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ABSTRACT 

Engineered nanoparticles (ENPs) are increasingly being used in commercial products, 
and may accumulate in soils when the products are disposed. I examined the effects of 
two common ENPs, carbon nanotubes (CNTs) and silver quantum dots (Ag-QDs), on 
plant gas exchange. To do this, I grew Arabidopsis thaliana in soil (n=36) for 6 weeks 
and added a CNT suspension at increasing concentrations (10, 30, 90, 150, 190, 250 μg/ 
ml) each week. I also grew A. thaliana in petri dishes (n=83) containing Murashige and 
Skoog (MS) medium, with a concentration of 4μg/ ml Ag-QDs or 4μg/ml CNTs. I 
measured carbon assimilation rates, stomata conductance, and transpiration rates, using a 
LI-6400XT Portable Photosynthesis System. I found that gas exchange in soil-grown A. 
thaliana was unaffected by CNTs. There were no effects on rates of photosynthesis, 
transpiration or stomata conductance. There was also no apparent effect on light or 
carbon fixation reactions. I found that gas exchange in petri dish-grown A. thaliana was 
negatively affected by Ag-QDs, and marginally affected by CNTs. There was a reduction 
in photosynthesis rates, but no apparent effects on stomatal conductance and transpiration 
rates in A. thalian grown with either Ag-QDs or CNTs. The negative effects of the ENPs 
were directly related to light and Calvin cycle reactions. My research illustrates a model 
system for examining ENP effects on plants, and demonstrated that if Ag-QDs are 
disposed of in soils, they can negatively affect plant growth. 
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INTRODUCTION 

 

Background 

Engineered nanoparticles (ENPs) are increasingly being used in consumer 

products and electronic devices (Hegde et al., 2016). Because they are so useful, more 

and different types are rapidly being developed and manufactured. ENPs are now found 

in drugs, electronic devices, and many commonly used products: sunscreens, cosmetics, 

health and fitness, automotive, food, home and garden, clothing, footwear, and 

eyeglass/lens coatings (Husen & Siddiai, 2014, Zhang et al., 2015). Since manufacturing 

ENPs is increasing (Navarro et al., 2010; Husen & Siddiai, 2014), organisms being 

exposed to them in nature is probable; therefore, their potential toxicity needs to be 

characterized (Cañas et al., 2008). My research focused on how two different ENPs, 

single walled carbon nanotubes (SWCNTs) and silver quantum dots (Ag-QDs), affect 

plant gas exchange using the model plant Arabidopsis thaliana. There is very little 

research on the effects of ENPs on plant gas exchange; however, there is an emerging 

body of research on the effects of ENPs on other plant functions. The range of plant 

responses to ENPs ranges from being toxic to being beneficial. Bellow, I review the 

current literature. 

 

ENPs and Seed Germination 

CNTs can create changes on the surface of the seed of plants. Tiwari et al., (2014) 

found that multi-walled CNTs (MWCNTs) at a concentration of 20 mg/l penetrated 

maize seeds and positively affected seed germination and growth by promoting water 
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uptake. On the other hand, MWCNTs were toxic to the plants at concentrations higher 

than 20 mg/l because of nanotube aggregation. As a result, they impeded water 

transportation by capillary action. Relevant to this study, Srinivasan & Saraswathi (2010) 

found that MWCNTs enhanced seed germination and increased seed weight in tomato. 

Lin & Xing (2007) examined seed germination in six plant species (radish, rape, ryegrass, 

lettuce, corn, and cucumber) treated with five types of nanomaterials (MWCNTs, 

aluminum, alumina, zinc, and zinc oxide) at concentrations of 2000 mg/L, and found that 

MWCNTs did not negatively affect seed germination (Hu et al., 2010). Nair et al., 2011 

reported that germination of rice seed treated with high concentrations (1 ml QDs+ 0.5 ml 

H2O or 0.5 ml QDs +1 ml H2O) of cadmium selenide quantum dots (CdSe QDs) was 

inhibited. However, at low concentrations (0.25 ml QDs+1.25 ml H2O) of QDs there was 

no effects on the seed germination, but plant growth was reduced.  

 

ENPs and Plant Roots 

The suggested mechanisms for ENPs entering plant root cells and affecting plant 

growth are endocytosis and/or binding of ENPs with a carrier protein being transported 

into plants through water or ion channels. Previous studies have shown that CNTs can 

enter plant cells and move along roots (Qiaoling et al., 2009; Larue et al., 2012; Giraldo 

et al., 2014). CNTs can penetrate seed coats through endocytosis mechanisms by creating 

pores in plant cells, as was observed in the black layer region of the maize seed (Qiaoling 

et al, 2009; Srinivasan & Saraswathi, 2010; Giraldo et al, 2014). Researchers have also 

documented that CNTs increase porosity, resulting in increased water uptake (Srinivasan 

& Saraswathi, 2010).   
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 The entry of quantum dots (QDs) have also been documented in plant cells, and 

researchers have indicated that QDs can be targeted to nuclei by arginine-rich 

intracellular peptides without evidence of cytotoxicity at a concentration up to 200 nM 

(Liu et al., 2010). In another study, QDs were observed in the root hair surfaces of 

Arabidopsis, but they were not internalized and transported into root cells (Navarro et al., 

2012). However, QD absorption into the root can be enhanced when humic acid (HA) is 

used in the growth media, resulting in root damage (Navarro et al., 2012). Al-Salim et al., 

(2011) observed fluorescence in severed stems of A. thaliana vessels that were exposed 

to QDs, illustrating that indeed the QDs can be taken up by plant roots. However, the 

height level of water-soluble QDs through a stem was found to depend on the type of 

QDs; and, QD uptake through roots did not occur in intact Arabidopsis plants (Al-Salim 

et al., (2011).  Lin and Xing (2008) found that zinc oxide (ZnO) nanoparticles that were 

at a concentration of 100mg/l were internalized into Lolium perenne (rye-grass). The 

mechanism of uptake of individual ZnO nanoparticles in the root endodermis and stele 

was via the apoplastic route, and followed by cell-to-cell transport via plasmodesmata. 

Nutrient uptake in roots has also been shown to be affected by ENPs. For 

example, Tiwari et al., (2014) reported that when MWCNTs are presented into media, 

Fe3+ is reduced to Fe 2+, possibly due to MWCNT ion-transient dipole (ITD) interactions. 

They hypothesized that after Fe2+ enters plant, it interacts with Ca 2+ and a replacement 

action cation between the two ions occurs. Thus, Ca2+ left the cell wall matrix out of the 

seedling, and the Ca content in the root seedling was reduced. This lead to the reduction 

of plant dry weight and water content of the root. Ultimately, however, positive effects on 

plant growth via increased water and nutrient uptake was observed.  
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Silver nanoparticles (Ag-NPs) have also been found to affect nutrient absorption 

in plants. Geisler-Lee et al., (2014) reported that A. thaliana grown in soil treated with 

Ag-NPs had difficulty in absorbing inorganic nitrogen nutrient. Zuverza-Mena et al., 

(2016) examined the effect of Ag-NPs in A. thaliana. They found that the reduction of 

nutrient uptake was due to blockage of intracellular communication via nutrient carrier 

proteins. Ag-NPs also significantly reduced Ca, Mg, B, Mn, Cu, and Zn absorption in 

radish seedlings. The indicated effects of Ag-NPs on nutrient uptake was shown to be 

that Ag-NPs blocked protein channels, disrupted plant membranes, and decreased the 

level of expression of metal transporter genes.  

 

ENPs in Plant Leaves  

Larue et al., (2012) and Giraldo et al., (2014) reported that SWCNTs introduced 

into A. thaliana leaves passed through an extracted chloroplast via kinetic trapping by 

lipid exchange and increased photosynthetic activity. When the nanomaterial interacted 

with the chloroplast membranes, the lipid layers which cover the chloroplast envelopes 

wrapped around the SWCNTs and adsorbed them. After the disruption of the lipid 

membrane and SWCNT penetration, the lipid membrane was repaired.  

QDs were found in A. thaliana leaves after treatments of CdSe/CdZnS QDs with 

different coatings (Yeonjong et al., 2015). QDs induced leaf stress, but the stress level 

was dependent on the type of coatings, and the concentration level of Cd and Se which 

were released from QDs, absorbed through roots, and then translocated into the plant 

leaves (Yeonjong et al., 2015). Similarly, Alimohammadi et al., (2011) reported strong 



5 

fluorescent signals of SWCNT-QDs in tomato leaves. This SWCNT-QDs were absorbed 

through the tomato roots and transported into the leaves.    

   

 Reported Effects of CNTs on Plant Gas Exchange 

There are few studies that have examined the physiological response of plants to 

CNTs directly. For example, some of the studies indicated the effects of CNTs on the 

plant growth by their influence on the water intake. Positive effects of CNTs have been 

reported on water uptake and chloroplast activity (Srinivasan & Saraswathi, 2010; Tiwari 

et al., 2014), but no studies directly measured gas exchange. However, Zhu et al., (2008) 

recommended scientists consider plants in their studies when they track carbon nanotube 

(CNTs) movement in the environment, since they found that CNTs accumulate in the 

pumpkin cells. Consistent with this recommendation, there is evidence that MWCNTs are 

toxic to plants at concentrations more than 20 mg/l because of the barriers that MWCNT 

causes when they aggregate around the cells where water is delivered. As a result, they 

imped the capillary action for water transportation (Tiwari et al., 2014).  

Ag-QDs have been reported to decrease the transfer distance of photo-generated 

electrons and increase the rate of electron transport, thus reducing the loss of light reflection 

(Lian et al., 2015). In another study, titanium oxide (TiO2) exhibited positive effects on the 

light- harvesting complex by increasing the absorption of peak intensity of the chloroplast 

and accelerating the rate of whole chain electron transport; thus, accelerate the 

transformation from light energy to electronic energy promoting photosynthesis in A. 

thaliana (Ze et al., 2011).  
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SWCNTs have also been shown to promote photosynthetic activity by 49% when 

incorporating CNTs into chloroplasts extracted from plants and by 30% when 

incorporating them into leaves of living plants (Giraldo et al., 2014). In contrast, SWCNTs 

in the concentration range of 0.1-20 mg/L caused photosynthesis yield reduction by 18% 

in marine alga (Thakkar et al., 2016). Similarly, carbon nanotubes induced inhibition to 

the development of the algae Chlamydomonas reinhardtii, and also considerably decreased 

quantum yield in PSII due to inhibition in the total electron transport. Additionally, the 

chemiosmotic mechanism of photosynthetic ATP formation was inhibited after exposure 

to CNTs (Matorin et al., 2010). PSII photochemistry process and electron transport activity 

of Lemna- gibba plant were also inhibited by both nickel oxide nanoparticles and nickel 

(II) oxide at a concentration of 1000 µg/ml (Oukarroum et al., 2015). Lin et al., (2009) 

found that photosynthesis rates in algae exposed to QDs were significantly reduced. 

 With the use of Anabaena spherica, Tang et al., (2013) were able to examine the 

toxicity of exposure to nano TiO2 and Zn+2 suspension. After 96 hours of exposure to TiO2 

nanoparticles at concentrations above 10.0 mg/L, changes in the photochemical 

transformation of energy and the content of chlorophyll-a was caused by nanoparticle 

aggregation in the algae cells, indicating that the cells were light stressed. However, 

increasing nano TiO2 concentration above 1.0 mg/L reduced toxicity effect in the presence 

of Zn+2, as soluble concentration of Zn+2 is reduced by adsorption onto nanoTiO2.   

Genes that take part in energy pathways and electron transport systems of 

photosystem I and II and light harvesting complexes have been shown to be down 

regulated upon exposure to zinc oxide (Landa et al., 2015). In the same study, A. thaliana 

genes that take part in energy pathways, as well as electron transport were also down 
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regulated upon Fullerene soot nanoparticle exposure. Wang et al., (2015) reported the 

inhibition of photosystem structure genes as well as the expression of chlorophyll 

synthesis genes upon exposure of A. thaliana to ZnO nanoparticles (300 mg/L). In their 

study, chlorophyll a and b contents, the net rate of photosynthesis, intercellular CO2 

concentration, leaf stomatal conductance and transpiration rate were significantly reduced 

by more than 50%. Chlorophyll content and growth of A. thaliana was also negatively 

affected after treatments of cerium oxide and indium oxide nanoparticles (Ma et al., 

2013). Furthermore, chlorophyll content of tomato seedlings was reduced by 1.5fold after 

exposure to single walled carbon nanotube functionalized with quantum dots at 50 µg/ml 

concentration (Alimohammadi et al., 2011). A similar result was indicated by Lin et al., 

(2009) who found that the chlorophyll content of A. thaliana T87 suspension cells 

decreased after treatment with MWCNTs. 

  

Influence of Nanotubes on Plant Oxidative Stress 

Nanotubes have shown to alter gene expression that is related to plant 

physiological process. For example, Landa et al., (2015) examined A. thaiana gene 

expression after treatments of zinc oxide nanoparticles, and they found that the number of 

genes which take part in osmotic, water, salt and oxidative stresses, along with defense 

and wounding pathogens were high. On the other hand, Wang et al., (2014) examined 

drought and salt stress gene response to graphene oxide nanoparticles, and the data 

indicated that the gene was down regulated, which explained the adverse effect on 

seedling development in A. thaliana.  
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The up-regulation of genes that play a role in responses to oxidative stress was 

reported by Shen et al., (2010) who noted that the injection of SWCNTs into A. thaliana 

leaves improved levels of the mRNAs coding for proteins that take part in the scavenging 

of H2O2.  As reported by Landa et al., (2015), up regulation of most genes that take an 

active role in oxidative stress responses show an increase in the intensities of reactive 

oxygen species (ROS) in the presence of fullerene soot (FS) nanoparticles.  

The increase in genes encoding enzyme activity for the protection against 

oxidative stress indicate that zinc oxide is able to promote the production ROS in exposed 

roots (Xu et al., 2010).  In another study, the gene expression involved in producing 

antioxidant molecules, which protects plants from oxidative stress, were down regulated 

when the plant was exposed to other types of nanotubes (cerium oxide and indium oxide 

nanoparticles) (Ma et al., 2013).  Landa et al., (2015) also observed an activation of 

genes that take part in responses to oxidative stress after exposing A. thalian with 

titanium dioxide. This result agrees with earlier observations that titanium dioxide 

increases antioxidant enzyme activity which is likely to improve defense against other 

sources of oxidative stresses (Tumburu et al., 2015).  

 

Research Goals 

Studies that have examined the effects of ENPs (engineered nanoparticles) on 

plant physiological processes provided some evidence that ENPs can have toxic effects. 

There are few studies, however, on the effects ENPs on plant photosynthesis and gas 

exchange. My research project aims were to identify the effects of CNTs and Ag-QDs on 

carbon fixation rates by examining light reaction and Calvin cycle processes in A. 
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thaliana. The data presented in this study offer new evidence on the gas exchange 

responses of A. thaliana when exposed to CNTs and Ag-QDs. The resulting information 

can be applied to the estimation of environmental risks related to the exposure of plants 

to ENPs.  A. thaliana was chosen as the experimental plant since it is the model plant 

system for genetic experiments, and, it has been successfully utilized for a number of 

physiological investigations (Hoffman, 1965) 

CNTs were selected because they are used in high quantities in nanotechnology 

products and have been considered prominently in literature to evaluate their effect on 

plants. On the other hand; in my knowledge, Ag-QD effects on plant have not been 

tested, although these nanoparticles are used in applications related to increasing light 

absorption efficiency.     
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METHODS 

 

Two different experiments were designed to test the negative effects of the 

selected nanoparticles (Single wall Carbon Nanotube; purity>95% diameter 1.5nm, 

length 1-5 microns, and surface area 1020.48 M2/gram obtained from Nanolab, and Ag-

QDs; diameter 18.5±3.4, surface area 29.0 m2/g, and Ag mass concentration 0.021 mg/ 

Ml obtained from 20 nm Pelco® Citrate NanoXactTM Silver); note that these nanoparticles 

were handled according to material safety data sheets. I examined the effects of ENPs on 

gas exchange in wild type A. thaliana Columbia-0 (Col-0) plants purchased from Lehle 

Seeds Company (Waltham, Massachusetts). In a soil experiment, A. thaliana seeds were 

planted in soil (18 replicates of controls and CNTs) and treated with and without CNTs.  

CNT concentration was increased weekly from 10, 30, 90, 150, 190, to 250μg/ ml 

respectively, and delivered in a 1 ml solution in each pot each week. In a second 

experiment (petri dishe experiment), A. thaliana was grown in petri dishes (three 

replicates of controls, CNTs (4μg/ml), and Ag-QDs (4μg/ml)) on MS (Murashige and 

Skoog) medium. At three different growth days (14, 22, and 30), measurements were 

recorded for all 10 sets of a petri dishes.  

 

Seed and Soil Preparation and Measurement Methods for A. thalian Pot Experiment 

I plated A. thaliana seeds on 500 µl of 0.08% agar poured into six 

microcentrifuge tubes. The tubes were covered with tin foil and kept in a refrigerator for 

two days. To prepare soil for planting, I filled a pot with mixed potting soil that was 

obtained from Sun-Gro® Horticulture (San Diego, California). I washed the soil with 
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water to remove fungi and other materials that might exist in the soil as described by 

Lehle Seeds instructions. I repeated this step two to three times, and then left soil to dry. 

After the cleaning process, potting soil was placed in the Arraysystem pots, and five 

seedlings were transferred from the gel to the soil. 

I grew A. thaliana using Arasystem which is designed by Arasystem for A. 

thaliana. This system included tray, pots, baskets, inverted cons, and con tubes. Some 

advantages of this system are that it reduces the effects of plant competition and enhances 

plant growth. Thirty-six pots were used for planting A. thaliana (18 replicate pots were 

prepared for controls and 18 replicate treatments of CNTs).  I filled baskets and I 

transferred 5 seeds from the gel to the soil. I covered the pots along tray with plastic and 

grew them on benches under photosynthetically active radiation of 150 µmol m-2 s-1 and 

under a cycle of 11hours light/13hours dark. After two weeks of germination, I reduced 

the number of seedlings in each basket to two plants. The plants were fertilized once a 

week from top soil after three weeks of germination. The baskets were moved around 

randomly to minimize the effect of confounding variables that might interact with the 

treatment.   

Gas exchange was measured using a LI-6400XT Portable Photosynthesis System 

equipped with 6 cm2 leaf chamber. The measurements were recorded at growth 

photosynthetically active radiation (PAR), which was 150 µmol m-2 s-1 and at saturating 

PAR (600 µmol m-2 s-1). Flow rate in chamber was set to 300 µmol s-1 and flow speed set 

to slow. 6 cm2 of leaves were placed in the cuvette chamber. Using a Decagon WP4C 

Dewpoint, potentiometer, I measured water potential of leaves after 43 and 91 days of 

growth. Leaf area was measured at 51d and 79 d using LI-3000C Portable Leaf Area 
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Meter. Leaf samples that I measured for water stress were different from leaf samples 

that I measured for leaf area. Therefore, I measured fresh and dry weight at each time I 

measured water stress and leaf area. For chlorophyll content, random leaves were 

measured non-destructively on growth days 86, 91, and 92 using a SPAD Chlorophyll 

Content Meter.  

 

Seed and Medium Preparation and Measurement Methods for Petri Dishes 

Experiment 

A. thaliana seeds (4 mg) for each petri dish were sterilized by placing them on a 

cone into a sterilized chamber. In a fume hood, a beaker containing bleach (100 ml) and 

Hydro chloric acid (HCL) (3 ml) was placed in the sterilized chamber. The sterilized 

chamber was kept in the fume hood for two hours to allow seeds being sterilized by the 

elevated chlorine gas from the beaker. 

Medium was prepared for 9 plates (3 controls, 3 CNTs, and 3 Ag-QDs; Table 1). 

In 18 clean flasks, Agar (0.2g) was added into each of 9 flasks, and distilled water was 

added into other 9 flasks for a total volume of ENP up to 5ml with concentration of 

4μg/ml. 5, 4.26 or 0.24 ml of water was added into each of the 3 flask for controls, CNTs, 

and Ag-QDs respectively. In a separate beaker, 3-Morpholinopropane-1-sulfonic acid 

(MOPS) buffer (0.225g) and MS salts (0.4875g) was dissolved in 135 ml of distilled 

water. The pH of the solution was adjusted to 7.0 by adding 100 ml of mM KOH and 

distilled water in amount that makes solution volume up to 180 ml. The solution (20 ml) 

was added to flasks containing agar. Flasks were autoclaved at 121°C for 20 minutes. 

After 20 minutes, agar flasks were placed in warm water bath set at 55 °C. For flasks 
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with water only, nanoparticle was added to each flask as described in Table 1. Flasks 

with unsterilized nanoparticles were supplemented with Amphotericin B and carbencillin 

to avoid bacterial or fungal contamination. The flasks were sonicated, and the agar 

containing flasks were poured into the flasks that contain the mixed nanoparticle with 

distilled water and held in the water in the sonicator to make sure that nanoparticles were 

evenly distributed within the medium. After 2 minutes, the flask composition was poured 

into the 9 plates and left to cool at room temperature.  

Seeds were sprinkled evenly onto each of 9 plates. The plates were sealed with 

parafilm and then placed in a refrigerator. After 3 days, the plates were taken out of the 

refrigerator and the parafilm was removed from each plate. An open zip-lock bag was 

used to cover the plates to prevent water loss from the medium or bacteria or fungi 

growth in the medium. The plates finally were placed in the growth chamber (Conviron 

Model Adaptis A1000-AR Chamber) at 21°C, 150 µmol m-2 s-1, short day cycle (10 hours 

light and 14 hours dark). Plates were rotated randomly each day within the growth 

chamber to avoid the difference effect associated with plate position within the chamber.  

Calibration, flow rate and speed, and IRGAs were set as it is indicated in the 

potting soil gas exchange measurements. Block temperature was controlled to be as same 

as leaf temperature. For light curve measurements, data was recorded at three light level 

(150, 500, 0 µmol m-2 s-1 respectively) and CO2 mixture of reference was maintained at 

400 µmol CO2 mol-1 air. On the other hand, CO2 level was set at 400, 700, or 0 µmol CO2 

mol-1 air, and light intensity was maintained at 500 µmol m-2 s-1 for A-Ci curve 

measurements. Leaf area was set depending on how much of chosen Arabidopsis sample 

filled the space of the Licor cuvette. The selected sample including roots and leaves were 
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placed in the leaf chamber. Between 4 -6 cm2 of plants were placed on filter paper and 

then the sample was placed in the chamber.  

 

Light and A/Ci Response Curve Fitting Program   

A curve fitting program developed by Sharkey (2016), which is available online 

for free with instructions for use, was used to estimate variables associated with light and 

Calvin cycle reactions. For light response curve, the users need to enter T leaf (leaf 

temperature), Patm (atmospheric pressure), Rd (day respiration), ambient O2, gm values, A 

(photosynthesis rate), Ci (intracellular concentration) and light intensity. The mean values 

of T leaf, photosynthesis rate, intracellular CO2 concentration, which were recorded by 

the Licor for each treatment in each day, were entered in this Excel sheet. Light intensity 

(0, 150, and 500 µmol m-2 s-1) was assigned next to each data point. Rd was assigned as 

the data points measured at the lowest light intensity (PAR=0 µmol m-2 s-1). Patm 

=101.3kPa at 0 elevation, O2 =21kPa, and gm =2 μmol m-2 s-1 Pa-1 were kept constant for 

all treatments; note that it is better to indicate gm values that were directly measured or 

estimated by other methods, otherwise 2 is reasonable as it is indicated in the Microsoft 

model instructions. After adding these values, solver finds solutions and fits the data to 

the assigned points. This program estimates Jmax (electron transport rate at highest light 

level). Buckley & Diaz-Espejo (2015) suggest reporting Jmax as J and specifying the 

light level which it was measured as follows: write J with an explicit annotation for light 

intensity such as J500 to avoid error associated with using an asymptotic submodel (this 

model underestimate the true Jmax value), Φ>= 0.5 (initial slop for modeled J), and Θ >= 

1(convexity factor).  
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For A/Ci response curves, the users enter Tleaf, Patm, O2, A, Ci as they are indicated 

in the light response curve. In addition to these values, limiting factors are assigned as 

follows: rubisco=1, RUBP regeneration=2, and TPU=3. After assigning those values, 

solver calculates the following: Vcmax, J, TPU, Rd, and gm (the maximum carboxylation 

rate of Rubisco, rate of electron transport for the given light intensity, rate of triose 

phosphate use, day respiration, and mesophyll conductance, respectively).   

 

Statistical Methods  

I used ANOVA to examine the effects of CNTs and Ag-QDs on dry weight, leaf 

area, water potential, chlorophyll content, photosynthesis, intracellular CO2, stomatal 

conductance, transpiration, and water use efficiency rate measured at PAR levels of 150 

and 600 µmol m-2 s-1. For the pot experiment, each of these variables were applied as 

fixed factors, but growth days was a random factor because measurements were taken 

randomly on different growth days. For the petri dish experiment, the variables were 

applied as response, while treatments (control, CNT, and Ag-QD), and growth days (14, 

22, and 30 day) were applied as fixed factors. The interactions between treatments and 

growth days for each of the variables were also tested. Tukey's test for multiple 

comparison was run if P-value was significant (α=0.05).    
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RESULTS 

 

In my results, I included the variables that appeared to have major effects on 

carbon assimilation rates in my tables and figures. Other variables that might not affect 

carbon assimilation rates were included in the appendices.  

 

Carbon Assimilation and Intracellular Response to CNTs and Ag-QDs   

The results of gas exchange measurements indicate that A. thaliana grown in soil 

was not statistically affected by CNTs. While carbon assimilation rate at growth (150 

µmol m-2 s-1) and saturating light (600 µmol m-2 s-1) was lower by 15% and 12%, 

respectively, in CNT-grown plants relative to controls (Table 2), the rates were not 

statistically significantly different. Similarly, intracellular CO2 concentration at PAR= 

150 and 600 µmol m-2 s-1 was not statistically affected by CNTs.   

Carbon assimilation rate for A. thaliana grown in agar and treated with Ag-QDs 

was significantly decreased, with a 56% reduction compared to control grown plants, 

when measured at PAR 150, and 500 µ mol m-2 s-1. Carbon assimilation rate for CNT-

grown A. thaliana was lower by 21% when measured at PAR 150 µ mol m-2 s-1 and by 

23% at PAR 600 µ mol m-2 s-1. Carbon Assimilation rate reduction was identified further 

by the results that were obtained from intracellular CO2 concentration in Table 3. 

Intracellular CO2 concentration was significantly higher in Ag-QD-treated plants 

compared to controls and CNTs; however, CNTs did not statistically affect intracellular 

CO2 concentration. 
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Jmax, Vcmax, J, and TPU Response to CNTs and Ag-QDs 

Jmax values which was calculated from light response curve supported the 

indicated results about carbon assimilation rates that were measured at saturated light. 

Plants treated with Ag-QDs had significant lower Jmax compared to control plants (p-

value=0.001); however, Jmax in CNT-grown plants were not statistically different from 

controls. Quantum efficiency and convexity factors of Jmax were not statistically affected 

by these ENPs (Table 4).  

            The estimated parameters from A/Ci curve (J and TPU) that are associated with 

limited photosynthesis RUBP-regeneration and TPU were significantly low in both CNTs 

. Therefore, carboxylation rates response to partial A. thalianatreated -QD-Agand 

QDs and -ere obviously decreased by Agw 1-s 2-mol m µ400 and 700  at 2pressure of CO

CNTs. However, Arabodopsis treated with CNTs were fairly able to fix carbon efficiently 

by Rubisco as was noticed from A/Ci curve; therefore, Vcmax were not statistically low 

for CNT treated plants. In contrast, Ag-QDs grown plants had significant low Vcmax 

(Table 5).  

 

Light and A/Ci Responses Curve to CNTs and Ag-QDs  

Light response curve indicated that A. thaliana grown in CNTs and controls had 

about the same compensation points, and the rate of carbon assimilation matches the rate 

of respiration (Figure 1). Plants grown in Ag-QDs had a significantly lower required a 

slightly higher light level than plant grown in controls and CNTs to reach compensation 

point. Quantum efficiency of photosynthesis, which is represented by the curve slope, 
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and the saturation points (rate of A at maximum light intensity) were marginally lower in 

CNT treated plants, while they were significantly low in Ag-QDs (Figure 1).  

A/Ci response curve indicated that plant grown in CNTs reached compensation 

point at the same concentration of CO2 as controls, but the compensation point occurred 

at higher supplemented rate of CO2 in Ag-QDs treated plants than in the other treatments. 

The slope of the curve which represents Rubisco activity was slightly shifted to the right 

side for CNT-grown A. thaliana, while it was greatly shifted for Ag-QDs from control 

slops. That is Rubisco was slowly carboxylated at low CO2 concentration in the Ag-QDs 

grown A. thaliana compared to controls, while Rubisco carboxylation was not apparently 

affected under treatment of CNTs. Carbon assimilation rate response to CO2 >400 

indicated that RUBP-regeneration was highly affected by Ag-QDs than CNTs. Similarly, 

at saturated point which represent TPU activity, Ag-QDs grown A. thaliana had lower 

carbon assimilation rate than CNTs treated plants relative to controls (Figure 2). 

 

 Stomatal Conductance, Transpiration Rate, and Water Use Efficiency Response to 

CNTs and Ag-QDs 

My results indicated that CNTs, either in soil or agar, and Ag-QDs in agar did not 

affect stomatal conductance (g), and transpiration rate (E) of A. thaliana (Appendix 

A&B). Since CNTs and Ag-QDs did not cause a reduction in the rate of stomatal 

conductance, CO2 were not limited by g. Then, CO2 should be available for Calvin cycle 

to run the reactions in all treated A. thaliana. In addition, my statistical results indicated 

that there were effects of Ag-QDs on water use efficiency (WUE) (Appendix B). The 
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effect of Ag-QDs on WUE was particularly referred to carbon assimilation rates (A) 

response to Ag-QDs, but not g or E, since they both did not affect gas exchange.  

There was an effect of time (14, 22, or 30 days of growth) on assimilation rates 

and TPU (Appendix C & D). However, I found no interaction between treatments and 

growth days, which means that photosynthesis response to the treatments is independent 

of number of days of growth. However, the effects of CNTs and Ag-QDs were most 

obvious after 22 days of growth. In contrast, on the growth day30, carbon assimilation 

rate was lower than on day14 and 22. In this growth day (30), the plants started flowering 

and most of the energy is consumed for reproductivity rather than building sugar; thus, 

carbon assimilation rate was very low. 

 

Chlorophyll Content, Leaf Area, Dry Weight, and Water Potential Response to 

CNTs for A. thaliana Grown in Soil 

With my results that were indicated about the effects of CNTs on carbon 

assimilation rates of A. thaliana grown in soil, I supported these results with more 

information about plant chlorophyll contents which were determined by measuring the 

greenness of A. thaliana leaves. CNTs did not induce negative effects on A. thaliana 

chlorophyll content, so that allowed the plant to absorb photons from light and transfer 

excitation energy through chlorophyll pigments without affecting processes that involved 

in the light reactions. More evidence about the effects of CNTs on A. thaliana grown in 

soil was provided from my results on the plant leaf area and dry weight. Leaf area and 

dry weight were not affected under exposure of CNTs. Therefore, specific leaf area 

which is indicator of leaf thickness were not affected by CNTs. There were no effects of 
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these nanoparticles on water potential (WP) for A. thaliana grown in soil and agar, so A. 

thaliana were not water stressed under exposure to CNTs and Ag-QDs. However, there 

was time effect on WP for A. thaliana grown in agar resulted in the different of plant 

growth speed in different growth days (Appendix E). ANOVA table in Appendix F 

indicated the statistical effects of CNTs on the indicated variables in Appendix E and all 

variables indicated in Tables 2, 3, 4, and 5, and Appendices A, B, C, D.   
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DISCUSSION 

 

The effect of engineered nanoparticles on photosynthetic rates and photosynthetic 

reactions have been reported in only a few studies (Line et al., 2009; Matorin et al., 2010; 

Ze et al., 2011; Tang et al., 2013; Giraldo et al., 2014; Oukarroum et al., 2015; Wang et 

al., 2015; Thakkar et al., 2016). I evaluated the effects of two engineered nanoparticles 

on a number of photosynthetic processes: photosynthetic rate (A), intracellular CO2 

concentration (Ci), stomata conductance (g), transpiration rates (E), and water use 

efficiency (WUE)). In addition, I examined a number of processes that limit 

photosynthetic reactions: maximum rate of electron transport at saturating light (Jmax), 

initial slope of J (Φ), convexity factor (Θ) and A/Ci response curve (maximum 

carboxylation rate (Vcmax), photosynthetic electron transport rate (J), triose phosphate 

use (TPU) to provide evidence about nanotube effect on the process involve in the light 

and dark reaction of A. thaliana.    

I found that Ag-QDs had a greater negative effect on variables that limit 

photosynthetic assimilation. On the other hand, A. thaliana processes that involve in the 

light and dark reaction were less affected by CNTs.   

With my data that shows less effect of CNTs on A. thaliana than Ag-QDs, 

Shen et al., (2010); Wang et al., (2014); Landa et al., (2015) who did analysis on gene 

expression level of A. thaliana treated with different type of nanotubes that induced plant 

stress reported a high amount of change in the gene expression involved in oxidative 

stress and defense-winding pathogens were upregulated. In addition, Nair & Chung 

(2014) found that Ag-NPs (0.2 and 0.5 mg/L) induced modulation of PCNA and MMR 
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gene expression that associated with oxidative stress in A. thaliana seedlings after 24 and 

72 exposure of Ag-NPs. In our experiment, A. thaliana stress induced by Ag-QDs could 

be resulted in up regulation of a high number of same the indicated stress related genes.   

   

CNTs Effect on Carbon Assimilation Rate in the Pot Experiment and Petri Dishes 

Experiment  

Carbon assimilation rate of A. thaliana grown in soil and MS medium treated with 

CNTs was not inhibited. However, photosynthesis rate was slightly decreased compared 

to controls by 15% and 12% at ambient and maximum light intensity respectively for A. 

thaliana grown in soil and by 21% and 23 at ambient and maximum light intensity 

respectively for A. thaliana grown in agar (Table 2&3). A similar response of 

Polyboroides radiatusand and Sorghum bicolor was reported by Aslani et al., (2014) who 

indicated that plants grown in agar was more susceptible to nanotube toxicity effects than 

plants grown in soil. However, CNTs did significantly influence carbon assimilation in 

either medium.  

Matorin et al., (2010); Oukarroum et al., (2015); Thakkar et al., (2016) reported 

the negative effects of CNTs at concentrations of 20 mg/L and 1000 µg/Ml on 

photosynthesis and chlorophyll content of algae. In my study, there is a reduction in 

photosynthetic rate, but statistically, CNTs did not affect A. thaliana. However, my data 

indicated significant effect of CNTs in MS medium on J and TPU. Therefore, the 

reduction in photosynthetic rates are mainly due to effects on Calvin cycle reactions. 
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Nair & Chung (2014) also indicated that Ag-NPs with concentrations of 0.5 and 1 

mg/L induced significant reduction in total chlorophyll content of A. thaliana grown in 

Hoagland’s medium. Consistent with this, A. thaliana treated with Ag-QDs exhibited 

yellow color in their leaves, so that chlorophyll content basically could be negatively 

affected by these nanoparticles.  

 

Carbon Assimilation Rate Response to Ag-QDs Treated A. thaliana   

I found that Ag-QDs reduced carbon assimilation rates by 56% (Table 3). This is 

consistent with Lin et al., (2009) who reported that assimilation rates were reduced in 

Anabaena spherica. In addition, Wang et al., (2015) found that chlorophyll a and b 

contents, net rates of photosynthesis, intercellular CO2 concentration, leaf stomatal 

conductance and transpiration rate were reduced by more than 50% in A. thaliana grown 

in soil containing ZnO NPs (300 mg/L) for 6 weeks. In addition, they reported that genes 

associated with oxidative stress and toxicity caused the reduction in chlorophyll expression 

and carbon assimilation. Consistent with this, my data for A. thaliana grown in MS medium 

indicated reduction of carbon assimilation rate by 56%, but intracellular CO2 concentration 

is significantly increased in Ag-QDs treated plant which means that CO2 is not captured 

efficiently and this supported by estimated parameters calculated from A/Ci curve, which 

will be discussed later. The reduction in carbon assimilation rate induced by Ag-QDs 

possibly due to up regulation of genes involve in oxidative stress as Wang indicated. 

However, my data were not identical with Wang findings for stomatal conductance, and 

transportation rate. In my study these two variables were not affected by both treatments 

Ag-QDs and CNTs in both soil and MS medium.  
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Ag-QDs and CNTs Effect on Light Reaction Processes 

  Responses of photosynthesis to light can be explained by the estimated 

parameter of Jmax which can be determined by the equation:  

   

Jmax provides information about a theoretical maximum electron transport rate that 

supports NADP+ reduction (Sharkey 2016). I found that Jmax was reduced by 51% 

(Table 4); thus, Ag-QDs probably affected electron carrier's occupation and induce 

inhibition in NADPH production. Yan et al., 2013, explained that electrons that are not 

delivered to NADP+ go to the Mehler reaction and this causes an increase in reactive 

oxygen species and PS1 photoinhibition. However, Jmax value of CNTs is decreased by 

23%, so this nanotube does not greatly affect NADP+ reduction as much as Ag-QDs 

appears to. Beside the effect of Ag-QDs on NADPH, Ag-QDs probably affected ATP 

generation which is an important reaction for producing H+ that generate a chemismotic 

gradient in the grana lamella and permits ATP synthases for interaction between ADP 

and Pi to make up ATP (Taiz & Zeiger, 2002). 

 

Ag-QDs and CNTs Effect on Calvin Cycle Reactions 

There is no literature reporting the effects of nanotubes on Calvin cycle reactions. 

I found that, by using A/Ci response curves that Rubisco, RUBP- regeneration, and TPU 

activity were inhibited under treatment of Ag-QDs (Figure 2). The three limiting factors 

in CNT treated A. thaliana were slightly reduced compared with Ag-QDs effect. 

The carbon fixation process was affected by the inhibition process of the light 

reaction that was discussed. The source of energy (NADPH and ATP), which is 

J=
(A+Rd)(4Cc+8G*)

(Cc-G*)
.J=

Jmax+fi- (Jmax+fi)
2-4QJmaxfi

2Q
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regenerated from the light reaction, is the component for running Calvin cycle. Due to the 

inhibition of producing NADPH induced by Ag-QDs, the expected response from Calvin 

cycle is to fix carbon inefficiently. RUBP-regeneration is the limited photosynthesis 

associated with electron transport rate that used to support NADP+ reduction (Sharkey, 

2015). Thus, RUBP-regeneration limited photosynthesis is affected by light condition. 

The reduction of TPU could be related to one of the genes that were down regulated and 

involved in transporting carbohydrate. The decrease in this gene expression probably 

affected the use of TPU for exporting sugar. Therefore, TPU declined in the treated 

plants.  

 

Information Supports Ag-QDs Negative Effects on Carbon Assimilation Rate 

The negative effect of Ag-QDs occurs inside plant leaves. This is unsurprising 

since Yeonjong et al., (2015) found that QDs were absorbed through roots and traveled to 

A. thaliana leaves, leading to leaf stress. In addition, Alimohammadi et al., (2011) 

detected a fluorescence of QD in tomato leaves. Ag-QDs reached the plant leaves 

possibly by traveling from root endoderm via apoplastic path way or plasmodesmata as 

how ZnO nanoparticle entered Lolium perenne (Lin & Xing, 2008). Endocytosis or 

binding QDs with protein carrier are other mechanisms to deliver QDs into plant leaves. 

In addition, arginine-rich intracellular delivery peptides were identified as way for QDs 

to travel inside plant cell (Liu et al., 2010).   

 Ag-NPs was reported to have a negative effect on absorbing nutrients by blocking 

intracellular communication or presence of Ag+ ions, which were released from Ag-NPs, 

affecting nutrient carrier proteins function (Geisler-Lee et al., 2014; Zuverza-Mena et al., 
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2016). It is possible that Ag-QDs affect nutrient uptake if they aggregate around plant 

cells. However, my data shows significant decrease in the photosynthesis activity that 

occurs in the plant leaves and agreed with other studies which detected QD fluorescence 

signals in the plant leaves. In addition, a gene encoding a phosphatase for preventing 

early leaf senescence were up regulated. The other reason of not considering the indicated 

negative effect of Ag-NPs on nutrient uptake is that Geisler-Lee et al., (2014) found that 

the Ag-NPs impact on nutrient uptake occurred in the late of plant growth stage, but the 

effect of Ag-QDs in my study appeared in early stage of plant. Over all, for my study, the 

main effect of Ag-QDs on A. thaliana appeared on carbon assimilation rate.  
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Table 1. Amount and concentration prepared for each treatment 

  

Plates Water Silver or 
CNT 

Total   

Control x 3 5.0 mL x 3 0 25 mL x 3  

CNT x 3 at 4 μg/mL (starting 
concentration 135 μg/mL)  

4.26 mL x 3 0.740 mL x 3 25 mL x 3  

Ag-QD x 3 at 4 μg/mL (starting 
concentration 21 μg/mL)  

0.24 mL x 3 4.76 mL x 3 25 mL x 3   

Total: 9 plates 28.5 mL  225 mL  
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Table 2. Mean ± (SE) for carbon assimilation rate and intracellular CO2 concentration      
 
 

 

a Aamb, ambient photosynthesis at light intensity PPFD=150 µmol m-2 s-1; b Amax, 
maximum photosynthesis at PPFD=600 µmol m-2 s-1; c Ci amb, intracellular CO2 
concentration at PPDF= 150 µmol m-2 s-1; d Ci max, intracellular CO2 concentration at 
PPDF=600 µmol m-2 s-1. The indicated variables for A. thaliana (n=10) grown in soil are 
not significantly different (P < 0.05) between treatments (control and CNT at 250 μg/ml). 
Values are means ± SE, and the treatments that share the same letters (a) are not 
significantly different. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CNT Control Variables 

1.47 ± 0.234 a 
 
 

1.73 ± 0.355 a 
 
 

a Aamb (µmol CO2 m-2 s-1) 

2.43 ± 0.377 a 
 
 

2.79 ± 0.491 a 
 
 

b Amax (µmol CO2 m-2 s-1) 
 
 251.4 ± 26.2 a 

 
256.2 ± 9.84 a c Ci amb (µmol CO2 mol-1 air) 

213.2 ± 16.7 a 
 

178.9 ± 13.7 a 
  

d Ci max (µmol CO2 mol-1 air) 
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Table 3. Mean ± (SE) for carbon assimilation rate and intracellular CO2 concentration  
 

 

a Aamb, ambient photosynthesis at light intensity PPFD=150 µmol m-2 s-1; b Amax, 
maximum photosynthesis at PPFD=500 µmol m-2 s-1; c Ci amb, intracellular CO2 
concentration at PPDF= 150 µmol m-2 s-1; d Ci max, intracellular CO2 concentration at 
PPDF=500 µmol m-2 s-1. The indicated variables for A. thaliana grown in petri dish are 
not significantly different (P < 0.05) between control and CNT at 4μg/ml and 
significantly different between control and Ag-QD at 4μg/ml. Values are means ± SE 
(n=83) and the letters (a/b/c) indicate the significant difference between treatments. The 
treatments that do not share the same letters are significantly different. 
 
 

 

 

 

 

 

 

 

 

 

 

 

Ag-QD CNT Control Variables 

 1.96 ± 0.127 b 
  
 
 

 3.55± 0.224 a 
 
 

  4.54 ± 0.315 a 
 

a Aamb (µmol CO2 m-2 s-1) 

 2.59 ± 0.171 b 
  
 
 

 4.52 ± 0.266 a 
  
 
 

  5.92 ± 0.456 a 
  
 
 

b Amax (µmol CO2 m-2 s-1) 

376.08 ± 2.02 b 
 
 

364.33 ± 2.42 a 
 
 

 364.00 ± 2.90 a 
 
 

c Ci amb (µmol CO2 mol-1 air) 

371.25 ± 2.44 b 
 
 

358.87 ± 2.52 a 
 
 

  357.70 ± 3.37 a 
 
 

d Ci max (µmol CO2 mol-1 air) 
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Table 4. Mean (±SE) for estimated parameters from light response curve 

 
*Jmax, maximum rate of electron transport at saturating light; Φ, initial slope of J; Θ, 
convexity factor. Arabidopsis (n=30) grown in petri dish are not significantly different (P 
< 0.05) between control and CNT at 4μg/ml (P=0.081), and significantly different 
between control and Ag-QD at 4μg/ml (P=0.001). There is no significant difference 
between treatments in Φ and Θ. The letters (a/b) indicate the significant difference 
between treatments. The treatments that do not share the same letters are significantly 
different. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ag-QD CNT Control *Variables 

21 ± 2.25 b 33 ± 2.97 ab 43 ± 4.38 a Jmax (µmol m-2 s-1) 

0.3373 ± 0.0461 a 
  

0.3973 ± 0.0381 a 
  

0.4358 ± 0.0169 a 
 
 

Φ 

0.3815 ± 0.0606 a 
  

0.4994 ± 0.0590 a 
  

0.5850 ± 0.0641 a 
 

Θ 
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Table 5. Mean ± (SE) for Estimated Parameters from A-Ci-Curve Fitting Program 
 

 
*Vcmax, maximum carboxylation rate; J, photosynthetic electron transport at the 
measured light intensity; TPU, triose phosphate use. J and TPU are significantly different 
(P < 0.05) between treatments (control, CNT at 4μg/ml  and Ag-QD at 4μg/ml). Values 
are means ± SE (n=30) and the letters (a/b/c) indicate the significant difference between 
treatments. The treatments that do not share the same letters are significantly different. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

Ag-QD CNT Control *Variables 

45 ± 2.62 b 
 
 

53 ± 2.79 a 
 
 

56 ± 0.18 a 
 
 

Vcmax (µmol m-2 s-1) 
  
 39 ± 2.12 c 

 
 

53 ± 2.79 b 
 
 

64 ± 1.96 a 
 
 

J (µmol m-2 s-1) 

2.8± 0.16 c 
 

3.5 ± 0.19 b 
 

4.4 ± 0.21 a TPU (µmol m-2 s-1) 
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Figure 1. Mean carbon assimilation responses of A. thaliana (n=30) in controls (circles, 
and lines), CNTs (squares and dashed lines), and Ag-QDs (triangles and doted lines) in 
all growth days (14, 22, and 30) plotted against photon flux density. SE are shown at each 
symbol. 
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Partial Pressure of CO2 ( mol m-2 s-1)
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Figure 2. Carbon assimilation rate response of A. thaliana (n=30) in controls (circles and 
lines), CNTs (squares and dashed lines), and Ag-QDs (triangles and lines) in all growth 
days (14,22, and 30) plotted against partial pressure of CO2 (0, 400, and 700 µ mol m-2 s-

1).  SE are shown at each symbol. 
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APPENDICES 
 
 
 
Appendix A. Mean ± (SE) stomata conductance, transpiration rate, and water use 
efficiency for soil experiment  
 

 
a gamb; stomata conductance at PAR=150 µmol m-2 s-1, b gmax; stomata conductance at 
PAR= 600 µmol m-2 s-1, c Emax; transpiration rate at PAR= 150 µmol m-2 s-1, d Emax; 
transpiration rate at PAR= 600 µmol m-2 s-1, e Aamb/g water use efficiency at PAR =150 
µmol m-2 s-1, f Amax/g; water use efficiency at PAR= 600 µmol m-2 s-1, g Aamb/E; 
transpiration rate at PAR=150 µmol m-2 s-1, h Amax/E; transpiration rate at PAR= 600 
µmol m-2 s-1. The indicated variables for Arabidopsis grown in soil are not significantly 
different (P < 0.05) between treatments (control, CNT). Values are means ± SE (n= 10) 
and the treatments that share the same letters (a) are not significantly different. 
 
 
 
 
 
 
 
 
 
 

CNT Control Variables 

0.0226 ± 0.00543 a 
 

0.0217 ± 0.00374 a 
 
 
 
 

a gamb (mol CO2 m-2s-1) 

0.0244 ± 0.00428 a 
 

0.0246 ± 0.0059 a 
  
  
 

b gmax (mol CO2 m-2s-1) 

0.608 ± 0.131 a 
 
 
 

0.610 ± 0.101 a 
 
 

c E amb (mol H2O m-2s-1) 

0.683 ± 0.111 a 
 
 

0.710 ± 0.160 a 
 
 

d E max (mol H2O m-2s-1) 

76.8 ± 17.5 a 
 
 

77.19 ± 5.93 a 
 
 

e Aamb/g (µmol CO2 mol-1 CO2 m-2 s-1) 

103.5 ± 10.8 a 
  
 

120.19 ± 9.73 a 
 
 

f Amax/g (µmol CO2 mol-1 CO2 m-2 s-1) 

2.747 ± 0.567 a 
 
 

2.732 ± 0.232 a 
 
 

g Aamb/ E (µmol CO2 mol-1 H2O m-2 s-1) 
 

3.631 ± 0.319 a 
  
 

4.087 ± 0.258 a 
 
 

h Amax/ E (µmol CO2 mol-1 H2O m-2 s-1) 
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Appendix B. Mean ± (SE) stomata conductance, transpiration rate, and water use 
efficiency for agar experiment 
 

 
 

a gamb; stomata conductance at PAR=150 µmol m-2 s-1, b gmax; stomata conductance at 
PAR= 600 µmol m-2 s-1, c Emax; transpiration rate at PAR= 150 µmol m-2 s-1, d Emax; 
transpiration rate at PAR= 600 µmol m-2 s-1. 
e Amax/g; water use efficiency at PAR= 600 µmol m-2 s-1, f Amax/E; transpiration rate at 
PAR= 600 µmol m-2 s-1 are not significantly different (P < 0.05) between control and 
CNT at 4μg/ml and significantly different between control and Ag-QD at 4μg/ml. Values 
are means ± SE (n= 10) and the letters (a/b) indicate the significant difference between 
treatments. The treatments that do not share the same letters are significantly different. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Ag-QDs CNTs Control Variables  

0.598 ± 0.139 a 
 

 

0.613 ± 0.110 a 
 

 

0.719 ± 0.128 a 
 

 

a gamb (mol CO2 m-2s-1) 

0.709 ± 0.159 a 
 
 

0.513 ± 0.072 a 
 
 

0.667 ± 0.109 a 
 
 

b gmax (mol CO2 m-2s-1) 

7.096 ± 0.723 a 
 

5.831 ± 0.361 a 
 

7.170 ± 0.530 a c E amb (mol H2O m-2s-1) 

7.156 ± 0.696 a 
  

5.821 ± 0.321 a 
 

7.303 ± 0.515 a 
  

d E max (mol H2O m-2s-1) 

7.96 ± 1.20 b 
 

12.64 ± 1.44 a 
 

 14.02 ± 1.77 a 
 

e Amax/g (µmol CO2 mol-1 CO2 
m-2 s-1) 

0.47 ± 0.056 b 0.79 ± 0.055 a 0.88 ± 0.073 a f Amax/ E (µmol CO2 mol-1 

H2O m-2 s-1) 
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Appendix C. Mean ± (SE) for photosynthesis response to treatments for each 
growth day 
 

 
 
*Aamb, ambient photosynthesis at light intensity PPFD=150 µmol m-2 s-1 and Amax, 
maximum photosynthesis at PPFD=500 µmol m-2 s-1 which were measured under 
ambient CO2 (400 µmol CO2 mol-1 air) are not significantly different P < 0.05 between 
control and CNT and significantly different between control and Ag-QD on growth days 
(14, 22, and 30). the letters (a/b) indicate the significant difference between treatments. 
The treatments that do not share the same letters are significantly different. Sample size 
for each growth day (14, 22, 30) is n= (39, 35, and 18) respectively.   
 
 
 
 

 
 
 
 
 
 
 
 
 
 

  
 
 

 

`Ag-QD CNT Control Growth 
Days 

*Variables 

1.62 ± 0.12 b 3.36 ± 0.36 a 4.30 ± 0.39 a 14 Aamb (µmol CO2 m-2 s-1) 

2.23 ± 0.16 b 
 
 
 

4.18 ± 0.42 a 
 
 

5.31 ± 0.49 a 
 
 

14 Amax (µmol CO2 m-2 s-1) 
 
 2.72 ± 0.22 b 

 
 

4.51 ± 0.29 a 
 

5.92 ± 0.65 a 
 

22 Aamb (µmol CO2 m-2 s-1) 
 
 

 
3.32 ± 0.21 b 

 

 
5.62 ± 0.36 a 

 

 
7.91 ± 0.95 a 

 

 
22 

 
Amax (µmol CO2 m-2 s-1) 
 
 1.86 ± 0.26 b 

 
2.92 ± 0.24 ab 

 
3.88 ± 0.41 a 

 
 

30 Aamb (µmol CO2 m-2 s-1)  

2.81 ± 0.53 b 
 
 

3.90 ± 0.19 ab 
 
 

5.56 ± 0.88 a 
 
 

30 Amax (µmol CO2 m-2 s-1) 
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Appendix D. Mean ± (SE) triose phosphate use response to treatments for each 
growth day 
 
 

 
*TPU, triose phosphate use are significantly different P < 0.05 between treatments 
(control, CNT, and Ag-QD), and growth days (14, 22, and 30). The letters (a/b) indicate 
the significant difference between treatments. The treatments that do not share the same 
letters are significantly different. Sample size for each growth day (14, 22, 30) is n= (39, 
35, and 18) respectively.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 

`Ag-QD CNT Control Growth 
Days 

*Variables 

2.8 ± 0.26 b 3.7 ± 0.204 ab 4.5 ± 0.19 a 14 TPU (µmol m-2 s-1) 

2.9 ± 0.11 b 
 
 
 

3.5 ± 0.15 ab 
 
 

4.8 ± 0.19 a 
 
 

22 TPU (µmol m-2 s-1) 

2.4 ± 0.41 b 
 
 

2.9 ± 0.72 b 
 

3.6 ± 0.78 
ab 
 

30 TPU (µmol m-2 s-1) 
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Appendix E. Graphs. Chlorophyll content, leaf area, dry weight, and water 
potential  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chlorophyll content of Arabidopsis (n= 26) for each treatment (Control and CNT) in all 
growth days. The bar error is the mean of standard error for each treatment.           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Leaf area of Arabidopsis (n=18) for each treatment (Control and CNT) in all growth 
days. The bar error is the mean of standard error for each treatment.   
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Dry weight (DW) of Arabidopsis (n= 18) for each treatment (Control and CNT) in all 
growth days. The bar error is the mean of standard error for each treatment.           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Water potential (WP) of Arabidopsis (n= 12) for each treatment (Control and CNT) in all 
growth days. The bar error is the mean of standard error for each treatment.           
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Water potential (WP) of Arabidopsis (n= 79) for each treatment (Control, CNT and, Ag-
QD) in each growth day (14, 22, and 30). The bar error is the mean of standard error for 
each treatment.           
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Appendix F. ANOVA tables  
 
ANOVA table for ambient CO2 assimilation rate data (Aamb) at light level (PAR=150 
µmol m-2 s-1). The test used for ANOVA is general linear model with a significant level 
p-value < 0.05 and sample size (n= 10). Treatments (Control and CNT) and growth days 
(63 and 83) were treated as fixed factors. 
  

 

Source                   DF   Adj SS   Adj MS   F-Value   P-Value 

 

 Treatment               1   0.12502   0.12502     0.23    0.651 

 Growth Days             1   0.04736   0.04736     0.09    0.780 

 Treatment*Growth Days   1   0.25355   0.25355     0.46    0.523 

 Error                   6   3.31369   0.55228 

Total                   9   3.77886     

 
 
ANOVA table for maximum CO2 assimilation rate data (Amax) at light level (PAR=600 
µmol m-2 s-1). The test used for ANOVA is general linear model with a significant level 
p-value < 0.05 and sample size (n= 9). Treatments (Control and CNT) and growth days 
(63 and 83) were treated as fixed factors. 
 
 

Source                   DF   Adj SS   Adj MS   F-Value   P-Value 

 

 Treatment               1   0.31504   0.31504     0.29    0.613 

 Growth Days             1   0.05256   0.05256     0.05    0.834 

 Treatment*Growth Days   1   0.28183   0.28183     0.26    0.632 

 Error                   5   5.41668   1.08334 

Total                  8   6.01887 

 

 
 
ANOVA table for intracellular CO2 rate data at light level (PAR=150 µmol m-2 s-1). The 
test used for ANOVA is general linear model with a significant level p-value < 0.05 and 
sample size (n= 10). Treatments (Control and CNT) and growth days (63 and 83) were 
treated as fixed factors. 
 
 

Source                   DF   Adj SS   Adj MS   F-Value   P-Value 

Treatment               1     369.6   369.6      0.25    0.633 

Growth Days             1    3424.4   3424.4     2.35    0.176 

Treatment*Growth Days   1    3448.4   3448.4     2.36    0.175 

Error                   6    8753.0   1458.8 

Total                   9   15684.7 

 

 
 
 
 



47 

ANOVA table for intracellular CO2 rate data at light level (PAR=500 µmol m-2 s-1). The 
test used for ANOVA is general linear model with a significant level p-value < 0.05 and 
sample size (n= 9). Treatments (Control and CNT) and growth days (63 and 83) were 
treated as fixed factors. 
 
  

Source                   DF   Adj SS   Adj MS   F-Value   P-Value 

 

 Treatment                 1   1848.2   1848.2     2.32    0.188 

 Growth Days               1   3261.0   3261.0     4.09    0.099 

 Treatment*Growth Days     1    357.4   357.4      0.45    0.533 

Error                     5   3988.9   797.8 

Total                     8   10442.3 

 

 
 
ANOVA table for stomata conductance data at light level (PAR=150 µmol m-2 s-1). The 
test used for ANOVA is general linear model with a significant level p-value < 0.05 and 
sample size (n= 10). Treatments (Control and CNT) and growth days (63 and 83) were 
treated as fixed factors. 
 
 

Source                   DF    Adj SS    Adj MS    F-Value   P-Value 

 

 Treatment               1    0.000002   0.000002     0.02    0.900 

 Growth Days             1    0.000000   0.000000     0.00    0.993 

 Treatment*Growth Days   1    0.000137   0.000137     1.12    0.330 

 Error                   6    0.000733   0.000122 

Total                   9    0.000873 

 

 
 
ANOVA table for stomata conductance data at light level (PAR=500 µmol m-2 s-1). The 
test used for ANOVA is general linear model with a significant level p-value < 0.05 and 
sample size (n= 9). Treatments (Control and CNT) and growth days (63 and 83) were 
treated as fixed factors. 
 
 

Source                   DF    Adj SS    Adj MS   F-Value   P-Value 

 

Treatment                1   0.000002   0.000002     0.01    0.911 

Growth Days              1   0.000017   0.000017     0.12    0.744 

Treatment*Growth Days    1   0.000053   0.000053     0.38    0.567 

Error                    5   0.000708   0.000142 

Total                    8   0.000784 
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ANOVA table for transpiration rate data at light level (PAR=150 µmol m-2 s-1). The test 
used for ANOVA is general linear model with a significant level p-value < 0.05 and 
sample size (n= 10). Treatments (Control and CNT) and growth days (63 and 83) were 
treated as fixed factors. 
 
 

Source                  DF    Adj SS      Adj MS     F-Value   P-Value 

 

Treatment               1     0.000032   0.000032     0.00    0.984 

Growth Days             1     0.000196   0.000196     0.00    0.961 

Treatment*Growth Days   1     0.087955   0.087955     1.15    0.324 

Error                   6     0.457284   0.076214 

Total                   9     0.545443 

 

 

 

ANOVA table for transpiration rate data at light level (PAR=500 µmol m-2 s-1). The test 
used for ANOVA is general linear model with a significant level p-value < 0.05 and 
sample size (n= 9). Treatments (Control and CNT) and growth days (63 and 83) were 
treated as fixed factors. 
 
 

Source                   DF    Adj SS    Adj MS    F-Value   P-Value 

 

Treatment                1    0.005270   0.005270     0.05    0.826 

Growth Days              1    0.012263   0.012263     0.13    0.738 

Treatment*Growth Days    1    0.045582   0.045582     0.47    0.525 

Error                    5    0.489445   0.097889 

Total                    8    0.553750 

 

 

 
 ANOVA table for water use efficiency (Aamb/g) data at light level (PAR=150). The test 
used for ANOVA is general linear model with a significant level p-value < 0.05 and 
sample size (n= 10). Treatments (Control and CNT) and growth days (63 and 83) were 
treated as fixed factors. 
 
  

Source                  DF   Adj SS   Adj MS    F-Value   P-Value 

 

Treatment               1    26.25    26.25      0.03    0.867 

Growth Days             1   826.80    826.80     0.97    0.364 

Treatment*Growth Days   1   862.75    862.75     1.01    0.354 

Error                   6   5133.28   855.55 

  Total                   9   6823.25 
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ANOVA table for water use efficiency (Aamb/E) data at light level (PAR=150 µmol m-2 
s-1). The test used for ANOVA is general linear model with a significant level p-value < 
0.05 and sample size (n= 10). Treatments (Control and CNT) and growth days (63 and 
83) were treated as fixed factors. 
 
 

 Source                  DF   Adj SS   Adj MS    F-Value   P-Value 

 

 Treatment               1   0.05914   0.05914     0.06    0.809 

 Growth Days             1   1.19838   1.19838     1.30    0.298 

 Treatment*Growth Days   1   0.77172   0.77172     0.84    0.396 

 Error                   6   5.53331   0.92222 

 Total                  9   7.50403 

 

 

 
ANOVA table for water use efficiency (Amax/g) data at light level (PAR=500). The test 
used for ANOVA is general linear model with a significant level p-value < 0.05 and 
sample size (n= 9). Treatments (Control and CNT) and growth days (63 and 83) were 
treated as fixed factors.  
 
 

Source                  DF   Adj SS   Adj MS   F-Value   P-Value 

 

Treatment               1   392.6    392.6     0.93    0.380 

Growth Days             1   826.5    826.5     1.95    0.221 

Treatment*Growth Days   1   391.3    391.3     0.92    0.380 

Error                   5   2116.4   423.3 

Total                   8   4068.4 

 

 
 
ANOVA table for water use efficiency (Amax/E) data at light level (PAR=500). The test 
used for ANOVA is general linear model with a significant level p-value < 0.05 and 
sample size (n= 9). Treatments (Control and CNT) and growth days (63 and 83) were 
treated as fixed factors. 
 
  

Source                  DF   Adj SS   Adj MS   F-Value   P-Value 

 

Treatment               1   0.2648   0.2648     0.95    0.375 

Growth Days             1   0.9087   0.9087     3.25    0.131 

Treatment*Growth Days   1   0.4037   0.4037     1.45    0.283 

Error                   5   1.3967   0.2793 

Total                   8   3.2930 
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ANOVA table for leaf area data. The test used for ANOVA is general linear model with a 
significant level p-value < 0.05 and sample size (n= 18). Measurements for controls were 
taken in growth days 51 and 79, and in the 79th for CNTs. Treatments (Control and CNT) 
were treated as fixed factors and growth days (63 and 83) as random factors. 
 
  
Source        DF   Adj SS   Adj MS   F-Value   P-Value 

 

 Treatment     1    0.00083   0.00083     0.02    0.900 

 Growth days   1    1.39401   1.39401    27.59    0.000 

 Error         15   0.75782   0.05052 

 Total        17   2.66305 

 

 

  
ANOVA table for dry weight data. The test used for ANOVA is general linear model 
with a significant level p-value < 0.05 and sample size (n= 18). Measurements for 
controls were taken in growth days 51 and 79, and in the 79th for CNTs. Treatments 
(Control and CNT) were treated as fixed factors and growth days (63 and 83) as random 
factors. 
  

 

Source        DF    Adj SS     Adj MS     F-Value   P-Value 

 

 Treatment     1    0.000010   0.000010     0.47    0.502 

 Growth days   1    0.000014   0.000014     0.66    0.429 

 Error         15   0.000320   0.000021 

Total         17   0.000336 

 

 
 
ANOVA table for specific leaf area data. The test used for ANOVA is general linear 
model with a significant level p-value < 0.05 and sample size (n= 18). Measurements for 
controls were taken in growth days 51 and 79, and in the 79th for CNTs. Treatments 
(Control and CNT) were treated as fixed factors and growth days (63 and 83) as random 
factors. 
  

 

Source         DF   Adj SS   Adj MS   F-Value   P-Value 

 

 Treatment      1    2379     2379      1.94    0.184 

 Growth days    1    11181    11181     9.10    0.009 

 Error          15   18426    1228 

Total          17   29630 
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ANOVA table for chlorophyll content data. The test used for ANOVA is general linear 
model with a significant level p-value < 0.05 and sample size (n= 26). Measurements for 
controls and CNTs were taken in growth day 86, 91, and 92. Treatments (Control and 
CNT) were treated as fixed factors and growth days (86, 91, and 92) as random factors. 
 

 

Source                 DF   Adj SS   Adj MS    F-Value   P-Value 

 

 Treatment              1    54.91     54.91     1.19     0.386 x 

 Growth day             2    1532.79   766.39    16.35    0.058 

 Treatment*growth day   2    93.76     46.88     1.94     0.170 

 Error                  20   483.13    24.16 

Total                  25   2216.83 

 

 

 
ANOVA table for water potential (WP) data. The test used for ANOVA is general linear 
model with a significant level p-value < 0.05 and sample size (n= 12). Measurements for 
controls and CNTs were taken in growth day 43 and 91. Treatments (Control and CNT) 
were treated as fixed factors and growth days (43, and 91) as random factors. 
 
  

Source        DF   Adj SS    Adj MS    F-Value   P-Value 

 

Treatment    1      0.24000   0.240000     0.93    0.359 

Growth day   1      0.00889   0.008889     0.03    0.857 

Error        9      2.31333   0.257037 

Total        11     2.76667 

 

 

ANOVA table for ambient CO2 assimilation rate data (Aamb) at light level (PAR=150) 
and in growth day 14. The test used for ANOVA is general linear model with a 
significant level p-value < 0.05 and sample size (n= 39). Treatments (Control, CNT and, 
Ag-QD) were treated as fixed factors. 
 
 

 

Source       DF   Adj SS   Adj MS   F-Value   P-Value 

 

  Treatments     2    48.01   24.003   18.67    0.000 

  Error         36    46.27   1.285 

 Total         38    94.28 
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ANOVA table for ambient CO2 assimilation rate data (Aamb) at light level (PAR=150). 
The test used for ANOVA is general linear model with a significant level p-value < 0.05 
and sample size (n= 83). Treatments (Control, CNT and, Ag-QD) and growth days (14, 
22, and 30) were treated as fixed factors. 
 
 
 Source                  DF   Adj SS     Adj MS     F-Value   P-Value 

 

   Treatment                2    80.572    40.2862    28.42      0.000 

   Growth Days              2    17.497    8.7487     6.17       0.003 

   Treatment*Growth Days    4    1.703     0.4258     0.30       0.877 

   Error                    74   104.904   1.4176 

 Total                    82   216.522 

 

 

 
ANOVA table for maximum CO2 assimilation rate data (Amax) at light level (PAR=500) 
and growth day 14. The test used for ANOVA is general linear model with a significant 
level p-value < 0.05 and sample size (n= 39). Treatments (Control, CNT and, Ag-QD) 
were treated as fixed factors. 
 
 
Source       DF   Adj SS   Adj MS   F-Value   P-Value 

 

 Treatment     2    63.17     31.586   16.58     0.000 

 Error        36    68.56     1.905 

Total        38   131.74 

 

 

 
ANOVA table for maximum CO2 assimilation rate data (Amax) at light level 
(PAR=500). The test used for ANOVA is general linear model with a significant level p-
value < 0.05 and sample size (n= 83). Treatments (Control, CNT and, Ag-QD) and 
growth days (14, 22, and 30) were treated as fixed factors. 
 
 
Source                   DF   Adj SS   Adj MS   F-Value   P-Value 

 

  Treatment               2   138.477   69.238    25.80    0.000 

  Growth Days             2   27.987    13.993    5.21     0.008 

  Treatment*Growth Days   4    4.832    1.208     0.45     0.772 

  Error                  74   198.596   2.684 

Total                   82   385.492 
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ANOVA table for intracellular CO2 data (Ci) at light level (PAR=150). The test used for 
ANOVA is general linear model with a significant level p-value < 0.05 and sample size 
(n= 83). Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) were 
treated as fixed factors. 
 
 
Source                   DF   Adj SS   Adj MS    F-Value   P-Value 

 

Treatment                2   2281.8    1140.88     6.75    0.002 

Growth Days              2    939.6    469.78      2.78    0.069          

Treatment*Growth Days    4    211.0    52.75       0.31    0.869 

Error                   74   12506.7   169.01 

Total                  82   16245.5 

 

 
  
ANOVA table for intracellular CO2 data (Ci) at light level (PAR=150) and growth day 
14. The test used for ANOVA is general linear model with a significant level p-value < 
0.05 and sample size (n= 39). Treatments (Control, CNT and, Ag-QD) were treated as 
fixed factors. 
 

 
Source       DF   Adj SS   Adj MS   F-Value   P-Value 

 

 Treatment    2     1332   665.9     3.17      0.054 

 Error        36    7554   209.8 

Total        38    8886 

 

 

 
ANOVA table for intracellular CO2 data (Ci) at light level (PAR=500). The test used for 
ANOVA is general linear model with a significant level p-value < 0.05 and sample size 
(n= 83). Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) were 
treated as fixed factors. 
 
 

Source                   DF   Adj SS   Adj MS   F-Value   P-Value 

 

 Treatment               2   2533.0    1266.48     5.75    0.005 

 Growth Days             2   1001.7    500.87      2.27    0.110 

 Treatment*Growth Days   4    260.2    65.06       0.30    0.880 

 Error                  74   16307.4   220.37 

Total                  82   20651.1 
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ANOVA table for stomata conductance data (g) at light level (PAR=150). The test used 
for ANOVA is general linear model with a significant level p-value < 0.05 and sample 
size (n= 83). Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) 
were treated as fixed factors. 
 

 

 

Source                   DF   Adj SS  Adj MS  F-Value  P-Value 

 

Treatment               2   0.4057   0.2029     0.50    0.611 

Growth Days             2   0.2321   0.1161     0.28    0.754 

Treatment*Growth Days   4   1.6296   0.4074     1.00    0.416 

Error                   69  28.2284  0.4091 

Total                   77  30.6189 

 

 
ANOVA table for stomata conductance data (g) at light level (PAR=500). The test used 
for ANOVA is general linear model with a significant level p-value < 0.05 and sample 
size (n= 83). Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) 
were treated as fixed factors. 
  

 
Source                   DF   Adj SS  Adj MS  F-Value  P-Value 

 

 

Treatment               2   0.7054    0.3527     0.98    0.381 

Growth Days             2   0.8364    0.4182     1.16    0.320 

Treatment*Growth Days   4   0.8302    0.2075     0.58    0.681 

Error                   71  25.6139   0.3608 

Total                   79  27.8618 

 

 

 
ANOVA table for transpiration rate data (E) at light level (PAR=150). The test used for 
ANOVA is general linear model with a significant level p-value < 0.05 and sample size 
(n= 83). Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) were 
treated as fixed factors. 
  

  
 

Source                   DF  Adj SS  Adj MS  F-Value  P-Value 

 

 Treatment               2   34.19    17.096     2.02    0.140 

 Growth Days             2   30.28    15.142     1.79    0.174 

 Treatment*Growth Days   4   22.64    5.660     0.67    0.615 

 Error                  74   625.83   8.457 

 Total                  82   709.37 
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ANOVA table for transpiration rate data (E) at light level (PAR=500). The test used for 
ANOVA is general linear model with a significant level p-value < 0.05 and sample size 
(n= 83). Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) were 
treated as fixed factors. 
 

  
Source                  DF   Adj SS   Adj MS   F-Value   P-Value 

 

 Treatment               2   38.78    19.391     2.50    0.089 

 Growth Days             2   24.75    12.373     1.59    0.210 

 Treatment*Growth Days   4   20.09     5.023     0.65    0.631 

 Error                  74   574.86    7.768 

Total                  82   655.99 

 

 
ANOVA table for water use efficiency (Aamb/g) at light level (PAR=150). The test used 
for ANOVA is general linear model with a significant level p-value < 0.05 and sample 
size (n= 83). Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) 
were treated as fixed factors. 
 
  
 

Source                   DF   Adj SS   Adj MS     F-Value   P-Value 

  

  Treatment               2    329.08    164.54     4.29    0.017 

  Growth Days             2    302.43    151.21     3.95    0.024 

  Treatment*Growth Days   4    71.37     17.84      0.47    0.761 

  Error                   74   2836.40   38.33 

  Total                   82   3648.29 

 

 

 

ANOVA table for water use efficiency (Aamb/E) at light level (PAR=150). The test used 
for ANOVA is general linear model with a significant level p-value < 0.05 and sample 
size (n= 83). Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) 
were treated as fixed factors. 
  
 

  Source                   DF  Adj SS   Adj MS  F-Value  P-Value 

 

  Treatment               2   1.7221   0.86104    15.97    0.000 

  Growth Days             2   0.2987   0.14936     2.77    0.069 

  Treatment*Growth Days   4   0.1192   0.02981     0.55    0.698 

  Error                   74  3.9910   0.05393 

  Total                   82  6.4304 
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ANOVA table for water use efficiency (A max/g) at light level (PAR=500). The test used 
for ANOVA is general linear model with a significant level p-value < 0.05 and sample 
size (n= 83). Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) 
were treated as fixed factors. 
  
 

Source                   DF   Adj SS   Adj MS   F-Value   P-Value 

 

 Treatment               2     413.49   206.75     3.27    0.043 

 Growth Days             2     202.13   101.06     1.60    0.209 

 Treatment*Growth Days   4     71.82    17.95      0.28    0.887 

 Error                  74    4672.85   63.15 

Total                  82    5499.86 

 

 
 
ANOVA table for water use efficiency (A max/E) at light level (PAR=500). The test used 
for ANOVA is general linear model with a significant level p-value < 0.05 and sample 
size (n= 83). Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) 
were treated as fixed factors. 
 

 

Source                   DF   Adj SS   Adj MS    F-Value   P-Value 

 

Treatment                2    2.0895   1.04477     9.58    0.000 

Growth Days              2    0.2405   0.12024     1.10    0.337 

Treatment*Growth Days    4    0.2136   0.05340     0.49    0.743 

Error                    74   8.0705   0.10906 

Total                   82   11.0334 

 

  
 
ANOVA table for maximum carboxylation (Vcmax). The test used for ANOVA is 
general linear model with a significant level p-value < 0.05 and sample size (n= 83). 
Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) were treated as 
fixed factors. 
 
 
Source                  DF   Adj SS   Adj MS   F-Value   P-Value 

Treatment              2    548.27   274.13    10.24    0.001 

Growth day             2    34.62    17.31     0.65     0.534 

Treatment*growth day   4    84.50    21.12     0.79     0.545 

Error                  21   562.05   26.76 

Total                 29   1281.12 
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ANOVA table for photosynthetic electron transport rate (J). The test used for ANOVA is 
general linear model with a significant level p-value < 0.05 and sample size (n= 83). 
Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) were treated as 
fixed factors. 
 

 
  Source                  DF   Adj SS   Adj MS     F-Value   P-Value 

 

  Treatment               2    2605.90   1302.95    24.22    0.000 

  Growth day              2    255.80    127.90     2.38     0.117 

  Treatment*growth day    4    63.61     15.90      0.30     0.877 

  Error                   21   1129.65   53.79 

  Total                   29   4595.31 

 

 
 
ANOVA table for triose phosphate use (TPU). The test used for ANOVA is general 
linear model with a significant level p-value < 0.05 and sample size (n= 83). Treatments 
(Control, CNT and, Ag-QD) and growth days (14, 22, and 30) were treated as fixed 
factors. 
 
 
Source                  DF   Adj SS   Adj MS   F-Value   P-Value 

 

Treatment              2    11.1039   5.5520    19.71    0.000 

Growth day             2    2.7821    1.3910     4.94    0.017 

Treatment*growth day   4    0.7554    0.1888     0.67    0.620 

Error                  21   5.9141    0.2816 

Total                  29   23.3817 

 

 
 
ANOVA table for maximum electron transport rate (Jmax). The test used for ANOVA is 
general linear model with a significant level p-value < 0.05 and sample size (n= 83). 
Treatments (Control, CNT and, Ag-QD) and growth days (14, 22, and 30) were treated as 
fixed factors. 
 

 
Source                  DF   Adj SS   Adj MS   F-Value   P-Value 

 

Treatment              2   2072.9    1036.45    9.25     0.001 

Growth day             2   487.9     243.94     2.18     0.138 

Treatment*growth day   4   135.0     33.76      0.30     0.874 

Error                 21   2352.8    112.04 

Total                 29   5426.7 
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ANOVA table for maximum electron transport rate (Jmax). The test used for ANOVA is 
general linear model with a significant level p-value < 0.05 and sample size (n= 56). 
Treatments (Control and CNT) and growth days (14, 22, and 30) were treated as fixed 
factors. 
 

 
Source                  DF   Adj SS   Adj MS   F-Value   P-Value 

 

Treatment               1   523.80    523.80    3.54      0.081 

Growth day              2   404.53    202.26    1.37      0.287 

Treatment*growth day    2   41.20     20.60     0.14      0.871 

Error                  14   2073.75   148.12 

Total                  19   3019.10 

 

 
 
ANOVA table for maximum electron transport rate (Jmax). The test used for ANOVA is 
general linear model with a significant level p-value < 0.05 and sample size (n= 55). 
Treatments (Control and Ag-QDs) and growth days (14, 22, and 30) were treated as fixed 
factors. 
 
 
Source                  DF   Adj SS   Adj MS    F-Value   P-Value 

 

Treatment               1    2072.87   2072.87   17.32    0.001 

Growth day              2    430.89    215.45    1.80     0.201 

Treatment*growth day    2    76.95     38.48     0.32     0.730 

Error                   14   1675.07   119.65 

Total                   19   4626.46 

 

 

 
ANOVA table for water potential (WP). The test used for ANOVA is general linear 
model with a significant level p-value < 0.05 and sample size (n= 79). Treatments 
(Control, CNT and, Ag-QD) and growth days (14, 22, and 30) were treated as fixed 
factors. 
 
 

Source                   DF   Adj SS   Adj MS    F-Value   P-Value 

 

 Treatment                2    0.3206   0.16028     1.87    0.162 

 Growth Days              2    1.0319   0.51597     6.01    0.004 

 Treatment*Growth Days    4    0.7702   0.19256     2.24    0.073 

 Error                    70   6.0105   0.08586 

Total                    78   9.5589 
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ANOVA table for dry weight. The test used for ANOVA is general linear model with a 
significant level p-value < 0.05 and sample size (n= 63). Treatments (Control, CNT and, 
Ag-QD) and growth days (14, 22, and 30) were treated as fixed factors. 
 

 

 

Source                   DF    Adj SS    Adj MS    F-Value   P-Value 

 

Treatment               2    0.000023   0.000012     0.04    0.962 

Growth Days             2    0.000588   0.000294     0.98    0.383 

Treatment*Growth Days   4    0.001055   0.000264     0.87    0.485 

Error                   58   0.017499   0.000302 

Total                   66   0.019300 
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