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ABSTRACT 

Next-generation sequencing technologies have provided access to vast quantities of 

nucleic acid sequence data. The resulting wealth of information enables biologists to 

address complex biological questions in species for which a high-quality well-annotated 

reference genome sequence has yet to be generated. The cultivated grapevine, Vitis 

vinifera, has a relatively poorly annotated reference genome. In addition, it is a highly 

heterozygous species which further hinders the annotation of its genome and the 

characterization of its transcriptome. Here, I annotated Version 2 of the 12X V. vinifera 

genome using RNA-seq data derived from the variety ‘Riesling’ by employing the most 

up-to-date computational methods. The results provide the first annotation of ‘Riesling’ 

and the first profile of its transcriptome in relation to the reference transcriptome of the 

model grape variety ‘Pinot Noir’. In addition, I develop a computational pipeline for the 

identification of long non-coding RNAs (lncRNAs) in non-model plant species that lack 

well-sequenced reference genomes. This pipeline was then applied to ‘Riesling’ RNA-

seq data for the first analysis of lncRNAs in that variety.  
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INTRODUCTION 

 

RNA-seq as a Tool for Transcriptome Characterization 

The Central Dogma of Molecular Biology states that, in living organisms, 

biological information stored in the form of DNA is transcribed into RNA, and then 

translated to protein. The protein is then directly responsible for the expression of a 

phenotype in the organism. This directionality in the flow of biological information was 

deduced even before the detailed molecular mechanisms of this process were understood 

[1]. The Central Dogma of Molecular Biology has been the ground work upon which 

molecular genetics has been built. The understanding of these mechanisms has shed light 

on the function of genes and the regulation of their expression. This insight, coupled with 

recent transcriptomics methods, most notably RNA sequencing (RNA-seq), lead to the 

identification of vast array of previously unknown types of genetic information and 

afforded us a global view of the genomic landscape in action. This new comprehensive 

and functional view of the genome paved the way for the discovery of vast amounts of 

transcriptional information and led to the recognition that gene regulation is immensely 

complex even in the simplest eukaryotic genome.   

The enabling technology behind RNA-seq was next-generation sequencing, the 

most common platform of which is the Illumina sequencing-by-synthesis method. The 

Illumina-based RNA-seq workflow starts with extraction of total RNA from the organism 

of interest. This is followed by the processing of the resulting sample to eliminate 

unwanted RNA species, such as rRNA or non-polyA RNA by such methods as ribo-

depletion or poly-A capture. The remaining molecules are then fragmented and primed 
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for amplification with random hexamers. Generated complimentary DNA (cDNA) are 

then tagged with adapters and barcoded. These adapters are then used as the basis for 

sample identification (indexing). The nucleotide sequence of the resulting adaptor-tagged 

cDNA fragments is then determined on an Illumina sequence analyzer in a massively 

parallel manner.  

The magnitude of the information produced poses a new problem to biologists as 

they try to find simultaneously precise and efficient ways of analyzing these data. In 

terms of RNA-seq analysis, two general methodologies exist for the interpretation of 

data: genome-guided and genome independent (or de novo) approaches. In the genome-

guided approach, sequences are aligned to a reference genome, assembled into 

transcripts, merged across assemblies, and analyzed for the biological question being 

addressed (Figure 1) [2–6]. These questions could range from the assembly of a novel 

transcriptome [7, 8] to studying differential gene expression under various treatment 

conditions [9, 10]. But the advent of new software now enables biologists to assemble 

transcripts de novo, that is, in the absence of a reference genome (demonstrated in Figure 

1) [11, 12]. This approach enables us to address questions in organisms for which 

reference genomes do not exist or are of poor quality, thereby expanding the reach of 

molecular biology to virtually any organism.  

The choice of analysis (whether genome-guided or genome-independent) often 

depends on the availability of computational resources and the genetic features of the 

organism under study. Genome-guided approaches are favored when computational 

resources are limited or when there is little expected nucleotide sequence variation in the 

organism of question. Genome-guided approaches can also be superior when sample-to-
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sample comparisons are made as the data are linked to some specific genomic 

coordinates. However, if the computational resources are available, de novo approaches 

facilitate the assembly of sequences in their own context and not in the preset context of 

the reference genome. This approach maximizes the ability to identify novel splice 

variants and pinpoint genetic variation between organisms. Whether the optimal approach 

is genome-guided or de novo is determined by the study organism and the biological 

question at hand.   

 

 

Figure 1. Algorithmic approaches to genome-guided and genome-independent 
transcriptome assembly.  

 

 

At present, various computer programs exist for the de novo assembly of 

transcriptomes. These include Bridger [13], Oases [14], SOAPdenovo-Trans [12], 
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TransAByss [15], and Trinity [11]. Reviews of the various software often conclude that 

choosing the optimal de novo assembler is to be based on what is valued in any given 

analysis [16, 17].  For example, using a single k-mer scheme, SOAPdenovo-Trans was 

able to outcompete both Trinity and Oases in gene construction at 95% coverage, but it 

paled in comparison to Trinity at 100% coverage and the ability to make use of strand-

specific information [12]. Analyses comparing polyploids to diploids demonstrated that 

Trinity was able to outperform SOAPdenovo-Trans at full-length gene assembly and 

performed better than TransAByss at assembling complex tetraploid transcriptomes [16]. 

In a killifish analysis, various tools were used under various k-mer strategies, and it was 

found that even using a single k-mer strategy, Trinity was still able to find the most full-

length transcripts [17]. 

 

Genome Annotation and Gene Model Prediction 

While this early step in the analysis of RNA-seq data is highly important, the 

downstream analysis of these data have the potential to answer highly complex questions 

that were previously unyielding to scientific inquiry. For example, they can be used to 

improve upon current genome annotations [18, 19], and train new gene prediction models 

[20, 21]. Genome annotation is the procedure of defining known genetic elements in 

genome space. For example, characterizing the locations of repetitive elements, and non-

coding and protein-coding gene spaces. Gene prediction can be accomplished by training 

machine learning algorithms and using higher-order statistical approaches to characterize 

regions of the genome that appear to have function. Together, these strategies can be used 

to address such wide-ranging tasks as functional annotation and genome evolution.    
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Genome annotation is hardly a trivial problem, as genome sizes can range from 

5.4 kbp in the case of the 𝜙X174 bacteriophage [22] to 23.2 Gpb in the case of the loblolly 

pine [23]. Defining any given genomic characteristic for either of these extremes 

represents a challenging computational problem. The two most common annotated spaces 

in genomes are repeated elements and gene spaces. Repeated elements often are 

identified by probing databases of previously described repeat elements using hidden 

Markov model approaches [24–26]. Gene spaces are often defined by alignments of 

expressed sequences to the reference genome. The characterization of both repeated 

elements and gene spaces tend to be computationally expensive, but can be accomplished 

successfully. Many curated genome databases [27, 28] employ their own algorithms to 

annotate genomes using the wealth of data they maintain. Smaller projects can benefit 

from software, such as Maker, that carry out the same processes relying on data in 

publicly accessible databases.  

While expressed sequence alignment to the genome provides evidence of gene 

models, they are often incomplete, as processes like alternative splicing alter gene space 

in a tissue- and development-specific manner. Several programs have been written to 

study aligned gene models and predict the presence of novel gene spaces. One widely 

used program, AUGUSTUS, uses Hidden Markov Models to draft potential gene 

structures. For example, each gene structure should contain several key items in a 

particular order including a start codon, some number of exons, donor splice sites, 

acceptor splice sites, introns, and a stop codon [21]. This statistical framework, coupled 

with aligned expressed sequence information, can inform the prediction of novel genes. 

Other programs, such as SNAP, have incorporated similar frameworks but tend to focus 
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more on such genome-specific features as AT- or CG-content in addition to splice sites 

[20].   

 

Non-Coding RNA Species 

Arguably, the most significant recent advance of molecular biology is the finding 

that an unexpectedly large portion of the nuclear genome is transcribed into RNA. In 

humans, the extent of transcribed information accounts for as much as ~80% of the entire 

genome [29]. Most of this information does not code for polypeptides. A subset of these 

non-coding RNA species has been known for several decades and were thought to play a 

supporting role in facilitating the flow of genetic information to proteins. Among these 

species were ribosomal RNA (rRNA) and transfer RNA (tRNA), both of which are 

strongly conserved across diverse branches of life. Subsequently, such short non-coding 

RNAs species have been discovered as micro-RNA (miRNA) [30, 31], short-interfering 

RNA (siRNA) [32], small nuclear RNA (snRNA) [33], small cajal body RNA (scaRNA) 

[34], and piwi-protein-interacting RNA (piRNA)[35], some of which play important gene 

regulatory roles, others are components of essential ribonucleoprotein complexes [36]. 

The function of many of these RNA species has been well characterized. For 

example, miRNA is processed from transcripts, termed pri-miRNA, cleaved by the 

RNase Type-III endonuclease DROSHA into precursor miRNA (pre-miRNA), which 

then is transported from the nucleus through exportin-5, and finally processed by a Dicer 

complex, resulting in 21 to 24 nucleotide-long miRNAs [37–39]. We also know the 

processes by which siRNA are processed[40], but the mechanism for the genesis of 

piRNA remains unknown. Some of these RNA species are not thought to be handled 
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uniformly across transcription, but may have more complex, variable processing patterns. 

Therefore, it is prudent to identify these species rather than look for large-scale pathways 

by which they are processed. Recent analyses have elucidated the presence of an entirely 

new category of non-coding transcripts, the long non-coding RNAs (lncRNAs) [36]. 

 

lncRNA Identification Pipelines and Techniques 

The key approach to the identification of non-coding RNA (especially long non-

coding RNA), is to assess the ability of the transcript to encode proteins [41–45]. The 

software Coding Potential Calculator (CPC) builds a support vector machine (SVM) 

based on six features. Three of these features rely on BLAST searches to identify most 

closely related homologs, and the remaining three features deal with the presence and 

quality of an open reading frame (ORF) [46, 47]. This method has been considered 

optimal, because it is relatively computationally inexpensive, requiring only a BLAST 

search and an ORF analysis.  

Other methods rely on the alignment of putative non-coding transcripts to 

transcripts derived from other biological species. This alignment allows the generation of 

phylogenetic trees whereby sequence information, branch length, tree topology and 

codon substitution are used to model coding potential [48]. The main program, named 

PhyloCSF, by which these methods are implemented is computationally expensive, 

taking nearly 50 hours to complete when implemented in a 60-way genome alignment on 

mammals [49]. The time required to complete PhyloCSF coupled with the lack of 

genomic information for many species makes this method excessively cumbersome for 

many biological analyses.  
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In addition to these analytical methods, there have been efforts to build models 

that rely on classifying sequences based on nucleotide frequencies alone. Two programs 

have attempted to analyze nucleotide frequencies in similar manners. The first program, 

named Coding Non-Coding Index (CNCI), uses adjoining nucleotide triplets (hexamers); 

the second, named PLEK uses k-mer frequencies where k can take on the value from 1 to 

5 [49, 50]. Both models calculate the frequency of nucleotide usage and use these 

frequencies to build a support vector machine. Using these frequencies, CNCI builds a 

model with up to 4,096 parameters, and PLEK builds a model with up to 1,394 

parameters. Both models have proved to be very effective in classifying species 

evolutionarily close to humans, but an analysis of distantly related taxa requires the use 

of new model-training data. Unfortunately, much of these data are unavailable or only 

predicted to be present.  

Current computational pipelines for the identification of lncRNAs employ some 

variation of a process starting with raw RNA-seq reads being aligned to a reference 

genome by a short read aligner, usually TopHat [5]. These alignments are used for the 

construction of transcripts via programs like Cufflinks [6]. These transcripts can then be 

used for homology searches using BLAST [47] or HMMER [51] against multi-species, 

highly collaborative, expansive reference databases [52, 53]. Known homologies are 

filtered out and further filtering is executed by one or more of the identification tools 

above.  

Efforts in the annotation of these regions in model organisms has been expansive. 

For example, ~1,600 lncRNA were identified in Mus musculus by analyzing chromatin-

state maps outside of known protein coding areas of the genome [54]. More than 8,000 
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lncRNAs were identified in human by use of RNA-seq [55], and over 9,600 genomic loci 

were identified in humans as giving rise to 15,512 lncRNA transcripts in the project 

GENCODE [29]. GENCODE highlighted problems with these analyses, notably, the 

apparent inability to generate results that are comparable across methods for 

identification. To underscore this point, GENCODE revealed the failure to independently 

validate the presence of 70% of 5,446 previously described lncRNA loci in humans [41], 

61% of the 1,600 long intergenic non-coding RNAs identified [55], and 88% of very long 

intergenic non-coding RNAs (vlincRNAs) in humans [56].  

The lack of reproducibility in the most heavily studied of species calls into 

question the validity of the methods used thus far. With such a low recovery rate, how 

can we be sure that these methods are not generating mostly RNA molecules 

“accidentally” transcribed by RNA polymerase enzymes, or simply finding artifacts of 

the assembly algorithms? The question prompted a simple analysis for the identification 

of lncRNA in rainbow trout [45]. Here, lncRNA were considered present if they occurred 

in multiple, independently sequenced data sets. This comparison works to reduce the 

false discovery rate under the assumptions that sequences annotated as lncRNAs in 

multiple RNA-seq data sets, are likely to be true transcripts. 

 

Long Non-Coding RNAs in Plants 

Plant lncRNAs have attracted less attention than those in animals, and therefore 

are poorly characterized in their modes of operation. But even with this paucity of 

attention, a few specific lncRNAs have been analyzed. For example, it is known that the 

cold-assisted intronic non-coding RNA (COLDAIR) binds to a protein in the PRC2 
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complex resulting in the methylation of a lysine residue at position 27 of the third histone 

[57]. Further, the lncRNA induced by phosphate starvation 1 (IPS1) serves as a binding 

site for miR399, suppressing its function [58]. Of course, for the discovery of these 

mechanisms, we must first compile a comprehensive catalog of putative lncRNA 

sequences. Therefore, a broad analysis for the identification of these species en masse is 

necessary.  

 

Grape Genomics and Transcriptomics 

In 2007, the first complete genome sequence of a fruit crop was published. This 

was the genome of the cultivated grapevine Vitis vinifera cv. ‘Pinot Noir’ [59]. This 

genome was named the 8X-coverage reference genome sequence. Accompanying this 

achievement was the first genome annotation of grapevine, using protein alignments from 

the Uniprot-Swiss-Prot database, ab initio gene predictors, and 301 known gene 

sequences from grapevine. The resultant annotation model found 30,434 putative genes. 

This model was improved upon using gene predictors trained with 601 known gene 

sequences and expressed sequence tags generate the v1 Centro di Ricerca 

Interdipartimentale per le Biotecnologie Innovative (CRIBI) annotation consisting of 

29,971 unique genes [60]. This annotation was used as the reference for the transcriptome 

assembly of Vitis vinifera cv. ‘Corvina’ in 2013, where only 15,161 genes were validated 

[61]. From ‘Corvina', 2,321 new gene models and 9,463 novel isoforms were proposed. 

These differences were attributed to the genotypic variation and poor annotation of the 

reference. This idea prompted the reannotation of the grapevine genome by use of more 

complex data in the form of RNA-seq from the cultivar ‘Cabernet sauvignon’, and 
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rootstock cultivars ‘1103P’ and ‘M4’ [10]. This approach utilized the genome annotation 

tool PASA coupled with the gene prediction tool AUGUSTUS to generate a final 

annotation of 32,922 unique protein-coding genes. This model is now referred to as the 

Version 2 (v2) annotation.  

In 2016, the genome of the V. vinifera cultivar, ‘Cabernet sauvignon’ was 

sequenced [62]. This genome sequence maintained a Benchmarking Universal Single 

Copy Orthologue (BUSCO) score of 80%, but only 16,981 of the 29,971 v1 annotation 

genes aligned to the reference. This corroborates previous conclusions that there is 

extensive genetic variation among grape cultivars within the species V. vinifera, and it is 

readily detectable even at the level of the transcriptome.  

 

Objective and Justification 
 

Here, I present a reannotation of the grapevine genome based on prior predictions 

of gene models. I expanded this annotation by training more complex prediction models 

and re-annotated the genome using RNA-seq data specific to a different cultivar of grape, 

‘Riesling’. Because the annotation software is unable to detect putative non-coding 

regions, I set out to construct a computational a pipeline that can de novo identify 

lncRNAs from RNA-seq data. The resulting pipeline has the capacity to solve several of 

the problems that currently plague lncRNA identification. First, it provides a standard 

order of operations for analysis; second, it eliminates the requirement for a high-quality 

reference genome; and third, it allows for the ability to answer questions that are more 

complicated than the number of lncRNAs encoded in a genome. These annotations, 

improved gene prediction models, and annotated lncRNA allow us to understand the 
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grapevine at a fundamental level which may enable us to answer long-standing biological 

questions and sustain the cultivation of the crop in the face of global climate change.  

The cultivated grapevine, Vitis vinifera, is one of the most economically 

important crops in the United States. The USDA-NASS Census of Agriculture in 2007 

and 2012 indicated that, in the US fruit production sector, grapes are the highest-ranking 

crop in terms of both number of farms and the acreage of cultivated land [63]. This 

acreage led to the 2015 estimate that the United States produced 2.9 billion liters of wine, 

nearly 10.5% of the world’s overall wine production [64]. In addition to being a beverage 

of increasing popularity in the New World and East Asia, wine also carries cultural 

significance in many European countries. Beyond wine, high value-added products such 

as juice, grape seed oil, dietary supplements, jelly, raisin, and fresh table grapes are also 

made from grapevine and further enhance the economic importance of the species. 

Consequently, a thorough understanding of the genomic content of this crop is well 

warranted. 
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METHODS 

 

Data Acquisition and Characterization 

RNA-seq data were obtained from the USDA-ARS Grape Genetics Research 

Unit. These data were derived from RNA of two ‘Riesling’ accessions, 588673 and 

Ventosa. The former accession is from the USDA-ARS cold hardy germplasm, and the 

latter from Ventosa Vineyards, both sites located in Geneva, New York. Accession 

588673 is comprised of dormant bud, leaf, tendril, flower, rachis, unripe berry, and post-

véraison berry tissues. Ventosa is comprised of tendril, flower, root, and oversampled leaf 

tissue composed of field-collected leaves, and leaves exposed to chilled and freezing 

temperatures. Collectively, these samples represent an atlas of gene expression for 

‘Riesling’. RNA was extracted using the commercially available Sigma Spectrum RNA 

kit and were sequenced as 150-bp paired-end reads using an Illumia HiSeq2000 sequence 

analyzer at Cornell University.   

 

Genome Annotation and Transcriptome Profiling 

Raw RNA-seq reads from each sequenced library were assorted into bins 

corresponding to a directional, trial-specific barcode using the FASTX tool 

fastx_barcode_splitter. Reads then were processed via FastQC, and adapters were 

removed using the Trimmomatic tool. Several independent sequencing runs were 

conducted. Reads generated in different lanes then were concatenated into FASTA files 

representing all libraries sequenced from the left terminus and all libraries sequenced 

from the right terminus. These then were paired using the tool pairfq_lite [65]. The 
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resulting transcripts were de novo assembled using the program Trinity v2.0.6 [11] with 

the following parameters: --seqType fq --max_memory 25G  --SS_lib_type FR --CPU 1. 

Flags for --left and --right were given both paired and unpaired reads from pairfq_lite 

delimited by a comma.   

Because some tissues were not available in both accessions, and because some 

differences may exist in these two clones, transcriptomes for each accession were 

assembled independently.  The final transcriptome was assembled by first uniquely 

naming all Trinity accessions from one ‘Riesling’ accession followed by concatenation 

with the second accession to form a master Riesling.fasta file. The unmasked V. vinifera 

cv. ‘Pinot noir’ 12Xv2 reference genome, all Trinity-assembled transcripts, and the 

Uniprot-Swiss-Prot database as FASTA files then were passed to Maker v2.32 [19] for 

annotation. All settings applied can be found in the combined_maker_opts.ctl file hosted 

at the GitHub link above, with the most notable change from default being the declaration 

of the “hidden setting” est_forward=1. FASTA. Finally, gff3 files were merged across the 

entire genome using the fasta_merge and gff3_merge tools in the Maker suite to generate 

a preliminary transcriptome.  

 

Generating Gene Prediction Models: 

 Using the Maker framework, gene prediction models were created for future 

analysis of ‘Riesling’ data. Using all Maker-generated transcripts, I trained SNAP 

v1.0beta.17 [20] to generate a gene prediction model following the guidelines in the 

Maker Wiki [66]. The SNAP model was trained twice, iteratively. The first model was 

trained on the preliminary transcriptome, and the second was trained on that output. The 
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resultant model, named Riesling.hmm, can be found in the GitHub repository described 

above.  

 

Protein Domain Characterization and Functional Annotation of the Transcriptome 

A boilerplate SQLite database (also available on GitHub) was constructed by 

tying each Gene Ontology [67] term to its respective class and function, and tying each 

Pfam domain to its respective Gene Ontology term. Protein domains then were 

characterized against Pfam30.0 [52] as a reference protein database using the hmmscan 

tool of the HMMER v3.1b2 software suite [68]. The program was executed with default 

parameters and then filtered for an E-value (a similarity metric) of less than or equal to 

1×10-5. Transcript accessions then were tied to GO terms, classes, functions using ‘inner 

join’ statements in SQlite. A script for this analysis has been provided in the GitHub 

repository. In addition to Pfam comparisons, both the annotated set of proteins and the 

‘non-overlapping’ set of proteins were searched against the reference Uniprot-Swiss-Prot 

protein database and the annotated set was searched against Uniprot-Uniref90. Searches 

were completed using the blastp algorithm of the BLAST suite v2.29 [47] with default 

parameters and were filtered post hoc for E-value thresholds. BLAST results were 

filtered for the top hit by each protein sequence using the sortBlast function found in the 

master_lncRNA_pipeline.source file on GitHub.  

 

Anchoring the Annotated Transcriptome to the Reference Transcriptome 

 To anchor the newly annotated transcriptome to the reference ‘Pinot Noir’ 

transcriptome, I developed a novel approach to reciprocal best hit (RBH) analyses. In 
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short, this iterative method takes the result of a reciprocal BLAST search and identifies 

RBHs, which are then removed from the master file and saved. The reciprocal BLAST 

filter is then repeated on the transcripts remaining in the file, and the newly identified 

RBHs are then removed and saved. By default, this process is repeated 25 times with no 

inherent E-value threshold. An E-value threshold of 1×10-5was applied post hoc after 

concatenating all reciprocal best hit files (.rbh) generated by the algorithm. A script for 

this analysis can be found on GitHub. Further, I employed MCScanX [69] to find 

homologs by a combination of collinear order and reciprocal best hits. MCScanX was 

executed following the guidelines of the manual. SQLite was used to determine the 

number of anchors that were identical in both the novel RBH and MCScanX algorithms.  

 

Gene Duplication and Tandem Arrayed Genes: 

Duplicate genes were identified using an all-by-all self-blastp using the total 

transcriptome for both the query and target. Using MCScanX, collinear duplicates were 

identified by providing the software both the output of the blastp and the Maker 

annotated .gff. MCScanX was executed using the following parameters: 

$path/to/MCScanX ./self_blast -e $i, where i represented various threshold E-values. The 

MCScanX tool duplicate_gene_classifier was used to classify genes into one category of 

several categories. By default, MCScanX returns both collinear duplications and tandem 

duplications in two separate files. Tandem duplications were further identified from the 

.tandem output file 
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Clustering and Expression-Level Filtering Transcripts for lncRNA 

The output from Trinity was prepared for lncRNA analysis by filtering redundant 

and low-level expressed transcripts. To filter out redundant transcripts, the cd-hit-est 

algorithm of CD-HIT v4.6 [70] was used with the following parameters: -i Trinity.fasta -

n 5 –o clust_Trinity.fasta -c 0.90 -m 8000 -T 6. Filtering by expression was executed with 

RSEM v1.2.28 [71] implemented by the Trinity-provided script 

align_and_estimate_abundance.pl with the following flags: --seqType fq –transcripts 

clust_Trinity.fasta –SS_lib_type FR –est_method RSEM –ali_method bowtie –

trinity_mode –prep_reference. Transcripts with expression levels below FPKM=1.50 

were filtered from the data set and removed from further analysis on the assumption they 

were spuriously present in the data set.  

 

Identification of Putative Protein-Coding Genes 

The transcripts were searched for open reading frames (ORFs) by Transdecoder 

v2.0.1 using the methods described by Haas [72]. Transcripts and ORFs identified by 

Transdecoder then were subjected to a series of analyses including blastx and blastp of 

the BLAST+ suite. Trinity-assembled sequences were searched against the Uniprot-

Swiss-Prot and the Uniprot-Uniref90 databases to identify putatively encoded proteins at 

a threshold E-value of 1×10-20 using the blastx algorithm. Transdecoder-derived protein 

sequences were searched against the same databases using the blastp algorithm with the 

same settings. HMMER v2.3.2 searches were executed against the Pfam26.0 database 

using the Transdecoder-derived protein sequences. The best BLAST hit for each 

transcript (as determined by bit score, E-value, and percent identity, related yet separate 
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similarity metrics) and all HMMER hits were loaded into Trinotate v2.0.2 to generate an 

annotation report. The output report was then mined in SQLite to sort transcripts into 

three bins according to BLAST hits (HMMER hits were ignored). The three bins 

contained transcripts with (1) significant homology to Viridiplantae proteins, (2) 

significant homology to non-Viridiplantae proteins, and (3) no homology to any protein 

sequence. RNA sequences of the latter category were considered putatively non-coding 

transcripts and were further analyzed in the pipeline. The script for this sorting process 

can be found on GitHub.  

 

The Final Set of Non-Coding Transcripts and Their Validation 

To minimize false discovery of non-coding transcripts, putative non-coding RNA 

sequences identified in the two independently generated RNA-seq data sets (of 588673 

and Ventosa) were compared to one-another. Only sequences that were present as 

putative non-coding RNA sequences in both data sets with homology over at least 200 

nucleotides (as determined by blastn) were carried forward. This was accomplished by 

filtering the ‘Alignment Length’ column in output format 6 using the programming 

language AWK. Of the sequences that were found homologous to one-anther in the two 

data sets, the longest one (as determined by Bioawk) was chosen to represent that 

transcript. These transcripts then were filtered against the RFAM v12.0 [73] database by 

the cmscan algorithm implemented by Infernal v1.1 [74]. The Infernal output was 

executed to write results to a tab-delimited file. Any hit that Infernal considered 

significant by default parameters was filtered out. Putatively non-coding transcripts then 
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were validated by CPC [46] to label transcripts as either coding or non-coding based on 

blastx homologies to the Uniprot-Swiss-Prot database.  

 

Free Energy Levels of Non-Coding Transcripts 

The minimum free energy of each transcript was calculated using the rnafold 

algorithm implemented by the ViennaRNA-2.2.5 [75] software package using the 

following options to define the partition calculation algorithm, to ensure that ‘dangling 

ends’ are treated with the same energy requirements as paired bases, and to disallow 

lonely pairs: -p –d2 --noLP. The provided script, free_energy_calculations_v2.sh, took a 

list of sequences, retrieved the sequence using Samtools v 0.1.19 [76], and calculated the 

free energy using this method. Results were written to a tab delimited file whereby the 

name of the sequence, the minimum free energy (MFE), centroid free energy, and 

ensemble diversity were reported. The minimum free energies of the transcripts then 

were compared to the minimum free energy of similarly-sized randomly selected set of 

putative protein coding genes as annotated by Maker.  
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RESULTS 

 

Genome Annotation and Transcriptome Profiling 

The focus of this thesis research program was to construct a new and improved 

transcriptome of the cultivated grapevine V. vinifera. The transcriptome was assembled 

from RNA-seq reads derived from accessions 588673 and Ventosa of the cultivar 

'Riesling'. Quality filtering and trimming of the raw RNA-seq data resulted in 14,190,809 

paired-end reads for accession 588673. Following quality control, reads were paired. 

Pairing reads in accession 588673 generated 6,679,255 reads with paired sequences on 

both DNA strands, 514,591 unpaired sequences on the forward, and 317,708 unpaired 

sequences on the reverse DNA strand. Of the paired reads, 91.45% aligned to the 12Xv2 

V. vinifera reference genome sequence derived from the variety ‘Pinot noir’ and hosted at 

CRIBI [77]. Of the unpaired reads, 79.45% aligned to the reference genome which 

resulted in a total alignment rate of 79.74%.  Both paired and unpaired reads were de 

novo assembled into transcripts, which generated 62,745 contigs with an average contig 

length of 859 nucleotides and a median contig length of 551 nucleotides. The contig N50 

(a weighted median) for the assembly was 1,325 nucleotides. The 62,745 contigs 

assembled were represented by 49,330 clusters (a term used by Trinity to designate 

separate genes). In accession Ventosa, quality control and trimming resulted in 

103,677,027 reads. Pairing these sequences resulted in 48,639,916 reads paired on both 

DNA strands, 4,393,048 reads unpaired on the forward, and 2,004,147 reads unpaired on 

the reverse DNA strand. Of the paired reads, 91.14% aligned to the reference genome. Of 

the unpaired reads, 77.06% aligned to the reference genome leading to a total alignment 
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rate of 80.64%. Assembly of these reads generated 157,779 contigs with an average 

length of 840 nucleotides, median length of 373 nucleotides, and N50 of 1,434 

nucleotides. These 157,779 contigs were grouped into 109,215 clusters. Additional 

statistics of the Trinity assemblies are presented in Table 1. 

 

Table 1. Various metrics assessing the quality of the transcript assembly by Trinity. 
Note: ExN50 represents a recalculated weighted median at the xth expression quantile.  
 
 

Metric ‘Riesling’ Accession 
  Ventosa 588673 
N10 3337 2953 

N20 2599 2301 

N30 2130 1912 

N40 1762 1603 

N50 1434 1325 

E10N50 1413 1008 

E20N50 1349 1119 

E30N50 1290 1149 

E40N50 1413 1259 

E50N50 1520 1345 

E60N50 1671 1480 

E70N50 1815 1612 

E80N50 1947 1620 

E90N50 1922 1499 

E100N50 1437 1328 
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 All transcripts from both ‘Riesling’ accessions were used for a complete genome 

annotation of the V. vinifera cv. ‘Pinot Noir’ v2 reference genome. Using these 

transcripts and the entire Uniprot-Swiss-Prot reference protein database, 65,342 putative 

transcripts were identified. All transcripts had some level of support from either RNA-seq 

or protein alignments as indicated by the calculated Average Edit Distance (AED, a 

metric defining how similar the predicted gene is to RNA-seq evidence) value of less 

than 1.00. Annotated transcripts identified were functionally tied to proteins in the 

Uniprot-Swiss-Prot reference database [78] using the blastp algorithm. This procedure 

identified 1,680 transcripts with homology to proteins in the database, 1,004 of which 

were carried forward from the database itself in the annotation. 

 

Ab initio Prediction, Protein Domain Characterization, and Functional Annotation  

Using the resultant combined accession output, annotations were used to train ab 

initio SNAP gene prediction models [20]. The raw output from the Maker alignment was 

used to train the first pass of the SNAP model, and this output was used to train the 

second pass. The resultant model identified 25,995 predicted genes as compared to 

65,342 predicted genes from model-independent annotations. Of these, nearly all were 

represented by some level of RNA-seq or amino acid sequence alignments as noted by an 

AED of less than 1.00. A diagrammatic representation of this analysis pipeline, from 

transcript assembly to SNAP gene prediction models, can be found in Figure 2.   
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Figure 2. Computational pipeline for transcriptome profiling as implemented by software 
Maker and SNAP. Values in the flowchart on the right show the number of transcripts 
carried forward at each step of the pipeline.  
 

Protein domains were identified against the reference protein database Pfam30.0 

[52]. Domains that were found to significantly match an entry in the database (E ≤     
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1×10-5) were mapped to Gene Ontology (GO) [67] terms, classes, and functions. In total, 

23,042 protein domains were found across all 25,995 annotated transcripts representing 

14,763 uniquely annotated protein sequences. Collectively, 30,113 domains, 

representative of 10,794 unique proteins, were mapped to GO terms (accounting for 

domains that map to multiple GO terms). In total, 32.6% mapped to biological processes, 

58.3% mapped to molecular function, and 9.1% mapped to cellular component. Summary 

data are shown in Figure 3. Proteins were further functionally annotated using blastp with 

the Uniprot-Swiss-Prot database as a reference. Using this approach, I anchored 20,382 

and 16,863 proteins at E ≤ 1×10-5, and at E ≤ 1×10-20, respectively. Using the larger 

Uniprot-Uniref90 reference protein database [79], I anchored 21,577 and 19,835 proteins 

at  E ≤ 1×10-5and at E ≤ 1×10-20, respectively.  These outputs are summarized in Figure 4.  

In addition to the transcripts that had either RNA-seq evidence or Uniprot-Swiss-

Prot evidence, 66,820 transcripts lacking any form of alignment evidence also were 

identified. These transcripts were also searched for protein domains using the approaches 

described above. This analysis identified 5,790 domains in 3,709 unique transcripts. Of 

these, 4,151 mapped to GO terms, classes, and functions, accounting for domains that 

map to multiple GO terms. In total, 24.8% domains mapped to biological processes, 

66.8% mapped to molecular function, and 8.3% mapped to cellular component. Further 

attempts to characterize these transcripts based on the UniProt-Swiss-Prot database 

resulted in the putative annotation of 4,383 and 1,686 proteins at E ≤ 1e-05 and at E ≤ 1e-

20, respectively.  
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Figure 3. Gene Ontology terms most enriched in the final annotation separated into the 
three Gene Ontology categories: Molecular functions, biological processes, and cellular 
components.  
 
 
Anchoring Annotated Transcripts to Reference Transcriptomes 

To anchor newly annotated transcripts to the V. vinifera cv. ‘Pinot Noir’ reference 

transcriptome, a novel approach to reciprocal best hit (RBH) analysis was designed. This 

new RBH method is based on the following two assumptions: (1) each gene was present 

in the same number of copies in both ‘Riesling’ and ‘Pinot Noir’ and (2) putative anchors 

were sufficient. This analysis sorted the outcome of forward and backward blastp 

alignments in such a way that each transcript only matched each unique target one time. 

The following processes then occurred iteratively: (1) BLAST results were sorted such 

that only the highest scoring hit for each query was kept, (2) RBHs were identified, and 
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3) anything labeled as a RBH (either target or query) was removed from the master file 

and saved in a separate file at every incidence in the BLAST output. This process was 

executed 25 times, whereby 14,584 annotated transcripts were putatively anchored to 

reference transcripts with a threshold expected value of 1×10-5. Transcripts were also tied 

to the v1 reference transcriptome, whereby 14,212 transcripts were anchored.  

 
 
 
Figure 4. Functional annotation of the transcriptome against both the Uniprot-Swiss-Prot 
and the Uniprot-Uniref90 reference protein databases. ARATH: Arabidopsis thaliana, 
ORYSJ: Oryza sativa sp. japanicum, VITVI: Vitis vinifera, TOBAC: Nicotiana tobacum, 
SOLLC: Solanum lycopersicum, THECC: Theobroma cacao, 9ROSI: Rosids, POPTR: 
Poplulus trichocarpa, 9ROSA: Rosales.  
 

  Furthermore, a collinearity analysis was performed to anchor annotated and 

reference transcripts based on collinear order and reciprocal best hit results. This lead to 
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the identification of 12,755 putative homologs. Of these, 6,018 also were present among 

those identified by the iterative RBH analysis. In addition to anchoring transcripts, 

collinear segments also were mapped across the genomes of the reference and our newly 

developed annotation. The differential placement of the chromosomal segements in our 

new annotation relative to the reference annotation is shown in Figure 5. 

 

Figure 5. Schematic representation of the grapevine chromosome maps according to the 
(A) ‘Riesling’ annotation and (B) the reference annotation. Colored segments indicate the 
placement of the Riesling annotation-based chromosomes in the map of the reference 
genome. White segments indicate segments that were missing from the annotated 
chromosome maps based on the reference genome sequence. 

A 

B 
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Gene Duplication and Tandem Arrayed Genes 
 

Gene duplication events were also detected using the self-BLAST-based function 

of the collinearity software (MCScanX, see Methods). The data from this analysis 

demonstrated that 14,448 genes were likely the results of whole genome duplication, 

8,351 were considered dispersed duplications, 1,646 were considered proximal 

duplications, 1,482 genes represented tandem duplications, and 28 genes were considered 

singletons. Genes and their classification can be found in the file self_blast.gene_type 

provided in the Data directory on GitHub: https://github.com/znh1992/Thesis. At the 

more stringent threshold E-value of 1×10-20, 10,648 duplication events were found across 

7,633 genes. Pair counts and unique gene counts can be found in Table 2 for other E-

values. These data are summarized in part in the inner track of the Circos plot in Figure 9. 

Because genes could fall into more than one of the above categories, a separate analysis 

was done to detect all putative tandem arrayed genes (TAGs). Regardless of threshold 

expected value, 2,104 tandem duplications were identified across 3,471 (13.3%) unique 

gene IDs. Of these, 737 (35%) had three tandemly arrayed genes leaving the rest in arrays 

of two genes.  

 

Table 2. Gene duplication counts and unique gene counts in the duplications series across 
various E-values.  
 
E-value Duplications Unique Genes 

1×10-10 30324 14219 
1×10-15 18954 10858 
1×10-20 10648 7633 
1×10-50 1542 1997 

  1×10-100 296 549 
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Quality Assessment of the New Annotations 

To assess the quality of the new transcriptome annotation, the transcriptome was 

searched for the presence of Benchmarking Universal Single Copy Orthologs (BUSCOs), 

a core set of genes occurring in a single copy in all genomes characterized in a particular 

clade. The reference set of single-copy orthologs for Emryophyta (land plants) currently 

consists of 1,440 genes. The transcriptome was probed for the number of found BUSCOs 

represented as both a correct (single copy) match, and a partially correct (duplicated) 

match. The final transcriptome annotation found 16.8% of expected BUSCOs. This call 

rate prompted an analysis across all steps of the pipeline presented above. Results for this 

analysis can be found in Figure 6.  

 

Design of a de novo Pipeline for lncRNA Identification 

A computational pipeline was constructed to glean lncRNAs from plant 

transcriptomes. To make the pipeline broadly applicable, it was designed to identify 

lncRNAs from raw RNA-seq reads in a reference genome-independent manner. The 

essential function of the pipeline was to remove protein-coding transcripts and short non-

coding RNA sequences. First, transcripts were assembled from raw RNA-seq reads, and 

the resultant transcripts then were purged of redundancy. Clustered transcripts then were 

filtered by expression level, and the remaining set was further filtered to remove known 

protein coding genes identified by BLAST analyses. The remaining transcripts were  

compared across independent RNA-seq data sets from the same genome to ensure a low 

false positive identification rate [45]. These final transcripts were searched against the 

reference RNA database Rfam [73] to remove known ncRNAs. The remaining set of 



 

 30 

putative lncRNAs transcripts then were validated by using a semi-independent lncRNA 

identification method [46]. A diagram of the pipeline is shown in Figure 7.  

 
 
Figure 6. BUSCO scores across the main steps of the transcriptome profiling pipeline. 
Clustered Trinity transcripts are also shown to demonstrate their presence.  

 

Clustering and Expression-Level Filtering Transcripts for lncRNA 

Due to the highly redundant nature of de novo assembled transcriptome builds, 

the Trinity output was clustered for both 'Riesling' accessions using the cd-hit-est 

algorithm. Here, contigs were clustered based on the default standard of 90% similarity 

threshold and a default word size of five nucleotides. Clustering in accession 588673 

resulted in 48,769 contigs. The N50 value for this transcript set was 1,284 nucleotides 

with an average contig length of 817 nucleotides. In the accession Ventosa, cd-hit-est 

generated 110,900 contigs, the N50 value was 1,395 nucleotides with an average contig 

length of 806 nucleotides.  
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Figure 7. Computational pipeline for the de novo identification of lncRNAs. Values in 
the right flowchart show the number of transcripts carried forward at each step along the 
pipeline. 

 

To further reduce the complexity of the data sets, clustered transcript sets were 
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length of 780 nucleotides. Accession Ventosa resulted in 31,103 contigs with an N50 

value of 1,925 nucleotides and an average contig length of 1,380 nucleotides.  

 

Removal of Putative Protein-Coding Genes 

To identify and remove all transcripts putatively annotated as protein-coding from 

the clustered and expression-level filtered transcript sets, I, in silico, translated all 

transcripts into predicted polypeptides, and searched the resulting dataset against the 

reference protein databases UniProt-Swiss-Prot and Uniprot-Uniref90 with an E-value 

threshold of 1×10-20. Only the top BLAST hit for each sequence in the accessions was 

accepted based on bit score, E-value, and percent identity. Contigs from each accession 

were binned into the categories of Viridiplantae proteins, non-Viridiplantae proteins, and 

proteins for which no homologous hit was found. Results for this analysis can be found in 

Table 3. Due to repetitive entries in the SQLite database probed for these categories, the 

sequences that lacked annotations were clustered by name resulting in 13,755 and 10,292 

unannotated sequences in accessions 588673 and Ventosa, respectively.  

 

Table 3. Classification of protein by best BLAST hit.  

Classification Ventosa 588673 

Viridiplantae 34321 41686 

Non-Viridiplantae 682 3340 

No Classification 10292 13755 
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The Final Set of Non-Coding Transcripts and Their Validation 

To identify RNA sequences that occurred in both the 588673 and Ventosa 

accessions, the transcripts from both were searched against one-another using the blastn 

algorithm. Only the Ventosa transcripts corresponding to the most closely related (based 

on bit score, E-value, and percent identity) 588673 transcript with an alignment length of 

at least 200 nucleotides were carried forward in the analysis. In matches of at least 200 

nucleotides, the longest transcript from either 588673 or Ventosa was taken. This resulted 

in 3,529 sequences.  

These 3,529 putatively identified non-coding RNAs then were filtered for the 

presence of known non-coding RNAs housed in the RFAM v12.0 reference database. 

Only 196 transcripts matched sequences in the data base at an E-value threshold of 0.01. 

Upon removal of these known ncRNA sequences, the dataset consisted of 3,223 putative 

long non-coding RNAs.  

To validate the set of putative long non-coding RNAs identified by the pipeline, I 

used the software Coding Potential Calculator (CPC). CPC served as a pseudo-

independent tool for validation because, while its results are based on blastx alignments, 

the parameters are much less stringent than those used above. Using this tool against the 

UniProt-Swiss-Prot database, 3,210 sequences were predicted to be non-coding, 

supporting the classification of 99.60% of the predictions. CPC was also executed against 

the Uniprot-Uniref90 reference protein database where 3,155 transcripts were predicted 

to be non-coding, supporting 97.90% of my predictions.  
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Free Energy Levels of Protein-Coding and Non-Coding Transcripts 

It has been hypothesized that the regulatory function of lncRNAs is inherently 

associated with the higher free energy of their secondary structure [80–82]. To examine 

the possibility that lncRNAs have a higher free-energy level than mRNAs, I used the 

RNA free energy calculator and folding algorithm RNAfold. RNAfold was used to 

calculate the secondary structure and the minimum free energy of all putative lncRNAs 

and a randomly selected set of 3,225 annotated protein coding transcripts identified 

above. Sequences representing the highest and the lowest free energies can be found in 

panels A and C in Figure 8. All free energy values were corrected for the length of the 

sequence, as the length of the transcript is a key parameter in the minimum free energy of 

these structures. The corrected minimum free energy distribution of all non-coding RNAs 

are shown in panel B of Figure 8. The mean length-corrected minimum free energy for 

annotated protein coding genes was -0.264 kcal/mol/nt with a standard deviation of 0.042 

kcal/mol/nt. The mean length-corrected minimum free energy content of the putatively 

annotated lncRNAs was -0.258 kcal/mol/nt with a standard deviation of 0.030 

kcal/mol/nt. These two data sets were found to be significantly different using a two-

tailed Welch’s t-test (p <<< 0.05). Long non-coding RNAs then were aligned to the 

reference genome using the map2assembly tool in Maker whereby 3,049 were mapped. 

Using genome-aligned lncRNAs and the genomic coordinates of gene structures from 

Maker and SNAP, gene frequencies were mapped across the reference genome on all 

linkage groups in 1Mbp bins. Figure 9 demonstrates these frequency distributions in the 

inner and middle tracks. In addition, average raw uncorrected free energy values of 
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protein-coding and non-coding transcripts were plotted across all 1-Mbp bins and are 

shown in the outer track of Figure 9.  

 
Long Non-Coding RNA Analysis Across the Vitis Genus 

In addition to two accessions of V. vinifera cv. ‘Riesling’, two accessions of both 

Vitis aestivalis (1664 and 588626) and Vitis rupestris (588160 and 588174) were 

analyzed using the de novo lncRNA identification pipeline. Summary data for these 

analyses can be found in Table 4. In short, 5,743 putative lncRNA transcripts were 

identified in V. aestivalis, of which 5,718 were validated by use of CPC. In V. rupestris, 

6,013 transcripts were identified, of which 5,993 were validated with CPC.  

 

Table 4. lncRNA discovery in wild grapevine accessions of V. aestivalis and V. rupestris. 

Pipeline Step Number of Transcripts Retained 

  Aestivalis.1664 Aestivalis.588626 Rupestris.588160 Rupestris.588574 

Trinity 95261 81993 88801 97275 

CD-HIT 76028 67073 72810 79223 

RSEM 59772 61093 62386 55060 

Trinotate 20236 21241 23211 21396 

BLAST 6158 6322 

Infernal 5748 6013 

CPC 5718 5993 
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Figure 9. Gene duplication, gene frequency distribution, and average raw free energy of 
transcripts in grapevine. The center track of the Circos plot [83] shows evidence of gene 
duplication at two significance thresholds: E-value = 1×10-5 (light orange) and E-value = 
1×10-20 (dark orange). The orange histogram shows gene frequency distributions across 
all linkage groups on a scale of 0 to 30 genes for 1Mbp bins.  The purple histogram 
shows lncRNA frequency distributions across all linkage groups on a scale from 0 to 30 
transcripts. The scatter plot shows average raw free energy for each 1 Mbp bin for both 
protein coding genes (orange) and lncRNAs (purple) ranging from 25 to 750 –kcal/mol.  
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DISCUSSION 

 

Biological research in the post-genomic era requires massive data sets that can 

only be generated and compiled by the collective effort of communities of scientists who 

share a species or taxon of common interest. For structural and functional genomics, the 

grape research community has relied on the V. vinifera reference genome sequence 

constructed from the DNA of a ‘Pinot Noir’-derived grapevine [59].  Since the public 

release of this reference genome sequence in 2007, most grapevine transcripts and 

transcriptomes have been based on its gene prediction models. Genome-guided 

transcriptomes, however, are limited in that non-predicted transcripts and splice variants 

in the genome sequence will remain undetected or erroneously assembled.  Furthermore, 

errors in sequence assembly and gene model predictions in the refence genome are 

carried over to the transcript information and can lead to assembly artifacts. The high-

level heterozygosity in grapevine further complicates transcript assembly by potentially 

misidentifying allelic variants as paralogous transcripts.  This problem can now be 

remedied with the application of genome-independent assembly of RNA-seq reads into 

consensus transcripts.  

In this thesis, I present a reference transcriptome for Vitis vinifera cv. ‘Riesling’ 

using a coupled de novo assembly and genome-guided prediction algorithm. This 

approach takes into consideration the high-level heterozygosity of grapevine by use of de 

novo methods and takes advantage of the ‘Pinot Noir’ genome sequence without 

incorporating its potentially problematic gene prediction models. The Maker-generated 

transcriptome I present in this work offers a more complete picture of the grapevine 
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transcriptional landscape and will facilitate the study of transcript-level variation among 

grapevine cultivars and species.  

In development of the transcriptome, I attempted to anchor the new transcripts to 

reference transcripts previously identified in ‘Pinot Noir’ data [10]. Anchoring was 

performed using two methods: MCScanX, a program for collinearity detection, and a 

newly developed reciprocal best hit (RBH) analysis. In both cases, I could anchor a 

relatively low percentage of transcripts (49% and 55%, respectively). In the case of 

MCScanX, the low percentage of anchoring may be attributed to annotations on different 

versions of the genome. Between the publication of the reference transcriptome and our 

‘Riesling’ transcriptome, an updated reference sequence was released to reflect new data 

obtained by more advanced sequencing methods. On the computational level, anchoring 

based on an updated version of the reference genome could produce results that appear as 

chromosomal rearrangements. Most notably, segments from an unplaced linkage group 

(chrUkn) are sorted into their likely locations in the genome map. Figure 5 demonstrates 

apparent chromosomal rearrangement even beyond the placement of ChrUkn segments, 

suggesting that collinearity-based approaches may be insufficient in homolog 

identification.   

These data mirror the findings of Venturini et al. (2013) who characterized a 

transcriptome for V. vinifera cv. ‘Corvina’, and were able to recover only 51% of the v1 

reference transcriptome’s 29,971 transcripts [61]. These data are further supported by 

results of a recent analysis by Chin et al. (2016) who assembled the genome of V. vinifera 

cv. ‘Cabernet Sauvignon’ and were able to align only 16,981 (57%) of the reference 

transcriptome to their new genome [62]. I attempted to anchor the new annotation to both 
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the v1 and v2.1 reference transcriptome using a RBH-driven approach, and I was able to 

anchor only 47% and 46% of the transcripts, respectively. Errors in the v2.1 reference 

transcriptome are easily attributable to methodology as Vitulo et al. (2014) combined 

RNA-seq data from V. vinifera cv. ‘Cabernet Sauvignon’, and two rootstocks derived 

from four separate species, (V. vinifera, Vitis berlandieri, V. rupestris, and Vitis riparia), 

making the assumption that interspecific variation was insignificant [10]. This 

assumption may, however, be incorrect, and the introduction of data from non-vinifera 

grapevines could have profound impacts on the quality of the transcriptome from the 

perspective of cultivar variation.  

Several quantitative features of the Riesling transcriptome were similar to those of 

other plants. For example, of the genes predicted, 13.3% (3,471 genes) occurred in 

tandemly duplicated gene arrays, a percentage consistent with the percent of gene arrays 

in Arabidopsis thaliana (16.6%) [84] and even such distantly related organisms as 

humans, mice, and rats (14-17%) [85]. Further, nearly 65% of these arrays contain only 

two genes, a percentage consistent with A. thaliana, where 75% of its tandem arrays 

contains only two genes [84].  

I also predictively annotated the transcriptome for function through computational 

means, namely using the software HMMER and BLAST. Both programs returned 

unexpectedly few predicted functional annotations (57% and 65% respectively). These 

numbers are similar to the results from the reference transcriptome, indicating that the 

inability to functionally annotate (via computational means) is a feature that is 

characteristic to such non-model species as grapevine. For example, a recent analysis of 

rose-scented geranium was able to identify GO terms in only 33% of assembled 
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transcripts and found protein homology in reference databases in only 66% transcripts 

using blastx [86]. Over time, as more proteins are characterized and experimentally 

annotated for function, these numbers are expected to increase.  

The inability to call many single-copy orthologs indicates that Maker may not 

have provided a complete annotation as implemented. This is particularly evidenced by 

the fact that the raw Trinity output had a nearly 94% call rate of single copy orthologs. 

With this, we would expect the final annotation to contain this many, if not more, through 

the use of machine learning. This approach seems to be relatively common, but many 

analyses go one or more steps further in the complete annotation of genomes. For 

example a recent analysis of strawberry trained multiple machine learning gene 

predictors and completed the analysis with a final alignment guided by these predictors 

[87]. Current analyses are accounting for these approaches to improve the current model. 

Further evidence for a poor annotation is presented in the form of Figure 5, where a high 

degree of chromosomal rearrangements is predicted. If this were the case, we would 

expect ‘Riesling’ to be unable to generate fertile progeny when crossed with other V. 

vinifera cultivars. However, V. vinifera cultivars are inter-fertile, indicating that the 

apparent chromosomal rearrangements depicted in Figure 5 most likely reflect an 

inability of the software to generate accurate predictions.  

As our insight into the regulation of protein-coding genes improves, there is 

mounting evidence that long non-coding RNAs (lncRNAs) play an important role in 

those processes (reviewed in [57, 88, 89]). Identification of these transcripts is paramount 

for a true understanding of the role of these RNA species. I present a standardized 

computational pipeline for the identification of lncRNAs, that promises to be particularly 
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useful in non-model species. This pipeline represents a logical sequence of processes for 

removing known protein-coding genes and other non-coding RNAs using the best 

methods available to date. The pipeline predicts lncRNAs and then attempts to validate 

them using a pseudo-independent software, CPC. I consider this validation pseudo-

independent, because both the pipeline and CPC incorporate BLAST results, albeit to 

varying levels of confidence. These transcripts are, at best, predictions, and only 

experimental evidence will validate their true function. Nonetheless, our predicted 

lncRNAs were found distinctly different from the protein-coding annotations in several 

key parameters. For example, lncRNAs tended to be enriched for lower GC content and, 

surprisingly, longer transcripts. These two factors are both consistent with the idea that 

lncRNAs have differential stability as compared to protein-coding transcripts. This 

quantitation may be useful in machine learning prediction algorithms as research on 

lncRNAs moves forward.  

While functional annotation and experimental validation of these transcripts are 

beyond the scope of this study, many aspects of this pipeline provide evidence for the 

existence of these transcripts. For example, filtering for moderate and high expression 

levels reduces the chance of finding ‘accidental’ transcripts. Further, the requirement for 

multiple discoveries reduces the risk of false positive lncRNA transcripts. Moreover, this 

pipeline works independent of coding potential calculations. Many pipelines use tools 

such as CPC to serve as a filtering mechanism, but lack any power to validate their 

results. This study provides both a pipeline for identification and evidence that the 

pipeline reliably gleans long non-coding transcripts. This validation demonstrates the 

pipeline’s efficacy in both cultivated and wild grapevine RNA-seq data. Further, results 
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from CPC seem to indicate successful identification using both Uniprot-Swiss-Prot (a 

small, experimentally validated protein database) and Uniprot-Uniref90 (a larger, non-

experimentally validated protein database). These results indicate that Uniprot-Swiss-Prot 

alone could be used for CPC validation, which greatly reduce the requirement for 

computational resources.  

The results presented here, taken together with results of previous grape 

transcriptome assembly projects, suggest that the RNA-seq and predictive method-based 

genome annotation will be improved greatly by the availability of cultivar-specific 

genome sequences [61, 62, 90]. This is necessary for the development of cultivar-specific 

gene models and inter-cultivar analyses of variations. Furthermore, to more accurately 

pinpoint differences in the transcriptome of ‘Riesling’ and ‘Pinot Noir’, data from more 

cultivars need to be include in the analysis. Only then will we be able to speak of true 

varietal differences in grapevine at the transcriptional level. This will then need to be tied 

to functional annotation. Work on lncRNAs will need to expand in two directions. First, 

more efficient and accurate methods for their identification are crucial. While logical, this 

process is time consuming and computationally intensive. Better prediction methods will 

find the same or similar sets of lncRNA while being more efficient. Second, lncRNAs 

need to be validated in both presence and function. Both facets of this research will be 

critical in moving the viticulture industry forward in the face of a changing climate and 

changing agricultural practice.  
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