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ABSTRACT 

Caldera systems are capable of outputting voluminous quantities of volcaniclastic 

material with wide ranging negative environmental impacts. Determining the behaviors 

of previously erupted caldera systems may help inform predictive models used to 

evaluate hazards and assess risks for analogous currently active volcanic systems. The 

Mogollon-Datil volcanic field (MDVF) is a 40-24 Ma cluster of caldera activity in 

southern New Mexico tied to the subduction, and possible delamination, of the Farallon 

plate beneath the North American plate. A regional ignimbrite flare up from 36-24 Ma 

produced at least 28 caldera-forming eruptions. The calc-alkaline magmatism of three 

calderas in this field (the Mogollon, Bursum, and Gila Cliff Dwellings) produced several 

voluminous and regionally dispersed ash-flow tuffs. Magmatic zircon sampled from these 

tuffs record timescales of magmatic accumulation via U-Pb isotopic zonation. This study 

focuses on analysis of zircon crystals and the utilization of U-Pb isotope ratios as 

geochronometers for magmatic activity in the MDVF. I present new U-Pb geochronology 

results obtained via Sensitive High Resolution Ion Microprobe-Reverse Geometry 

(SHRIMP-RG) analysis of magmatic zircon from five MDVF ignimbrites. I compare 

previous geochronology results obtained via 40Ar/39Ar in sanidine to new U-Pb zircon age 

dates (1σ error), Pb isotopic ratios, and trace element compositions in the zircon samples.  
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INTRODUCTION 

 

Continental arc volcanic systems produce a compositionally and texturally wide 

range of rocks. These rocks often reflect the subsurface compositional diversity via 

explosive silicic volcanic products, such as the voluminous ignimbrites of the Andes 

stemming from the thick continental crust subducting the Nazca Plate (Kern et al., 2016; 

Kaiser et al., 2017). As is the case with any large scale magmatism, prior tectonic activity 

of the area controls the magma dynamics and composition of a volcanic system. In the 

case of the western North American plate, the non-collisional orogenic events of the 

Cretaceous leading into onset of Basin and Range extension dramatically shaped the crust 

through both compression and subsequent extension (Schneider and Keller, 1994; Seager, 

2004). In southern New Mexico, the volcanic record between 80-20 Ma is an excellent 

cipher for underlying crustal transformations (McMillan, 2004). Throughout New 

Mexico, a regional ignimbrite flare-up from 36-24 Ma (Chapin et al., 2004) stemmed 

from the cessation of Farallon plate subduction and a possible lithospheric delamination 

(Farmer et al., 2007). Magmatic zircon can record timescales of magmatic accumulation 

via U-Pb isotopic zonation (Harley and Kelly, 2007; Kern et al., 2016). Zircon in 

ignimbrite, or other silicic volcanic products, can preserve a record of the magmatic 

processes that are too rapid to be represented in the plutonic record (Lipman, 2007; 

Wilson and Charlier, 2016) and serve as a snapshot in time during the accumulation and 

storage of a magmatic system (de Silva and Gosnold, 2007). 

 Previous work in the southern New Mexico volcanic fields often relied 

upon K/Ar and 40Ar/39Ar ages in biotite or sanidine, or zircon fission track ages for ages 
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of volcanic units (McIntosh et al., 1991). These data are interpreted as likely eruption 

ages for the volcanic rocks because the elemental or isotopic ratios best record the 

thermal cooling history of the minerals (McIntosh et al., 1991; Ramos et al., 2016). 

Alternatively, zircon geochronologic ages, based on the U-Pb series isotope ratios, are 

interpreted as the crystallization age of the zircon within the magmatic system (Watson 

and Harrison, 1983; Finch and Hanchar, 2003; Carricchi et al., 2016). The comparison of 

eruption ages from sanidine and U-Pb crystallization ages from zircon can give insight 

into the magmatic evolution of the Mogollon Datil Volcanic Field (McDowell et al., 

2014; Carricchi et al., 2016; Deering et al., 2016; Kern et al., 2016; Kaiser et al., 2017). 

The volcanic units analyzed here are rhyodacites through rhyolites erupted in the 

MDVF in New Mexico. Geochronologic data show zircon ages for these units ranging 

from 36.2-28.7 Ma. The time frame of this volcanic activity coincides with the regional 

ignimbrite flare-up described by Chapin et al. (2004) from 36-24 Ma. This study will 

address these models for the MDVF by looking at the geochemical evolution in a 

spatially restricted area over time. 

In this study we present the combination of previous work in the MDVF (eruption 

ages, stratigraphic relationships, geophysical data showing crustal structure and likely 

location of the pluton related to MDVF volcanism (Ratté et al., 1984; McIntosh et al., 

1992; Schneider and Keller, 1994) with new U-Pb geochronologic data and analysis to 

explore magmatic residence times. This study also addresses whether individual ash-flow 

tuffs of the MDVF are surface expressions of separate plutonic systems, or potentially 

sourced from a regional, mid-crustal intrusion. 
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GEOLOGIC BACKGROUND 

 

Subduction of the Farallon plate widely influenced the tectonic and magmatic 

activity of the western United States between 80-37 Ma (Glazner and Ussler, 1989; 

Bowring and Karlstrom, 1990; Cather, 1990; McMillan 2004). The crustal shortening that 

resulted from tectonic contraction transitioned into crustal extension during the mid- to 

late-Tertiary as the Rio Grande rift and Basin and Range Province became active 

(Menard, 1978; Cather, 1990). Subduction of the Farallon plate is widely accepted as the 

cause of the continental arc-style magmatism throughout New Mexico and the Western 

North America (U.S.) between 80-37 Ma, the contemporaneous magmatism adjacent to 

the Sevier fold and thrust belt in the northern Rocky Mountains, and the magmatic gap 

ranging from northern New Mexico to southern Idaho (Seager, 2004; Gaschnig, 2010; 

Foster et al., 2012). Large-scale lithospheric mantle melting combined with crustal 

extension and thinning, triggered extensive explosive volcanic activity associated with 

the MDVF, the Southern Rocky Mountains Volcanic Field, and the Sierra Madre 

Occidental field in North America (Chapin et al., 2004; Farmer et al., 2007; Bachmann 

and Bergantz, 2008). This volcanism deposited thick, regionally extensive ignimbrite 

units throughout the southwest between 37-24 Ma, and thick andesite lava flows between 

50-36 Ma.  

 Around 36 Ma, a geochemically and stratigraphically-abrupt shift from 

intermediate style magmatic activity to more bimodal basaltic andesite and rhyolitic 

composition volcanism occurred in southern New Mexico (Cather, 1990; McMillan, 

1998). This is hypothesized to be a result of lithospheric delamination and slab roll back 
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of the Farallon plate and the transition from mafic magma generation via sub-lithospheric 

mantle melting to bimodal volcanism (Cather, 1990; McMillan, 1998; Farmer et al., 

2007). In order to generate the volume of silicic magma necessary to produce the 

ignimbrite units present in southern New Mexico and southern Colorado (specifically the 

MDVF, and the San Juan volcanic field), there must have been systematic input (via 

lithospheric melting) of magma other than just subcontinental lithospheric mantle 

(Farmer et al., 2007.)  The transition of  principal stress directions caused by the cessation 

of subduction and the physical impact of the Pacific plate transform boundary provided a 

mechanism for a shift in the composition of the ignimbrite units from a high-calcium (Ca) 

plate margin type to an intra plate low-Ca variety at ~ 28 Ma (Elston, 2008). The regional 

dispersion of caldera activity displayed in New Mexico and Southern Colorado, extends 

from the San Juan Volcanic Field in Colorado and south to the Trans-Pecos Volcanic 

Field in the Sierra Madre Occidental in Mexico (Fig. 1). Within New Mexico itself, 

episodic pulses of volcanic activity began in the south near Las Cruces, New Mexico ~ 

36.2 Ma and migrated northwest over a ~12 million year period (McIntosh et al., 1992). 

 

The Mogollon-Datil Volcanic Field 

Ignimbrite flare-up in southern New Mexico and Eastern Arizona followed a 

south to north trend parallel to that of the Rio Grande Rift. Punctuated volcanism 

stretched from the Sierra Madre Occidental in Mexico and Texas beginning at 45 Ma to 

the San Juan Volcanic Field in Colorado (Fig.1; Chapin et al., 2004).  The styles of 

volcanism in southern New Mexico (Fig. 1) and the composition of the magmas erupted 

have changed significantly with the end of Laramide subduction through the initiation 
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and evolution of the Rio Grande Rift as a response to the change in tectonic regime 

(McMillan et al., 2000). In general, Laramide volcanism in the Basin and Range area 

including southern New Mexico, began with eruption of intermediate to silicic 

composition ignimbrites. These were followed by a period of syntectonic basin fill 

deposits as extension initiated and provides evidence to the timing of volcanism versus 

extension (Best and Christiansen, 1991; Gans and Bohrson, 1998). A decrease in 

extension rate and associated switch to alkali, dominantly mafic, volcanism in southern 

New Mexico resulted from an increase in crustal density and the intrusion of mafic 

magmas between 10-0 Ma (Glazner and Ussler, 1989; Thompson et al., 2005). The 

MDVF is an anomaly compared to ignimbrite flare-ups in other volcanic fields in that 

geophysical and petrological evidence for a regional scale magma reservoir (MASH 

zone; Hildreth and Moorebath, 1988; Annen et al., 2006) is lacking (Schneider and 

Keller, 1994). Competing models for ignimbrite flare-up and crustal magma 

accumulation suggest that either large magma reservoirs only contain a small percent 

eruptible melt (Glazner et al., 2004) or more punctuated intrusion where ignimbrites only 

erupt at the peak of intrusion (de Silva and Gosnold, 2007). Comparison between 

volcanic and plutonic components (where exposed) of a magmatic system can show 

petrologic and geochemical evidence of melt processes (fractional crystallization, 

remobilization, chemical evolution; Zimmerer and McIntosh, 2013; McDowell et al., 

2014).  The extension from the Rio Grande Rift activity exposed the plutonic components 

of magmatic systems in many areas of New Mexico (e.g., the Organ Needle Pluton; 

Zimmerer and McIntosh, 2013), but the proposed source plutons for MDVF volcanic 
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centers remain unexposed at the boundary between the Colorado Plateau and the Basin 

and Range provinces (Schneider and Keller, 1994).  

The broadly categorized rocks in the MDVF are separated into distinct time 

periods of magmatism based upon Ar40/Ar39 age distribution (Davis and Hawkesworth, 

1995). These time periods, also referred to as volcanic ‘pulses’ by McIntosh et al. (1992), 

are (1) 36.2-33.5 Ma: First Flare-Up, (2) 32.1-31.4 Ma: Short Burst, (3) 29.0-27.4 Ma: 

Big Doublet, and (4) 26.1-24.3 Ma: Last Gasps. Each pulse is separated by a ~ 2 Ma 

period of quiescence (McIntosh et al., 1992). To the north of the MDVF, episodic 

volcanism also occurred in the San Juan Volcanic Field (Fig. 1) beginning with a waxing 

stage at ~35 Ma, progressing to an ignimbrite producing stage at ~29 Ma, and followed 

by a waning in volcanism at ~ 14 Ma (Lipman, 2007). 

 

Ignimbrites of the Mogollon Datil Volcanic Field 

 The dynamic crustal situation beneath the MDVF during ignimbrite flare-up 

makes the geologic units presented in this study particularly diagnostic. The MDVF 

ignimbrites represent the surface expression of the transition from Farallon plate 

subduction through crustal delamination to asthenospheric mantle input (Menard, 1978; 

McMillan, 1998; 2004; McMillan et al., 2000; Farmer et al., 2007). The early Oligocene 

Bell Top rhyolite tuff marks an abrupt transition in the style and composition of 

volcanism in the MDVF (McMillan, 2004). This bookend ignimbrite corresponds to the 

cessation of subduction in the western United States/initiation of regional rifting, and 

initiated the “First Flare-Up” designated by McIntosh et al. (1992). This unit is followed 

in the west (Fig. 2) by the Cooney Formation, a lower Oligocene/upper Miocene rhyolite 
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to quartz latite ash-flow. The Cooney Formation is the oldest exposed caldera forming 

sequence in the Mogollon Range (Ratté, 2006). The 2nd pulse units are only exposed in 

the north of the MDVF, west of Socorro, New Mexico and north of Winston, New 

Mexico. The Shelley Peak and Davis Canyon tuffs (both rhyolitic ash-flow tuffs) are 

members of the 3rd magmatic pulse (the largest in the field, known as the “Big Doublet”; 

McIntosh et al., 1992) in the MDVF. The Davis Canyon tuff was the first regional 

ignimbrite (>10,500km2) erupted in the 3rd pulse after a ~ 2 million year period of 

quiescence in the south MDVF (McIntosh, et al., 1992). The Shelley Peak tuff is the 

youngest exposed volcanic product of the Gila Cliff Dwellings caldera (Ratté et al., 1984; 

McIntosh et al., 1991). The Shelley Peak is stratigraphically controlled by the overlying 

Bloodgood Canyon tuff, and marks the transition from Gila Cliff Dwellings caldera 

activity to the initiation of the Bursum caldera activity (Ratté et al., 1984). Together, 

these units represent important time slices within the overall magmatic context of 

volcanism in the MDVF. 

 

Bell Top Tuff. The Bell Top Formation (35.7 to 28.5 Ma; McIntosh et al., 1991; 

1992) consists of 6 high-K, calc-alkaline dacite to rhyolite ash-flow tuffs (numbered 2-7) 

of uncertain caldera origin that are exposed in the Sierra de las Uvas volcanic field (Fig. 

2; Mack et al., 1994).  The formation is topographically controlled by the Goodsight-

Cedar Hills depression, and fills the depression at a maximum thickness of 550 meters 

(Seager, 1975). The Bell Top Formation is interbedded with 165 m3 of epiclastic 

deposits, and capped by Oligocene to early Miocene basaltic andesite. It unconformable 

overlies the Rubio Peak formation in the Goodsight Mountains and the Palm Park 



8 

Formation elsewhere (Mack et al., 1994). The Bell Top 4 tuff (hereafter referred to as the 

Bell Top tuff) is 3-55 m thick over an area of ~3000 km2. The Bell Top tuff contains 

abundant, characteristically large (≥ 1 foot) pumice clasts. Phenocrysts include ~ 15% 

euhedral to subhedral sanidine and plagioclase in a densely welded and devitrified matrix 

with <1% oxidized biotite and quartz (Clemons, 1975). Some plagioclase feldspar 

phenocrysts show resorption textures. The eruption age for the Bell Top tuff is 34.9 ±0.04 

Ma (McIntosh et al, 1992). 

 

Cooney Formation. The members of the Cooney Formation members are late 

Eocene to early Oligocene (~34 Ma; McIntosh et al., 1992) quartz latite ash-flows and 

ash-fall units exposed in and around the Mogollon mining district in western New 

Mexico (Fig.2). Total exposed formation thickness is ~1000 m (Ratté et al., 2006). The 

three recognized members of the Cooney Formation are the South Fork tuff, the 

Whitewater Creek tuff, and the Cooney Canyon tuff.   

The South Fork member has a limited outcrop exposure that is restricted to the 

front of the Mogollon Range at the intersection with the mouth of the Whitewater 

Canyon. There are five 10-65 m thick mafic lava flows interbedded with multiple 

partially- to densely-welded ash-flows in the South Fork member. Phenocryst character 

and content is similar to the Cooney Canyon member (Ratté et al., 2006). There ~2% 

pervasively altered, often bright green, 0.5-2 cm elongated pumice clasts. Total unit 

thickness, including mafic lavas, is 400-500 m. These tuffs are highly altered, and no 

fresh material was observed.  
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The Whitewater Creek member is a 100-200 m thick, crystal-poor, single cooling 

unit, densely to partially welded ash flow tuff with <1% plagioclase feldspar, biotite, and 

quartz phenocrysts. Sparse lithic clasts (< 20 cm) vary throughout the unit. There is some 

evidence of post-depositional rheomorphic flow structures. Three characteristic zones 

distinguish the Whitewater Creek member; a base lithophysal zone grades into a second 

zone with columnar-jointing, and topped with a planar, foliated zone (Ratté, 1981; Ratté 

et al., 2006).   

The Cooney Canyon member is comprised of multiple cooling units of ash-flow 

tuff with ~500 m of thickness. The stratigraphically lowest tuffs of the unit contain at 

least 5 discontinuous, well-sorted, 0-10 m thick volcaniclastic conglomerate beds. The 

phenocryst content varies from 10-30% and phenocrysts include 1-3 mm sodic 

plagioclase, biotite, and opaque Ti-Fe-oxides in densely- to poorly-welded groundmass 

(Ratté et al., 2006).  

 

Davis Canyon Tuff. The Davis Canyon tuff is a 200-400 km3 high-silica rhyolite 

ash-flow tuff with a regional thickness of 0-150 m, and an extent of >10,500 km2 

(McIntosh et al., 1992). The tuff outflow sheet is best preserved in the wall of the Bursum 

caldera. In outcrop, the Davis Canyon appears blue to light grey. It is phenocryst-poor, 

with 1-10% sanidine, quartz, and sodic plagioclase that range from micro-phenocrysts to 

>1 mm. The Davis Canyon tuff is multiple partially- to densely-welded cooling units 

with >10cm brown or gray eutaxitic pumice throughout (Ratté et al., 1981). Pumice may 

range up to 20 cm long and show lineation in some locations (Finnell and Ratté, 2006). 
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Shelley Peak Tuff. The Shelley Peak tuff is a 100-200 km3 (McIntosh et al., 

1992) crystal-rich, compositionally zoned rhyolite ash-flow tuff, locally 50-200 m thick. 

The source of this unit was initially unknown (Ratté, 1981) but was later attributed to the 

Gila Cliff Dwellings caldera (Ratté et al., 1984). This outflow tuff is also preserved as a 

fragment in the wall of the Bursum caldera structure. The contact between the Shelley 

Peak and the Davis Canyon is delineated by rhyolitic tuff breccia and other volcaniclastic 

rocks in the north, but directly uncomformably overlies the Davis Canyon tuff in the 

Mogollon area. The Shelley Peak is overlain in most areas by the Bloodgood Canyon 

tuff, and separated by an erosional unconformity and ~1-10 m cross-bedded, 

conglomeratic sandstone (Ratté, 1981). This tuff has a distinctive brick-red groundmass.  

Phenocryst content is 10-40% sodic plagioclase and sanidine, with 1-2% green 

clinopyroxene, accessory zircon and biotite (Ratté et al., 1981).  

 

Other MDVF Ignimbrites. Although not specifically discussed in this paper, the 

volcanic output of the adjacent Bursum caldera provides additional data for and 

constraints on the models used to describe magmatic activity in the MDVF. 

Contemporaneous to the output of the Gila Cliff Dwellings caldera are these ash-flow 

units: the Fanney rhyolite (26.4-24.4 Ma), the Bloodgood Canyon tuff (28.0 Ma), and the 

Apache Spring tuff (27.9 Ma; Ratté et al., 1984; Bickerman et al., 1992). The age 

relationships between these Bursum-sourced units are established via stratigraphic 

evidence and age dating because the caldera itself collapsed, and only a few presumed 

structural wall fragments are preserved (Ratté, 1981; 2006). The Bursum caldera may 
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have erupted ~1200 km3-2500 km3 of magma prior to dome resurgence (Ratté et al., 

1984). 

The Bloodgood Canyon tuff (BCT) is a single cooling unit of compositionally 

zoned, high-silica rhyolite ash-flow tuff that extends over a 15,000 km2 area with a 

minimum thickness of 600 m, and a volume of 1200 m3 (Ratté, 1981; Ratté et al., 1984). 

The BCT uncomformably overlies the Shelley Peak and Davis Canyon tuffs proximal to 

the inferred Bursum caldera margin (Fig. 2). Lithic fragments at the base of the tuff 

contain pumice from both the Shelley Peak and Davis Canyon tuffs (Salings, 2017). 

 

Geochemistry of the MDVF. Geochemically, the rocks in the MDVF may be 

separated into three time periods of magmatism (Davis and Hawkesworth, 1995). The 

pre-30 Ma and 30-20 Ma rocks are calk-alkaline, and show 87Sr/86Sr and 143Nd/144Nd 

isotope enrichment and possible derivation from lithospheric mantle (Davis and 

Hawkesworth, 1995). Post-20 Ma rocks in this area show compositional similarity to an 

oceanic island basalt (OIB) type isotopic ratios, and therefore are likely asthenospheric in 

origin (Bickerman et al., 1989; Davis and Hawkesworth, 1995; McMillan et al., 2000). 

Bickerman (1994) elaborates on these isotopic trends in the Davis Canyon and Shelley 

Peak ignimbrites. The 87Sr/86Sr ratios in these two units are essentially identical, pointing 

toward a more compositionally primitive magma source than the Bloodgood Canyon tuff 

(Salings, 2017). Based on field relationships and other geochemical evidence, Bickerman 

(1994) suggests that the Shelley Peak and Davis Canyon are products of the same magma 

chamber. The Davis Canyon and Shelley Peak units have a lower 87Sr/86Sr ratio than the 
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Bloodgood Canyon tuff, which Bickerman (1994) attributes to longer residence time in 

the chamber, and/or increased contact with contaminated country rock. 

 The previously determined 87Sr/86Sr ratios for the Cooney Formation, Shelley 

Peak, and Davis Canyon are similar to those in modern volcanic arc settings (0.703-

0.716; Bickerman, 1989), supporting the hypothesis of decreasing crustal (cratonic) input 

via contamination or melting into the system through time. Geochemical modeling of 

Gila Cliff Dwelling caldera products supports the hypothesis of a mixed, rhyolitic magma 

chamber fractionating out 80:20 plagioclase feldspar to clinopyroxene (Bickerman et al., 

1992; Bickerman, 1994). This is supported petrographically by the presence of 

clinopyroxene in the Shelley Peak tuff (Bickerman, 1994). 143Nd/144Nd and 87Sr/86Sr 

ratios and AFC modeling suggest magmatic activity from the Gila Cliff Dwellings and 

subsequent Bursum caldera may also be the product of primary mantle-derived magma 

and some crustal component mixing (Bickerman et al., 1992; Salings, 2017).  

 Petrological, geochemical, and geophysical evidence indicate remobilization of a 

closed system crystal mush as an eruptive trigger for the explosive volcanic episodes of 

the Gila Cliff Dwellings and Bursum calderas (Salings, 2017). A two-dimensional 

refraction model has shown the Moho to deepen abruptly about 90 km north of Silver 

City (from 34 to 37 km depth; Schneider and Keller, 1994) and imaged a low-velocity 

body in the mid-crust. Two-dimensional gravity modelling provided additional 

constraints on the existence of the low density body. The body was initially found by the 

seismic survey. The low-density body roughly coincides with the N/S mid-point of the 

crustal thickening (crossing the border from New Mexico to Arizona). This body is 
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interpreted as the underlying granitic pluton that possibly fed the voluminous mid-

Tertiary volcanics in the MDVF (Ratté et al., 1984; Schneider and Keller, 1994). 

 

Record of Volcanism in the MDVF 

The MDVF activity covered an estimated 40,000 km2 and was active from ~ 40 to 

24 Ma (McIntosh et al., 1992). The 12,000km3 of volcanic arc output manifested in 

several pulses of high-K, calc-alkaline, compositionally bimodal ignimbrites and small 

volume lava flows (Elston et al., 1970; McIntosh et al., 1992; Davis and Hawkesworth, 

1994).  The volcanic structures of the MDVF may be divided along a roughly north-south 

axis (termed the Santa Rita-Hanover axis) created by the structural and topographic high 

point of the Cretaceous Santa Rita volcanic stock (Elston et al, 1970). This high point 

constrained the emplacement of the ash-flow tuffs erupted to the east and west prior to 

the onset of extensional faulting. The three calderas that are within the western MDVF 

during the time period of interest are discussed below (Table 1). 

 Part of the first regional magmatic pulse in the southwest MDVF, the oldest 

ignimbrites in this suite, dated via K-Ar at 35.5-33 Ma (Bickerman, 1989) are the three 

members of the Cooney Formation (Fig. 2). The oldest members, the Whitewater Creek 

and South Fork tuffs, as well as the younger Cooney tuff are mapped largely as 

undifferentiated within the Mogollon, N.M. area (Ratté, 1981). These units are identified 

as the explosive intracaldera fill of the Mogollon caldera (Ratté et al., 1984). Outflow 

sheet exposure was identified by Ratté et al. (2006) at one location in the Big Lue 

Mountains of Arizona.  
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 Overlying the Cooney Formation are ignimbrites suggested to have subsequently 

erupted from the Gila Cliff Dwellings caldera during the 3rd magmatic pulse (McIntosh, 

et al., 1992; Ratté et al., 1984). These outflow units consist of the stratigraphically-lower 

Davis Canyon tuff (29.3-29.0 Ma; Bickerman, 1989), and the Shelley Peak tuff (28.2 Ma; 

Bickerman, 1989; McIntosh et al., 1992) ash-flows are interspersed with volcaniclastic 

sandstone units and represent multiple events prior to caldera collapse.  
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ZIRCON AS A GEOCHRONOMETER 

 

  This study uses zircon crystals and U-Pb isotope ratios as a geochronometer for 

the magmatic system evolution in the MDVF. The preferential incorporation of uranium 

into the crystal lattice (due to high partition coefficient), the exclusion of lead form the 

lattice (due to low partition coefficient), as well as the ubiquity of zircon mineral phases 

in rhyolitic composition magmas allow for the ready use of zircon in comparative 

geochronological analyses (Mahood and Hildreth, 1983; Miller and Wooden, 2004; Kern 

et al., 2016).  Zircon closure temperatures are well above critical felsic magmatic 

crystallization temperatures at ~800°C (Finch and Hanchar, 2003; Miller et al., 2003; 

Miller and Wooden, 2004), so the distribution of rare earth elements and isotopic ratios 

within a zircon crystal may reasonably be used as a proxy for melt crystallinity and 

magma composition (Hanchar and van Westrenen, 2007; Smith et al., 2009; Wotzlaw et 

al., 2013; McDowell et al., 2014; Bucholtz et al., 2017; Kaiser et al., 2017).   

In silicic magmatic environments, the comparative rapidity of volcanic processes 

(versus plutonic) renders their quenched volcanic products useful diagnostic “snapshots” 

of melt composition at the time of eruption (de Silva and Gosnold, 2007; Wilson and 

Charlier, 2016). The U/Pb ratios within zircon crystals are not affected by high-

temperature residence within the magma reservoir; provided the melt stays above the 

zircon saturation composition and appropriate temperature (Watson and Harrison, 1983; 

Hanchar and Watson, 2003). Crystal growth will therefore preferentially include U and 

exclude Pb in each subsequent growth zone in equilibrium with changes in magma 

composition and providing a tool to estimate residence in the system (Hanchar and 
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Watson, 2003). The 238U/206Pb is the most appropriate decay chain to analyze for 

volcanic rocks older than 150 Ka due to the accurately measurable quantity of 206Pb 

present by that age (Hanchar and Watson, 2003). Other U-Pb isotopic concentrations are 

measured (i.e., 207Pb/206Pb, 208Pb/232Th) to evaluate age concordance between all results, 

and ensure accuracy of calculated age dates. Trace element composition of igneous 

zircon, particularly U, Th, Hf and Y combined with HREE abundance can be used to 

interpret and contextualize isotopic age date results (Hoskin and Schaltegger, 2003; 

Smith et al., 2009; Kaiser et al., 2017). 
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METHODS 

 

Sample Collection and Preparation 

 Bulk whole rock samples from the Cooney formation members, the Shelley Peak 

and Davis Canyon tuffs were collected from around the Mogollon, N.M. area. Distal 

samples were also collected from near Clifton, Arizona and Luna, N.M. (Fig. 2). These 

units represent the span of the regional ignimbrite flare-up in the MDVF, ranging from 

onset to peak eruptive output in the western MDVF. The Arizona location is identified as 

potential outflow sheet from the Gila Cliff Dwellings caldera. All other units are 

identified as intracaldera fill. Sample location selection was based on proximity to the 

remnants of the Mogollon caldera structure, the type section for the Cooney formation, 

and the locations of samples taken for previous 40Ar/39Ar analysis (McIntosh et al., 1991). 

When available, zircon from within pumice was analyzed to avoid foreign crystal 

contaminants from wall rock interaction during eruption or incorporation of lithic zircon 

during emplacement.    

 Zircons for analysis were separated from bulk rock samples using standard 

techniques. Samples were mechanically separated via crushing and sieving. The >200μ 

fraction was first magnetically separated through Frantz processing at ~1.8A and 10˚ side 

slope to remove high-U zircon that might give discordant and unreliable results 

(Rosenblum, 1958; Sircombe and Stern, 2002). The remainder was processed through 

heavy liquids separation using Lithium Sodium Polytungstate. Optical picking ensured 

pure separates. 



18 

Approximately 75-100 grains were mounted in epoxy, cured, and manually 

ground to expose zircon grain interiors to present an even surface for analysis. The grain 

mounts were then polished, and imaged by cathodoluminesence and backscatter electron 

imaging to ensure analysis of zircon over other similar phases. The images were used to 

create composite grain mount maps and program analyses.   

  

U-Pb Sensitive High Resolution Ion Microprobe-Reverse Geometry Analysis 

 U-Pb isotope ratios and trace element compositions within zircon were obtained 

via Sensitive High Resolution Ion Microprobe-Reverse Geometry Analysis (SHRIMP-

RG) at the Stanford University Microscopic Analytical Center. Analytical procedures 

followed Strauss et al. (2016). 52 spot analyses were performed on 48 individual grains 

from 5 different pyroclastic ash-flow units (The Bell Top tuff (sample # UV-R2), the 

Whitewater Creek tuff (sample # CC-02), the Cooney Canyon tuff (sample # MO-09), the 

Shelley Peak (sample #180-SP-1), and the Davis Canyon tuff (sample # 78-1)). 

 Scanning electron microscope cathodoluminescence imaging (Fig. 3) at 15kv was 

utilized on mounted grains to select high uranium oscillatory targets for SHRIMP-RG 

analysis. Complex or altered cores were avoided. Where crystal size permitted or obvious 

zoning was present, both rim and core compositions within a single grain were analyzed.  

 SHRIMP-RG results were corrected for analytical drift  using the SHRIMP-RG 

lab Temora-2 analytical age standard for U-Pb isotopic composition, and reduced using 

the SQUID 2.51.12.07.22, rev. 22 Jul 2012 software program (Ludwig, 2009). All U-Pb 

ages are reported with a 1σ uncertainty (95% confidence, unless otherwise noted) using 

the TuffZirc algorithm in Isoplot 4.15 (Ludwig, 2008).  
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Zircon Trace Element Analysis by SHRIMP-RG 

 All zircons analyzed for U-Pb ages were simultaneously analyzed for trace 

element composition including Fe, Y, Hf, and rare earth elements (La, Ce, Nd, Sm, Eu, 

Gd, Dy, Er, and Yb) at the SHRIMP-RG lab.  Analytical standards were the same as used 

for U/Pb.  Ti48 and Ti49 isotopic concentrations were also measured to monitor for 

analytical drift. 
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RESULTS 

 

Zircon Trace Element Geochemistry 

 The zircon trace element distribution of the MDVF ignimbrite samples compared 

to global environments and tectonic regimes (Carley et al., 2014) is illustrated in Figure 4 

and is presented in Table 2. All of the samples fall within the continental arc field values 

except for the MORB-like values of Sample 78-1 in U/Yb vs Y. The distribution of 

results within the continental arc field is similar for the U vs Yb values and U/Yb vs Hf, 

again with the exception of the borderline MORB-like cluster of zircons from Sample 78-

1 for U vs Yb. Anomalously high Fe compositions (> one order of magnitude difference 

from average population composition) could be an indicator of secondary alteration or 

inclusions. As such, spot results that fell outside the average range of compositions were 

excluded from consideration.    

 Further information about melt extraction and duration may be inferred from the 

Y/Dy ratio results. Most of the ash-flow zircon plot with a <15 Y/Dy ratio (Fig. 5a), but 

there is a distinct population with ratios >15. These outliers are the rim (+1 single crystal) 

from ash-flow unit (180-SP-1) shown in Figure 5b.   

During crystallization and remelting, slight changes in the trace element budget of 

a melt are reflected in the crystallized zircon. Extreme compatibility of trace elements 

into titanite can be a controlling factor on the concentrations and ratios thereof in the 

residual melt. Most of the samples have Yb/Dy ratios ranging from 2.5-6 (Fig. 6), except 

for the distinct cluster of rims from 180-SP-1 that are all >8.  A complementary 

comparison, Th/U ratios in zircon can model temperature influence on the melt system 
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(Wotzlaw et al., 2013).  An increase in Th/U usually reflects a sympathetic increase in 

melt temperature. MDVF ash-flows do not show any obvious correlation between Th/U 

(Fig. 7a) and Yb/Dy ratios (Fig. 7b). 

Feldspar fractionation, crystallization and stability in the magmatic source can be 

traced via Eu/Eu* ratios (shown vs Hf in Fig. 8). Samples 180-SP-1(the Shelley Peak 

tuff; Eu/Eu* = 0.17 to 12.62) and UV-R2 (the Bell Top tuff; Eu/Eu* = 0.86 to 7.16) show 

a negative linear trend with increasing Hf (Fig. 9). The Cooney formation members 

(Eu/Eu* = 0.73 to 12.70) and Sample 78-1 (Eu/Eu* = 1.97 to 12.43) show no correlation 

across Eu/Eu* ratios and Hf compositions. 

The concentration of Ti in igneous zircon has been suggested to correlate to melt 

temperatures (Watson and Harrison, 2005). With the mineralogical context of SiO2 and 

TiO2 behaviors included, Ti concentration evolves into a thermometry tool (Ferry and 

Watson, 2007). Figure 6 shows the WMDVF results as Hf vs. Ti (˚C temperature 

calculated via task equation after Strauss et al., 2016). Hf and temperature show an 

inversely correlated linear relationship, and as such Hf concentration may be used as a 

proxy for melt temperature at time of crystallization (Deering et al., 2016). The 

distribution of Hf concentration vs. Sm/Yb shows two distinct fractionation trends (Fig. 

8). The first trend has a flat Hf content with variable Sm/Yb ratios, which has been 

suggested to represent amphibole/pyroxene dominated fractionation in the melt. The 

second trend is an inverse linear relationship between increasing Hf content and 

decreasing Sm/Yb ratios. This trend suggests apatite/titanite dominated fractionation in 

the melt, as apatite and titanite preferentially incorporate Sm to Yb (KdSm = 17.7, KdYb = 

564; Mahood and Hildreth, 1983) into the crystal lattice during crystallization. 
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Rare Earth Elements (REEs)  

Chondrite normalized REE trends for all units are given in Figure 11. UV-R2 has 

a several order of magnitude dispersion for the LREEs (light rare earth elements), the 

spread persists through middle REEs, and coalesces in the HREEs. The trend for one 

analysis differs in the Eu anomaly. CC-02 has a smaller discrepancy in the LREEs, but 

still several orders of magnitude separating the population. Overall, the trends are 

consistent throughout this unit. MO-09 has two orders of magnitude separation in the 

LREEs, and maintains that discrepancy through the entire REE series. There is an 

anomaly (the 1109 Ma ±18 xenocryst) that has a much greater Eu anomaly than any of 

the other zircon in this sample population. 180-SP-1 has two distinct populations with 

opposite trends through the LREEs, similar plateaus through the mid-REEs, and again 

opposite trends into the HREEs. The results are separated into core and rim distinctions 

in Figure 12a. The distinction between core and rim for sample UV-R2 (Fig. 12b) lies in 

a few orders of magnitude in concentration, with similar trend slopes. 

 

U-Pb Zircon Ages 

 Zircon morphology. New U-Pb zircon data from MDVF ash-flow tuffs is 

presented in Table 3 and illustrated in Figure 13. Five samples were dated at the Stanford 

University SHRIMP-RG lab, and additional ages are from Michelfelder and McMillan 

(2012), Zimmerer and McIntosh (2013), and Deering, et al. (2016). New zircon crystals 

from this study in all units ranged from 75 – 300 μm (Fig. 3). The UV-R2 (Bell Top tuff 

4) grains were mostly sub- to euhedral and elongate (Fig. 3d). Most grains also show 

some evidence of resorption. The Cooney formation units displayed some morphological 
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differences between units. The Whitewater member (CC-02) zircon grains were largely 

equigranular and euhedral, with local intermediate rim resorption textures in most grains, 

core resorption textures in ~ half of the grains, and clear overgrowths in ~ 2 grains (Fig. 

3b). In contrast, the Cooney Canyon member (MO-09) zircons were largely elongate with 

a greater degree of core resorption characteristics than the Whitewater zircons (Fig. 3a).  

The 78-1 (Davis Canyon age tuff) zircons were euhedral with a variety of crystal 

morphologies, and lacked resorption textures in the majority of the grains (Fig. 3e). The 

Shelley Peak tuff (180-SP-1) zircons showed equigranular euhedral morphology in most 

grains, with resorption textures in most cores (Fig. 3 c, f). Zircon textural and resorption 

designations are based on Corfu et al. (2003). 

Zircon Age Dates. Probability density function (PDF) curves from MDVF 

samples 180-SP-1, UV-R2, MO-09, and CC-02 (Fig. 13) all show zircon age 

crystallization peaks millions to thousands of years prior to eruption dates. The PDF 

peaks represent the greatest density of zircon ages within the sample populations. Sample 

78-1 has an eruption age of 29.01 Ma that pre-dates the peak of zircon crystallization 

(Fig. 12), but is within the 1σ error reported for the 40Ar/39Ar age of the Davis Canyon 

tuff (McIntosh et al., 1992) late-stage crystallization and eruption are age concordant. 

From a sample population of 52 spot analyses, 8 analyses from 4 units were excluded 

from the within unit age calculations for variance too far from the 206Pb/238U weighted 

mean for each unit (2 younger than the mean, and 6 older).   

 Where crystal size allowed, analysis of both core and rim locations were 

performed (Fig. 3). Most rim and core analyses on the same crystal were statistically 

indistinguishable, with the exception of a core analysis on 78-1 (spot 3.2) that had an 
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outside of weighted mean age older than the population. Interior ages in most zircon pre-

dated the exterior zones of the crystals by 10s - 100s Ka. 

 The youngest zircon ages (Fig. 13) overlap with the 40Ar/39Ar ages (uncertainty 

included) in all units, except for one analysis in 180-SP-1 and one analysis in 78-1. The 

amount of overlap between zircon crystallization and interpreted eruption dates varies 

among ash-flow units. For UV-R2, MO-09, and CC-02, the youngest zircon ages 

coincide with the eruption age. For samples 180-SP-1 and 78-1 the eruption age is only 

within error of the youngest zircon age. The 206Pb/238U weighted mean age result, when 

compared to the 40Ar/39Ar age result (Table 3), shows zircon crystallization timescales of 

thousands to millions of years. 

 This sample population did not present any significant anomalies between the 

weighted mean zircon age result for each unit and the 40Ar/39Ar age in sanidine for each 

unit. All variations were within error of the age results. The Bell Top tuff zircons yielded 

a U-Pb age range of 31.6 ±3 to 36.4 ±1 Ma, when compared to the 40Ar/39Ar age of 34.96 

Ma yielded a residence time estimate of 0.04 Ma. The Whitewater Creek tuff zircons 

yielded a U-Pb age range of 33.9 ±2 to 37.2 ±1 Ma, when compared to the 40Ar/39Ar age 

of 34 Ma yielded a residence time estimate of 2.2 Ma. The Cooney Canyon tuff zircons 

yielded a U-Pb age range of 34.1 ±1 to 35.7 ±1 Ma, when compared to the 40Ar/39Ar age 

of 34 Ma yielded a residence time estimate of 0.8 Ma. The Davis Canyon tuff-age zircons 

yielded a U-Pb age range of 27.2 ±3 to 30.9 ±1 Ma, when compared to the 40Ar/39Ar age 

of 29.01 Ma yielded a residence time estimate of 0.19 Ma. The Shelley Peak tuff zircons 

yielded a U-Pb age range of 27.5 ±1 to 30.7 ±2 Ma, when compared to the 40Ar/39Ar age 

of 28.1 Ma yielded a residence time estimate of 1.5 Ma. 
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Xenocrysts 

A zircon U-Pb age date of > 50 Ma is considered to be xenocrystic within the 

sample populations of the ash-flow tuffs presented here. The  relative absence of 

xenocrystic zircons within the sample populations (i.e., 1 spot analysis yielding an age 

date of 1109 Ma ±18 from sample MO-09) suggests either a limited interaction between 

the source magma reservoir and other magmatic influences, or temperatures above the 

zircon crystallization range and changing magmatic compositions within the reservoir 

conducive to total zircon resorption. However, the number of xenocrystic cores may be 

biased based on the number of grains analyzed per sample and the relatively high number 

of xenocrystic zircons reported by Michelfelder and McMillan (2012) for intermediate 

ash-flows of similar age in the eastern section of the MDVF.  
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DISCUSSION 

 

  For the western MDVF ignimbrites, individual U-Pb zircon crystal age results are 

interpreted as an indication that there was zircon saturated melt present in the system at 

that time. Zircon autocryst age dates are used here to constrain the history of the pre-

eruptive magmatic system by examination of how magmatic compositions vary through 

time (Kern et al., 2016). The weighted mean age of all the individual spot analyses for 

each unit is interpreted as the zircon crystallization age (Caricchi et al., 2016; Deering et 

al., 2016; Kern et al., 2016). The U-Pb age dates are not unique results, and should be 

considered within geologic context for interpretation and to explore magmatic residence 

times. Xenocrystic zircon are sourced from outside the magmatic system, and therefore 

are not related to or representative of magmatic conditions that produced the autocrysts 

(Kern et al., 2016). The presence of xenocrysts does suggest some limited interaction 

with the crustal country rock, and a small amount of assimilation into the magmatic 

system (Deering et al., 2016). 

 

U-Pb Ages of Autocrysts Reveal Magmatic Age of MDVF Ignimbrites and Model 

Duration of Zircon Crystallization 

The zircon populations for all five units analyzed have mean squared weighted 

distance (MSWD) values that are within 95% confidence. Within individual units, 8 total 

spot analyses were not considered in the age calculations due to dispersion beyond the 

confidence interval. For the Cooney Formation and Shelley Peak tuff, the zircon 

autocryst ages are distinctly older than the eruption age (Fig. 14). This suggests that 
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zircon growth in the magmatic system occurred prior to eruption indicating that the 

magmatic conditions were conducive to zircon crystallization for the duration of the 

residence period. All units show some overlap between magmatic ages and eruption ages 

(Fig.13) which is attributed to the error in the 40Ar/39Ar analyses. The Bell Top tuff 

shows a greater dispersion of ages, but the majority of the population still overlaps the 

40Ar/39Ar eruption age within error. The Davis Canyon-age tuff had a larger population of 

analyses fall outside the confidence interval for age calculation, but are still within error 

of the 40Ar/39Ar eruption age date.  

The magmatic ages modeled are consistent with the 40Ar/39Ar in sanidine eruption 

ages and stratigraphic relationships, which geologically supports our estimate of possible 

minimum magmatic crystallization times (Table 3; Figs. 12 & 13) and indicates that the 

magmatic age results are reasonable in the geologic context. The combination of previous 

work in the MDVF (eruption ages, stratigraphic relationships, geophysical data showing 

the local crustal structure and likely depth of the pluton related to MDVF volcanism) with 

new U-Pb geochronologic analysis allows for a more comprehensive picture of the 

influences on the MDVF magmatic system. With the exception of the Whitewater Creek 

member of the Cooney Formation, the age model durations range from 0.04 Ma to 1.5 

Ma. The Whitewater Creek member has a longer, 2.2 Ma model age range, which 

suggests a more protracted crystallization period.  

  

Spatiotemporal Development of the MDVF Magmatic System 

Magmatic Groups Define Pulses of Magmatism within the MDVF Flare-Up. 

Based on comparison of eruption peak dates and magmatic U-Pb zircon ages (Fig. 13), 
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the age spectra of the ignimbrite units align with volcanic pulses defined by McIntosh, et 

al. (1992). Locally, the western MDVF ignimbrites reflect a different eruption tempo than 

the field as a whole in that there was a period of volcanic quiescence from 32.1 Ma to 

31.4 Ma (McIntosh, et al., 1992). We propose two magmatic groups for the western 

MDVF ignimbrites examined here based on crystallization ages and magmatic evolution 

rather than eruption ages. The two magmatic groups are defined as 32-37.2 Ma, and 27-

30 Ma. 

Magmatic group 1 (32-37.2 Ma). The Bell Top 4 tuff and the Cooney Formation 

are designated as southern eruptive Pulse 1 by McIntosh, et al. (1992), with a timeframe 

of 36.2 to 33.5 Ma. Our data show overlapping age distributions indicating that zircon 

crystallization occurred within these magmatic systems from 37.2 ±1 Ma until 31.6±3 Ma 

(the youngest age concordant zircon result).  The tuffs in this group are roughly 

contemporaneous to the Organ Caldera magmatism and the eastern MDVF – Sierra 

Cuchillo volcanic sequences (Fig.14). The Bell Top tuff age spectra shows one dominant 

peak at 34.5 Ma (Fig. 13). For the Cooney Formation units, the Whitewater Creek tuff 

age spectra show one dominant peak at 36.2 Ma, and a smaller peak at 34.5 Ma; the 

Cooney Canyon tuff spectra show only one dominant peak at 34.8 Ma. The multiple 

peaks the Whitewater Creek ages indicate two separate populations of zircon, which are 

interpreted as two periods of zircon growth in the magma chamber.    

Magmatic group 2 (27-30 Ma). The Davis Canyon-age and Shelley Peak tuffs are 

designated as southern eruptive pulse 3A & 3B (respectively) by McIntosh, et al. (1992), 

with a timeframe of 29.0 to 27.4 Ma. Our data show overlapping age distributions that 

indicate zircon crystallization occurred within these magmatic systems from 30.7 ±2 Ma 
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until 27.2±2 Ma.  The tuffs in this group are roughly contemporaneous to the 

emplacement of the Willow Springs Dome in the eastern MDVF (Fig. 13) indicating 

regional magmatic activity, as opposed to an isolated magmatic system. 

  

Integrating Magmatic and Eruptive Histories: Episodic Development of the 

MDVF Magmatic System. Correlations between the two pulses of magmatism and 

eruptive stages are revealed by pulses in zircon crystallization with distinct breaks 

between magmatic pulses in the eastern MDVF (Figs. 12 and 13). Both eruptive stages 

have overlapping zircon ages, and dominant peaks in the younger pulses are preceded by 

distinct peaks in zircon crystallization that are interpreted to reflect separate events of 

magma accumulation in the upper crust. The U-Pb age dates suggest that the magmatic 

accumulation events began 0.4 Ma to 2.2 Ma prior to the eruptions, with possibly 

continuous presence of zircon saturated magma until each eruption. The episodic 

periodicity of magmatic events is analogous to other, large-scale, ignimbrite flare-ups 

(Lipman, 2007; Kern et al., 2016). The units discussed here capture the initiation and 

cresting of local ignimbrite output. 

 

Zircon Insights into Magmatic Processes and Magma Dynamics 

The preservation of melt compositions within zircon can be used to inform 

crystallization models (e.g., Zimmerer and McIntosh, 2013; Deering et al., 2016; Kern et 

al., 2016; Kaiser et al., 2017). The REE compositions of zircon from the eastern MDVF 

trace mineral fractionation within the magmatic system. During titanite crystallization, 

middle REEs are preferentially incorporated over Y, so Y/Dy variations may record 



30 

additional titanite fractionation in rhyolite (Fig. 5; Deering et al., 2016). The two distinct 

populations in sample 180-SP-1 (Fig. 5b) show a change in magma composition between 

core and rim to a more evolved magma during zircon residence of only 1.5 Ma.  

The data show two trends in mineral fractionation in the eastern MDVF units, one 

dominated by amphibole/pyroxene and the second dominated by apatite/titanite. The 

inverse linear relationship between the calculated Ti-in-zircon temperatures and Hf 

content allows Hf to be utilized as a proxy for melt temperature (Fig. 8; Claiborne et al., 

2006; Deering et al., 2016).  

The Shelley Peak and the Davis Canyon tuffs are both attributed to the Gila Cliff 

Dwellings caldera source. Though petrologically similar to the Davis Canyon tuff, and of 

the same age (28.7 ±0.5 Ma), the difference in HREE trends between the Shelley Peak 

tuff and sample 78-1 indicate that these samples must come from different magmatic 

sources. If the Shelley Peak tuff was derived from the same magma as the Davis Canyon-

age sample, the Shelley Peak zircon cores would be more depleted in mid-REEs due to 

magma fractionation. Therefore, sample 78-1 must not be Davis Canyon, but some other 

unnamed tuffaceous unit.  

 

Zircon-Based Perspective for MDVF Magmatism 

  Over the course of the MDVF ignimbrite flare-up, evidence closed system magma 

processes are shown by the variation of compositions in the zircons sampled from those 

volcanic units. If the magmatic source for the Mogollon Caldera is the same system of 

chambers that fed the subsequent Gila Cliff Dwellings Caldera, the REE profiles should 

reflect the evolution and continued enrichment of melt with the passage of time. This is 
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shown by the enrichment of Eu from sample CC-02 (U-Pb age of 36.2 ±0.4 Ma) to MO-

09 (U-Pb age of 34.8 ±0.8 Ma), and then to sample 180-SP-1 (U-Pb age of 29.6 ±0.5 

Ma).  
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CONCLUSIONS 

 

 U-Pb ages of zircon in magmas during the 36-24 Ma MDVF ignimbrite flare-up 

were determined by SHRIMP-RG. These data reveal age spectra with dominant peaks of 

autocrysts. Xenocrysts are rare to absent. Modeled magmatic ages are consistent with 

observed eruptive stratigraphic relationships. The U-Pb in zircon ages record epsiodicity 

in the magmatic history of the MDVF. These ages fall into two groups defining distinct 

pulses of magmatism that correlate with eruptive pulses, but indicate that magmatic 

construction began 40,000 to 2.2 million years prior to eruption. The model magmatic 

ages (Table 3) represent the minimum pre-eruptive magmatic residency of reservoir 

magmas in the MDVF. These durations indicate that thermochemical conditions for 

zircon saturation were maintained for extended periods. Although xenocrysts are present, 

they are rare, suggesting limited inheritance.  

 The episodicity revealed by the zircon U-Pb ages of the western MDVF flare-up 

can be interpreted in the context of continental arc magmatic systems in general. The first 

pulse marks the regional initiation of the flare-up, as the crystal poor top of the rhyolitic 

chamber is emptied and the caldera subsequently collapses. The second regional pulse 

brings more crystal-rich evolved mush to the surface from a different eruptive center.   
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Table 1. Summary of units, their sources, eruption ages, and approximate volumes. 

Tuff Source 

Caldera 
Eruption age

1

 
(Ma)  (1σ ± 5%) 

Estimated
2

 erupted 

volume in km
3

 

Cooney Formation 

Whitewater Creek 

member 

Mogollon ~ 34 >100 

Cooney Canyon member 

South Fork member 

  

      

Bell Top tuff 4 Organ (?) 34.96   

Davis Canyon tuff  Gila Cliff 

Dwellings 
29.01 200-400 

Shelley Peak tuff Gila Cliff 

Dwellings 
28.1 100-200 

1
Eruption ages are from 

40
Ar/

39
Ar in sanidine from McIntosh et al., 1992 except for the 

Cooney Fm. estimation which is an average from  K-Ar in biotite 
2
Cooney eruption volume is from Ratté et al., 1984. All other eruption volumes are 

from McIntosh et al., 1992. 
 

 



 

Table 2. Zircon trace elements results. 

Spot 

Name 

Fe 

(ppm) 

Y 

(ppm) 

La 

(ppm) 

Ce 

(ppm) 

Nd 

(ppm) 

Sm 

(ppm) 

Eu 

(ppm) 

Gd 

(ppm) 

Dy 

(ppm) 

Er 

(ppm) 

Yb 

(ppm) 

Hf 

(ppm) 

   Eu 

 (star) 

180-SP-

1-1.1 

0.18 2198 0.0296 74 3.6 7.2 3.2 56 219 384 655 7933 0.48 

180-SP-

1-1.2 

0.32 672 0.0078 55 0.2 0.9 0.3 8 42 126 345 12598 0.37 

180-SP-

1-2.1 

0.11 251 0.0059 25 0.1 0.2 0.1 2 12 48 167 14144 0.36 

180-SP-

1-6.1 

0.95 3850 0.1393 140 7.0 14.1 5.3 105 394 651 1070 9716 0.42 

180-SP-

1-4.1 

0.17 1209 0.0233 33 2.6 5.6 2.5 37 127 202 338 7914 0.53 

180-SP-

1-5.1 

0.33 1845 0.0239 107 1.4 3.4 1.3 33 159 331 652 10813 0.38 

180-SP-

1-8.1 

0.20 1649 0.0158 66 1.5 3.5 1.6 30 143 298 571 8592 0.49 

180-SP-

1-4.2 

0.49 835 0.0068 74 0.3 0.7 0.3 8 49 153 476 13894 0.36 

180-SP-

1-7.2 

0.57 1331 0.0176 52 1.3 3.4 1.2 28 128 249 458 10694 0.39 

180-SP-

1-7.1 

0.18 1306 0.0131 113 0.5 1.4 0.5 13 78 236 669 12311 0.37 

180-SP-

1-3.1 

1.82 1402 0.0521 50 3.3 6.4 2.8 44 149 234 389 8369 0.51 

UV-R2-

8.1 

0.20 1175 0.0096 30 0.9 3.0 1.3 28 111 215 396 10714 0.43 

UV-R2-

2.1 

0.13 1124 0.0131 38 0.8 2.1 0.9 23 97 195 382 9459 0.39 

UV-R2-

4.1 

 

0.19 2531 0.0277 83 3.3 7.4 2.3 64 253 448 762 10898 0.32 
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Spot 

Name 

Fe 

(ppm) 

Y 

(ppm) 

La 

(ppm) 

Ce 

(ppm) 

Nd 

(ppm) 

Sm 

(ppm) 

Eu 

(ppm) 

Gd 

(ppm) 

Dy 

(ppm) 

Er 

(ppm) 

Yb 

(ppm) 

Hf 

(ppm) 

   Eu 

 (star) 

UV-R2-

5.1 

0.16 1192 0.0113 59 0.6 2.3 0.7 22 107 220 423 11597 0.33 

UV-R2-

3.1 

0.26 621 0.0074 34 0.2 0.8 0.3 8 49 119 275 12820 0.32 

UV-R2-

6.2 

25.89 1713 4.1059 224 8.0 6.8 1.3 42 166 297 521 10891 0.24 

UV-R2-

1.1 

0.90 1093 0.2476 52 1.9 3.1 1.1 25 99 191 357 9326 0.39 

UV-R2-

6.1 

0.14 1072 0.0110 50 0.3 1.3 0.4 14 88 202 435 12379 0.26 

UV-R2-

7.1 

4.27 1989 0.0378 27 4.1 8.3 3.4 54 201 350 622 9362 0.48 

78-1-1.1 1.57 1906 0.0722 46 4.1 9.3 4.4 61 203 332 576 7609 0.56 

78-1-3.1 0.87 1057 0.0119 24 0.9 2.6 1.5 22 95 192 380 7987 0.60 

78-1-12.1 0.83 1826 0.0093 49 1.5 4.4 2.4 37 166 333 629 9152 0.56 

78-1-6.1 0.43 1304 0.0120 30 2.1 5.6 3.0 41 138 227 401 9273 0.60 

78-1-2.1 1.04 1242 0.0101 27 0.8 2.8 1.4 26 108 224 456 9272 0.50 

78-1-4.1 49.14 2066 0.0835 48 4.4 9.0 5.0 63 221 384 697 8074 0.63 

78-1-10.2 1.58 1732 0.0428 41 3.4 6.8 3.5 47 178 315 563 9278 0.60 

78-1-10.1 0.50 1931 0.0247 45 3.8 7.4 4.0 57 198 335 609 9672 0.59 

78-1-8.1 0.72 3103 0.0648 61 6.7 13.0 7.3 90 316 521 914 8171 0.65 

78-1-5.1 4.42 1284 0.0135 7 0.9 2.5 1.5 24 118 218 388 9218 0.61 

78-1-13.1 4.66 2449 0.0219 79 2.2 5.7 3.7 57 236 423 780 8657 0.62 

78-1-14.1 0.63 1772 0.0221 35 3.8 7.1 3.7 50 172 300 543 9074 0.60 

78-1-7.1 0.92 1160 0.0146 25 1.0 2.7 1.6 25 106 212 426 8825 0.60 
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Spot 

Name 

Fe 

(ppm) 

Y 

(ppm) 

La 

(ppm) 

Ce 

(ppm) 

Nd 

(ppm) 

Sm 

(ppm) 

Eu 

(ppm) 

Gd 

(ppm) 

Dy 

(ppm) 

Er 

(ppm) 

Yb 

(ppm) 

Hf 

(ppm) 

   Eu 

 (star) 

78-1-9.1 0.78 1419 0.0101 30 1.1 3.6 1.7 29 128 248 513 10097 0.52 

78-1-11.1 0.31 3157 0.1046 61 7.2 14.2 7.9 101 330 537 911 8715 0.63 

78-1-15.1 0.70 1401 0.0253 28 2.3 5.2 2.6 36 129 245 444 9090 0.57 

78-1-3.2 4.85 876 0.0740 23 0.8 2.1 1.2 17 80 159 323 8851 0.61 

CC-02-

1.1 

124.00 3297 0.0170 119 3.8 9.6 1.8 75 295 568 987 9793 0.20 

CC-02-

2.1 

29.30 2055 0.0396 86 5.3 9.1 2.8 62 197 361 615 8528 0.36 

CC-02-

5.1 

62.13 1774 1.0199 85 3.4 6.1 2.3 44 171 303 558 12152 0.43 

CC-02-

7.1 

0.76 1772 0.0110 68 0.7 2.4 0.6 25 138 320 660 11875 0.22 

CC-02-

8.1 

5.38 3969 0.0272 161 4.0 9.7 1.8 77 335 687 1285 12638 0.20 

CC-02-

6.1 

21.60 3353 0.1120 140 7.9 15.0 4.0 100 345 570 942 10186 0.32 

CC-02-

4.1 

0.69 1448 0.0089 69 0.8 2.7 0.5 26 131 265 494 11688 0.20 

CC-02-

3.1 

2.62 2683 0.0150 102 2.3 5.9 1.5 53 228 457 809 9898 0.27 

MO-09-

7.1 

0.14 1742 0.0199 40 1.8 4.1 1.7 37 156 322 658 9759 0.42 

MO-09-

4.1 

1.46 1127 0.1894 31 0.8 2.2 1.1 21 99 213 429 9184 0.50 

MO-09-

6.1 

0.12 1843 0.0269 30 3.5 5.8 3.1 48 173 327 601 9116 0.56 

MO-09-

5.1 

0.33 656 0.0180 50 0.6 1.5 0.5 12 56 120 256 10358 0.38 
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Spot 

Name 

Fe 

(ppm) 

Y 

(ppm) 

La 

(ppm) 

Ce 

(ppm) 

Nd 

(ppm) 

Sm 

(ppm) 

Eu 

(ppm) 

Gd 

(ppm) 

Dy 

(ppm) 

Er 

(ppm) 

Yb 

(ppm) 

Hf 

(ppm) 

   Eu 

 (star) 

MO-09-

1.1 

0.18 594 0.0143 19 0.4 1.3 0.6 12 52 109 232 9067 0.44 

MO-09-

3.1 

0.12 475 0.0036 16 0.2 0.7 0.3 7 39 89 213 10504 0.41 

MO-09-

2.1 

14.91 968 0.0371 16 0.7 2.3 0.1 21 93 170 304 10467 0.04 
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Table 3. U-Pb in zircon age date results for study units compared to 40Ar/39Ar eruption 

ages, with possible zircon magmatic residence times. 

 

 

 

 

 

 

 

 

 

 

 

 

Tuff U-Pb zircon 

 Age (Ma) 

n MSW

D 

Eruption 

age1 

(Ma) (1σ ± 

5%) 

Estimated 

magma 

residence 

time (Ma) 

      

Cooney Formation    ~ 34  

Whitewater Creek 

Cooney Canyon 

36.2 ± 0.4 

 

34.8 ± 0.8 

7 

 

6 

1.25 

 

0.24 

 2.2 

 

0.8 

Bell Top tuff 4 34.5 ± 0.5 9 0.84 34.96 0.04 

Davis Canyon–age tuff  28.7 ± 0.5 12 1.00 29.01 0.19 

Shelley Peak tuff 29.6 ± 0.5 10 1.09 28.1 1.5 

1Eruption ages are from 40Ar/39Ar in sanidine from McIntosh et al. (1992) except for 

the Cooney Fm. estimation which is an average from  K-Ar in biotite 
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Figure 1. Generalized map showing the distribution of calderas within the Rio Grande rift 

and New Mexico. Modified from Michelfelder and McMillan (2012) after Chapin et al. 

(2004). Black rectangle shows the study area. Color designations of calderas correspond 

to magmatic pulse designations of McIntosh et al., 1992. 
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Figure 2. Regional map of the western MDVF showing the extent of the Cooney and Bell 

Top tuff with source calderas. Outlines from Ratté et al. (1984). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49 



48 

 

Figure 3. Cathodoluminescence images of representative zircon crystals with analysis 

spots and corresponding ages. A. Xenocrystic zircon from the Whitewater Creek tuff. B. 

Whitewater creek tuff. C. Shelley Peak tuff. D. Bell Top tuff. E. Davis Canyon “age” 

tuff. F. Shelley Peak tuff. 
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Figure 4. Trace element concentrations and ratios of the MDVF zircon samples within a 

global context (modified from Carley et al., 2014).  
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Figure 5. The time interval in which Y/Dy differs provides an estimation of the duration 

of melt extraction and accumulation. A) Cumulative results from MDVF analyses. B) 

Comparison between rim and core analyses from a single unit (180-SP-1). 
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Figure 6. Hf (ppm) vs. Ti (˚C temperature) diagram for MDVF samples. Error is within 

symbol size 
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Figure 7. A. Yb/Dy vs. 206Pb/238U age (Ma) for MDVF zircon samples. Increasing Yb/Dy 

indicates increasing melt crystallization. B. Th/U vs. 206Pb/238U age (Ma) for MDVF 

zircon samples. Decreasing U/Th indicates decreasing melt temperature 
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 Figure 8. Hf concentration vs Sm/Yb ratio diagram for MDVF zircon analyses. Trend 

lines illustrate mineral fractionation trends of apatite/titanite and amphibole/pyroxene 

fractionation during crystallization. 
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Figure 9. Eu/Eu* vs. Hf (ppm) as a proxy for feldspar fractionation, symbology is same 

as previous figures. 
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Figure 10. Chondrite-normalized REE from zircon plots for all study units. Chondrite 

values are from Wasson (1985). 
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Figure 11. A) Rim vs. core REE analyses results for 180-SP-1. B) Rim vs. core analyses 

results for UV-R2. The dark green trend lines are core analyses, and the light green lines 

are rim analyses. The symbols correspond between core and rim on a single grain.    
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Figure 12. Probability density function curves for zircon age dates. The dashed bold line 

is the 40Ar/39Ar eruption age from McIntosh et al. (1992). 
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Figure 13.  U-Pb ages with 40Ar/39Ar eruption date crossbars (McIntosh et al., 1992). The 

length of each individual bar is ±1σ internal uncertainty. Eastern MDVF data from 

Michelfelder and McMillan, 2012. Organ Caldera data from Zimmerer and McIntosh, 

2013. 
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