensional (2-D) gravity models and three 2-D MT models were created.  The gravity 

profiles were selected based on the MT data station locations shown in Figure 10. 

Seismic velocities and models obtained from both SAREX and Deep Probe data were 

utilized for constraints (Clowes et al. 2000; Gorman et al. 2002).  The seismic p-wave 

velocities from the above models were converted from known rock densities.  These 

densities along with average values for surface rock units (Reynolds, 1997) were used as 

starting values and were varied within 10% during the modeling process.  Geological 

models based on mapping, geochemistry and isotopic studies were also used in 

constraining the models (Mueller and Wooden, 1988; Mickus, 2007; Mueller et al. 2011). 

The final models were developed through a trial and error process until calculated gravity 

anomalies approximately fitted the observed gravity values. 

5.10 Gravity Modeling 

 Model 1 Profile 106° (Figure 23) is approximately 470 km long and extends 

roughly from north of Glasgow, Montana south along State road 24.  This line includes 

60 gravity stations where the Bouguer gravity anomaly values range from -88 mGal to -

71 mGal. The crustal thickness ranges from 48 to 52 km, thickening to the southwest 

based on the Deep Probe models.  The upper crust thickens toward the south while the 

lower crust thins.  The thicker upper crust is found near the northern boundary of the WP 

and may have been caused during a southward subduction. The underplating layer is 

relatively thin compared to the 20-km thick layer found by the Deep Probe project 

(Gorman et. al. 2000). 
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Figure 23.  Model 1 showing gravity model along the 106° longitude line.  The black dots 
are observed gravity values.  The solid line represents the calculated gravity value.  WP. 
Wyoming Province. 

 

Model 2 (Figure 24) is approximately 530 km long and extends from north of 

Malta, Montana southward, along highway 191. This line includes 51 gravity stations 

where the Bouguer gravity anomaly values range from -132 mGal to -72 mGal. The 

crustal thickness ranges from 48 to 61 km, thickening to the southwest. In contrast to 

model 1 (Figure 23), the upper crustal layer thickness does not vary and the underplated 

material is thicker which agrees well with the thickness found by the Deep Probe project. 
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Figure 24.  Model along 107° longitude line.  Solid line depicts calculated gravity value.  
Black dots represent actual gravity measurement.  The solid line represents the calculated 
gravity value.  MHB, Medicine Hat Block-2.78. 

 

Model 3 is approximately 514 km and extends from south of Havre, Montana 

southwards along highway 87. This profile consists of 93 gravity stations where the 

Bouguer gravity anomaly values range from -113 mGals to -63 mGals.  The crustal 

thickness ranges from 35 to 52 km in this region. Model 3 has similar crustal geometries 

and thickness as model 2 (Figure 25).  The underplated material is thicker than found on 

model 2 suggesting that the Archean crust has greater modification in this region of the 

Wyoming Province. 
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Figure 25.  Gravity model along 108° longitude line.  Solid line depicts calculated gravity 
value.  Black dots represent actual gravity measured at a point during the study. 

 

 The gravity models provide a general crustal structure of the Wyoming Province 

in Montana. The most prominent feature is the underplated material that has been 

interpreted to possibly be remnant Proterozoic material emplaced during the subduction 

near the Wyoming Province (Gorman et al. 2000).  The layer is thickest in the center of 

the Wyoming Province and thins toward the east next to the THO. In the east, the thicker 

upper crust layers may be related to a north dipping subduction zone. This may be related 

to accreted terranes from the south or the THO. With the absence of this thick layer to the 

west, the THO may be the cause of the crustal thickening. 
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5.20       Magnetotelluric Modeling 

  To interpret the MT data, 2-D inversion models were created.  Two-dimensional 

models resulted in a cross sectional representation of the electrical resistivity variations. 

The data used to create the models were electrical impedance tensors that were 

decomposed into two separate modes; transverse magnetic (TM), and transverse electric 

(TE). The TM and TE modes can be represented by electrical resistivity and phases.  The 

modeling program (WinGlink) inverts the TE and TM mode data to create an electrical 

resistivity cross section. The WinGlink software employs the Rodi and Mackie (2001) 2-

D finite difference code to create two-dimensional models. The Rodi and Mackie (2001) 

code was used to perform the inversion for TM and TE mode resistivity at periods of 

0.01s to 10,000s.  The Rodi and Mackie code seeks a minimum structure 2-D resistivity 

model by beginning with a basic resistivity model that is modified through several 

iterations to produce a final resistivity model. Several models were produced using the 

TE, TM, and both modes, however only the best fit, TM mode results, will be discussed 

here as they are less affected by three-dimensional resistivity structures.  

Figure 26 shows the geographical location of the three MT models. 

 The electrical resistivity structure for model 1 is shown in Figure 27.  Resistivity 

values ranged from 29 ohms/m to 559 ohms/m. The higher resistive regions are 

interpreted to be Archean Provinces identified as the MHB on the northern edge of the 

model, and on the southern end is the Wyoming Province. The low resistivity zone 

roughly corresponds to the GFTZ which has been noted to the northeast in southern 

Alberta (Boerner et al. 1998). However, the thickness of the low resistivity zone extends 

to at least 300 km in depth beneath the MHB suggesting that there may be relic north- 



45 

 

Figure 26.  MT model locations of Earthscope transportable MT stations through 2009.  
The shaded area shows station locations used for this study.  Red lines are MT model 
location profiels.  Models are labeled 1, 2 and 3.  

 

dipping subduction features beneath it. Also, note that the depth to the lithosphere-

asthenospheric boundary (LAB) varies from 150 km beneath the MHB to 200 km 

beneath the Wyoming Province. 

 

.  
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Figure 27.  MT model 1.  Final MT resistivity model along MT model 1.  The letters n 
top of the model represent station location of the MT stations as seen in Figure 26.  The 
curves above each station represent the calculated values (blue) and observed values 
(black).  The top curves are apparent resistivities in ohms-m and the lower curves are 
phases in degrees.  WP,  Wyoming Province; MHB, Medicine Hat Block.  

  

 The electrical resistivity structure for model 2 is illustrated in Figure 28.  Along 

this model, resistivity values range from 15 ohms/m to 375 ohms/m.  The higher 

resistivity regions, similar to the model 1, portray the Archean Wyoming Province and 

Medicine Hat Block. This model does not indicate the north dipping remnant subduction 

like model 1. The depth to the LAB is 200 km under both the Wyoming Province and 

Medicine Hat Block. 
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Figure 28.  MT model 2.  Final MT resistivity model along MT model 2.  The letters 
along the top of the model represent the station location of the MT station locations as 
seen in Figure 26.  MHB, Medicine Hat Block, WP. Wyoming Province. 

 

 The electrical structure for model 3, is shown in Figure 29.  Resistivity values 

ranges from 11 ohms/m to 649 ohms/m.  The low resistivity zone is south of the GFTZ 

implying that the structures forming the GFTZ may dip south or to the southeast.  In 

contrast to model 1, the low resistivity zone dips toward the southeast beneath the WP. 

This low resistivity zone may be associated with the THO and agrees with the gravity 

model 3 which implies that the Wyoming Province in eastern Montana is influenced by 

the THO more than the implied north-dipping subduction in central Montana. Also, note 
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that the depth to the lithosphere-asthenospheric boundary (LAB) varies from 200 km 

beneath the Medicine Hat Block to 150 km beneath the Wyoming Province which is 

opposite than that found along model 1 in central Montana. 

 

Figure 29.  MT Model 3.  Final MT resistivity model along MT model 3.  The letters 
along the top of the model represent the location of the MT station locations as seen in 
Figure 26.  MHB, Medicine Hat Block, WP, Wyoming Province. 

 

5.30   Modeling Discussion 

          The MT models show the electrical resistivity structure of north central Montana. 

All the models ran for 100 iterations and show the approximate limits of resistivity 

sensitivity to be approximately 300 km. The most prominent feature of each model is the 

large highly conductive (low resistivity) region in the center of each model. This highly 
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conductive region extends downwards to approximately 200km or deeper. Within the 

continental crust there are multiple sources for enhanced resistivity. Possible causes for 

these anomalies may be the presence of aqueous fluids, partial melting, graphite, and/or 

metallic sulfides (Bedrosian and Box, 2016). Each of these are addressed below. 

 Aqueous Fluids. When considering aqueous fluids as an origin for enhanced 

resistivity three effects must be considered; the resistivity of the fluids, the distribution of 

the fluids, and the stability of the fluids. Resistivity is dependent upon temperature. 

Within partial melting regimes, temperatures can reach approximately 650°C (Bedrosian 

and Box, 2016). The source and stability of fluids at depth are also considerations. In 

active tectonic regimes, such as extensional environments, enhanced resistivity anomalies 

can be explained through aqueous fluids (Bedrosian and Box, 2016). Trace fluids can be 

consumed as rocks cool from equilibrium temperatures. However, in metamorphic 

environments the residence time for deep crustal water is ~100 million years. GFTZ is a 

compressional regime, not extensional and, based on our gravity and MT models, the 

region of north-central Montana has been compressional during the Precambrian. The 

slight possibility exists that the enhanced conductivity can be related to extensive 

Laramide deformation occurring 80 to 55 Ma.  

 Partial Melting. With respect to partial melting, enhanced resistivity anomalies 

will vary depending upon the distribution of the rocks’ supporting matrix. Partial melting 

regions also exhibit lower seismic velocities and higher heat flow. However, Figure 5, 

shows that there was no decrease in seismic velocity within the vicinity of the enhanced 

resistivity region, thus partial melting is ruled out as an origin for the enhanced resistivity 

(Yardley and Valley, 1997; Clowes et al. 2002). 
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 Graphite. Graphite is a highly conductive mineral that is commonly found in 

metasedimentary rocks (Yardley and Valley, 1997; Wannamaker, 2000). Graphite can be 

found anywhere within the crust, but is more abundant in the upper regions of the crust.  

Marine sediments commonly have high amounts of total organic carbon which convert to 

graphite during metamorphism. Metamorphic graphite is formed under extreme 

temperatures, >1000°C, unless strain energy is present (Bedrosian and Box, 2016).   

 If the GFTZ underwent transformation from a compressional boundary to a 

transpressional boundary as Mueller et al. (2002) suggest, strain energy was likely 

encountered during the suturing of the GFTZ to the WP and MHB, possibly distributing 

metamorphic graphite throughout the region. Metamorphic graphite is a possible 

explanation for the enhanced conductivity from just below the surface to 160km. The 

enhanced conductivity is within the graphite/diamond stability field range for graphite to 

exist, so it reasonable that graphite explains the upper enhanced conductivity anomalies 

within the models. 

 Metallic Sulfides. Similar to graphite, metallic sulfides can be a source of 

enhanced conductivity anomalies. Sulfides are found in sedimentary rocks where they are 

formed by the action of sulfate reducing bacteria, as in anoxic marine conditions 

(Bedrosian and Box, 2016).  There is no evidence for the formation of sulfides within the 

GFTZ, therefore sulfides are not considered as the source for enhanced conductivity. 

 H+ ions. The deeper seated conductive anomalies (>160km) need a different 

mechanism of emplacement. During episodes of subduction, water or minerals containing 

water are transported deeper into the mantle during which H+ ions can become 

disassociated, creating free H+ ions (Yardley and Valley, 1997; Bedrosian and Box, 
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2016). Previous studies have demonstrated that subduction occurred within the region of 

the GFTZ (Mueller et al. 2002).  The deeper conductivity anomaly resides too deep to be 

explained by graphite, so it is possible the deeper lying conductive anomalies can be 

explained by the presence of free H+ ions within the mantle. 
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6.0  CONCLUSIONS 

 The gravity and magnetic anomalies in central to eastern Montana and Wyoming 

reflect the combined effects of Archean to Paleoproterozoic to Cretaceous tectonic 

events. Transformation techniques such as bandpass filtering of the gravity and magnetic 

data were used to produce residual anomaly maps of Montana and Wyoming. The gravity 

field is dominated by crustal thickness variations with the thicker crust in Wyoming 

producing gravity minima. The residual gravity anomaly maps are dominated by gravity 

maxima which are related to Laramide Uplifts. However, the Great Falls Tectonic Zone 

is characterized by northeast-trending gravity maxima. The magnetic maps clearly 

defined the Wyoming Province in greater detail than the gravity anomaly maps. The 

Wyoming Province is seen by circular anomalies that coincide with the boundaries of the 

province. The Great Falls Tectonic Zone is also characterized by northeast-trending 

anomalies that are truncated by the north-south trending anomalies related to the Trans 

Hudson Orogeny 

 Two-dimensional gravity models constrained by regional seismic refraction 

models shows the of a lower crustal ultramafic underplated layer. The gravity models 

suggest that this layer exists only under the Wyoming Province and thins toward the east 

toward the Trans Hudson Orogeny.  

 The magnetotelluric analysis through the creation of three two-dimensional 

models revealed the existence of a region of low electrical resistivity between the 

Wyoming and the Medicine Hat Block Archean Provinces.  
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 These lower resistivity anomalies are broken into upper and lower resistivity 

anomalies. The shallower (< 60 km) resistivity region can be explained by the presence 

of graphite within the metamorphic rocks. The deeper low resistivity region is deeper 

than the graphite/diamond stability field and may be caused by the dissolution of H+ ions 

within the mantle that was formed during Paleoproterozoic subduction.  

 Future work within the region should include the collection of additional 

magnetotelluric data and three-dimensional modeling of the magnetotelluric data, and 

creation of additional gravity models are needed to further understand the subsurface 

nature of the boundary interaction of the Wyoming Province and the GFTZ.  
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