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ABSTRACT 

In this thesis, I demonstrate how I constructed a complete experimental package to view 

FTIR Spectroscopy of constituents that make up hot, rocky exoplanets. I examine in detail 

the engineering and construction of such a system. Also, I developed a full computational 

package to analyze spectra in association and relate the analysis to that of real world 

application. The new system produces reproducible IR spectra on exoplanet analogs and 

can be used to probe complex chemistry composition at high temperatures. 
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INTRODUCTION 

 

Extra Solar Planets 

The Kepler spacecraft launched in 2009, and since then, has revolutionized the 

extrasolar planetary research. However, research into exoplanets in general has been 

booming since the 1990’s, with thousands found up to the current time. These exoplanets 

exhibit a wide range or orbit dimensions, and can be massive Jupiter-like, or smaller 

more earth-sized bodies (Armitage 2010, Elkins-Tanto and Seager 2008, Winn, 

Matthews, and Dawson 2011). In this thesis, we will consider parameters associated with 

short-period, rocky exoplanets and their atmospheric impact to their blackbody curve. 

Below is Figure 1 depicting the number of exoplanets observed with relation to planets 

from our own solar system. 

 

 

Figure 1. Credit N. Batalha, PNAS 2014. 
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Rocky planets in orbits close to their star are likely to have high surface 

temperatures, in some cases greater than 2000 K. Such planets would have an atmosphere 

of rock vapor, different from any planets within our own solar system. 

 

 

Figure 2. Artist's Depiction of Kepler 10b (NASA/Kepler Mission/Dana Berry) 

 

Kepler 10b was the first planet discovered by the Kepler mission with such 

properties. The planet is 4.6 times more massive than the Earth, while having a radius 1.5 

times more than that of the Earth, and orbiting at a distance 1/60th of that of Earth to the 

Sun. These factors lead to day-side temperatures of 3316 K and night side temperatures 

of 2600 K.  At these extreme temperatures, the surface is likely to be a lava ocean 

(Rouan, Deeg, and Demangeon 2011), reflecting the melting of rock and formation of a 

rock vapor atmosphere, which would occur under such conditions. Other notable planets 

included within this classification are CoRoT 7b, 55 Cancri e, and Kepler 78b (Howard, 
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Sanchis, and Marcy 2013).  Studying these hot rocky exoplanets will contribute to the 

dataset needed to understand and model the evolution of planetary systems (Hu, Seager, 

and Bains 2013).  In order to inform astronomical observations, experimental data from 

analog systems must be collected in the laboratory.  Since the exoplanet environments 

cannot be directly sampled, modeling of observations using lab data will be the only 

means available to guide our understanding in the next several decades (Fogtmann-

Schulz et al 2014).   

If the geometrical arrangement of the star, planet and earth are appropriate, light 

from the star can pass through the atmosphere of the planet and exhibit spectral features 

from that encounter.  It has been shown (Seager 2000 and Madhusudhan 2012) that it is 

possible then to draw conclusions about the planet’s composition, which then provides a 

piece of the puzzle for the evolution of the entire system.   

 

 

Figure 3. Showing HD 209458 off axis in comparison with Jupiter. (NASA, ESA, and A. 

Feild [STScl]) 
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Atmospheres 

Composition of the atmospheres of these previously stated extrasolar planets has 

been an issue of interest, but there are difficulties in extracting useful data from 

observations.  Computational work is currently driving much of the insight.  The models 

need both the general temperature and composition for the planet under investigation, and 

the thermochemical data for likely molecules.  The general composition of the exoplanet 

is based primarily on its density.  The density can be estimated using data obtained from 

two observations; radial velocity measurements of the shift in the star’s light (used to find 

the mass of the extrasolar planet) and a transit of the exoplanet in front of its star 

(allowing its size to be determined).  Radiative models of the stars and likely albedos for 

the planets are used to calculate the temperature of the planet, and for larger Jovian 

planets has been measured directly through the secondary transit of the exoplanet. The 

partial pressures of the gaseous constituents from the surface can then be computed.  One 

such model is MAGMA developed by Schaefer and Fegley (Miguel et al 2011) for 

surface conditions greater than 1000 K. This code has been shown (Miguel et al 2011) to 

work with previously acquired Kepler data.  

          As mentioned earlier, an example of this kind of lava-planet is CoRoT 7b (Schaefer 

et al 2012). The dayside of this tidally locked planet reaches a temperature even higher 

than that for the previously discussed Kepler 10b. This permanent ocean causes 

sublimation of the Komatiite composition creating the rock vapor atmosphere. The 

composition of Komatiite can vary greatly and Figure 4 shows the atmospheric gas 

concentrations of a simulation under varied assumptions (Schaefer et al 2012). 
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Figure 4. Atmospheric gas composition for CoRoT-7b assuming 2500 K temperature and 

10-2 bar pressure for two alternate compositions, calculated using MAGMA (Schaefer et 

al 2012). 

 

Once the modeling for the atmospheric composition of a planet is available, 

observational data must be obtained that allows comparisons to be made.  A method 

which can provide data on elemental composition must involve E-M radiation stimulated 

spectroscopy in some fashion, which presupposes the presence of a light source.  The 

method used is a variation on one of the primary detection methods for extrasolar planets, 

that of planet transiting, in which the planet passes in between its star and the line of sight 

to the earth.  When the planet transits through the optical path to the star, a loss of light, 

as viewed from the earth, occurs, which is the way to detect the planet.  In addition, one 

can view the refracted, transmitted light through the atmosphere of the planet. As well, 

when a planet passes behind the host star a secondary dip of the intensity of the light 

occurs. This dip in intensity can also be analyzed to determine atmospheric properties 
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(Seager and Sasselov 1998, Miller-Ricci Kempton, Zahnle, and Fortney 2012, Howe and 

Burrows 2012). These transitions are shown in Figure 5.  

 

Figure 5. Showing the variation of brightness from both star and planet while in orbit of 

55 Cancri e. (NASA/JPL - Caltech/University of Cambridge) 

 

Observing the star through these episodes allows the extraction of spectral 

information from the transmitted light. This information can be directly related to the 

composition of the planetary atmosphere (Fortney 2016).  A number of technical issues 

must be resolved for this technique to yield consistent and testable results (Fortney 2016).  

The primary issue is the small size of the signal contributed to the measured starlight 

from the interaction with the atmosphere (Martins et al 2013).  For example, in the case 

of HD 209458 b, the ratio of the transmitted light to parent star light is 10-4 (Seager 

2000). Within the atmosphere of the transiting planet, there are two typical components 

of interest, the optically thin and thick regions. Other points that must be considered are 

the refraction of the star’s light through the atmosphere, the distinction between optically 

thin and thick portions of the atmosphere (Hu and Seager 2014 and Hui and Seager 
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2002), the presence of clouds and haze in the atmosphere (Fortney et al 2013) and the 

instrumental and systematic problems that arise from the observational techniques 

themselves (Fortney et al 2016). 

As a simple explanation of the process, we examine the effect of gaseous 

constituents of the planetary atmosphere on the blackbody curve associated with the 

planet under examination. As shown in Figure 6, the blackbody curve is a depiction of 

the intensity vs wavenumber of the light emitted from the sun, before and after it has 

passed through the atmosphere of the earth. The molecules of the earth’s atmosphere 

leave absorption features in the spectra, in much the same way (although more 

prominent) that light from a distant star will have features induced in its spectra by the 

atmosphere of its planets.   

 

Figure 6. Spectrum of sunlight (black) and sunlight that has passed through Earth’s 

atmosphere (red) (ASTM 2012). 
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The modeling or interpretation of spectra or photometry obtained using these techniques 

will depend, in great part, on the availability of data for known systems that might reflect 

the conditions of these exoplanets (Hu, Seager, and Bains 2012) 

 

Lab Work 

 

To fully exploit the observations being done and projected over the next ten years, 

especially through the using of the James Webb Telescope (Fortney et al 2013), one must 

have data for known systems.  This data must come from lab work, and covers only a 

small part of the needed information (Fortney et al 2016).  Especially lacking is data for 

hot systems, such as those for rocky planets at temperatures greater than 1500 °C 

(Fortney et al 2016). 

In order to address the issue, first a device capable of producing the necessary 

temperatures had to be constructed.  This device was an e-beam evaporator, capable of 

reaching 2000 °C (Bosch 2015).  In this evaporator, I would place a crucible as part of an 

e-beam evaporator and evaporate samples using the well-known Knudsen Cell technique 

(Miller and Aramtys 2013).  The evaporator is only the first item needed for a system, 

which must allow for the use of a full range of experimental techniques in the analysis of 

evaporated material.  In earlier work (Bosch 2015), this system was proposed but it is the 

aim of this work to describe the engineering, construction and testing of the full system. 

Using this system, I am now able to grow a sample of the evaporated material and 

perform infrared spectroscopy on the resulting molecules.  Using a quadrupole mass 

spectrometer, the mass of the deposited molecules is also measureable.  Additional 

information, including the temperature of the evaporator, can also be determined. 
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Throughout the remaining sections, the entire system and its application to the most basic 

of predicted hot exoplanets constituents, SiO, will be detailed.   
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THEORY 

 

 

Fourier Transform Infrared Spectroscopy 

 

The basic principles of Fourier Transforms allow one to convert measurements 

taken in the time domain to the frequency domain. I can use this tool to take an 

interferogram obtained from a spectrometer as a function of time and transform it into 

frequency space which is then associated to a blackbody plus absorption spectrum 

associated with the wavenumbers of light. The mathematical relationship is shown in the 

following form: 

𝐼(𝑡) =
1

√2𝜋
∫ 𝐺(𝜔)𝑒𝑖𝜔𝑡𝑑𝜔;   𝐺(𝜔) =

1

√2𝜋
∫ 𝐼(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞

∞

−∞

  (1) 

This is a powerful tool for the analysis of spectra, depending on the type of 

instrument used to acquire the data.  In some spectroscopic instruments, such as a grating 

spectrometer, the light from the sample is dispersed by wavelength so the data as 

collected already show a spectrum.  However, there are drawbacks associated with this 

method.  In most lab work done currently, a device called a Fourier Transform Infrared 

Spectrometer (FTIR) is used.  This acronym is just a fancy stand-in for a Michelson 

Interferometer, which is shown in Figure 7.   

The FTIR creates an interferogram by inducing a phase difference between paths 

of a light source. This is done by sending a beam through a beam splitter bouncing one 

beam off of a stable mirror while the other bounces off of a moving mirror. This causes a 

phase difference as they come back together and are propagated through the system and 

in turn creating an interference pattern which becomes our interferogram, which is a 

function of time.  The key point is that all wavelength data are gathered at once so the 
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speed of acquisition is usually enhanced (Smith 2011). As the beam passes through the 

sample material the associated wavelengths, correlating to certain wavenumbers, are 

absorbed.  With some information removed from the light beam, the interferogram will 

change to reflect the lack of certain wavelengths.  A numerical Fourier transform will 

then be performed on the interferogram and the spectrum as a function of frequency (or 

wavelength) calculated.  The spectrum will have absorption features, as seen in Figure 8, 

corresponding to transitions in particular molecules.  The number of photons absorbed by 

the material will correlate to how many molecules are present, depending on the strength 

of the transition.  The transition strength for given molecules can be determined from 

other experiments or by calculation. 

 

 

Figure 7. A Michelson Interferometer. (http://pe2bz.philpem.me.uk/) 
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Figure 8. Graphical depiction of a Fourier Transform from frequency space to time space. 

(UC, Davis/ Jing Zhao) 

 

Knudsen Cells 

 

In order to use thermal evaporation as a way to study the environment of a 

planetary atmosphere, one must ensure that the technique approximates those conditions.  

It is essential that the temperature range be appropriate and, for the e-beam evaporator 

constructed earlier (Bosch 2015), the ultimate target temperature of 2000 °C is more than 

adequate.  It is also important to remember that the environment of the planetary surface 

is in near equilibrium, at least in some local sense.  Unfortunately, for a crucible with a 

large open top inside a vacuum environment (necessary for high temperature 

experiments), the system is not in thermal equilibrium.  To attain an equilibrated state, 

one would require a closed system, where the vapor-liquid-solid system could come to its 

equilibrium as a function of temperature.  The molecules produced must be sampled and 

so the compromise is that a small hole be put into the lid.  When a crucible is used in 
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such a way, it is typically called a Knudsen Cell (Jacobson 2002), after the scientist who 

came up the technique.   

In such a cell, the geometry must be such that the size of the orifice is small 

relative to the size of the container.  Figure 9 shows such a cell, which must be 

constructed from a material resistant to the temperature.  A refractory metal, such as 

Tantalum, is typically used.  The material is chosen based on its melting point and 

resistance to oxidation (Hannay 2012 and Shukla et al 2004). 

 

 

Figure 9. Depiction of Knudsen Cell. (Copland and Jacobson 2010) 

 

 

The flux of material from the orifice of the cell can be calculated using kinetic theory 

(Carlson 1967) and is given by the equation 

𝑑𝑁

𝑑𝑡
= 𝐴0(2𝜋𝑚𝑘𝐵𝑇)−

1
2(𝑃∗ − 𝑃) (2) 

Where P* is the equilibrium pressure of the evaporant, P is the ambient pressure working 

against evaporation, and A0 is the cross-sectional area of the orifice.  If the orifice is not a 

pure surface, but is instead a finite length the flux must be multiplied by the Clausing 
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factor Wc, which is the proportion of incident flux that escapes due to the shape of the 

orifice (Jacobson 2002).  For an ideal orifice, molecules exit the orifice according to a 

cosine distribution.  A deviation will occur if the orifice is non-ideal.   Using the 

geometry established between the Knudsen cell and the sample collection area, the 

number of detected molecules determined by the FTIR analysis can be related back to the 

rate of escape at the orifice and then to the vapor pressure for a given starting mixture and 

temperature (Akishin 1967). 

 

 

Matrix Isolation 

 

Even though the evaporator will provide a sample of the gas-phase molecules in 

equilibrium with the contents of the Knudsen cell, the molecules must be put into a 

position where they can be observed.  While in the cell observation is impossible and, as 

a molecular beam within the vacuum chamber, the molecules are too tenuous to provide a 

measurable signal.  It is possible to deposit the effusion material onto a flat substrate and 

measure the IR signature, but the result would be applicable to a solid-state film and not 

to individual gas-phase molecules.  To overcome this obstacle, I rely on the standard 

technique of matrix isolation spectroscopy.  Essentially what this technique attempts to 

achieve is to isolate a certain system in a state similar to that of the gas phase. This is 

advantageous to me because the molecular beam created from constituents being 

evaporated within the crucible is quite small as in the given number of molecules per unit 

volume is not high. Therefore, while I could attempt to send the IR beam through the 

evaporating constituent beam the technique wouldn’t be able to distinguish the 

interaction from that of the noise. I use this technique to solve said problem.  
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With the establishment of a ratio of 1000:1 of the matrix elements to evaporate 

elements, the matrix can isolate the evaporates and “freeze” them in their native state. 

(Bally 2004) Another requirement directly follows, as there cannot also be interaction 

between the evaporates and the molecules creating the matrix as well as the interaction 

between the evaporates and IR beam (Nakayama et al 2012). The first causing molecules 

not representative within the crucible and the second creating noise making the evaporate 

signal non-distinguishable. 

Therefore, I have chosen the noble gas, Argon, to be the matrix element. It is both 

inert and unresponsive in the infrared spectra. In order to create a matrix of Argon, the 

cryostat must cool down our target or flag to less than 20 K. This allows the Argon to be 

frozen in a specific form and not aggregate. This also will limit aggregation of the 

evaporants. 
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ENGINEERING 

 

 

Chamber Design 

 

The initial work, or proof of concept, was done in a cylindrical chamber. This 

chamber had many limitations. One major limitation was the inability to make FTIR 

measurements as the evaporation was occurring. Others stemmed from the port 

availability and locations for many desired devices such as an interferometer, gas inlet, 

and others. I solved this problem with the design of a spherical chamber. The chamber 

allowed one to have many optically connected ports, meaning one could bounce a beam 

in and out of the chamber, which allowed for simultaneous measurements. Also, the 

chamber has allowed us to have more flexibility for placement of our ion gauge, turbo 

pump, gas inlet, mass spectrometer, interferometer, e-beam evaporator, IR thermometer, 

and cryostat.  

 

Figure 10. Spherical chamber in process of building set up. (Heath Gemar) 
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Figure 11. Spherical CAD design. (John Lester) 

 

The new chamber was able to achieve ultra-high vacuum. I used a rotary vane 

pump to achieve a rough vacuum to 10-2 Torr of pressure. After this I used a turbo 

molecular pump to achieve much lower pressures. With the additional help of baking the 

chamber using heating tape I was able to achieve chamber pressure of 10-10 Torr.  

 

E-beam evaporator  

 

The initial work and design of the e-beam evaporator used was done by Denny 

Bosch (Bosch 2015). I was able to eliminate three of the six supporting rods and reduce 

the number of platforms from three to two in the original system. These changes helped 

reduce deposition rates to achieve closer to the matrix isolation requirements, which I 
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will detail later.  To better control the heating and cooling of the system, a program was 

written which is explained in the engineering results section. 

 
Figure 12. E-Beam Evaporator post-run. Flakes are cooled SiO fallen from cooling 

shroud. (Heath Gemar) 

 

In addition, I was able to add a cooling shroud around the evaporator. This helps 

prevent further contamination throughout the chamber while also creating a sharper 

temperature gradient throughout the chamber.  
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Figure 13. Cooling shroud and shutter set up from underneath the chamber. (Heath 

Gemar) 

 

Another addition to the evaporator was installation of a shutter in front of the 

evaporator. This allowed me to shut off the evaporation without reducing the 

temperature, figure 12. An advantageous use of this system was also found during 

degassing. This device allowed me to eliminate many highly reactive gases such as 

nitrogen and hydrogen without depositing our rocky material from the crucible. 

 

IR Optical Path 

 

I additionally acquired an optics table for our FTIR system. This table allowed 

one to position the mirrors in such a way so that our parabolic mirror used to focus the 

beam was the proper distance to maximize exposure. Also, the set-up allowed 
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optimization of the beam into and out of the chamber for measurements. The light was 

first emitted from the source, bounced off of a 3" gold plated mirror, a gold plated 

parabolic mirror, and then from our 2" Gimbal mounted gold-plated mirror into the 

chamber at a 45-degree angle.  Gold surfaces were used on each optic due to its enhanced 

reflectivity.  

  

 
Figure 14. Optical pathway going into the chamber from the IR source. (Heath Gemar) 

 

In order to reflect the beam out of the chamber, the sample and Ar matrix must be 

grown on a mirrored surface, which makes thermal contact with the cryostat.  A special 

solid copper (for thermal properties) mirror with λ/15 surface roughness was used and is 

shown in Figure 15.   

Because the beam exited the chamber at a deflection of 45 degrees, I used another 

Gimbal mounted gold-plated mirror to re-orient the beam parallel with the detector plane. 

From here I bounced once off of a flat gold-plated mirror, into another parabolic mirror, 

and finally focusing into our detector connected to the FTIR system. 
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Figure 15. Copper mirror used as flag within the system. (Michal Bulak) 

 

 

 

 
Figure 16. Optical pathway exiting the chamber. (Heath Gemar) 
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Figure 17. Graphical representation of Au, Al, and Ag as a function of wavelength. 

Showing Au to be the best choice for mirrors given our wavelength. (Bob Mellish) 

 

 

Thickness Monitor 

 

As described earlier, while growing the matrix, the Ar to evaporant ratio must be 

1000:1.  In order to ensure this it is necessary to measure the Ar ice thickness during each 

experiment.  To do so, I built an interferometer using a laser diode as a source, a photo 

diode as a detector, an operational amplifier, and a computer interface system (Labjack 

and LabVIEW).   The laser diode was connected to the chamber via a 2.75" port adapter 

with multiple posts and 90 degree connectors allowing for 3-dimensional manipulation. 

On another port 180 degrees separated from the laser port I attached a photo diode in 

similar fashion while also placing a 1" lens in front to focus the beam onto the detector. 
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From here I attached the photo diode to a current-to-voltage amplifier. I used a Labjack to 

read the voltage amplification through the computer. 

 

 
Figure 18. Optical pathway of the thickness monitor. Depiction of where the path 

difference occurs. (Heath Gemar) 

 

Future direction with the interferometer would require the installation of a beam 

splitter on both the input and output with a second laser and photo diode. This would 

allow one to determine the refractive index and the thickness of the ice. 

 

Gas Inlet 

 

In order to establish a proper Argon matrix, I needed to develop a gas inlet system 

that not only would create a uniform film at a high enough rate but one that would stay 

out of the two separate optical pathways. I decided to proceed in two directions: one 

direction being a ring sitting outside the mirror with a radius of 3" and many holes, all of 

the same size, pointed in the direction of mirror (Figure 18) and the other being a ring 
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sitting at the level of the mirror with four individual prongs branching down bending into 

the 1.5" radius of the mirror (Figure 18 and 19). 

 

 
Figure 19. Depiction of the two separate gas inlet designs. The left having a series of 

holes while the right has a series of tubes leading to the center. (Heath Gemar) 

 

 
Figure 20. Picture of actual prong gas inlet. (Michal Bulak) 

 

The resulting deposition rates will be discussed and shown later within this thesis. 

Refer to the Engineering Results for further reading. The Prong design as depicted in 

Figure 19 and 20 is the design that gave us a higher deposition rate. 
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Thermometry 

 

I used an IR thermometer of wavelength 0.65 microns to determine the 

temperature of the crucible. I was able to do this through a 2.75" port on the top side of 

the chamber. The transmission loss through the quartz window was negligible. I also cut 

an access through the top of the cooling shroud to have a straight-line view of the 

crucible. As an aside, I discovered we had a small amount of material being sent through 

the secondary hole and very slightly coating the window with material. To correct for this 

obstruction, I cleaned the window between every run as to reduce the transmission loss to 

the negligible amount previously stated. 

Using an infrared thermometer requires one to know the emissivity of the 

material.  The emissivity for many materials changes only a slight amount over a wide 

temperature range.  However, tantalum’s emissivity shows a larger variation, requiring a 

correction to accurately read the thermometer. This process is described in the 

engineering results section. 
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EXPERIMENTAL 

 
 

With a circumferential filament I was able to remove the crucible without 

disturbing the e-beam evaporator. I cleaned the crucible by sonicating in acetone. Then, I 

would tare the crucible and add sample which would be SiO2 from Supelco Analytical, 

MgO from Sigma Aldrich, Opal (hydrated SiO2) from Missouri State University’s 

Geology Department, and a combination of SiO2 and MgO. I would then remass the 

crucible containing the sample. I closed the chamber with our sample inside using copper 

sealed conflat flanges. I would then start the rotary vane pump to establish a chamber 

pressure less than 3 x 10-2 Torr which in turn allowed us to use the molecular turbo pump 

and establish a pressure of 1 x 10-9 Torr. From here I would take a ‘warm’ background 

spectra of the clean flag, copper mirror finish.  In preparation for the matrix isolation, the 

cryostat was engaged, which would drop the temperature of the copper mirror to 15 K. In 

response, the chamber pressure would drop to the low 10-10 Torr as some remaining 

volatiles were cryo-pumped. Once our flag was sufficiently cool, I would take a second 

background to take in any slight variation which may have occurred with the blackbody 

diagram. Following this I would flood the chamber with argon through our gas inlet 

system using a sapphire leak valve, establishing a chamber pressure of 3 x 10-6 Torr.  

Before evaporation, the interference of the argon ice was monitored from our blue laser 

and photo diode and a layer of a few microns was grown to protect the mirror of any 

evaporant that may occur unknowingly from our crucible. After a sufficient amount of 

Argon was deposited I would take another background to examine any more shifts in the 

blackbody diagram. I would then monitor our mass spectrometer and discontinue 

ramping as both the filament and crucible would outgas hydrogen gas, nitrogen gas, 



27 

oxygen gas, and water. While monitoring the crucible with our IR thermometer and 

checking the level of emission current produced we would wait until the desired 

temperature was reached and open the shutter while continuously taking FTIR spectra of 

the flag. I would then close the shutter and allow the control program to slowly ramp 

down the crucible to room temperature. Once sufficiently cooled we would close our 

argon leak valve.  After the evaporation, we continued to acquire FTIR spectra to monitor 

for reactions induced by the diffusion of reactants throughout the ice. When all was 

completed we would turn off the compressor and allow the flag to warm back to room 

temperature. 

Some complications occurred with various crucible designs. These complications 

centered around lid fitting and the clogging of the orifice during deposition. I eventually 

settled on an all tantalum crucible drilled by Missouri State University machinist Brian 

Grindstaff. We also used the services of Jonathan Keeth to laser puncture an orifice in our 

lid ranging from 0.1 mm to 0.5 mm. 
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PROGRAMMING RESULTS 

 
 

LabVIEW 
 

In order to have a higher degree of control, I elected to operate our power supplies 

for both the crucible and filament through the computer. LabVIEW allowed me to have 

the desired controls of reading the emission voltage and current (crucible) as well as 

reading and writing to the filament voltage and current. Because of this program, I was 

also able to regulate the ramping rates (both up and down) occurred. As described in the 

experimental section, the program was used to ramp, control., monitor and cool down the 

evaporator. 

 Along with the power supplies, I used LabVIEW to read the analog output of the 

IR Thermometer. The thermometer works by assuming an emissivity and focusing 

through a reticle. However, the emissivity of the tantalum crucible changes as a function 

of temperature. Therefore, I create an emissivity curve based on the NIST database of 

tantalum's emissivity at specific temperatures. I have this detailed in the engineering 

results section. From this, I was able to establish a given equation to autocorrect the 

analog signal to correct for this problem of changing emissivity and read correctly in the 

program. I was also able to read the global pressure of the chamber through the analog 

out from the ion gauge. The voltage drop needed for the interferometer as detailed in the 

engineering and theory sections was also read through the Labjack.  

All of this data was stored and maintained in a text file for archive purposes. This 

proved useful while troubleshooting and getting the system up and running so that certain 

major factors were taken into account. 
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Omnic 
 

The program used to control our FTIR spectrometer was Omnic. Within this 

program, preset macros can be utilized to control the FTIR. Therefore, I wrote a macro to 

continuously save spectra as well as save them in a file setting that could be instantly 

analyzed within the Matlab program I wrote to do fitting and extraction as I will detail in 

the Matlab section. 

 

Matlab 
 

Another need of our group was the need to analyze a large amount of spectra 

efficiently and coherently. Therefore, I wrote a program to accomplish such a task. The 

code was designed, so that based on desired examination regions defined by the user, to 

examine if there was or was not a peak and determine its position, height, area, and fit to 

a desired background. The program accomplished this task by stripping the data for the 

ranges desired. It then would take the natural log of the ratio of the background to signal. 

From here, based on the shape of the resulting graph would determine whether or not 

there is a peak corresponding to a real feature. The background was typically of higher 

intensity than the signal collected during the run. This is due to various scattering effects 

through the growth of the Argon ice. Because of this, I had the program fit the peak and 

find its range. From here, the program then fit the line to minimize the noise in the signal. 

From here the area, height, and peak position were able to be obtained directly. The 

program would then store this data and display them in the graphs you can view in the 

Scientific Results section of this thesis. After being done with all the ranges of interest 

throughout all of the individual growth spectra collected, it would display the time 
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progression of all main parameters analyzed. This code is written out in detail in the 

appendices of this thesis. 

Other programs written through Matlab for use in our laboratory accomplished 

the following functions: reanalysis of any data set, quick data lookup through a database 

everyone in the research group contributed to building, emissivity corrections, and 

various geometrical analysis for design purposes dealing with optical pathways and 

construction of elements. 
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ENGINEERING RESULTS 

 

 

Gas Inlet 

 

I performed a series of measurements with use of the interferometer to determine 

the amount of growth of ice on the copper mirror. I would allow the compressor to run 

fully, dropping the temperature of the mirror to 15 K. At this temperature, the gas that 

was chosen for use in this project, argon, freezes. I was determining a growth rate that 

would at least give us a ratio of argon molecules to evaporate materials of 1000 to 1. It 

was necessary to adjust to approximately this ratio in order to prevent frost formation as 

this would cause scatter of the incident light. Below are figures detailing the interference 

patterns observed. 

The rate of deposition was increased by a factor of 4.7 from the ring to the prongs. 

The deposition rate was 2.31 microns per hour for the rings and 10.86 microns per hour 

for the prongs while chamber pressure was held at 3 x 10-6 Torr.  Figures 20 and 21 show 

the interference patterns obtained with strictly growing an argon ice.  

 

Emissivity 

 

According to the NIST database correlating the temperature of Ta to emissivity, I 

have plotted these points and established a second order fit, Figure 23. 

Emissivity: [.14 .19 .26 .30] 

Temperatures (Celsius): [727 1093 1982 2930] 
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Figure 21. Interference pattern showing the growth rate of Ar ice using the Ring system 

at 3 x 10-6 Torr. 

 

 
Figure 22. Interference pattern showing the growth rate of Ar Ice using the prong system 

at 3 x 10-7, 6.7 x 10-7, and 3 x 10-6 Torr. 
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Figure 23. Graph showing the curve fitted to NIST data on Ta emissivity change with 

temperature. 

Now I have the Emissivity values for any temperature from 1000 to 3000 C. I 

determined the temperatures relevant to our experiment, 1100 to 2000 C. Use of a 1 C 

step size and determined the emissivity for each temperature based on the previously 

shown curve.  

Another portion of the situation is the power being detected and emitted from the 

crucible.  

𝑃 = (𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑎𝑐𝑡𝑜𝑟) ∗ 𝜀 ∗ 𝑇4 (3) 

The power emitted (Pe ) from the crucible and detected (Pd) in the thermometer 

over the same geometric factor are equal. Therefore, I can set the power of both equal. 

𝜀𝑒 ∗ 𝑇𝑒
4 = 𝜀𝑑 ∗ 𝑇𝑑

4 (4) 
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I know εd, as this is the setting I dictate on the thermometer (0.18). Because the 

emissivity (εe) values for any given temperature (Te) is known, I only have one unknown: 

Td which is the temperature that will be displayed on the thermometer. Now I can 

determine what each Td will be for our range of Te (Temp of crucible) we desire. I then 

plotted these values as shown in Figure 24. 

 
Figure 24. Graph showing the relationship between the measure temperature and true 

temperature as explained through the text. 

 

I now have a linear correlation of Actual Temp vs. Measured Temp. I can now 

immediately correct for the wrong emissivity value on the thermometer and therefore 

determine the true temp. 
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SCIENTIFIC RESULTS 

 

I have used the FTIR Spectra retrieved while heating the crucible using the e-

beam evaporator at 1600 C. The data are described by an exponential term; therefore I 

have taken the difference between the spectra by dividing the background by the event 

spectra and taking the natural log of the ratio. These spectra were analyzed using the 

Matlab code developed as described in the CODES section. The first molecule to develop 

was the monomer SiO followed by the dimers and trimers, Si2O2 and Si3O3, respectively. 

As seen in comparisons between figures 24 through 41, the trimer (figures 36-41), dimer 

(figures 30-35), and monomer (figures 24-29) become more selective in said order. 

Growth 4 occurs 10 minutes after 1600 C has been achieved with Growth 5, 6, 7, and 8 

being another multiple of 10 minutes after. After Growth 8, the shutter was closed and e-

beam evaporator ramped down. 

 

SiO 

 

The following figures represent the spectrum collected and analyzed for the 

molecule SiO. The peak position corresponding to SiO is 1226 +/-  0.7 cm-1 wavenumber. 

This is confirmed through the literature with peaks being observed at 1229 cm-1 (Hastie) 

and 1225 cm-1 (Journal of Molecular Spectroscopy). The slight shift in these lines is most 

likely due to scattering effects through the argon gas matrix. Citing the Journal with the 

theoretically accepted value, I have seen the corresponding condition within the 

spectrum. 
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Figure 25. Use of the Matlab code developed to analyze the IR spectra observed. SiO 

peak 10 minutes after the shutter was opened at 1600 C. 

 

 
Figure 26. Use of the Matlab code developed to analyze the IR spectra observed. SiO 

peak 20 minutes after the shutter was opened at 1600 C. 
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Figure 27. Use of the Matlab code developed to analyze the IR spectra observed. SiO 

peak 30 minutes after the shutter was opened at 1600 C. 

 

 
Figure 28. Use of the Matlab code developed to analyze the IR spectra observed. SiO 

peak 40 minutes after the shutter was opened at 1600 C. 
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Figure 29. Use of the Matlab code developed to analyze the IR spectra observed. SiO 

peak 50 minutes after the shutter was opened at 1600 C. 

 
 
 

 

 

 
Figure 30. Graphical depiction of the Area Progression of the main SiO peak. Shutter was 

open and depositing for 50 minutes at 1600 C. 
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Si2O2 

 

The following figures represent the spectrum collected and analyzed for the 

molecule Si2O2. The peak position corresponding to Si2O2 is 802.98 +/-  0.1 cm-1 

wavenumber. This is confirmed through the literature with peaks being observed at 802.9 

cm-1 (Journal of Molecular Spectroscopy). The slight shift of the argon matrix to the SiO 

lines did not appear to affect the Si2O2 as greatly. With the Journal being the theoretically 

accepted value, I have seen the corresponding condition within the spectrum. However, I 

note that within the first 10 minutes this molecule did not appear within our spectrum. 

 
Figure 31. Use of the Matlab code developed to analyze the IR spectra observed. Si2O2 

peak 10 minutes after the shutter was opened at 1600 C. There was no evidence after this 

amount of time that any Si2O2 was deposited. 
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Figure 32. Use of the Matlab code developed to analyze the IR spectra observed. Si2O2 

peak 20 minutes after the shutter was opened at 1600 C. 

 

 
Figure 33. Use of the Matlab code developed to analyze the IR spectra observed. Si2O2 

peak 30 minutes after the shutter was opened at 1600 C. 
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Figure 34. Use of the Matlab code developed to analyze the IR spectra observed. Si2O2 

peak 40 minutes after the shutter was opened at 1600 C. 

 

 
Figure 35. Use of the Matlab code developed to analyze the IR spectra observed. Si2O2 

peak 50 minutes after the shutter was opened at 1600 C. 
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Figure 36. Graphical representation of the area progression of the main Si2O2 peak for 50 

minutes at 1600C. 

 

Si3O3 

 

The following figures represent the spectrum collected and analyzed for the 

molecule Si3O3. The peak position corresponding to Si3O3 is 972.2 +/-  0.1 cm-1 

wavenumber. This is confirmed through the literature with peaks being observed at 971.0 

cm-1 (Journal of Molecular Spectroscopy). I again, like with SiO, have a further shift of 

the observed peak within the argon ice matrix. With the Journal being the theoretically 

accepted value, I have seen the corresponding condition within the spectrum. Similar to 

the Si2O2 molecule, I note that within the first 10 minutes this molecule did not appear 

within the spectrum. 
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Figure 37. Use of the Matlab code developed to analyze the IR spectra observed. Si3O3 

peak 10 minutes after the shutter was opened at 1600 C. There was no evidence after this 

amount of time that any Si3O3 was deposited. 

 

 
Figure 38. Use of the Matlab code developed to analyze the IR spectra observed. Si3O3 

peak 20 minutes after the shutter was opened at 1600 C. 
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Figure 39. Use of the Matlab code developed to analyze the IR spectra observed. Si3O3 

peak 30 minutes after the shutter was opened at 1600 C. 

 
Figure 40. Use of the Matlab code developed to analyze the IR spectra observed. Si3O3 

peak 40 minutes after the shutter was opened at 1600 C. 
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Figure 41. Use of the Matlab code developed to analyze the IR spectra observed. Si3O3 

peak 50 minutes after the shutter was opened at 1600 C. 

 
Figure 42. Graphical representation of the area progression of the main Si3O3 peak for 50 

minutes at 1600C. 
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DISCUSSION  

 

 

The timing of occurrence for the spectral features appear to follow the literature 

with the monomer being the first to appear, the dimer second, and the trimer third. 

However, under closer examination the intensities appear to grow in strength with trimer, 

dimer, and monomer being the order of strongest to weakest. This intensity variation is 

unlikely since, at 1200 °C, SiO should continue to be the most predominant species as 

shown through thermodynamic calculations by Dr. Sakidja. This discrepancy is most 

likely due to either a misfit with our crucible lid, or to the interaction of the molecules 

inside the matrix after deposition.  In the case of the crucible, I must work through 

engineering concerns especially with lid tightness.  This process will take several 

iterations to complete.  The possibility of diffusion within the ice can be reduced by 

lowering the temperature of the matrix, which requires improvement in the cryostat 

currently being used.   

Also, another avenue that will be pursued is the mixture of complex molecules 

going forward. One such combination is that of Al2O3 and SiO2 which would create an IR 

active molecule SiAlO. Study of this could lead to some insight of how combinations of 

molecules affect the resulting spectrum. 

With regards to the analyzing technique developed with the high volume of data, I 

have shown that I was able to take the information collected and verify with literature the 

silicon+oxygen molecules that were formed in the system. Further steps will require more 

information on peak area and its correlation to the actual number of molecules present in 

the sample. If one is able to determine this, one could use this as a guide for real world 

area inspection of FTIR spectrum. 
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APPENDICES 

 

 

Appendix A - Analysis of Spectral Data Code 

 

clc 

set(0,'DefaultFigureWindowStyle','docked') 

warning('off','MATLAB:polyfit:RepeatedPointsOrRescale') 

 

cd('C:\Users\davescrew\Desktop\Spectra'); %Automatically starter 

Y = 1; 

y = 1; 

N = 0; 

yup = 0; 

warm = 1; 

cold = 0; 

MMMtrue = 0; 

promptgrowthtime = 0; 

 

%%USER INPUT 

disp('IMPORTANT INFORMATION') 

disp('All growth files should be save as Growth_"number" and be an N-by-2 matrix.') 

disp('All background files should be saved as Background_"description" and be an N-by-

2 matrix') 

disp('All peak ranges files should be saved as Growth"number"_PeakRanges and be an n-

by-2 matrix.') 

disp('All growth times should be save as Growth_Times and be an m-by-1 matrix.') 

disp('All files should be comma delimited files.') 

disp('N: the total number of data points collected for one acquisition.') 

disp('n: the total number of unique spectral features to be examined.') 

disp('m: the total number of unique spectra acquired during growth.') 

disp('Press any key to continue.') 

pause 

clc 

 

userfile = input('Folder containing the Growth Files? \n','s'); 

cd(userfile) 

 

promptauto = input('Would you like to auto fit all spectra? Y or N \n(This is meant for a 

quick view. It will not save the data or figures.)\n'); 

 

promptbackground = input('Which Background would you like to use? (Format: 

Background_"text") \nEnter text:  ','s'); 

 

growthnumber = input('The Number of Spectral Growths? \n'); 

m = int2str(growthnumber); 
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promptversion = input('Would you like to view a specific region(s) over all the growths? 

Y or N \n'); 

 

if promptversion == 1 

     

    promptgrowthtime = input('Do you have a growth times file? Y or N \n(This assumes 

you have your spectral ranges as well)\n'); 

    if promptgrowthtime == 1 

        GrowthParameters = csvread('Growth_Times.csv'); 

        promptgrowthmatrix = GrowthParameters(:,1); 

        NumberofSpectralFeatures = nnz(GrowthParameters(:,2)); 

        specificrange = GrowthParameters(1:NumberofSpectralFeatures,2:3); 

    else 

        specificrange = input('Which region(s)? \n(Format: [L1 U1; L2 U2; ...]) \n');   

    end 

     

    RegionAmount = size(specificrange,1); 

    MMM = zeros(growthnumber,4,RegionAmount); 

    

end 

 

filenameB = strcat('Background_',promptbackground,'.CSV'); 

B = csvread(filenameB); 

 

clc 

for nn = 1:growthnumber 

nns = int2str(nn); 

 

if promptversion == 1 

    growthrange = specificrange; 

else 

    growthrangestring = strcat('Growth',nns,'_PeakRanges.csv'); 

    growthrange = csvread(growthrangestring); 

end 

 

WN = growthrange; 

WNR = size(WN,1); 

 

filenameG = strcat('Growth_',nns,'.CSV'); 

G = csvread(filenameG); 

 

 

    for n = 1:WNR 
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    z1 = WN(n,1); 

    sz1 = int2str(z1); 

    z2 = WN(n,2); 

    sz2 = int2str(z2); 

    LowerBoundCheck = 1; 

    UpperBoundCheck = 1; 

    RangeIndexL = 0; 

 

    while LowerBoundCheck > 0 

        RangeIndexL = RangeIndexL + 1; 

        LowerBoundCheck = z1 - B(RangeIndexL,1); 

    end 

 

    RangeIndexU = RangeIndexL; 

    while UpperBoundCheck > 0 

        RangeIndexU = RangeIndexU + 1; 

        UpperBoundCheck = z2 - B(RangeIndexU,1); 

    end 

 

    G1 = G(RangeIndexL:RangeIndexU,2); 

    B1 = B(RangeIndexL:RangeIndexU,2); 

 

    SpectraMath = log(B1./G1); 

    X = B(RangeIndexL:RangeIndexU,1); 

 

    figure 

    subplot(2,1,1) 

    plot(X,SpectraMath) 

    titlerawmath = strcat('Growth ',nns,' Spectral Math'); 

    title(titlerawmath) 

    xlabel('Wavenumber \fontsize{9} (cm^{-1})') 

    ylabel('\fontsize{15} \alpha') 

 

    subplot(2,1,2) 

    plot(X,G1,X,B1) 

    titleraw = strcat('Growth ',nns,' Raw'); 

    title(titleraw) 

    xlabel('Wavenumber \fontsize{9} (cm^{-1})') 

    ylabel('Intensity') 

 

    hold on 

     

    prompt = input('Are there Spectral Features? Y or N \n'); 

     

    if prompt == 1 

    Peaki = 0; 
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    peakcheck = 1; 

    peakvalue = max(SpectraMath); 

    while peakcheck ~= 0 

        Peaki = Peaki + 1; 

        peakcheck = peakvalue - SpectraMath(Peaki); 

    end 

    peakvaluex = X(Peaki); 

    opp = polyfit(X(Peaki-3:Peaki+3),SpectraMath(Peaki-3:Peaki+3),2); 

    oppvaluex = roots(opp); 

    end 

   

    prompt3 = 0; 

    while prompt == 1 

     

    if prompt3 == 1 

        prompt2 = input('Range? (Format: [Lower_Bound Upper_Bound]) \n'); 

        Lower = prompt2(1); 

        Upper = prompt2(2); 

    else 

        Lower = oppvaluex(2); 

        Upper = oppvaluex(1); 

    end 

     

    i = 0; 

    ii = 0; 

    LowerCheck = 1; 

    UpperCheck = 1; 

     

    while LowerCheck > 0      

        i = i+1; 

        LowerCheck = Lower - X(i);    

    end 

    if i > 1 

    i = i-1; 

    end 

     

    while UpperCheck > 0    

        ii = ii+1; 

        if ii <= size(X,1) 

            UpperCheck = Upper - X(ii); 

        else 

            UpperCheck = -1; 

            ii = ii - 1; 

        end 

    end 
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    XLower = X(1:i-1); 

    XUpper = X(ii+1:end); 

    XX = [XLower;XUpper]; 

    SMLower = SpectraMath(1:i-1); 

    SMUpper = SpectraMath(ii+1:end); 

    SM = [SMLower;SMUpper]; 

     

    prompt4 = 1; %input('Would You like to fit a background? Y or N \n'); 

    prompt6 = 0; 

    while prompt4 == 1 

         

       if prompt6 == 0; 

           prompt5 = 1; 

           disp('Automatic Fit is Linear.') 

       else 

           prompt5 = input('What order of fit desired? \n'); 

%                    if prompt5 == 1 

%                       hside1 = msgbox({'Ah, just a little off Zero are we?','','I guess someone 

should have left the automatic fit...'}); 

%                    elseif prompt5 == 2 

%                       hside1 = msgbox({'Are you sure you know what you are 

doing?','.','.','.','Are you, though?'}); 

%                    elseif prompt5 >= 3 

%                       hside1 = msgbox({'Oh, look at you and your higher order 

polynomials...'}); 

%                    end 

       end 

        FittedPoly = polyfit(XX,SM,prompt5); 

        SMFitted = polyval(FittedPoly,X); 

        SMCalc = SpectraMath - SMFitted; 

 

        subplot(2,2,1) 

        plot(X,SpectraMath) 

        titlerawmath = strcat('Growth ',nns,' Spectral Math'); 

        title(titlerawmath) 

        ylabel('\fontsize{15} \alpha') 

         

        subplot(2,2,2) 

        plot(X,SMCalc) 

        titlerawmath2 = strcat('Growth ',nns,' Fitted Spectral Math'); 

        title(titlerawmath2) 

        ylabel('\fontsize{15} \alpha') 

         

        subplot(2,2,3) 

        plot(X,G1,X,B1) 

        titleraw = strcat('Growth ',nns,' Raw'); 
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        title(titleraw) 

        xlabel('Wavenumber \fontsize{9}(cm^{-1})') 

        ylabel('Intensity') 

         

        subplot(2,2,4) 

        plot(X,SMFitted,'--r',X,SpectraMath) 

        title('Polynomial Fit to Original') 

        xlabel('Wavenumber \fontsize{9}(cm^{-1})') 

        ylabel('\fontsize{15} \alpha') 

         

        if promptauto == 1 

            prompt6 = 0; 

        else 

            prompt6 = input('Would you like a different ordered fit? Y or N \n'); 

        end 

         

        if prompt6 == 1 

            prompt4 = 1; 

        else  

            prompt4 = 0; 

            yup = 1; 

        end 

        

    end 

     

    yarea2 = SpectraMath(i:ii); 

    xarea = X(i:ii); 

    yarea = SMCalc(i:ii); 

     

    PeakValueFitted = max(yarea); 

    PeakValueNotFitted = max(yarea2); 

    AreaNotFitted = trapz(xarea,yarea2); 

    Area = trapz(xarea,yarea); 

     

    PeakWavenumberCheck = 1; 

    iii = i - 1; 

    while PeakWavenumberCheck ~= 0 

        iii = iii + 1; 

        PeakWavenumberCheck = PeakValueNotFitted - SpectraMath(iii); 

    end 

     

    PeakWavenumberCheck2 = 1; 

    iiii = i - 1; 

    while PeakWavenumberCheck2 ~= 0 

        iiii = iiii + 1; 

        PeakWavenumberCheck2 = PeakValueFitted - SMCalc(iiii); 
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    end 

     

    PeakWavenumber = X(iiii); 

    PeakWavenumberNotFitted = X(iii); 

     

    txtstring2 = sprintf('\n Area: %0.5g \n (%0.5g , %0.3g) \n %0.5g to %0.5g 

',AreaNotFitted,PeakWavenumberNotFitted,PeakValueNotFitted,X(i),X(ii)); 

    txtstring = sprintf('\n Area: %0.5g \n (%0.5g , %0.3g) \n %0.5g to 

%0.5g',Area,PeakWavenumber,PeakValueFitted,X(i),X(ii)); 

    txtstring3 = sprintf('\n \n %0.2g Order Fit',prompt5); 

    textxlocalcheck = (max(X)-PeakWavenumber)/(max(X)-min(X)); 

    if textxlocalcheck <= 0.4 

        xlocale = X(2); 

    else 

        xlocale = X(iiii+4); 

    end 

     

    if yup == 1 

        subplot(2,2,1) 

        text(xlocale,0.9*(max(SpectraMath(i:ii))-

min(SpectraMath(i:ii)))+min(SpectraMath(i:ii)),txtstring2) 

        subplot(2,2,2) 

        text(xlocale,0.9*(max(SMCalc(i:ii))-

min(SMCalc(i:ii)))+min(SMCalc(i:ii)),txtstring) 

        subplot(2,2,4) 

        text(xlocale,0.9*(max(SpectraMath(i:ii))-

min(SpectraMath(i:ii)))+min(SpectraMath(i:ii)),txtstring3) 

    else 

        subplot(2,1,1) 

        text(xlocale,0.9*(max(SpectraMath(i:ii))-

min(SpectraMath(i:ii)))+min(SpectraMath(i:ii)),txtstring2) 

    end 

     

    if promptauto == 1 

        prompt3 = 0; 

    else 

        prompt3 = input('Would you like to try a different Spectral Feature Range? Y or N 

\n'); 

    end 

     

    if prompt3 == 0 

        MMM(nn,2,n) = Area; 

        MMM(nn,3,n) = PeakValueFitted; 

        MMM(nn,4,n) = PeakWavenumber; 

        MMMtrue = 1; 

        prompt = 0; 
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    end 

    end 

     

    if yup == 0 

        Xlength = size(X); 

        SMCalc = zeros(Xlength(1)); 

    end 

     

    if promptauto == 1 

        prompt7 = 0; 

    else 

        prompt7 = input('Would you like to save Data and Graphs? Y or N \n'); 

    end 

     

    if prompt7 == 1 

      Data = horzcat(X,SpectraMath,SMCalc); 

      GrowthDat = strcat('Growth',nns,'_',promptbackground,'_Math_',sz1,'_',sz2,'.dat'); 

      GrowthGraph = 

strcat('Growth',nns,'_',promptbackground,'Graph_Math_',sz1,'_',sz2,'.jpg'); 

      saveas(gcf,GrowthGraph); 

      csvwrite(GrowthDat,Data); 

    end 

     

    hold off 

    yup = 0; 

     

    if promptgrowthtime == 1 

        MMM(nn,1,n) = promptgrowthmatrix(nn); 

    else 

        MMM(nn,1,n) = nn; 

    end 

    

    clc 

    end 

end 

 

if promptversion == 1 && MMMtrue == 1 

    for nntp = 1:RegionAmount 

         

        RangeTimePlot1 = specificrange(nntp,1); 

        RangeTimePlot2 = specificrange(nntp,2); 

        timepoly1 = 

polyfit(MMM(1:growthnumber,1,nntp),MMM(1:growthnumber,2,nntp),1); 

        timepoly2 = 

polyfit(MMM(1:growthnumber,1,nntp),MMM(1:growthnumber,3,nntp),1); 
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        timepoly3 = 

polyfit(MMM(1:growthnumber,1,nntp),MMM(1:growthnumber,4,nntp),1); 

        polyplotrange = MMM(1:growthnumber,1,nntp); 

        polyploty1 = polyval(timepoly1,polyplotrange); 

        polyploty2 = polyval(timepoly2,polyplotrange); 

        polyploty3 = polyval(timepoly3,polyplotrange); 

         

        figure 

        subplot(3,1,1) 

        

plot(MMM(1:growthnumber,1,nntp),MMM(1:growthnumber,2,nntp),'o',polyplotrange,po

lyploty1,'--r') 

        timetitleplot = sprintf('Progression of the Area: %0.5g to 

%.05g',RangeTimePlot1,RangeTimePlot2); 

        title(timetitleplot) 

         polytextheight1 = 0.9*(max(MMM(1:growthnumber,2,nntp))-

min(MMM(1:growthnumber,2,nntp)))+min(MMM(1:growthnumber,2,nntp)); 

         txt1 = sprintf('y(x) = %0.3g (x) + %0.3g',timepoly1(1),timepoly1(2)) ; 

         text(polyplotrange(1),polytextheight1,txt1) 

         ylabel('Intensity') 

         

        subplot(3,1,2) 

        

plot(MMM(1:growthnumber,1,nntp),MMM(1:growthnumber,3,nntp),'o',polyplotrange,po

lyploty2,'--r') 

        timetitleplot2 = sprintf('Progression of the Peak Value: %0.5g to 

%.05g',RangeTimePlot1,RangeTimePlot2); 

        title(timetitleplot2) 

         polytextheight2 = 0.9*(max(MMM(1:growthnumber,3,nntp))-

min(MMM(1:growthnumber,3,nntp)))+min(MMM(1:growthnumber,3,nntp)); 

         txt2 = sprintf('y(x) = %0.3g (x) + %0.3g',timepoly2(1),timepoly2(2)) ; 

         text(polyplotrange(1),polytextheight2,txt2) 

         ylabel('Intensity') 

        subplot(3,1,3) 

        

plot(MMM(1:growthnumber,1,nntp),MMM(1:growthnumber,4,nntp),'o')%,polyplotrange

,polyploty3,'--r') 

        timetitleplot3 = sprintf('Progression of the Peak Wavenumber: %0.5g to 

%.05g',RangeTimePlot1,RangeTimePlot2); 

        title(timetitleplot3) 

%         polytextheight3 = 0.9*(max(MMM(1:growthnumber,4,nntp))-

min(MMM(1:growthnumber,4,nntp)))+min(MMM(1:growthnumber,4,nntp)); 

%         txt3 = sprintf('y(x) = %0.3g (x) + %0.3g',timepoly3(1),timepoly3(2)) ; 

%         text(polyplotrange(1),polytextheight3,txt3) 

        xlabel('Growth Time \fontsize{9} (seconds)') 

        ylabel('Wavenumber \fontsize{9} (cm^{-1})') 
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        promptsavetimeprogression = input('Would you like to save the Time Progression 

data and graphs? Y or N \n'); 

     if promptsavetimeprogression == 1 

       txt4 = 

sprintf('Time_Progression_%0.3g_to_%0.3g.dat',RangeTimePlot1,RangeTimePlot2); 

       txt5 = 

sprintf('Time_Progression_%0.3g_to_%0.3g.jpg',RangeTimePlot1,RangeTimePlot2); 

       csvwrite(txt4,MMM(:,:,nntp)) 

       saveas(gcf,txt5); 

     end 

    clc    

    end 

elseif promptversion == 1 && MMMtrue == 0 

    disp('There were no spectral features in the specified Range(s).') 

end 

 

prompt99 = input('Would you like to save any of the figures to .pdf file? Y or N\n'); 

if prompt99 == 1 

    prompt999 = input('Which figures would you like to save? (Format: [1 2 3 ... n]) \n'); 

    NumberofSaved = size(prompt999,2); 

     

    for w = 1:NumberofSaved 

        figurenumber = prompt999(w); 

        figure(figurenumber) 

        figurenumberstring = int2str(figurenumber); 

        fns = strcat('figure',figurenumberstring); 

        saveas(gcf,fns,'pdf') 

    end 

     

end 

 

 

promptpeakdetermine = input('Would you like to attempt to find peak(s) in the database? 

Y or N \n'); 

if promptpeakdetermine == 1 

    cd('C:\Users\davescrew\Desktop\Spectra'); 

    [xxx,word,raw] = xlsread('Database_updated.xlsx','C3:D300');     

    xxxvalue = MMM(end,4,:); %input('Which Peak(s) would you like to find? 

(Format:[Peak1; Peak2; etc..]) \n'); 

    xxxvaluesize = size(xxxvalue); 

    tolerance = 5; %input('What tolerance would you like to find your Peak? \n'); 

    clc 

     

    for nn = 1:xxxvaluesize(1,3) 

        BB = find(xxx < xxxvalue(nn)+tolerance & xxx > xxxvalue(nn)-tolerance); 
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        BBamount = size(BB,1); 

        if BBamount == 0 

        disp('No molecules matched your peak locations with 5 wavenumbers'); 

        else 

            for n = 1:BBamount 

 

                txttxt2 = strcat(word(BB(n)),' is the Chemical Formula'); 

                txttxt = sprintf('The closest peak value(s): %0.7g  for the %0.7g 

entry.',xxx(BB(n)),xxxvalue(nn)); 

 

                disp(txttxt) 

                disp(txttxt2) 

            end 

        end 

    end 

    disp('Peaks are found within 5 wavenumbers of values entered.') 

end 

 

warning('on','MATLAB:polyfit:RepeatedPointsOrRescale') 

 

h = msgbox({'Thank you for using Gemar Softwares.','', 'Where we be gettin dat 

data...'}); 

 

  



60 

Appendix B - Emissivity Correction Code 

 

clear all 

clc 

warning('off','MATLAB:polyfit:RepeatedPointsOrRescale') 

 

ZZ = 1; %Step Size in C 

ZMin = 0;%Min Temp in C 

ZMax = 3000; %Max Temp in C 

Z = (ZMax - ZMin)/ZZ + 1; %Number of Points 

ZZZ = ceil(Z); 

M = 1:Z; 

 

Eused = .18; %Emissivity used 

Y = [.14 .19 .26 .30]; 

XC = [727 1093 1982 2930]; 

X = XC + 273; 

Poly = polyfit(X,Y,2); 

 

TempWantC = ZMax - (M-1)*ZZ; 

TempWant = TempWantC + 273; 

 

EvalueReal = polyval(Poly,TempWant); 

 

TempMeasure = TempWant .* (EvalueReal/Eused).^.25; 

TempMeasureC = TempMeasure - 273; 

 

TempMeasureCL = TempMeasureC.'; 

TempWantCL = TempWantC.'; 

 

MC = cat(2,TempWantCL,TempMeasureCL); 

MR = cat(1,TempWantC,TempMeasureC); 

 

Poly2 = polyfit(TempMeasureC,TempWantC,3); 

% for n = 1:5 

% Poly3 = polyfit(TempMeasureC,TempWantC,n); 

% figure 

% plot(MC(:,2),MC(:,1),'o',MC(:,2),polyval(Poly3,MC(:,2)),'--r') 

% txt = sprintf('Polynomial fit of Order %0.5g',n); 

% title(txt) 

% end 

TempMeasured = 1; 

while TempMeasured ~= 0 

 

TempMeasured = input('What Temperature are you measuring?\n'); 

Temp = polyval(Poly2, TempMeasured); 
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txt = sprintf('Temperature of Crucible: %0.5g  C',Temp); 

disp(txt) 

 

end 
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