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CHAPTER 1

INTRODUCTION

After a brief review of the more important basic concepts of complex

analysis, we present Residues and Cauchy’s Residue Theorem. Many consider this

theorem to be the most important theorem of complex analysis and it is the

cornerstone of this thesis. Cauchy’s Residue Theorem is not only important in

complex analysis but has an important role in real analysis, one that may possibly

outweigh its importance in complex analysis. In order to make full use of the

Residue Theorem, we derive various methods of calculating residues. Some of our

techniques rely on Bernoulli numbers, so we define and explore their properties,

before using them to obtain some important infinite sums. We conclude this thesis

with two chapters evaluating both finite and infinite sums using these methods.
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CHAPTER 2

PRELIMINARIES

2.1 Differentiation

In complex variables the derivative is defined the same way as in the real

number system. It is, therefore, not surprising that the usual differentiation rules,

such as the sum and difference rules, hold when taking derivatives of complex

functions.

Definition 2.1. Given G ⊂ C, let f : G → C be a complex valued function and let

z0 ∈ G. The derivative of f at z0 is

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
,

when this limit exits. If so, we say f is differentiable at z0.

Definition 2.2. Let f : G −→ C be a complex valued function. If f is

differentiable at a for every a ∈ G and these derivatives are continuous, the function

f is said to be analytic on G. If f is analytic on the whole complex plane C, f is

said to be entire.

As an example, the complex polynomials are entire functions.

Definition 2.3. A disc or a ball centered at z0 with radius r is

B(z0, r) = {z ∈ C : |z − z0| < r}.

Definition 2.4. A set G ⊂ C is open, if for every z ∈ G there exist r > 0 such

that B(z, r) ⊂ G.

2



Using the definition above, it is easy to prove a subset of C is open if and only if it

includes no points of its boundary. It follows that the region inside a closed contour

is open.

The following theorem is called Taylor’s theorem in honor of the English

mathematician Brook Taylor, who discovered its first form. This result is

fundamental in the proofs of Cauchy’s theorems and many other important

theorems in complex variables, as well as in many other area of mathematics.

Theorem 2.5. If f is analytic on a disc B(z0, r), then

f(z) =

∞
∑

n=0

an(z − z0)
n,

for all z ∈ B, where each

an =
f (n)(z)

n!
is unique.

The proof of the part of Taylor’s theorem giving the existence of the series is much

like, but simpler, than the proof of Laurent’s Theorem, which will be included in a

later chapter.

Theorem 2.6. Suppose f(z) =
∑∞

n=0 an(z − z0)
n has a radius of convergence R.

Then f can be differentiated term by term inside B(z0, R). That is

f ′(z) =
∞
∑

n=1

nan(z − z0)
n−1.

Moreover f ′ has a radius of convergence R, as well.

Proof. Without loss of generality we assume z0 = 0. Since

lim
n→∞

∣

∣

∣

∣

(n+ 1)an+1

nan

∣

∣

∣

∣

= lim
n→∞

n+ 1

n
lim
n→∞

an+1

an
= lim

n→∞

an+1

an
= R,

we see, by the ratio test, that the second series has the same radius of convergence

as the first.

3



Now let z ∈ B(0, R) and let ε > 0. There exits r > 0 such that

z ∈ B(0, r) ⊂ B(0, R). Let

Sn(ξ) =

∑n
k=0 akz

k −
∑n

k=0 anξ
k

z − ξ
=

1

z − ξ

n
∑

k=0

ak(z
k − ξk),

and,
Rn(ξ) =

1

z − ξ

∞
∑

k=n+1

ak(z
k − ξk).

Sn(ξ) denotes the nth partial sum of f(z)−f(ξ)
z−ξ

and Rn(ξ) the corresponding

remainder. Since r < R, the series
∑∞

k=0 k|ak|r
k−1 converges and so there exist

N ∈ N such that

∞
∑

k=N

k|ak|r
k−1 <

ε

3
.

It follows that for every ω ∈ B(z, r),

|Rn(ω)| =

∣

∣

∣

∣

∞
∑

k=N

ak(z
k − ωk)

z − ω

∣

∣

∣

∣

6

∞
∑

k=N

|ak||z
k−1 + zk−2ω . . . ωk−1|

6

∞
∑

k=N

k|ak|r
k−1

<
ε

3
.

Let S ′
N denote the N th partial sum of

∑∞
k=1 kakz

k−1 and R′ the corresponding

remainder. Thus,

|R′| 6

∞
∑

k=N

k|ak|r
k−1 <

ε

3
.
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Now, since the partial sums of f are polynomials,

lim
ω→z

SN = S ′
N .

Therefore, we have δ > 0 with δ < r such that when |ω − z| < δ, |SN − S ′
N | <

ε
3
. It

now follows that when |ω − z| < δ,

∣

∣

∣

∣

f(z)− f(ω)

z − ω
−

∞
∑

n=1

nanz
n−1

∣

∣

∣

∣

= |SN(ω) +RN (ω)− S ′
N − R′

N |

6 |SN − S ′
N |+ |Rn(ω)|+ |R′

n|

< ε,

which finishes the proof.

The following corollary is an example of how important Taylor’s theorem is in

complex variables.

Corollary 2.7. If f is analytic on an open set G, then f is infinitely

differentiable on G.

Proof. Let z0 ∈ G. Since G is open, it contains a ball centered at z0. By Taylor’s

theorem, f has a valid power series on that ball. By the previous theorem f ′ has a

power series form which is differentiable on the ball as well. Continuing inductively

f must be infinitely differentiable.
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2.2 Integrals and Contours

Integration of functions along contours in the Complex plane will play an

important role in our methods. Some of the concepts and theorems given in this

section will become powerful tools for proving important theorems in later sections.

Definition 2.8. Let C be a curve in C. We say γ : [a, b] → C parameterizes C, if γ

is a continuous surjection. Furthermore, C is smooth, if it has a differentiable

parameterization with a non-zero continuous derivative. The orientation of C is

given by its parameterization; γ(a) is “before” γ(b).

When γ : [a, b] → C parameterizes C, it is easy to see γ(a+ b− t) is also a

parameterization of C but with the opposite orientation. We generally refer to −C

when switching to the parameterization giving the opposite orientation.

Definition 2.9. A curve C is a contour, if it is the union of finitely many smooth

curves C1, C2, . . . Cn, and the end point of Ck coincides with the starting point of

Ck+1, for k = 1, 2, . . . n− 1. We write C = C1 + C2 + · · ·+ Cn.

Definition 2.10. A contour C is closed, if its starting point and endpoint are the

same.

Definition 2.11. A closed contour is positively oriented, when its

parameterization traverses it in the counterclockwise direction.

Definition 2.12. A contour C is simple and sometimes called a Jorden arc, if it

never cross itself, except possible at the endpoints.

6



Definition 2.13. When g : [a, b] → C,
∫ b

a

g(t)dt =

∫ b

a

Re[g(t)]dt+ i

∫ b

a

Im[g(t)]dt,

where the integrals on the right are defined as in elementary calculus.

Definition 2.14. When γ : [a, b] → C parameterizes a smooth curve C and f is

defined on C, we define the integral of f on C, by
∫

C

f(z)dz =

∫ b

a

f(γ(t))γ ′(t)dt,

and when C = C1 + C2 + · · ·+ Cn is a contour, the contour integral of f on C is
∫

C

f(z)dz =

∫

C1

f(z)dz +

∫

C2

f(z)dz + · · ·+

∫

Cn

f(z)dz.

Since the values of these integrals are independent of the particular parameterization

used, Definition 2.13 above is valid. To get an idea of how a proof would run, let

g be real and consider γ : [a, b] → Domain(g) and σ[c, d] → Domain(g), with

γ(a) = σ(c) and γ(b) = σ(d). By the substitution principle we have
∫ b

a

g(γ(t))γ ′(t)dt =

∫ γ(b)

γ(a)

g(u)du =

∫ σ(d)

σ(c)

g(u)du =

∫ b

a

g(σ(t))σ ′(t)dt.

A complete proof would require combining real and imaginary parts and so on.

More of this type of reasoning can show that the integration rules from elementary

calculus, such as the sum, difference and constant multiple rules all hold.

Theorem 2.15. If γ : [a, b] → C is smooth and length of C, L(C), is finite, then
∫ b

a

|γ ′(t)| dt = L(C).

Proof. Since the length of C ∈ C is the same as the length of 〈Reγ, Imγ〉 ∈ R2, this

follows immediately from the arc length formula in elementary calculus.Thus

L(C) =

∫ b

a

√

(Reγ ′(t))2 + (Imγ ′(t))2dt =

∫ b

a

|γ ′(t)|dt.

The proof is complete.
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The following corollary will be indispensable as we proceed. It’s proof is immediate.

Corollary 2.16. [4] If the integral of f on C exists, the length of C is finite and

f is bounded on C, then
∣

∣

∣

∣

∫

γ

f(z)dz

∣

∣

∣

∣

6 L(C)Mf ,

where L(C) is the arclength of C and Mf is the maximum value of |f | on C.

The field of complex variables has an analog of the fundamental theorem of calculus

from real analysis.

Definition 2.17. The function F is a primitive of the function f on the set G, if

for all z ∈ G,
F ′(z) = f(z).

Theorem 2.18. [4] Let C be a contour in an open set G, with endpoints α and β. If

F is a primitive of f on G, then
∫

C

f(z)dz = F (β)− F (α).

Proof. Let γ : [a, b] → C parameterize a smooth curve C from α to β. Then

∫

C

f(z)dz =

∫

C

F ′(z)dz =

∫ b

a

F ′(γ(t))γ ′(t)dt

=

∫ b

a

(F ◦ γ)′(t)dt = F ◦ γ(b)− F ◦ γ(a)

= F (β)− F (α).

Now consider a contour C = C1 +C2 + · · ·+Cn, with connections at z1, z2, . . . , zn−1,

respectively. Then from the smooth case, we have
∫

C

f(z)dz = F (z1)− F (α) + F (z2)− F (z1) · · ·+ F (β)− F (zn−1) = F (β)− F (α).

8



The proof is complete.

Since F (β) = F (α), on a closed contour, we then have the following immediate

corollary.

Corollary 2.19. [4] Let C be a closed contour in an open set G. If F is a

primitive of f on G, then

∫

C

f(z)dz = 0.

The following corollary is often called the first version of Cauchy’s theorem.

Corollary 2.20. If C is a closed contour in B(z0, r) and f is analytic on B(z0, r),

then

∫

C

f(z)dz = 0.

Proof. Since f is analytic on B(z0, r), it has a Taylor series valid on B(z0, r).

Taking the antiderivative term by term yields a primitive for f . Proof is immediate

by the previous corollary.

2.3 Homotopy

Definition 2.21. Two curves, C and C ′, from A to B are homotopic in G ⊂ C, if

there exists continuous Ψ : [0, 1]2 → G, such that

Ψ(s, 0) = A for every s ∈ [0, 1],

Ψ(s, 1) = B for every s ∈ [0, 1],

Ψ(0, t) parameterizes C and

9



Ψ(1, t) parameterizes C ′.

We will write C ∼ C ′, when C and C ′ are homotopic and ψ is sufficiently

differentiable to produce smooth curves.

Note: for each fixed s ∈ [0, 1],Ψ(s, t) : [0, 1] → G parameterizes some curve in G

from A to B. The intuition is that Ψ “continuously morphs” C to C ′.

Theorem 2.22. [1] If f in analytic on G and C ∼ C ′ in G, then

∫

C

f(z)dz =

∫

C′

f(z)dz.

Proof. Let C and C ′ be homotopic curves from A to B in an open set G, with Ψ as

in definition (2.21). Since Ψ([0, 1]2) is compact and C−G, is closed the distance

between them is r for some r > 0. This means f is analytic on B(z, r) for every

z ∈ G. Moreover, since Ψ is continuous and [0, 1]2 is compact, Ψ is uniformly

continuous on [0, 1]2. It follows that there exists δ > 0 such that when

√

(s2 − s1)2 + (t2 − t1)2 < δ, then,|Ψ(s2, t2)−Ψ(s1, t1)| < r.

Choose n ∈ N, so that
√
2
n

< δ. Then partition [0, 1]2 into n2 congruent squares.

Note that if (s1, t1) and (s2, t2) are in the same square,
√

(s2 − s1)2 + (t2 − t1)2 < δ.

If k is fixed in {0, 1, 2 . . . , n− 1}, then Ψ( k
n
, t) and Ψ(k+1

n
, t) parameterize curves, Ck

and Ck+1 from A to B in G.

For each j ∈ {0, 1, 2 . . . , n− 1}, define Sj ∈ [0, 1]2 to be the boundary of the 1
n
× 1

n

square with bottem left corner ( k
n
, j
n
). Let ξj denote the closed contour, Ψ(Sj),

10



traversed counterclockwise. Since diamSj =
√
2
n

< δ, each ξj ⊂ B(Ψ( k
n
, j
n
), r). It

follows by theorem (2.20), that
∫

Cj
f(z) dz = 0, for each j ∈ {0, 1, 2 . . . , n− 1}.

Each consecutive pair, ξj and ξj+1, share sides traversed in opposite directions and

integrals over those sides add to zero. Thus for each k ∈ {0, 1, 2 . . . , n− 1},

∫

Ck

f(z) dz −

∫

Ck+1

f(z) dz =

∫

Ck−Ck+1

f(z) dz

=

∫

ξ1+ξ2+···+ξn−1

f(z) dz

=

∫

ξ1

f(z) dz +

∫

ξ2

f(z) dz + · · ·+

∫

ξn−1

f(z) dz

= 0.

It follows that
∫

C

f(z) dz =

∫

ξ1

f(z) dz =

∫

ξ2

f(z) dz · · · =

∫

C′

f(z) dz.

The proof is complete.

Definition 2.23. A closed curve C in G is homotopic to zero, if C is homotopic

to a constant curve. In other words take C ′ in definition (2.21) to be one point z0

and its parameterization to be of constant value z0.

Definition 2.24. A region G is simply connected, if G is open and every closed

curve in G is homotopic to zero.

Theorem 2.25. If two contours have the same beginning and end points and the

same orientation in a simply connected region G, they are homotopic in G.
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Proof. Let C1 and C2 be two contours from a to b in G. Let C = C1 − C2, which is

a closed contour in G. Let γ : [0, 1] → G, be a parameterization of C going from a

to b and back to a again. Without loss of generality we assume γ(1/2) = b. It

follows that

γ : [0, 1/2] → G parameterizes C1,

γ : [1/2, 1] → G parameterizes −C2, and thus

γ
(

2−t
2

)

: [0, 1] → G parameterizes C2.

Since G is simply connected, C ∼ 0, that is there exists z0 ∈ G and a homotopy

Ψ : [0, 1]2 → G, such that Ψ(0, t) = γ(t) for all t and Ψ(1, t) = z0 for all t.

Define

Ψ1 : [0, 1/2]× [0, 1] → G, by Ψ1(s, t) = Ψ(2s, t/2) and

Ψ2 : [1/2, 1]× [0, 1] → G, by Ψ2(s, t) = Ψ(2− 2s, 2−t
2
).

As compositions of continuous functions, both are continuous on their domains.

Now define Φ : [0, 1]2 → G, by

Φ(s, t) =







Ψ1(s, t), ifs 6 1/2

Ψ2(s, t), ifs ≥ 1/2
.

Since Ψ1 and Ψ2 are continuous, to see Φ is continuous, it only remains to see

Ψ1 = Ψ2 on the intersection of their domains. To that end note that for all t

Ψ1(1/2, t) = Ψ(1, t/2) = z0 = Ψ(1, (2− t)/2)) = Ψ2(1/2, t).

Now it remains to show Φ transforms C1 to C2. For all t ∈ [0, 1]

Φ(0, t) = Ψ1(0, t) = Ψ(0, t/2) = γ(t/2),

which parameterizes C1. Moreover for all t ∈ [0, 1]

Φ(1, t) = Ψ2(1, t) = Ψ(0, (2− t)/2) = γ((2− t)/2),

12



which parameterizes C2.

The following theorem is one of the most famous and important theorems of all

complex analysis.

Theorem 2.26 (Cauchy-Goursat Theorem). [4] Let C be a simple closed contour in

a simply connected set G. If a function f(z) is analytic at all points interior to and

on C, then

∫

C

f(z)dz = 0.

Proof. Take two distinct points a and b on C. This forms two contour curves C1

and C2 from a to b in G, with C = C1 − C2. Since G is simply connected, by

theorem (2.25), C1 and C2 are homotopoic. Thus by theorem (2.22),
∫

C1

f(z)dz =

∫

C2

f(z)dz.

Therefore,
∫

C

f(z)dz =

∫

C1

f(z)dz −

∫

C2

f(z)dz = 0.

The proof is complete.

One of the most famous theorems of complex analysis will now be established.

Theorem 2.27 (Cauchy Integral Formula). [4] Let C be a positively oriented simple

closed contour, and let f be analytic function everywhere inside and on C. If a is

any point interior to C, then

f(a) =
1

2πi

∫

C

f(ξ)

ξ − a
dξ.

13



Proof. Let G represent the interior of C and let a ∈ G be given. Since G ∪ C is

compact and f is continuous, Mf , the maximum value of |f(ξ)− f(a)| on G ∪ C

exists. G is open, so there exists R > 0 such that B(a, R) ⊂ G and δ > 0 such that

|ξ − z| > δ, whenever ξ ∈ C and z ∈ B(a, R). Let

r =
1

2
min

{

R,
εδ

2πMf

}

.

Let γ be the positively oriented simple closed contour around the boundary of

B(a, r) and note that

∫

γ

dξ

ξ − a
=

∫ 2π

0

ireit

a+ reit − a
dt = 2πi.

It follows that

∣

∣

∣

∣

2πif(a)−

∫

γ

f(ξ)

ξ − a
dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

2πif(a)−

∫

γ

f(ξ)

ξ − a
dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

f(a)

∫

γ

dξ

ξ − a
−

∫

γ

f(ξ)

ξ − a
dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

γ

f(a)− f(ξ)

ξ − a
dξ

∣

∣

∣

∣

6

∫

γ

∣

∣

∣

∣

f(a)− f(ξ)

ξ − a

∣

∣

∣

∣

dξ

6
Mf

δ
2πr

< ε.
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Therefore, by Theorem 2.22

f(a) =
1

2πi

∫

C

f(ξ)

ξ − a
dξ =

1

2πi

∫

γ

f(ξ)

ξ − a
dξ.

The proof is complete.

The following theorem is a generalization of the Cauchy Integral Formula.

Theorem 2.28 (Cauchy’s Integral Formula for derivatives). [4] Let C be a positively

oriented simple closed contour, and let f be an analytic function everywhere inside

and on C. If a is any point interior to C, then for all n = 0, 1, 2 . . . ,

f (n)(a) =
n!

2πi

∫

C

f(ξ)dξ

(ξ − a)n+1
. (2.1)

Proof. We proceed by induction. Cauchy’s integral formula, previously proven,

verifies (2.1) for n = 0. We assume

f (n−1)(a) =
(n− 1)!

2πi

∫

γ

f(ξ)dξ

(ξ − a)n
,

for some n.

Let G represent the interior of C. Let a ∈ G and n ∈ N be given. Since G ∪ C is

compact and f is continuous, Mf , the maximum value of |f(ξ)| on G ∪ C exists. G

is open, so there exists R > 0 such that B(a, R) ⊂ G and δ > 0 such that

|ξ − z| > δ, whenever ξ ∈ C and z ∈ B(a, R). Let

r =
1

2
min

{

R,
εδn+1

4nπMf

}

15



and let γ be the positively oriented simple closed contour around the boundary of

B(a, r). Define F on G by

F (z) =

∫

γ

f(ξ)dξ

(ξ − z)n
.

For z ∈ B(a, r),

∣

∣

∣

∣

F (z)− F (a)

z − a
− n

∫

γ

f(ξ)

(ξ − a)n+1
dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

γ

f(ξ)

z − a

(

1

(ξ − z)n
−

1

(ξ − za)n

)

−
nf(ξ)

(ξ − a)n+1
dξ

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

γ

f(ξ)

z − a

(

1

ξ − z
−

1

ξ − a

)

(

n−1
∑

k=0

1

(ξ − z)n−1−k(ξ − a)k

)

−
nf(ξ)

(ξ − a)n+1
dξ

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

γ

f(ξ)

[

(

1

(ξ − z)(ξ − a

)

(

n−1
∑

k=0

1

(ξ − z)n−1−k(ξ − a)k

)

−
nf(ξ)

(ξ − a)n+1

]

dξ

∣

∣

∣

∣

∣

6

∫

γ

|f(ξ)|
1

|ξ − z||ξ − a|

n−1
∑

k=0

1

|ξ − z|n−1−k|ξ − a|k
+

n|f(ξ)|

|ξ − a|n+1
dξ

<

∫

γ

Mk
1

δ2
n

δn−1
+

nMk

δn+1
dξ

6
2nMk

δn+1
2πr

< ε.

Thus,

F ′(a) = lim
z→a

F (z)− F (a)

z − a
= n

∫

γ

f(ξ)

(ξ − a)n+1
dξ.
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It follows that

f (n)(a) =
(n− 1)!F ′(a)

2πi
=

n!

2πi

∫

C

f(ξ)dξ

(ξ − a)n+1

and the proof is complete by induction.
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CHAPTER 3

RESIDUES

In the previous chapter the Cauchy-Goursat Theorem says that if the

function f is analytic at all points interior to and on a simple closed contour C, the

integral of f on C is zero. But, what if f fails to be analytic at a finite number of

isolated points interior to C? In order to answer this question, we define the concept

of residue and present Cauchy’s Residue Theorem. This theorem will contribute to

the evaluation of integrals of some non-analytic functions and depends on finding

specific numbers called residues.

In order to find the residue of a function f(z) that is not analytic at some zo,

we expand it into a series of positive and negative powers of (z − z0). The theorem

allowing us to do this is Laurent’s Theorem.

3.1 Laurent Series

Definition 3.1. An annulus is a region in the complex plane defined by

{z ∈ C : R1 < |z − z0)| < R2} or {z ∈ C : R1 < |z − z0|}.

When R1 = 0, the region is often called a punctured disc. When a property holds for

all z in a punctured disc with its center at z0, we say that property holds near z0.

Theorem 3.2. (Laurent’s Theorem) [2] If f is analytic on an annulus D and

C is any positively oriented simple closed curve in the interior of D about z0, then

f(z) =
∞
∑

n=−∞
an(z − z0)

n,
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for all z ∈ D, where each

an =
1

2πi

∫

C

f(ξ)dξ

(ξ − z0)n+1
.

Proof. Let R1 and R2 be the inner and outer radii of D. Let z ∈ C and consider the

simple closed curves C2 traversing {z : |z − z0| = r2} counterclockwise and C1

traversing {z : |z − z0| = r1} clockwise in D, where R1 < r1 < |z − z0| < r2 < R2.

Let C3 be any radial line segment not containing z and going from C1 to C2. Thus

by Cauchy’s Integral Formula,

2πif(z) =

∫

C2−C3−C1+C3

f(ξ)dξ

ξ − z

=

∫

C2

f(ξ)dξ

ξ − z
−

∫

C1

f(ξ)dξ

ξ − z

=

∫

C2

f(ξ)dξ

(ξ − z0)− (z − z0)
−

∫

C1

f(ξ)dξ

(ξ − z0)− (z − z0)

=

∫

C2

f(ξ)dξ

(ξ − z0)(1−
z−z0
ξ−z0

)
−

∫

C1

f(ξ)dξ

(z − z0)(1−
ξ−z0
z−z0

)

=

∫

C2

f(ξ)

ξ − z0

∞
∑

n=0

(

z − z0
ξ − z0

)n

dξ −

∫

C1

f(ξ)

z − z0

∞
∑

n=0

(

ξ − z0
z − z0

)n

dξ

=

∫

C2

f(ξ)

∞
∑

n=0

(z − z0)
n

(ξ − z0)n+1
dξ −

∫

C1

f(ξ)

∞
∑

n=1

(ξ − z0)
n−1

(z − z0)n
dξ.

Since for all ξ ∈ C2, |z − z0| < |ξ − z0|, and for all ξ ∈ C1, |ξ − z0| < |z − z0|, the

geometric series above are absolutely convergent. We can therefore interchange the
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order of summation and integration. Thus

2πif(z) =

∞
∑

n=0

(

(z − z0)
n

∫

C2

f(ξ)dξ

(ξ − z0)n+1

)

−

∞
∑

n=1

(

1

(z − z0)n

∫

C1

f(ξ)dξ

(ξ − z0)−n+1

)

.

Since −C1 and C2 are both homotopic to C, we can replace each of them by C and

we have

f(z) =
∞
∑

n=−∞
an(z − z0)

n,

where each
an =

1

2πi

∫

C

f(ξ)dξ

(ξ − z0)n+1
.

The proof is complete.

Definition 3.3. If for all z in an annulus D,

f(z) =
∞
∑

n=−∞
an(z − z0)

n,

we call this series, the Laurent series of f on D.

In many instances we will obtain a Laurent series for a function and need to

know that it is the same series given in Laurent’s Theorem. We will see definition

(3.3) designates just the one series.

Lemma 3.4. If there exists r > 0, such that
∑∞

n=−∞ ξn(z − a)n = 0, for every

z ∈ B(a, r), then ξn = 0 for all n ∈ Z.

Proof. Let C be any simple positively oriented closed contour around a and inside

B(a, R). First note that by each of Cauchy’s Integral Formulas (2.28) applied to any

constant function, f(z) = ξ, we have that
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∫

C

ξ(z − a)n dz =







2πi, if n = 1

0 if n ≥ 2
.

Moreover by the Cauchy-Goursat Theorem 2.26,

if n > 0, then

∫

C

ξ(z − a)n dz = 0.

Thus for each n ∈ N,

0 =

∫

C

(z − a)k+1

∞
∑

n=−∞
ξn(z − a)n dz

=

∫

C

∞
∑

n=−∞
ξn(z − a)n+(k+1) dz

=

∫

C

∞
∑

n=−(k+1)

ξn(z − a)n+(k+1) dz +

∫

C

∞
∑

n=(k+2)

ξ−n

(z − a)n−(k+1)
dz

=

∫

C

∞
∑

n=0

ξn−(k+1)(z − a)n dz +

∫

C

∞
∑

n=1

ξ−n+(k+1)

(z − a)n
dz

=

∞
∑

n=0

∫

C

ξn−(k+1)(z − a)n dz +

∫

C

ξk
z − a

dz +

∞
∑

n=2

∫

C

ξ−n+(k+1)

(z − a)n
dz

= 0 + 2πi ξk + 0

= 2πi ξk

= ξk.

The proof is complete.
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Theorem 3.5. (The Uniqueness Theorem)[2] If there exists r > 0, such that

∞
∑

n=−∞
αn(z − a)n =

∞
∑

n=−∞
βn(z − a)n,

for every z ∈ B(a, r), then αn = βn for all n ∈ Z.

Proof. For all z ∈ B(a, r), we have
∞
∑

n=−∞
(αn − βn)(z − a)n =

∞
∑

n=−∞
αn(z − a)n −

∞
∑

n=−∞
βn(z − a)n = 0.

Thus by Lemma 3.4, we have αn = βn for all n ∈ Z.

3.2 Singular Points

Definition 3.6. A function f has an isolated singularity at z0, if there exists

R > 0 such that f is analytic on the punctured disc {z : 0 < |z − z0| < R} but not at

z0.

Definition 3.7. An isolated singularity, z0, of f is removable, if there exists a

function g and R > 0 such that g is analytic on B(z0, R) and f(z) = g(z) on the

punctured disc {z : 0 < |z − z0| < R} .

Definition 3.8. Let z0 be an isolated singular point of f(z). Then z0 is a pole of

order m of f , if there exists a natural number m and r > 0 such that

f(z) =
φ(z)

(z − z0)m
,
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for a function φ, that is analytic on {z : |z − z0| < r}, with φ(z0) 6= 0. z0 is a

simple pole when m = 1 .

Definition 3.9. An isolated singularity, z0, of f is essential, if it is neither

removable nor a pole.

3.3 Definition of Residue

Let z0 be an isolated singularity of a function f , which is analytic on

D = {z ∈ C : 0 < |z − z0| < R}. Then f has a Laurent series representation

f(z) =

∞
∑

n=−∞
An(z − z0)

n,

where each

An =
1

2πi

∫

C

f(ξ)dξ

(ξ − z0)(n+1)
,

for any positively oriented simple closed curve C in the interior of D.

Definition 3.10. When f has a Laurent series representation as in (3.3), and z0 is

an isolated singular point of f , the residue of f at z0 is

Res(f, z0) = A−1 =
1

2πi

∫

C

f(z)dz.
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3.4 Residue at Infinity

Definition 3.11. If f is analytic on {z : |z| > R}, for some R > 0, then we say f

has an isolated singularity at ∞.

Definition 3.12. Let f be analytic on {z : |z| > R} and let C be the positively

oriented circle {z : |z| = R}. When all the singularities of f, except ∞, are inside

C, we define

Res(f,∞) =
1

2πi

∫

−C

f(z)dz.

Theorem 3.13. If f is analytic on {z : |z| > R}, for some R > 0, with all the

singularities of f, except ∞, inside {z : |z| < R} then

Res(f,∞) = −Res

[

f(1/z)

z2
, 0

]

.

Proof. let C be the positively oriented circle {z : |z| = R}. By Laurent’s Theorem f

has a valid Laurent series representation outside C we denote by

f(z) =
∞
∑

n=−∞
anz

n.

For all z such that 0 6= |1/z| < 1/R, we have that |z| > R, hence f(1/z)/z2 is

analytic at z. Moreover,

f(1/z)

z2
=

∞
∑

n=−∞
anz

−n−2 =
∞
∑

n=−∞
a−nz

n−2 =
∞
∑

n=−∞
a−n−2z

n,

which must be the Laurent series of f(1/z)/z2, valid on {z : 0 < |z| < R}, by the
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uniqueness theorem. From this, we see

Res

[

f(1/z)

z2
, 0

]

= a−(−1)−2 = a−1 =
1

2πi

∫

C

f(z)dz = −Res(f,∞),

completing the proof.

3.5 The Cauchy Residue Theorem

The Residue Theorem was discovered by Augustin-Louis Cauchy in 1814

and immediately became a powerful tool in complex analysis for computing line

integrals. The Residue Theorem soon became very importance in real analysis as a

tool for evaluating some difficult real integrals, and then, as we show, in finding

infinite sums, as well as other applications.

Theorem 3.14. [2] Suppose that f is an analytic function on and inside a simple

closed positively oriented curve C, except at finitely many isolated singularities

z1, ..., zn inside C. Then
∫

C

f(z)dz = 2πi
n
∑

i=1

Res(f, zi).

Proof. Let C be a simple closed positively oriented curve, and suppose f is an

analytic function inside and on C. Consider circles, C1, C2, . . . Cn, centered at

z1, ..., zn, where each circle, Ci, has radius ri, sufficiently small, so that C1, ..., Cn are

disjoint and in the interior of C. We construct a simple closed positively oriented

curve C ′ that surrounds all the points zi along each circle Ci and joins these small

circles with segments.
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Since the curve C ′ follows each segment two times with opposite orientation

it is enough to sum the integrals of f around the small circles. By the definition of

residue we have

∫

C

f(z)dz =

∫

C′

f(z)dz =

n
∑

i=1

∫

Ci

f(z)dz = 2πi

n
∑

i=1

Res(f, zi).

The proof is complete.

3.6 Zeros and Poles

Since the zeros of the denominator of a quotient function cause the function

not to be analytic, there is an obvious relationship between zeros and poles. In this

section we explore this relationship.

Definition 3.15. When f is analytic at z0, f has a zero of order n at z0, if

f(z) = (z − z0)
nq(z),

for some function g such that q(z0) 6= 0 and q is analytic on B(z0, ε) for some ε > 0.

Theorem 3.16. [2] If z0 is a pole of f , then lim
z→z0

f(z) = ∞.

Proof. Let n be the order of z0. Then there exists a function φ(z), such that

φ(z0) 6= 0, φ is analytic near z0 and

f(z) =
φ(z)

(z − z0)n
.

Therefore, lim
z→z0

f(z) = ∞.
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Theorem 3.17. [2] Assume that g(z) and h(z) are analytic functions at z = z0,

h(z) has a zero of order n at z = z0 and g(z0) 6= 0. Then

f(z) =
g(z)

h(z)

has a pole of order n at z = z0.

Proof. Since h(z) has a zero of order n at z0, h(z) = (z − z0)
nq(z), where q(z0) 6= 0,

and q is analytic near z0. Thus

f(z) =
g(z)

(z − z0)nq(z)
=

g(z)/q(z)

(z − z0)n
.

We have that g(z)/q(z) is analytic near z0 and not zero at z0. We conclude that

f(z) has a pole of order n.

3.7 Residue at a Pole

In the previous section we saw that the residue of a function f(z) with an

isolated singularity at a point z0 could be found within the Laurent expansion of f

as the coefficient of the (z − z0)
−1 term. That can often be difficult. This section

contains theorems for finding residues with alternative techniques that are often

more convenient to use.

3.7.1 Residue at a Pole of Order m

Theorem 3.18. [2] Let f be analytic on the punctured disc {z : 0 < |z − z0| < r}

for some r > 0. Then if f has a pole of order m at z0, then
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Res(f, z0) =
φ(m−1)(z0)

(m− 1)!
, (3.1)

where φ is as given in definition (3.8).

Proof. Since f has a pole of order m, there exists a natural number m and r > 0

such that

f(z) =
φ(z)

(z − z0)m
,

for a function φ, that is analytic on B(z0, r),with φ(z0) 6= 0. It follows that

f(z) =
1

(z − z0)m

∞
∑

n=0

φ(n)(z0)

n!
(z − z0)

n

=

∞
∑

n=0

φ(n)(z0)

n!
(z − z0)

n−m

=

∞
∑

n=−m

φ(n+m)(z0)

(n+m)!
(z − z0)

n.

Since Laurent series are unique, this is the Laurent series of f . Therefore,

Res(f, z0) = A−1 =
φ(m−1)(z0)

(m− 1)!
.

The proof is complete.

Corollary 3.19. [2] If f(z) has a pole of order m at z0, then

Res(f, z0) = lim
z→z0

dm−1

dzm−1

[

(z − z0)
mf(z)

(m− 1)!

]

.
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Proof. Since φ is analytic on B(z0, r), φ
(m−1) is continuous. Moreover,

φ(z) = (z − z0)
mf(z) on 0 < |z − z0| < r, hence

Res(f, z0) =
φ(m−1)(z0)

(m− 1)!

= lim
z→z0

φ(m−1)(z0)

(m− 1)!

= lim
z→z0

dm−1

dzm−1

[

(z − z0)
mf(z)

(m− 1)!

]

.

The proof is complete.

3.7.2 Residues at Simple Poles

Corollary 3.20. [2] If z0 is a simple pole of f(z), then

Res(f, z0) = lim
z→z0

(z − z0)f(z)

Proof. Since a simple pole is of order m = 1, this is immediate from Corollary

3.19.

Theorem 3.21. [2] Let p(z) and q(z) both be analytic at z0 and suppose q(z0) = 0,

p(z0) 6= 0, and q′(z0) 6= 0. If f(z) = p(z)
q(z)

, then z0 is a simple pole of f(z) and

Res(f, z0) =
p(z0)

q′(z0)
.

Proof. First, we need to show that z0 is a zero of order 1. Suppose that q has a zero

29



of order n > 2 at z0, then q(z) = (z − z0)
nφ(z) for an analytic function φ. So,

q′(z) = n(z − z0)
n−1φ(z) + (z − z0)

nφ′(z)

= (z − z0)[n(z − z0)
n−2φ(z) + (z − z0)

n−1φ′(z)].

Since n > 2, then n− 2 > 0. So, q′ has a zero, and q′(z0) 6= 0. Order of q’s zero is 1.

Now, by Theorem 3.17, z0 is a simple pole. Thus by Corollary 3.21 and

because q(z0) = 0, we have

Res(f, z0) = lim
z→z0

(z − z0)
p(z)

q(z)

= lim
z→z0

(z − z0)p(z)

q(z)− q(z0)

= lim
z→z0

p(z) lim
z→z0

z − z0
q(z)− q(z0)

=
p(z0)

q′(z0)
.

The proof is complete.

Theorem 3.22. [2] If g(z) is analytic at z0 and f(z) has a simple pole at z0, then

Res(fg, z0) = g(z0)Res(f, z0).

Proof. Since g is analytic at z0, it’s easy to see fg also has a simple pole at z0.

Therefore, by Corollary 3.20, we have

30



Res(fg, z0) = lim
z→z0

[(z − z0)f(z)g(z)]

= lim
z→z0

[(z − z0)f(z)] lim
z→z0

g(z)

= g(z0)Res(f, z0).

The proof is complete.

Lemma 3.23. Suppose that f is analytic and not identically zero in a region G.

i. If z0 is a zero of f of order k ≥ 1, then f ′/f has a simple pole at z0 and

Res(f ′/f, z0) = k.

ii. If z0 is a pole of f of order k ≥ 1, then f ′/f has a simple pole at z0 and

Res(f ′/f, z0) = −k.

Proof. (i) Since f has a zero of order k, there exist a function φ and R > 0 such

that f(z) = φ(z)(z − z0)
k, φ(z0) 6= 0 and φ is analytic in B(z0, R). For all z in

B(z0, R), we have

f ′(z)

f(z)
=

kφ(z)(z − z0)
k−1 + φ(z)′(z − z0)

k

φ(z)(z − z0)k
=

k

z − z0
+

φ′(z)

φ(z)
.

However φ(z0) 6= 0 and φ′/φ is analytic at z0, hence φ′/φ has a convergent Taylor

series. Thus,

f ′(z)

f(z)
=

k

z − z0
+

∞
∑

n=0

an(z − z0)
n.
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Therefore, we conclude that f ′/f has a simple pole at z0, and

Res (f ′/f, z0) = k.

(ii) Since f has a pole of order k, we have f(z) = φ(z)/(z − z0)
k and R > 0 such

that φ(z0) 6= 0 and φ is analytic in B(z0, R). For any z in B(z0, R),

f ′(z)

f(z)
=

φ′(z)(z − z0)
k − kφ(z)(z − z0)

k−1

(z − z0)2k
·
(z − z0)

k

φ(z)

=
φ′(z)(z − z0)

k − kφ(z)(z − z0)
k−1

φ(z)(z − z0)k

=
φ′(z)

φ(z)
−

k

z − z0
.

Since φ(z0) 6= 0 and φ′/φ is analytic at z0, it has a convergent Taylor series. So,

f ′(z)

f(z)
=

−k

z − z0
+

∞
∑

n=0

an(z − z0)
n.

Hence, f ′/f has a simple pole at z0, and

Res (f ′/f, z0) = −k,

and the proof is complete.

Theorem 3.24. If p is a polynomial of degree at least 2, and z1, z2, . . . , zn are the

zeros of p, then

n
∑

j=1

Res

(

1

p(z)
, zj

)

= 0.

Proof. Suppose that p(z) = anz
n + an−1z

n−1 + · · ·+ a0, where an 6= 0 and n ≥ 2. By
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the fundamental theorem of algebra, p has at most n different zeros. Let C be a

circle centered at 0 with radius R, sufficiently large that every singularity of 1/p is

inside C. We now consider

1

z2
1

p(1
z
)
=

1

z2
1

an
zn

+ an−1

zn−1 + · · ·+ a0
=

1

z2
zn

an + an−1z + · · ·+ a0zn

Since n ≥ 2, the singularity at z = 0 is removable. Therefore, by the

Cauchy-Goursat theorem 2.26,
∫

C

1

z2
1

p(1
z
)
dz = 0.

Thus by Cauchy’s Residue Theorem 3.14, the definition of residue at infinity 3.12,

and Theorem 3.13, we have

n
∑

j=1

Res

(

1

p(z)
, zj

)

=
1

2πi

∫

C

1

p(z)
dz

= −Res

(

1

p(z)
,∞

)

= Res

(

1

z2p(1
z
)
, 0

)

= 0.

This finishes the proof.
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CHAPTER 4

BERNOULLI NUMBERS

Bernoulli numbers have long been used in algebra and number theory. In this

section we define and explore properties of Bernoulli numbers in the framework of

complex analysis. In the next chapter, we use them to obtain some important

infinite sums.

4.1 The Bernoulli Numbers

Definition 4.1. The Bernoulli numbers {Bn}
∞
1 are defined recursively by,

B0 = 1 and

Bn =
−1

n+ 1

n−1
∑

k=0

(

n+ 1

k

)

Bk, for n ≥ 1.

Lemma 4.2. [2] Let F (z) =
∑∞

n=0
zn

(n+1)!
and let f(z) = 1/F (z). Then f(z) is

analytic on B(0, 2π) and

f(z) =















z
ez−1

if z 6= 0

1 if z = 0

. (4.1)
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Proof. Since F (0) = 1, for z 6= 0,

ez − 1

z
=

1

z

∞
∑

n=1

zn

n!
=

∞
∑

n=0

zn

(n+ 1)!
= F (z).

Thus (4.1) follows, and from that, we see f is analytic when ez 6= 1, that is, when

z 6= 2πik for some k ∈ Z \ {0}. Therefore, f(z) is analytic for all z such that

|z| < 2π.

Theorem 4.3. [2]Let F (z) =
∑∞

n=0
zn

(n+1)!
and let f(z) = 1/F (z). Then for all

z ∈ B(0, 2π)

f(z) =
∞
∑

n=0

Bn

n!
zn,

where {Bn}
∞
1 are the Bernoulli numbers.

Proof. By Lemma 4.2, f is analytic on B(0, 2π). Therefore, f has a convergent

Maclaurin Series on B(0, 2π), say

f(z) =

∞
∑

n=0

an
n!

zn.

Since f(z) and F (z) = (ez − 1)/z are reciprocals, we have

1 = F (z)f(z) =

∞
∑

n=0

zn

(n+ 1)!

∞
∑

n=0

an
n!

zn.

By the Cauchy product theorem [2], we then have for each z ∈ B(0, 2π),

1 =
∞
∑

k=1

ckz
k,
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where for each n,

cn =
n
∑

k=0

ak
k!

1

(n− k)!
=

n
∑

k=0

ak
k!(n− k + 1)!

.

The Maclaurin series for 1 has all zero coefficients, except c0 = 1, hence by the

uniqueness of Taylor series, for all n 6= 0, cn = 0. Thus for n ≥ 1,

0 = cn =

n
∑

k=0

ak
k!(n− k)!

=
an
n!

+

n−1
∑

k=0

ak
k!(n− k + 1)!

.

It follows that,

an = −n!

n−1
∑

k=0

ak
k!(n− k + 1)!

=
−1

n+ 1

n−1
∑

k=0

(n+ 1)!

k!(n− k + 1)!
ak =

−1

n + 1

n−1
∑

k=0

(

n+ 1

k

)

ak.

Since a0 = B0 and {an}
∞
0 and {Bn}

∞
0 have the same recursion formula, we conclude

they are the same sequence.

Definition 4.4. In light of Lemma 4.2 and Theorem 4.3, we call z/(ez − 1) the

generating function for the Bernoulli numbers and write

z

ez − 1
=

∞
∑

n=0

Bn

n!
zn,

assuming the value 1 at the removable singularity at zero.

Corollary 4.5. [2] The odd Bernoulli numbers are zero except B1.
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Proof. It is easy to see the function f(z) = z
ez−1

+ z
2
− 1 is even. Since for z 6= 0,

z

ez − 1
=

∞
∑

n=0

Bn

n!
zn = 1−

z

2
+

∞
∑

n=2

Bn

n!
zn,

we see

∞
∑

n=2

Bn

n!
zn =

z

ez − 1
+

z

2
− 1

is even as well. Therefore,

∞
∑

n=2

Bn

n!
zn =

∞
∑

n=2

(−1)n
Bn

n!
zn.

It follows that when k > 2 is odd Bn = −Bn, and therefore zero.

4.2 Results

In this section we use the results of the previous section to find several of

our main results. These sums, found using Bernoulli numbers, will also become

powerful tools in the evaluation of other series in the next chapter.

Result 4.6. When 0 < |z| < π,

z coth z =

∞
∑

n=0

22nB2n

(2n)!
z2n.
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Proof. First note that when 0 < |z| < π,

z

ez − 1
+

z

2
=

z

2

ez + 1

ez − 1
=

z

2

ez/2 + e−z/2

ez/2 − e−z/2
=

z

2
coth

z

2
.

When 0 < |z| < π, by Definition 4.4, we have

z coth z =
2z

e2z − 1
+ z =

∞
∑

n=0

Bn

n!
(2z)n +

2z

2
= 1 +

∞
∑

n=2

Bn

n!
(2z)n.

Now, since B2n+1 = 0, for all n ≥ 1, by Corollary 4.5, this simplifies to

z coth z =
∞
∑

n=0

22nB2n

(2n)!
z2n.

This finishes the proof.

Result 4.7. When |z| < π,

z cot z =

∞
∑

n=0

(−1)n22nB2n

(2n)!
z2n.

Proof. In Result 4.7 replace z by iz, and since iz coth (iz) = z cot z, we have,

z cot z =
∞
∑

n=0

22nB2n(i)
2n

(2n)!
z2n =

∞
∑

n=0

(−1)n
22nB2n

(2n)!
z2n.

This finishes the proof.
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Result 4.8. When |z| < π
2
,

tan z =

∞
∑

n=1

(−1)n−12
2n(22n − 1)B2n

(2n)!
z2n−1.

Proof. Since tan z = 1
cot z

= cot z − cot2 z−1
cot z

= cot z − 2 cot(2z), we have by result

4.7, that

tan z =

∞
∑

n=0

(−1)n
22nB2n

(2n)!
z2n−1 − 2

∞
∑

n=0

(−1)n
24n−1B2n

(2n)!
z2n−1

=
∞
∑

n=0

(−1)n
22n(1− 22n)B2n

(2n)!
z2n−1

=

∞
∑

n=1

(−1)n−1 2
2n(22n − 1)B2n

(2n)!
z2n−1.

This finishes the proof.

Result 4.9. When |z| < π,

csc z =
∞
∑

n=0

(−1)n−1 (2
2n − 2)B2n

(2n)!
z2n−1.

Proof. Since csc z = 1/ sin z, we have for all z such that |z| < π,

csc 2z =
1

2 sin z cos z
=

csc2 z

2 cot z
= cot z −

cot2 z − 1

2 cot z
= cot z − cot 2z.
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So,

csc z =

∞
∑

n=0

(−1)n
22nB2n

22n−1(2n)!
z2n−1 −

∞
∑

n=0

(−1)n
22nB2n

(2n)!
z2n−1

=
∞
∑

n=0

(−1)n
(2− 22n)B2n

(2n)!
z2n−1

=

∞
∑

n=0

(−1)n−1 (2
2n − 2)B2n

(2n)!
z2n−1.
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CHAPTER 5

SUMMING SERIES BY RESIDUES

This chapter contains more of our main results, making use of the tools

presented in the previous chapters. We will use the theory of residues to develop a

powerful technique to find sums of the form
∑

k f(k), where f(z) = q(z)
p(z)

is a rational

function with degree p(z) - degree q(z) > 2.

5.1 Foundations

In this section we develop the technique that will produce more of our main

results. The concept is of capturing an ever widening set of singularities inside

contours, obtaining corresponding finite sums, and then deducing the desired

infinite sum.

Definition 5.1. For convenience we will refer to a contour Cn as a basic contour,

provided

1. Cn is positively oriented.

2. Cn is simple.

3. Cn is piecewise smooth.

4. Cn is centered at the origin.

5. Cn is on a square of side 2n+ 1 or on a circle of radius n+ 1/2 for

any n ∈ N.
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Lemma 5.2. Let rn = n+ 1/2 for any n ∈ N and let 0 < ε < 1. If (x, y) is on the

intersection of
(x− rn)

2 + y2 = ε2 and x2 + y2 = r2n

for any n ∈ N, then |y| ≥ ε/2.

Proof. Solving this system of equations yields

y = ± ε

√

1−
ε2

(2rn)2
.

Since rn ≥ 3/2 for all n and ε < 1,

√

1−
ε2

(2rn)2
≥

√

1−
1

9
=
√

8/9 >
1

2
.

Therefore, |y| ≥ ε/2.

Lemma 5.3. [2] There exists B > 0 such that whenever z is on any basic contour

Cn,

| cot(πz)| < B and | csc(πz)| < B.

Proof. For any z = x+ iy, since cot and csc are odd functions, we will, without loss

of generality, assume y ≥ 0. It follows that

∣

∣e2πiz
∣

∣ =
∣

∣e2πix−2πy
∣

∣ =
∣

∣e2πixe−2πy
∣

∣ = e−2πy
6 1. (5.1)

Let z ∈ B(1
2
, 1
4
). We have 1/4 < x < 3/4, hence cos(2πx) < 0. It follows that
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∣

∣e2πiz − 1
∣

∣ ≥
∣

∣Re(e2πix−2πy − 1
)

|

= |Re
(

e−πy (cos(2πx) + i sin(2πx))− 1
)

|

= |e−πy cos(2πx)− 1| (5.2)

= 1− e−πy cos(2πx)

≥ 1.

Combining (5.1) and (5.2), we have for all z ∈ B(1
2
, 1
4
),

| cot(πz)| =

∣

∣

∣

∣

eπiz + e−πiz

eπiz − e−πiz

∣

∣

∣

∣

=

∣

∣

∣

∣

e2πiz + 1

e2πiz − 1

∣

∣

∣

∣

6
∣

∣e2πiz
∣

∣+ 1 6 2 (5.3)

and

| csc(πz)| =

∣

∣

∣

∣

1

eπiz − e−πiz

∣

∣

∣

∣

=

∣

∣

∣

∣

eπiz

e2πiz − 1

∣

∣

∣

∣

6 1. (5.4)

Now, consider z ∈ B(n+ 1
2
, 1
4
) for any integer n 6= 0. Since z − n ∈ B(1

2
, 1
4
) and both

| cot | and | csc | are π-periodic, we see

| cot(πz)| = |cot(π(z − n))| 6 2 (5.5)

and

| csc(πz)| = |csc(π(z − n))| 6 1 (5.6)

for all z ∈ S =
⋃

n 6=0

B(n+
1

2
,
1

4
).

For z on a square with verticies at ± (n+ 1
2
)± i(n+ 1

2
) but z 6∈ S, we see |y| ≥ 1/4.
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If z is on a circle of radius rn = n+ 1/2 but z 6∈ S, then |y| ≥ |b|, where (a, b) is a

point of intersection of

(x− rn)
2 + y2 = 1/16 and x2 + y2 = r2n.

By Lemma 5.2, |y| ≥ |a| ≥ 1/8. Noting that e−2πy < 1, it follows that

| cot(πz)| =

∣

∣

∣

∣

e2πixe−2πy + 1

e2πixe−2πy − 1

∣

∣

∣

∣

6
e−2πy + 1

||e−2πy| − 1|
6

e−2πy + 1

1− e−2πy
6

e−2π/8 + 1

1− e−π/4
. (5.7)

and

|csc(πz)| =

∣

∣

∣

∣

eπiz

e2πiz − 1

∣

∣

∣

∣

=
eπixe−πy

e2πixe−2πy − 1
6

e−πy + 1

||e−2πy| − 1|
6

e−π/8 + 1

1− e−π/4
. (5.8)

Taking B to be the minimum of the bounds given in lines (5.5), (5.6), (5.7) and

(5.8) yields the desired bound for all z on all basic contours.

Lemma 5.4. [2] Let n be a positive integer, and let Cn be a basic contour. If

f(z) = p(z)
q(z)

is a rational function with degree q(z) - degree p(z) > 2, then,

lim
n→∞

∫

Cn

p(z)

q(z)
cot(πz)dz = 0 (5.9)

and

lim
n→∞

∫

Cn

p(z)

q(z)
csc(πz)dz = 0. (5.10)

Proof. By Lemma 5.3 | cot(πz)| and | csc(πz)| are bounded by some B > 0 on Cn.

The function 12zf(z) is a rational function whose numerator is of degree at least

one less than the degree of its denominator. Thus given any ε > 0, there exists a
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number N such that when |z| ≥ N ,

|2πzf(z)| < |12zf(z)| <
ε

B
.

We also assume that when n ≥ N, each pole of f is inside Cn. Let n ≥ N. In the

case Cn is a square, given any z on Cn, we have 1 6 n < |z|. It follows that

12|z| = 8|z|+ 4|z| > 8n+ 4. Thus since n ≥ N, |z| > N and hence

∣

∣

∣

∣

∫

Cn

f(z) cot(πz)dz

∣

∣

∣

∣

6

∫

Cn

12|z|

8n+ 4
|f(z)|B dz 6

L(Cn)

8n + 4

ε

B
B = ε,

proving (5.9) in the case Cn is a square. For the case when Cn is a circle,

|z| = n + 1/2, hence

∣

∣

∣

∣

∫

Cn

f(z) cot(πz)dz

∣

∣

∣

∣

6

∫

Cn

2π|z|

2π(n+ 1/2)
|f(z)|B dz 6

L(Cn)

2π(n+ 1/2)

ε

B
B = ε,

finishing (5.9).

The proof for both cases of (5.10) are the same as for (5.9), and are omitted.

Theorem 5.5. [2] Suppose that f is analytic at an integer k, then

i. Res(f(z) cot(πz), k) = 1
π
f(k).

ii. Res(f(z) csc(πz), k) = (−1)n

π
f(k).

iii. Res
(

f(z) tan(πz), 2k+1
2

)

= 1
π
f
(

2k+1
2

)

.

iv. Res
(

f(z) sec(πz), 2k+1
2

)

= (−1)n

π
f
(

2k+1
2

)

.

Proof. (i) Since sin(πz) = 0 if and only if z is an integer k and cos(πk) 6= 0. We

see by Theorem 3.21, cot(πz) = cos(πz)/sin(πz) has a simple pole at each integer

k and

Res(cot(πz), k) =
cos(πk)
d
dz
sin(πk)

=
cos(πk)

π cos(πk)
=

1

π
.

45



Therefore, by Theorems 3.21, 3.22,

Res(f(z) cot(πz), k) = f(k) Res(cot(πz), k) =
f(k)

π
.

(ii) Recall that csc(πz) = 1/ sin(πz), and as in part (i) above, csc(πz) = 1/ sin(πz)

has a simple pole at each integer k. So, by Theorem 3.21,

Res(csc(πz), k) = Res

(

1

sin(πz)
, k

)

=
1

π cos(πk)
=

(−1)n

π
.

Now, by Theorems 3.21, 3.22,

Res(f(z) csc(πz), k) = f(k) Res(csc(πz), k) =
(−1)n

π
f(k).

(iii) Recall that tan(πz) = sin(πz)/cos(πz). Note that the zeros of cos(πz) are

2k+1
2

where k is an integer. By Theorem 3.21, those zeros are simple poles of tan

and

Res

(

tan(πz),
2k + 1

2

)

=
sin
(

2πk+π
2

)

π sin
(

2πk+π
2

) =
1

π
.

Now, by Theorem 3.22,

Res

(

f(z) tan(πz),
2k + 1

2

)

= f

(

2k + 1

2

)

Res

(

tan(πz),
2k + 1

2

)

=
1

π
f

(

2k + 1

2

)

.

(iv) Recall that sec(πz) = 1/ cos(πz), and from the previous part
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sec(πz) = 1/ cos(πz) has a simple pole at each 2k+1
2

. So, by Theorem 3.21,

Res

(

sec(πz),
2k + 1

2

)

= Res

(

1

cos(πz)
,
2k + 1

2

)

=
1

sin(2πk+π
2

)
=

(−1)n

π
.

Now, by Theorem 3.22,

Res

(

f(z) sec(πz),
2k + 1

2

)

= f

(

2k + 1

2

)

Res

(

sec(πz),
2k + 1

2

)

=
(−1)n

π
f

(

2k + 1

2

)

.

The proof is complete.

Theorem 5.6. For every integer k, π coth(πz) has a simple pole at z = ik and

Res(π coth(πz), ik) = 1.

Proof. If we let sinh(πz) = 0, then eπz − e−πz = 0, hence e2πz = 1. Therefore, the

zeros of sinh(πz) are z = ik for every integer k. Since cosh πik 6= 0, by theorem 3.21

the poles of π coth(πz) = π cosh(πz)/sinh(πz) are simple and

Res(π coth(πz), ik) =
π cosh(πz)
d
dz
sinh(πz)

=
π cosh(πk)

π cosh(πk)
= 1.

The proof is complete.

5.2 Finite Sums

Lemma 5.7. [3] Let Cn be a basic contour. If f is analytic on Cn, except at finitely

many singularities z1, . . . , zm, all inside Cn none of which are integers, then
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n
∑

k=−n

f(k) =
1

2i

∫

Cn

f(z) cot(πz)dz − π

m
∑

j=1

Res(f(z) cot(πz), zj)

and

n
∑

k=−n

(−1)kf(k) =
1

2i

∫

Cn

f(z) csc(πz)dz − π
m
∑

j=1

Res(f(z) csc(πz), zj).

Proof.

By Theorem 5.5,

Res(f(z) cot(πz), k) =
f(k) cos(πk)

π cos(πk)
=

1

π
f(k).

Moreover, since each zj is inside Cn, we have, by the Cauchy Residue theorem, 3.14,

that

1

2πi

∫

Cn

f(z) cot(πz)dz =

n
∑

k=−n

Res(f(z) cot(πz), k) +

m
∑

j=1

Res(f(z) cot(πz), zj)

=
1

π

n
∑

k=−n

f(k) +
m
∑

j=1

Res(f(z) cot(πz), zj).

Therefore, we conclude that

n
∑

k=m

f(k) =
1

2i

∫

Cn

f(z) cot(πz)dz − π

m
∑

j=1

Res(f(z) cot(πz), zj).

The proof of the second assertion is almost the same as the proof of the first. The
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only difference is that by Theorem 5.5,

Res(f(z) csc(πz), k) =
f(z)

π cos(πz)
=

(−1)k

π
f(k).

The rest of the proof is exactly the same.

Definition 5.8. Let δ > 0 and suppose α < β. We define,

Eα,β = lim
δ→∞

(

∫ α+iδ

α

f(z)

e−2πiz − 1
dz +

∫ α−iδ

α

f(z)

e2πiz − 1
dz

−

∫ β+iδ

β

f(z)

e−2πiz − 1
dz −

∫ β−iδ

β

f(z)

e2πiz − 1
dz

)

.

Theorem 5.9. Suppose that f is analytic in the region G = {z : α 6 Re z 6 β}.

Also, for z = z + iy suppose

lim
|z|→∞

e−2π|z|f(x+ iy) = 0, (5.11)

uniformly in G. If m− 1 < α < m, n < β < n + 1, (m,n ∈ Z), then

n
∑

k=m

f(k) =

∫ β

α

f(x)dx+ Eα,β. (5.12)

Proof. Let δ > 0, and define C = C1 + C2, where

C1 = [α, β] + [β, β + iδ] + [β + iδ, α + iδ] + [α + iδ, α], and

C2 = [α, β] + [β, β − iδ] + [β − iδ, α − iδ] + [α− iδ, α].
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Let C1 = C ∩ {z : Im z > 0} and C2 = C ∩ {z : Im z < 0}. Now, since f has no

singularites in G, By Theorem 5.7, we have,

n
∑

k=m

f(k) =
1

2i

∫

C

f(z) cotπz dz.

Hence,
n
∑

k=m

f(k) =
1

2i

∫

C1

f(z) cot πz dz +
1

2i

∫

C2

f(z) cot πz dz. (5.13)

It is easy to verify these identities,

1

2i
cot πz =

1

2
+

1

e2πiz − 1

and

1

2i
cot πz =

−1

2
−

1

e−2πiz − 1
.

Aplying these identities to equation (5.13), we have,

n
∑

k=m

f(k) =

∫

C1

f(z)

(

−1

2
−

1

e−2πiz − 1

)

dz +

∫

C2

f(z)

(

1

2
+

1

e2πiz − 1

)

dz

=

∫ β

α

f(x)dx+

∫ α+iδ

α

f(z)

e−2πiz − 1
dz +

∫ α−iδ

α

f(z)

e2πiz − 1
dz

−

∫ β+iδ

β

f(z)

e−2πiz − 1
dz −

∫ β−iδ

β

f(z)

e2πiz − 1
dz +

∫ β

α

f(x+ iδ)

e−2πi(x+iδ) − 1
dx

+

∫ β

α

f(x− iδ)

e2πi(x−iδ) − 1
dx.
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Let δ −→ ∞. In light of hypothesis (5.11), we have

n
∑

k=m

f(k) =

∫ β

α

f(x)dx+ lim
δ→∞

(

∫ α+iδ

α

f(z)

e−2πiz − 1
dz +

∫ α−iδ

α

f(z)

e2πiz − 1
dz

−

∫ β+iδ

β

f(z)

e−2πiz − 1
dz −

∫ β−iδ

β

f(z)

e2πiz − 1
dz

)

=

∫ β

α

f(x)dx+ Eα,β .

The proof is complete.

5.3 Infinite Series

5.3.1 Non-integer Singularities

Theorem 5.10. [2] Suppose that f(z) = q(z)
p(z)

is a rational function with degree p(z)

- degree q(z) > 2. Also, suppose that f has poles at z1, . . . , zm, none of which are

integers. Then

(i)

∞
∑

k=−∞
f(k) = −π

m
∑

j=1

Res(f(z) cot(πz), zj)

and

(ii)

∞
∑

k=−∞
(−1)kf(k) = −π

m
∑

j=1

Res(f(z) csc(πz), zj).
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Proof. (i) Let Cn be a basic contour and assume n is sufficiently large so that each

zj is inside Cn. Thus by Lemma 5.7,

∫

Cn

f(z) cot(πz)dz = 2πi

n
∑

k=−n

1

π
f(k) + 2πi

m
∑

j=1

Res(f(z) cot(πz), zj).

Now, let n −→ ∞. By Lemma 5.4, lim
n→∞

∫

Cn

f(z) cot(πz)dz = 0, hence

∞
∑

k=−∞
f(k) = −π

m
∑

j=1

Res(f(z) cot(πz), zj).

(ii) The proof of the second assertion can be proved in the same way as the first,

with csc in place of cot and (−1)kf(k) in place of f(k).

Example 5.11. If ia is not an integer, then

∞
∑

k=−∞

1

k2 + a2
=

π

a
coth(aπ).

Proof. Let

f(z) =
1

z2 + a2
=

1

(z − z1)(z − z2)
,

where z1 = ai and z2 = −ai. By Definition 3.8, f(z) cot(πz) has a simple pole at

z1 and at z2. Now, by Theorem 3.22

Res

(

cot(πz)

(z − ia)(z + ia)
, ai

)

=

[

cot(πia)

(ia+ ia)

]

Res

(

1

(z − ia)
, ai

)

=
cot(πia)

2ia

52



=
1

2ia

cos(πia)

sin(πia)
=

1

2ia

cosh(πa)

i sinh(πa)
= −

1

2a
coth(πa).

We can calculate the residue at z2 = −ia in the same way, obtaining

Res

(

cot(πz)

z2 + a2
,−ai

)

= −
1

2a
coth(πa).

Therefore, by Theorem 5.10, we have

∞
∑

k=−∞

1

k2 + a2
= −π

2
∑

j=1

Res

(

cot(πz)

z2 + a2
, zj

)

=
π

a
coth(πa).

The proof is complete.

Example 5.12. If ia is not an integer, then

∞
∑

k=1

1

k2 + a2
=

π

2a
coth(πa)−

1

2a2
.

Proof. From the previous example we have

∞
∑

k=−∞

1

(k2 + a2)
=

π

a
coth(aπ). Since

f(k) = 1/(k2 + a2) is an even function, we have

∞
∑

k=1

1

k2 + a2
=

1

2

( ∞
∑

k=−∞

1

k2 + a2
−

1

a2

)

=
π

2a
coth(aπ)−

1

2a2
.

The proof is complete.
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Example 5.13. If ia is not an integer, then

∞
∑

k=−∞

1

(k2 + a2)2
=

π

2a3
coth(aπ) +

π2

2a2
csch2(aπ).

Proof. Let

f(z) =
1

(z2 + a2)2
=

1

(z − ia)2(z + ia)2
,

which has poles of order 2 at z1 = ia and z2 = −ia. By Definition 3.8 ,

f(z) cot(πz) has a pole of order 2 at ia and at −ia. Hence, by Theorem 3.19, we

have

Res

(

cot(πz)

(k2 + a2)2
, ia

)

= lim
z→ia

d

dz

(

(z − ia)2 cot(πz)

(z − ia)2(z + ia)2

)

= lim
z→ia

d

dz

(

cot(πz)

(z + ia)2

)

= lim
z→ia

−π(z + ia) csc2(πz)− 2 cot(πz)

(z + ia)3

=
−2πia csc2(πia)− 2 cot(πia)

(2ia)3

= −
πi2 csc2(πia)

4a2
−

i cot(πia)

4a3

= −
πcsh2(πa)

4a2
−

coth(πa)

4a3
.
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An almost identical calculation yields

Res

(

cot(πz)

(k2 + a2)2
,−ia

)

= −
πcsh2(πa)

4a2
−

coth(πa)

4a3
.

Hence by Theorem 5.10, we have

∞
∑

k=−∞

1

(k2 + a2)2
= −π

2
∑

j=1

Res

(

cot(πz)

(k2 + a2)2
, zj

)

=
π2csh2(πa)

2a2
+

π coth(πa)

2a3
.

The proof is complete.

Example 5.14. If a > 0 is not an integer, then

∞
∑

k=−∞

(−1)k

(k + a)2
= π2 csc(πa) cot(πa).

Proof. Let f(z) = (z + a)−2. Since −a is not an integer, by Definition 3.8,

f(z) csc(πz) has a pole of order 2 at z = −a. Hence, by Theorem 3.19

Res

(

1

(z + a)2
csc(πz),−a

)

= lim
z→−a

d

dz

[

(z + a)2

(z + a)2
csc(πz)

]

= lim
z→−a

[−π cot(πz) csc(πz)]

= −π cot(−πa) csc(−πa)

= −π cot(πa) csc(πa).
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It then follows by Theorem 5.10, that

∞
∑

k=−∞

(−1)k

(k + a)2
= −π (−π cot(πa) csc(πa)) = π2 csc(πa) cot(πa).

The proof is complete.

Theorem 5.15. [3] Suppose that a, b, and t are real numbers, and |b| < |a|, then

∞
∑

k=−∞
(−1)k

a t

π2k2 + a2t2
e

iπbk
a =

cosh(bt)

sinh(at)
.

Proof. Let

f(z) =
a t

π2z2 + a2t2
e

iπbz
a =

a t e
iπbz
a

π2(z − z1)(z − z2)
,

where z1 = ait/π, and z2 = −ait/π. Since these poles are simple, by Theorem

3.22,

Res

(

a t e
iπbz
a

π2z2 + a2t2
csc(πz), z1

)

=

(

a t e
iπbz1

a

π2(z1 − z2)
csc(πz1)

)

Res

(

1

z − z1
, z1

)

=
1

2πi
e−bt csc(iat).

An almost identical calculation yields

Res

(

at

(z − z1)(z − z2)
e

iπbz
a csc(πz), z2

)

=
1

2πi
eb t csc(iat),

as well. Hence by Theorem 5.10, we have
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∞
∑

k=−∞
(−1)k

at

π2k2 + a2t2
e

iπbk
a = −π

2
∑

j=1

Res

(

a teiπbz/a

π2z2 + a2t2
csc(πz), zj

)

= −π

[

1

2πi
e−bt csc(iat) +

1

2πi
ebt csc(iat)

]

=
ebt + e−bt

−2i sin(iat)

=
cosh(bt)

sinh(at)
.

This finishes the proof.

5.3.2 Integer Singularities

Theorem 5.16. Suppose that f(z) = p(z)
q(z)

is a rational function, with poles

{z1, z2 . . . , zn}, some of which may be integers, and let S = Z \ {z1, z2 . . . , zn}.

Then,
∑

k∈S
f(k) = −π

n
∑

j=1

Res (f(z) cot(πz), zj) .

Proof. If k ∈ S, then by Definition 3.8, f(z) cot(πz) has simple pole at k and

Res(f(z) cot(πz), k) = 1
π
f(k). Now, consider n such that all singularities of f are on

the inside of Cn. Then, by Lemma 5.7, we have
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∫

Cn

f(z) cot(πz)dz = 2πi
∑

{all the residues in Cn}

= 2πi
∑

k∈S,|k|6N

1

π
f(k) + 2πi

∑

zj∈R
Res(f(z) cot(πz), zj),

Let n → ∞. Then by Lemma 5.4

2πi
∑

k∈S

1

π
f(k) + 2πi

∑

zj∈R
Res(f(z) cot(πz), zj) = 0.

We conclude,
∑

k∈S
f(k) = −π

∑

zj∈R
Res(f(z) cot(πz), zj).

The proof is complete.

Example 5.17. Euler’s famous sum:

∞
∑

k=1

1

k2
=

π2

6
.

Proof. Let f(z) = 1/z2, then by Definition 3.8 the function f(z) cot(πz) has a

pole at z = 0 of order 3. By Theorem 3.19 and L’Hôpitol’s rule we have

Res

(

1

z2
cot(πz), 0

)

=
1

2
lim
z→0

d2

dz2

[

z3 cot(πz)

z2

]

=
1

2
lim
z→0

d

dz

[

−πz csc2(πz) + cot(πz)
]

=
1

2
lim
z→0

[

2π2z cot(πz) csc2(πz)− 2π csc2(πz)
]

= lim
z→0

[

π2z cos(πz)

sin3(πz)
−

π

sin2(πz)

]
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= lim
z→0

[

π2z cos(πz)− π sin(πz)

sin3(πz)

]

= lim
z→0

[

−π3z sin(πz) + π2 cos(πz)− π2 cos(πz)

3π sin2(πz) cos(πz)

]

= lim
z→0

[

−π2z

3 sin(πz) cos(πz)

]

= −
π

3
.

Now, taking S = Z \ {0} in Theorem 5.16, we have,

∑

k 6=0

1

k2
= −πRes

(

1

z2
cot(πz), 0

)

= −π

(

−π

3

)

=
π2

3
.

Since 1/z2 is an even function, we see

2
∞
∑

k=1

1

k2
=
∑

k 6=0

1

k2
=

π2

3
.

Therefore, ∞
∑

k=1

1

k2
=

π2

6
.

The proof is complete.

Example 5.18. If ia is not an integer, then

∞
∑

k=1

1

k2(k2 + a2)
=

3 + a2π2 − 3πa coth(πa)

6a4
.

Proof. Let
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f(z) =
1

z2(z2 + a2)
.

By Definition 3.8 the function f(z) cot(πz) has a pole of order 3 at z1 = 0 and

simple poles at each of z2 = ia and z3 = −ia. Note that z1 is an integer, whereas z2

and z3 are not. Thus by Theorem 3.22, we have

Res

(

cot(πz)

z2(z − ia)(z + ia)
, ai

)

=
−i coth(aπ)

(−a2)(2ia)
Res

(

1

z − ia
, ai

)

=
coth(aπ)

2a3
.

In the same way we found the previous residue,

Res

(

cot(πz)

z2(z − ia)(z + ia)
,−ai

)

=
coth(aπ)

2a3
.

In finding the residue of the function f(z) cot(πz) at the pole z1 = 0, we will make

use of the Bernoulli form of the Taylor series for z cot z, Result 4.7, obtaining

πz cot(πz) =

∞
∑

n=0

(−1)n22nB2n

(2n)!
(πz)2n.

From this we obtain the Laurent series for cot(πz) :

cot(πz) =

∞
∑

k=0

(−1)k22kB2kπ
2k−1

(2k)!
z2k−1

=
1

πz
−

πz

3
−

π3z3

45
− . . .

Moreover, as a geometric series,

1

z2(z2 + a2)
=

1

a2z2
1

1 + (z/a)2
=

∞
∑

k=0

(−1)k
z2k−2

a2k+2
=

1

a2z2
−

1

a4
+

z2

a6
+ . . . .
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It follows that,

cot(πz)

z2(z2 + a2)
=

(

1

a2z2
−

1

a4
+

z2

a6
+ . . .

)

×

(

1

πz
−

πz

3
−

π3z3

45
− . . .

)

=

(

1

a2πz3
−

π

3a2z
+

π3z

45a2
+ . . .

)

+

(

−1

a4πz
+

πz

3a4
−

π3z3

45a4
− . . .

)

+

(

z

πa6
−

πz3

3a6
+

π3z5

45a6
+ . . .

)

+ . . .

=
z−3

a2π
−

3 + a2π2

3a4π
z−1 +

−π4a4 + 15π2a2 + 45

45πa6
z + . . .

Therefore, by definition,

Res

(

cot(πz)

z2(z2 + a2)
, 0

)

= −
3 + a2π2

3a4π
.

Taking S = Z \ {0} in Theorem 5.16, we have,

∑

k 6=0

1

k2(k2 + a2)
= −π

3
∑

j=1

Res

(

1

z2(z2 + a2)
cot(πz), zj

)

= −π

(

coth(aπ)

2a3
+

coth(aπ)

2a3
−

3 + a2π2

3a4π

)

=
3 + a2π2 − 3πa coth(πa)

3a4
.
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Since f(z) is an even function,

∞
∑

k=1

1

k2(k2 + a2)
=

1

2

∑

k 6=0

1

k2(k2 + a2)
=

3 + a2π2 − 3πa coth(πa)

6a4
.

The proof is complete.

Theorem 5.19. Suppose that f(z) = p(z)
q(z)

is a rational function, with poles

{z1, z2 . . . , zn}, some of which may be integers, and let S = Z \ {z1, z2 . . . , zn}.

Then,
∑

k∈S
(−1)kf(k) = −π

n
∑

j=1

Res (f(z) csc(πz), zj) .

Proof. Since csc(πz) and cot(πz) have the same denominator and the theorem has

the same hypotheses otherwise, the proof for this theorem is similar to the the

previous one and will be omitted.

Example 5.20. If a is an integer, and a 6= 0. Then

∑

k∈Z\{0,a}

(−1)k

k2(k − a)
=

6 + a2π2 − 12(−1)a+1

6a3
.

Proof. Let

f(z) =
1

z2(z − a)
,

then by Definition 3.8 the function f(z) csc(πz) has a pole of order 3 at z1 = 0

and a pole of order 2 at z2 = a. Note that z1 and z2 are integers.

To find the residues of the function f(z) csc(πz) at the pole z2 = a , by Theorem

3.19 we have,

Res

(

csc(πz)

z2(z − a)
, a

)

= lim
z→a

d

dz

[

(z − a)2 csc(πz)

z2(z − a)

]

=
2(−1)a+1

a3π
.
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Now, to find the residue of the function f(z) csc(πz) at the pole z1 = 0, we will use

the sum identity for the cosecant 4.9

csc(πz) =

∞
∑

k=0

(−1)k−1 (2
2k − 2)B2kπ

2k−1

(2k)!
z2k−1

=
1

πz
+

πz

6
−

7π3z3

360
− . . . .

Also, we need the Taylor expansion for z−2(z − a)−1,

1

z2
1

z − a
=

1

az2
−1

1−
(

z
a

) = −

∞
∑

k=0

zk−2

ak+1
.

Hence, −

∞
∑

k=0

zk−2

ak+1
= −

1

az2
−

1

a2z
−

1

a3
+ . . . .

Now, we will find the product of these two summations,

csc(πz)

(

1

z2
1

z − a

)

=

(

1

πz
+

πz

6
−

7π3z3

360
− . . . .

)

×

(

−
1

az2
−

1

a2z
−

1

a3
+ . . . .

)

=

(

−
1

aπz3
−

1

a2πz2
−

1

a3πz
+ . . .

)

+
(

−
π

6az
−

π

6a2
−

πz

6a3
− . . .

)

+

(

−
7π3z

360a
−

7π3z2

360a2
−

7π3z3

360a3
− . . .

)

+ . . . .

Hence, we see that the coefficient of 1
z
is
(

−6+a2π2

6a3π

)

, wchich is the residue of the

function f(z) csc(πz) at the pole z1 = 0. Hence,
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Res

(

1

z2(z − a)
csc(πz), 0

)

= −
6 + a2π2

6a3π
.

Now, let S = Z \ {0, a} . By Theorem 5.19 we have,

∑

k∈Z\{0,a}

(−1)k

k2(k − a)
= −π

∑

j=1,2

Res

(

1

z2(z − a)
csc(πz), zj

)

= −π

(

2(−1)a+1

a3π
−

6 + a2π2

6a3π

)

=
6 + a2π2 − 12(−1)a+1

6a3
.

The proof is complete.

5.3.3 Singularities at Zero

Theorem 5.21. [2] If n is a positive integer, and {Bk} are the Bernoulli numbers,

then

∞
∑

k=1

1

k2n
= (−1)n−12

2n−1B2nπ
2n

(2n)!
.

Proof. Let f(z) = 1/z2n, then by Definition 3.8 the function f(z) cot(πz) has a

pole of order 2n + 1 at the singularity z = 0. By Result 4.7, we have the Laurent

series,

cot(πz)

z2n
=

1

πz2n+1

∞
∑

k=0

(−1)k22kB2kπ
2k

(2k)!
z2k =

∞
∑

k=0

(−1)k22kB2kπ
2k−1

(2k)!
z2k−2n−1.
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When 2k − 2n− 1 = −1, k = n, hence

Res

(

cot(πz)

z2n
, 0

)

=
(−1)n22nB2nπ

2n−1

(2n)!
.

Considering S = Z\{0} in Theorem 5.16, we have

∑

k 6=0

1

k2n
= −πRes

(

cot(πz)

z2n
, 0

)

=
(−1)n−122nB2nπ

2n

(2n)!
.

Since f(k) = 1/k2n is an even function,

∞
∑

k=1

1

k2n
=

1

2

∑

k 6=0

1

k2n
=

(−1)n−122n−1B2nπ
2n

(2n)!
,

completing the proof.

Example 5.22.

∞
∑

k=1

1

k2
=

2π2B2

2!
=

π2

6
and

∞
∑

k=1

1

k4
= −

23π4B4

4!
=

π4

90
.

Theorem 5.23. [2] If n is a positive integer, and {Bk} are the Bernoulli numbers,

then
∞
∑

k=1

(−1)k

k2n
= (−1)n

(22n−1 − 1)B2nπ
2n

(2n)!
.

Proof. Let f(z) = 1/z2n, then by Definition 3.8 the function f(z) csc(πz) has a

pole of order 2n + 1 at the singularity z = 0. By Result 4.9, we have the Laurent
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series,

csc(πz) =

∞
∑

k=0

(−1)k−1 (2
2k − 2)B2k

(2k)!
π2k−1z2k−1.

It follows that

csc(πz)

z2n
=

∞
∑

k=0

(−1)k−1 (2
2k − 2)B2k

(2k)!
π2k−1z2k−2n−1.

We obtain the residue from the previous series, for when 2k − 2n− 1 = −1, we see

n = k. Hence,

Res

(

cot(πz)

z2n
, 0

)

= (−1)n−1 (2
2n − 2)B2n

(2n)!
π2n−1.

Considering S = Z\{0} in Theorem 5.16, we have

∑

k 6=0

1

k2n
= −πRes

(

csc(πz)

z2n
, 0

)

= (−1)n
(22n − 2)B2n

(2n)!
π2n.

But, since f(k) = (−1)k

k2n
is an even function,

∞
∑

k=1

(−1)k

k2n
=

1

2

∑

k 6=0

(−1)k

k2n
= (−1)n

2(22n−1 − 1)B2nπ
2n

(2n)!
.

The proof is complete.
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Example 5.24.

∞
∑

k=1

(−1)k+1

k2
=

π2

12
.

Proof. Taking n = 1 in Theorem 5.23, we have

∞
∑

k=1

(−1)k+1

k2
= −

∞
∑

k=1

(−1)k

k2
=

B2π
2

2
.

Since B2 = 1/6, the proof is complete.
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CHAPTER 6

MITTAG-LEFFLER EXPANSION THEOREM

The Mittag-Leffner theorem seems unique in its concept, finding an infinite

sum form of functions in terms of its singularities and the corresponding residues.

Theorem 6.1 (Mittag-Leffler Expansion Theorem). [5] Let f(z) be analytic except

at distinct simple poles {zj}
∞
1 , for which 0 < |zj | 6 |zj+1| for all j. Denote

Rj = Res(f, zj) and let {Cn}
∞
1 be circles of radius rn, centered at 0, none of which

pass through any zj and such that rn → ∞. Moreover, assume there exists B > 0

such that when z ∈ Cn for any n, |f(z)| < B. Then

f(z) = f(0) +
∞
∑

j=1

Rj

(

1

z − zj
+

1

zj

)

.

Proof. Let z0 be any complex number except a pole of f . Define

F (z) =
f(z)

z − z0
,

then F has a simple pole at z0, as well as at each zj . By Theorem 3.22, for all

j ∈ N,

Res(F, zj) =
Rj

zj − z0
and Res(F, z0) = f(z0).

By the Cauchy Residue theorem 3.14, for any n,

1

2πi

∫

Cn

f(z)

z − z0
dz = f(z0) +

∑

zj∈Cn

Rn

zn − z0
. (6.1)
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Letting z0 = 0, in (6.1) yields

1

2πi

∫

Cn

f(z)

z
dz = f(0) +

∑

zj∈Cn

Rn

zn
. (6.2)

Subtracting (6.2) from (6.1), we obtain

z0
2πi

∫

Cn

f(z)

z(z − z0)
dz =

1

2πi

∫

Cn

f(z)

(

1

z − z0
−

1

z

)

dz

= f(z0)− f(0) +
∑

zj∈Cn

Rn

(

1

zn − z0
−

1

zn

)

. (6.3)

Since |z − z0| > |z| − |z0| = rn − |z0|, for all z on Cn, we have

∣

∣

∣

∣

∫

Cn

f(z)

z(z − z0)
dz

∣

∣

∣

∣

6
2πrnB

rn(rn − |z0|)
=

2πB

rn − |z0|
,

which shows that

lim
n→∞

∫

Cn

f(z)

z(z − z0)
dz = 0,

as n → ∞, and therefore as rn → ∞. It then follows from line (6.3) that

f(z0) = f(0)− lim
n→∞

∑

zj∈Cn

Rj

(

1

zj − z0
−

1

zj

)

= f(0) +

∞
∑

j=1

Rj

(

1

z0 − zj
+

1

zj

)

.

The proof is complete.

Example 6.2. If z 6= kπ for any k ∈ Z, then
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cot z =
1

z
+

∑

k∈Z\{0}

(

1

z − kπ
+

1

kπ

)

.

Proof. Let f(z) = cot z − 1/z. By Theorem 5.5 we have that cot z has simple poles

at z = kπ, when k is an integer and that the residues at these poles are 1. It follows

that the Laurent series is

cot z =
∞
∑

k=−1

akz
k, where a−1 = 1.

Therefore,

cot z −
1

z
=

∞
∑

k=0

akz
k,

hence z = 0 is a removable singularity. By L’Hospital’s rule we have

lim
z→0

(

cot z −
1

z

)

= 0,

so, without loss of generality, f(0) = 0. Moreover, by Lemma 5.3 we have cot z is

bounded on basic contours Cn. Hence by Mittag-Leffler Expansion Theorem we

have,

cot z =
1

z
+

∑

k∈Z\{0}

(

1

z − kπ
+

1

kπ

)

.

The proof is complete.

Lemma 6.3. If zj =
π
2
(2j + 1) for all j ∈ Z, then

i. z−j−1 = −zj .
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ii.
1

z − zj
+

1

z − z−j−1
=

2z

z2 − z2j
.

Proof. Given zj =
π
2
(2j + 1),

i. z−j−1 =
π

2
[2(−j − 1) + 1] =

π

2
(−2j − 2 + 1) = −

π

2
(2j + 1) = −zj .

Then from (i), we see

ii.
1

z − zj
+

1

z − z−j−1
=

1

z − zj
+

1

z + zj
=

z + zj + z − zj
(z − zj)(z + zj)

=
2z

z2 − z2j
.

The proof is complete.

Example 6.4. For all z 6= πk for some k ∈ Z,

tan z =
∞
∑

k=0

2z
(

(2k + 1)π
2

)2
− z2

.

Proof. Let {Cn}
∞
1 be circles of radius πn, centered at 0. Using the methods of

Lemma 5.3, it can be shown that there exists B > 0 such that |tan(z)| < B, when

z ∈ Cn for any n. Denote the singularities of tan as

ωj = (2j + 1)
π

2
for all j ∈ Z,

noting tan has simple poles with residues of 1 at each ωj and none of them are on

any Cn. We renumber these singularities in such a way to satisfy the remainding

hypothesis of the Mittag-Leffler Expansion Theorem 6.1. Denote

71



zk =

{

ωk/2, if k is even

ω(1−k)/2, if k is odd

Therefore,

tan z =

∞
∑

k=1

(

1

z − zk
+

1

zk

)

=

∞
∑

k=1

(

1

z − z2k
+

1

z2k
+

1

z − z2k−1
+

1

z2k−1

)

=
∞
∑

k=1

(

1

z − ωk

+
1

ωk

+
1

z − ω1−k

+
1

ω1−k

)

=

∞
∑

k=1

(

1

z − ωk
+

1

ωk

)

+

∞
∑

k=1

(

1

z − ω1−k
+

1

ω1−k

)

=

∞
∑

k=0

(

1

z − ωk
+

1

ωk

)

+

∞
∑

k=0

(

1

z − ω−1−k
+

1

ω−1−k

)

By part (i) of Lemma 6.3, we have ω−1−k = −ωk, hence

tan z =

∞
∑

k=0

(

1

z − ωk
+

1

z − ω−1−k

)

.

Then by the (ii) part of Lemma 6.3, we have

tan z =
∞
∑

k=0

2z
(

(2k + 1)π
2

)2
− z2

.

The proof is complete.
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