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ABSTRACT 

Drinking water is one of the fundamental pillars of modern society, and it is crucial that 
pathogen-free drinking water be provided to communities. Currently, one third of all drinking 
water in the U.S. is being disinfected using hypochlorite and the number is rising. However, 
use of hypochlorite is facing the issue of a hypochlorite byproduct, chlorate ion, which at high 
concentrations is considered a health risk to humans. During and after its electrolytic generation 
process, hypochlorite may go through a disproportionation reaction to form chlorate and 
chloride, a process which is thermodynamically favored. Even though chlorate in drinking 
water is not regulated yet, the EPA is in the process of regulating chlorate concentrations in the 
near future. Therefore, it is important to track current concentrations and put mechanisms in 
place to efficiently reduce chlorate concentrations in generated hypochlorite solutions as well as 
in drinking water. The purpose of this research was to evaluate the influence of three different 
parameters in the generation process: pH, temperature and storage time, and also to assess the 
influence of pH and temperature adjustments during the generation process. Additionally, this 
research should provide general guidelines on how to reduce chlorate concentrations in on-site 
generation processes. In all cases, chlorate was observed to increase with time, but increases 
were less pronounced when storage temperature was decreased and when storage pH was 
increased.  Effects of adjusting pH and temperature during the generation process were not 
clearly determined in the experimental work. 
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INTRODUCTION 

 

Chlorate, ClO3
‒, is an ion that may be formed as a byproduct of the water 

disinfection process.  Chlorate has become of concern in recent decades due to the 

observation of its presence at significant concentrations in drinking water.  The United 

States Environmental Protection Agency (USEPA) has evaluated chlorate concentrations 

in drinking water throughout the U.S. and is in the process of determining a regulatory 

concentration for public drinking water systems.  

Due to this impending regulation, it is important to recognize chlorate’s important 

health effects, its occurrences in United States drinking water systems, and the factors 

that control its introduction into drinking water.  Some of the factors controlling chlorate 

formation have been well-researched in the laboratory setting, but, appropriate 

application of the findings to water treatment have not been developed. Because chlorate 

has been observed throughout U.S. drinking water systems, understanding the control of 

chlorate is an issue on the national scale. 

 

History 

Chlorate salts (calcium, potassium and sodium chlorate) have been used 

commercially in agriculture since their registration as inorganic salt herbicides in 1966. 

Chlorate in drinking water was first evaluated starting in 1987 when the USEPA 

conducted a field study which lasted almost four years. Chlorate specifically caught the 

USEPA’s attention due to its use in agriculture and runoff from crop fields. Additionally, 

chlorate was detected and described as a drinking water disinfection by-product due to its 
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formation in the decomposition of hypochlorite to chlorate. Data from this study 

indicated significant concentrations of chlorate in drinking water. Only a limited number 

of treatment plants were sampled, insufficient to provide representative data, but the 

studies gave the USEPA an insight into the presence of chlorate in drinking water. 

In 1996, chlorate was included as part of the USEPA’s Information Collection 

Rule (ICR) study. The main focus of the ICR was to collect samples from 300 public 

water systems and over 100,000 customers over an 18-month period in order to create a 

nationwide database. In addition, this study included comparison of concentrations from 

different disinfection methods to determine if there was a direct correlation between 

chlorate concentrations and disinfection methods. The results of this study established the 

first Health Reference Level (HRL) to be 210 g/L of chlorate (see Health Effects and 

Levels). 

Starting nearly ten years later, the USEPA’s Unregulated Contaminant 

Monitoring Rule 3 (UCMR3) study is the most recent data collection, and is also the 

biggest data collection thus far. In this study, more than 20,000 samples from various 

treatment plants were included that use any of the four treatment methods: chlorine 

dioxide, off-site bulk hypochlorite, on-site hypochlorite, or gaseous chlorine. For this 

study, the USEPA selected a reference concentration of 210 μg/L chlorate (same as the 

HRL), suggesting that regulations in the future may adopt this number. 

Currently, chlorate concentrations (along with concentrations of other disinfection 

byproducts including bromate, chlorite, and perchlorate) are being reviewed by the 

USEPA under the Six-Year Review. (20, 22, 23, 24) 
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Health Effects and Levels 

A number of studies have investigated both acute and long-term health effects of 

chlorate. (1) In terms of absorption and metabolism, chlorate is quickly absorbed by the 

gastrointestinal tract. (19) Chlorate does not target a specific organ, but rather is 

distributed throughout the whole body. (24)  

Chlorate is distributed in the tissues in different concentrations that were 

determined by Abdel-Rahman et al. in 1982 in a study where rats were injected with 5 

mg/L of chlorate. They concluded that more than 90% of the initial dose left the body 

through urine and was not accumulated in the body. The highest concentrations of 

chlorate were found in plasma with 0.68% and packed cells with 0.57%. (19) Other sites 

of accumulation were also kidneys, lungs, stomach, duodenum, ileum, liver, spleen, bone 

marrow, testes, skin and carcass. (1, 24) 

The LD50 dose (the amount of sodium chlorate needed to kill 50 percent of a 

population within a specific time period) of sodium chlorate is believed to be 800 mg/kg. 

(1) Below the LD50 dose, local irritations of the gastrointestinal tract can appear. (1) 

Other frequent observations include hemolysis and methemoglobin formation, which is 

then also followed by intravascular coagulation. (1) Currently, the studies conducted do 

not show any carcinogenic activity for humans and thus is not considered a carcinogen. 

(7, 19, 21)  

In the early 2000s, results of short term tests were reported by the National 

Toxicology Program. (18) Ten volunteers ingested 1000 mL of different chlorate 

concentrations (0.01, 0.1, 0.5, 1.0, 1.8 and 2.4 mg/L) over a 3-day period. In all 

volunteers, only a slight change in serum bilirubin, iron and methemoglobin were 
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observed. (18) Since these changes were minor, the authors concluded that chlorate at the 

levels tested would not have any serious physiological effect for the volunteers. 

Additionally, Canada’s federal health department came to a similar conclusion and 

summarized that in human volunteers, a chlorate dose of 0.036 mg/kg/day for 12 weeks 

did not result in any adverse effects. (16)  

The database and number of studies that consider the long-term effects of chlorate 

are not as extensive as for other DBPs. However, a well-conducted 90-day study showed 

that there is a no-observed-adverse-effect-level (NOAEL) of 30 mg/kg per day. This 

amount is congruent with the chlorate’s minimal effects on thyroid colloids in low 

concentrations. (7,16) From this concentration, a good tolerable dose intake estimation 

was made considering a 1000× uncertainty factor (×10 for interspecies variation; ×10 for 

intraspecies variation; ×10 to account for the short duration of the study). This factor 

results in a tolerable dose intake of 0.03 mg/kg/day which has been a widely-accepted 

concentration and supports the previous studies and their results. (18, 19) 

Important levels that were considered in the UCMR3 included the minimum 

reporting level (MRL) and HRLs. The levels reported are 20 g/L for MRL and 210 g/L 

for HRL. In this case, it is vital to specifically discuss HRLs and their importance, and to 

clarify why different agencies (USEPA, Health Canada, World Health Organization) 

have established different values. Generally speaking, any HRL is dependent on four 

parameters: chronic reference dose, volume of drinking water consumed, adult body 

weight, and relative source contribution. The chronic reference dose was determined 

based on the benchmark dose level that was stated by the National Toxicology Program 

in December 2005 and was accepted to be 0.09 mg/kg/day, adjusted with an uncertainty 
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factor of 30% to be 0.03 mg/kg/day. World Health Organization (WHO) and the USEPA 

both determined a total drinking water consumption of 2 L/day/person, while Health 

Canada (HC) adapted a consumption rate of 1.5 L/day/person. HC and USEPA used an 

adult weight of 70 kg for their calculations while WHO used 60 kg. However, the biggest 

difference between HC, WHO and the USEPA is the relative source contribution. While 

HC and WHO established a relative source contribution of chlorate in drinking water to 

be 80% (20% from food), the USEPA only attributes 20% to drinking water (80% from 

food). This is the reason why the HRL from the USEPA is so much smaller than the 

value from HC and WHO (see T1). (18) 

 

Table 1. Different parameters considered for the calculation of HRL for three different 
organizations (WHO, HC, USEPA) 

Parameter Health Organizations 

 
WHO HC USEPA 

BMDL 0.09mg/kg/day 0.09mg/kg/day 0.09mg/kg/day 

Uncertainty factor 0.3 0.3 0.3 

Chronic reference level 0.03mg/kg/day 0.03mg/kg/day 0.03mg/kg/day 

Consumed Volume 2L/day 1.5L/day 2L/day 

Adult body weight 60kg 70kg 70kg 

Relative source 

contribution 80% 80% 20% 

Conversion factor 

HRL 

1000 µg/mg 

720 µg/L 

1000 µg/mg 

1120 µg/L 

1000 µg/mg 

210 µg/L 
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Other HRL examples include Europe (1000 g/L), Japan (600 g/L) and Costa 

Rica (200 g/L). The different concentrations underline the difficulty of determining a 

reasonable concentration by the USEPA and the final HRL value may be subject to 

further discussions. 

Example calculation USEPA: 
HRL = 0.03 𝑚𝑔

𝑘𝑔𝑑𝑎𝑦 
 x 𝑑𝑎𝑦

2𝐿 
 x 70kg x 1000g

1𝑚𝑔 
 x 0.2 = 210 g/L 

 

Occurrence in the U.S. 

Sodium chlorate is a common non-selective herbicide especially in the Midwest 

and South Central regions in the U.S., although its use has declined dramatically over the 

past decades. The influence on drinking water from agricultural use of chlorate is rather 

negligible as the only link between agriculture and drinking water is surface water which 

may be used as a drinking water source. Furthermore, agricultural sodium chlorate is not 

considered a major contributor to chlorate in the environment since it only makes up 2% 

of the total sodium chlorate use. (4, 14) 

Most recent data collected by the UCMR3 show a large range in chlorate 

concentrations throughout the U.S. (see F1) High population regions (e.g., coastal areas) 

generally have more PWSs and therefore include more sampling sites. (5, 14) However, 

sites with highly elevated chlorate concentrations appear throughout the country. (4, 23) 

In the most recent UCMR3 data summary (July 2016, UCMR3, 2016), a total of 

62,414 samples were collected. Out of these samples, 34,239 showed chlorate 

concentrations above the MRL. Of these 34,239 samples, 9,741 samples exceeded the 

reference concentration of 210g/L, a total of 15.6% of all samples in the study (62,414 

samples). In addition, samples were compared to the total PWS used for the data 
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collection. Here, 4,918 PWS (number of PWS that showed chlorate concentrations, 

where the number is not equivalent to all the sampled PWS) showed reportable 

concentrations of chlorate (chlorate concentration above 20 g/L) in their water, and of 

these, 1,896 PWS (38.6% of PWS with reportable concentrations) showed concentrations 

above the reference concentration. (14, 23) Because it is likely that the USEPA will select 

210 g/L as its regulatory limit, the large percentage of PWSs exceeding this limit 

highlights why chlorate control is an important issue. (4, 5) 

 

 
Figure 1. Location and concentrations of UCMR3 database. (14) 

 

A factor that may contribute to high chlorate in PWSs is temperature. Chlorate is 

commonly found as a disinfection by-product (DBP) in water treatment processes (see 

next section). Generally, higher temperatures increase bacteria concentrations in the 

water treated at PWSs. Thus, higher temperatures of source waters require that greater 

volumes of disinfectant be fed into the treatment systems. Since chlorate is a disinfection 

210-700 ppb 
700-840 ppb 
>840 ppb 
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byproduct, higher disinfection use may lead directly to increased chlorate concentrations 

in drinking water. 

Another factor that possibly explains higher chlorate concentrations in the 

northeast region is the age of pipe systems in cities. Many of these pipe systems are 

overaged, some being over 100 years old. To account for aging pipe systems and the need 

to maintain residual disinfection from the treatment plant to the homes, the disinfectant is 

increased at the plant to ensure enough residual disinfectant throughout the system. (4, 5) 

Again, because of the direct relationship between disinfectant and chlorate the expected 

chlorate concentration exceeds the HRL in many cases. (F1) (14, 23) 

Seasonal changes in concentrations are another important factor that has been 

detected over the past years. F2 and F3 summarize results for reporting sites where there 

were four quarterly sampling event measurements (SEs) during the year so that a 

locational running annual average (LRAA) could be determined. These SEs were 

collected throughout the year for sites that used surface water (SW), groundwater under 

the direct influence of surface water (GWUDI), or mixed water. (14) The data were 

divided into two groups: PWS that showed a maximum of > 210 g/L, and those for 

which remained < 210 g/L throughout the measurement period. The plots show 

SE:LRAA ratios for every month and disinfection system. (5) Here, a SE:LRAA of 1 

indicates that the chlorate concentration for that particular sampling event was equal to 

the site’s average chlorate concentration. (4, 23) 

For sites where concentrations remained below 210 g/L for the entire year, the 

variation in SE:LRAA over time shows only subtle seasonal variations, with only modest 

increases in the ratios during the summer and early fall months. (F2). In contrast, sample 
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sites that had maximum concentrations > 210 g/L showed a very distinct seasonal 

variation with clear increases in chlorate concentrations in the months of June-October 

(F3). This may be partially due to increased disinfectant fed into the system, but also 

faster degradation of disinfectant to chlorate in warmer temperatures. (14) 

 

 
Figure 2. Monthly averages of SE:LRAA for surface water, GWUDI or MX for all four 
SE. Sample sites with a maximum of < 210 µg/L. Light blue = gaseous chlorine,     
orange = offsite hypochlorite, green = onsite hypochlorite, pink = chlorine dioxide (14) 

 

 
Figure 3. Monthly averages of SE:LRAA for surface water, GWUDI or MX for all four 
SE. Sample sites with a maximum of > 210 µg/L. Light blue = gaseous chlorine,     
orange = offsite hypochlorite, green = onsite hypochlorite, pink = chlorine dioxide (14) 
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Chlorination and Challenges 

There are six common water disinfection methods established by the USEPA 

(T2): chlorine dioxide, sodium hypochlorite, gaseous chlorine, chloramines (from a non-

hypochlorite source), ozone and ultraviolet light (UV). The last three disinfection 

processes are not further considered in this paper since they do not show any formation of 

chlorate at any point. Although gaseous chlorine and chlorine dioxide often show 

increased amounts of chlorate in water they are not discussed in this paper.  

 

Table 2. Total number of samples in the UCMR3 and their disinfection type (PWS= 
Public Water Systems). 

Disinfectant type Count of PWS 

*Sodium Hypochlorite 22433 

*Gaseous Chlorine 18074 

*Chloramines 11597 

*Chlorine Dioxide 1936 

*UV Light 1013 

*Ozone 1787 

No Disinfectant 2414 

All other types 

GRAND TOTAL 

593 

59847 

*EPA approved disinfectants 

 

This research was conducted on the Springfield, MO, water system, a PWS that 

used on-site hypochlorite for disinfection. This PWS showed elevated chlorate formation 

during the UCMR3. The research focuses on sodium hypochlorite as a water disinfectant 
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because sodium hypochlorite not only is associated with significant amounts of chlorate 

in samples but it is also one of the most commonly used disinfectant types (around 39% 

of all collected samples came from treatment systems that used either on-site or off-site 

sodium hypochlorite for its disinfection) and its use is becoming more common because 

there is a push towards sodium hypochlorite systems. Hence, it is important to consider 

the evaluation of sodium hypochlorite systems in regards of chlorate in drinking water. 

(24, 25) 

 

Gaseous Chlorine Versus Sodium Hypochlorite 

The use of chlorine gas has been decreasing mostly due to safety, effluent 

toxicity, air emissions and the potential for use of chlorine gas for terrorism. Other 

characteristics for both treatment methods are considered and the advantages and 

disadvantages of each are shown in the table below (T3). 

 

Table 3. Advantages and Disadvantages for using different disinfection types. 

Disinfection type Advantages Disadvantages 

Chlorine Gas  highly effective against most 
pathogens 

 “residual” protection for 
drinking water 

 most reliable operationally 
 very cost-effective 
 

 by-product formation (THMs, 
HAAs) 

 special operator training 
 regulatory requirements by the 

USEPA 

Sodium hypochlorite  highly effective against most 
pathogens 

 “residual” protection for 
drinking water 

 less training required for 
operators 

 fewer regulations by the 
USEPA 

 limited shelf-life 
 same by-products as chlorine 

gas but also chlorate 
 higher chemical cost 
 corrosive 
 crystallization and clogging of 

pipes 
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Sodium hypochlorite generation systems require a rather high capital cost, but 

many utilities make the switch from chlorine gas to sodium hypochlorite due to safety 

concerns for their employees and the surrounding public.  

The disinfection mechanism is not fully understood but it is believed to follow the 

same mechanisms as chlorine gas (which also produces HClO when dissolved in water). 

Chlorine’s modes of actions are believed to involve different sites in microorganisms. 

Biological inactivation can appear via multiple different mechanisms in the organisms, 

including: oxidation of sulfhydryl enzymes and amino acids, ring chlorination of amino 

acids, loss of intracellular contents, decreased uptake of nutrients, inhibition of protein 

synthesis, decreased oxygen uptake, oxidation of respiratory components, decreased 

adenosine triphosphate production, and breaks in DNA and depressed DNA synthesis. 

Any of these results in the destruction of the microorganism, and disinfection with 

hypochlorite is usually attributed to a combination of multiple mechanisms. (11) 

Another great advantage of using hypochlorite as a disinfectant is its ability to 

disinfect effectively even at low concentrations. It only takes a few milligrams per liter to 

disinfect water in treatment facilities. This gives the operators a benefit as they do not 

need to feed substantial volumes to have acceptable disinfection. 

The disinfection power of hypochlorite is somewhat pH dependent. Hypochlorous 

acid and hypochlorite ion are related by the acid dissociation: 

HClO    ⇌    H+  +  ClO−                                                                   pKa = 7.54                        (A) 

The species distribution is illustrated in F4. Hypochlorous acid, a neutral species, 

is more effective in disinfection than hypochlorite ions. The figure shows that equal 

amounts of neutral hypochlorous acid and of hypochlorite ions are present at a pH of 
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7.54. (2, 3, 6) This equilibrium is not only important for its application in the disinfection 

process but also in the hypochlorite decomposition process (see below).  

 

Hypochlorite Generation 

 

Sodium hypochlorite generation can be separated into on-site and off-site 

generation systems. With on-site generation, the sodium hypochlorite is produced at the 

end-use facility and used within days or weeks for disinfection. (22) In comparison, off-

site generation involves an independent manufacturer that produces sodium hypochlorite 

at its facility and then transports it to the end user. With off-site generation, the sodium 

hypochlorite solution tends to be more concentrated and the solution may be stored for 

longer periods of time before delivery. (17) T4 shows a comparison of off-site versus on-

site generation sources for hypochlorite. (23) 

 
 

Figure 4. Relationship between hypochlorous acid (HOCl) and hypochlorite ions (OCl) 
as a function of pH. 

 

pH-level 

C
ontribution in a solution 
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There are two commons types of generators: high-strength and low-strength 

hypochlorite generation systems. Usually high-strength systems are used by contractors 

that produce sodium hypochlorite off-site and then deliver it on-site. Sodium hypochlorite 

concentrations are a higher (normally around 15%) and are then diluted on-site before use 

in disinfection. These systems electrolyze an aqueous mixture of NaOH and NaCl 

together to form hypochlorite at high concentrations. However, this type of system is not 

part of this study. 

 

Table 4. Advantages and Disadvantages of using different hypochlorite generation 
processes. 

Generation type Advantages Disadvantages 

Off-site Hypochlorite 
Generation 

 low capital cost 
 simple application to the 

system 

 tank corrosion 
 variable costs 
 safety 
 product degradation 
 product quality 
 

On-site Hypochlorite 
Generation 

 generation of 10-12% (high 
strength system) or 0.8% 
(low strength system) NaClO 

 high stability of salt pricing 

 high capital cost 
 brine waste 
 high level of complexity 
 hydrogen generation 

 

 

In comparison, low strength systems are typically used on-site because they only 

generate hypochlorite concentrations below 1%.  

The reaction for electrolytic hypochlorite formation is rather simple. A diluted salt 

solution is fed into an electrolytic cell which then produces the oxidant by using a 

current. The anode and cathode half-reactions are:  

Anode: 2 Cl−   +   H2O    →    Cl2  +  2e−                                                             (B) 
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Cathode:   Cl2 + H2O  →    Cl− +  HClO + H+                                                      (C) 

Combination of HClO from the anode and hydroxide ion from the cathode result in the 

reaction, 

HClO  +  OH−    →  ClO−  +  H2O                                                                       (D) 

The overall reaction is: 

Cl−   +   H2O    →    ClO−   +    H2                                                                        (E) 

Under typical electrolysis conditions, some chlorate is produced by direct oxidation of 

chloride or hypochlorite at the anode: 

Cl−  +  3H2O  →  ClO3
−  + 6H+  +  6e−                                                                 (F) 

ClO−  +  2H2O  →  ClO3
−  + 4H+  +  4e−                                                              (G) 

 According to Jung et al. (15), about 13% of chloride can be converted to chlorate. 

 

Underlying Chemistry 

Prior to discussing the conversion of hypochlorite to chlorate in on-site 

hypochlorite systems, it will be helpful to discuss some of the underlying chemistry.  The 

hypochlorous acid – hypochlorite ion acid-base equilibrium (with pKa = 7.54) was 

introduced earlier.  Chloric acid, HClO3, is a strong acid so the dominant species within 

normal pH ranges is ClO3
−.   Chlorite, ClO2

−, is generally a minor species in these 

systems.  It is the anion from chlorous acid, HClO2, which is fully dissociated in the pH 

range of interest to this study. 

Key electrochemical relationships between species include the following: (26) 

ClO−  +  H2O  +  2e−  ⇌  Cl−  +  2OH−                     E  =  0.890 V                            (H) 

ClO2
−  +  H2O  +  2e−  ⇌  ClO−  +  2OH−          E  =  0.681 V                             (I) 
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ClO3
−  +  H2O  +  2e−  ⇌  ClO2

−  +  2OH−         E  =  0.271 V                            (J) 

ClO3
−  +  2H2O  +  4e−  ⇌  ClO−  +  4OH−            E  =  0.476 V                           (K) 

Therefore, the disproportionation of ClO− into Cl− and ClO3− is based on 

equations (H) and (K): 

3ClO−  ⇌  2Cl−  +  ClO3
−                       E  =  0.414                                            (L) 

This is a net four electron transfer, so its equilibrium constant is: 

300.30V0592.0

V414.04

1011010K 







 

 

The very large equilibrium constant implies that the disproportionation reaction is 

highly favored and, at equilibrium, hypochlorite should be quantitatively decomposed 

into chloride and chlorate. (For solutions below pH 7.5 where HClO, rather than ClO−, 

dominates, the details of the analysis are a bit different, but the same conclusion holds 

throughout the pH range relevant to water treatment). The fact that hypochlorite solutions 

can be synthesized and stored implies that hypochlorite’s disproportionation is relatively 

slow: its decomposition is limited by kinetic rather than equilibrium factors. (8, 9) 

Chlorite, ClO2
−, is the intermediate species between ClO− and ClO3

−.  Its overall 

disproportionation reaction based on equations (I) and (J) is: 

2 ClO2−  ⇌  ClO− + ClO3
−                      E  =  0.410                                         (M) 

Given the E value for this net 2-electron reaction, its equilibrium constant is 71013.  

Hence, chlorite should be a minor species in these mixtures.  

A number of studies have addressed the kinetics of hypochlorite 

disproportionation. A mechanism described in the beginning of the 20th century and was 
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first proposed by Foerster and Dolch, was based on a two-step mechanism for the 

formation of chlorate: (10) 

ClO-  + ClO-                    ClO2
-  +  Cl-   (slow step)                                             (N) 

ClO2
-  +  ClO-                  ClO3

-  +  Cl- (fast step)                                                 (O) 

The net reaction for the formation can be described as followed: 

3ClO-                   ClO3
-  +  2Cl-                                                                            (P) 

Since the second reaction occurs rapidly, chlorite (ClO2
-) is almost 

instantaneously converted into chlorate. This rapid conversion reduces the buildup of 

chlorite in drinking water and does not have to be considered as an important DBP. 

However, it has a vital part in the mechanism of chlorate formation.  

At a pH between 5-9, significant amounts of both HClO and OCl- are present in solution, 

and the decomposition is better represented by the following reaction: 

2HOCl + ClO-                   ClO3
-  + 2Cl- + 2H+                                                     (Q) 

Adam and Gordon (3) showed that in this pH range, the rate follows: 

-d([HOCl] + [OCl-])/3dt   =  kobs[HOCl]2[OCl-]                                                   (R) 

Here, the rate of formation is proportional to the square of hypochlorous acid 

concentration and the hypochlorite ion concentration to the first power. (2, 3, 6, 22, 23) 

For this rate law, the maximum rate of chlorate formation is expected when the 

ratio of [HOCl]/ [OCl-] is equal to 2. Using the pKa = 7.54, maximum rate of 

decomposition has is at a pH= 7.24 and decreases with a pH change in either direction. 

This agrees with Figure 5, which shows the decrease in the chlorate formation rate with 

increasing pH as the [HOCl]/ [OCl-] decreases. 
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A number of studies also describe temperature effects on the rate of chlorate 

formation.  As expected (and discussed more below), increasing temperatures increase 

rates. Adam and Gordon report increasing ionic strength also increasing rates of 

reactions. (3) For the second-order rate constant, they reported the ionic strength (µ) 

dependence on the rate constant as: 

log k2  =  0.146 μ  +  log k ∞                                                                                 (S) 

This predicts that increasing the ionic strength from μ = 1.0 to µ = 1.5 would 

increase the observed rate constant by approximately 18% (based on the contribution of 

the 0.146μ term to the calculation of k2).   Thus, ionic strength changes may be 

responsible for moderate changes in decomposition rates. (3, 13) 

 

Controlling Chlorate Formation 

Many publications conclude that the rate of decomposition of chlorate can be 

reduced pre-formation (up through the electrolysis step) and/or post-formation (after 

electrolysis) by controlling the following parameters: pH, temperature, storage 

concentration, storage time, ionic strength and transition metals impurities (shown in T5).  

As part of this research, only pH, temperature and storage time were considered 

as adjustable parameters in the pre- and post-formation of hypochlorite. The rationale for 

selection of these parameters is based on the recognition that any changes must be 

practical for implementation in a functioning water treatment plant that utilizes on-site 

hypochlorite generation. 
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Hypochlorite solutions, whether produced off- or on-site, may be stored for 

prolonged periods of time because water systems must be assured of adequate 

disinfectant supplies even in the event of disruptions in deliveries or production.  

Storage time seems to be an important factor in water treatment and is even more so 

important for off-site generation systems. This is due to higher hypochlorite 

concentrations. Sodium hypochlorite solutions from off-site generation systems may have 

been stored at the manufacturer site for some time before being shipped and may then be 

stored additionally on-site. However, off-site generated hypochlorite solutions are 

normally at elevated pH levels (above 11.0) where chlorate formation is very slow. (8, 9) 

Regardless of the system, the shorter the storage time the less decomposition of 

hypochlorite to chlorate is observed. However, time in the distribution system (after 

treatment) is not expected to be important: when hypochlorite is fed into the water system 

it experiences a dilution factor of about 1:1,000. With this great dilution, the rate of 

hypochlorite decomposition goes towards zero because the rate of chlorate formation 

depends on total hypochlorite cubed (intermediate pH range) or squared (higher pH 

range). This means that once the hypochlorite is in the distribution system, the formation 

of chlorate is negligible. (13) The more important factor to consider is time the 

concentrated solution is in the storage tank. The rate law for sodium hypochlorite 

decomposition also predicts that a dilution of sodium hypochlorite by a factor of two will 

decrease the rate of decomposition hypochlorite by four to eight (depending on the pH 

range). (23) 
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Table 5. Parameters influencing formation of chlorate and whether they are important for 
post- and/or pre-formation. 

Parameter Pre-formation Post-formation 

pH-level  

Temperature  

Storage concentration  

Storage time  

Ionic strength  

Transition metals  

 

 

As discussed in the preceding section, previous research has demonstrated that 

there is a relationship between the pH of a sample and the decomposition rate in the near 

neutral pH range. (3, 13) Rates of chlorate formation are much higher in the range 

between pH 5 to 9 than at a higher pH range, so decomposition of hypochlorite in post-

formation is most rapid when stored in the mid pH range. (2) As pH is adjusted to pH > 

9.5, the chlorate formation slows down and some chlorite buildup is observed (F5). (2, 3, 

13) 

Gordon, Adam, and Bubnis tested the effects of increased hydroxide 

concentrations on the formation rate of chlorate. Decomposition rates for hypochlorite 

solutions with varying amounts of added caustic soda were evaluated. As shown in F6, 

increased caustic soda concentrations decreased the decomposition rate of hypochlorite 

and, at the same time, decreased the formation of chlorate ions in the solution. This is 
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very consistent with the kinetics of chlorate formation mentioned earlier (2, 3, 13). These 

results reflect the effects of post-formation pH adjustment. 

 

 
Figure 5. Rate of decomposition at different pH levels ranging from 9.5 to 14. (13) 

 

     

Figure 6. a) hypochlorite decomposition at various caustic soda (NaOH) concentrations 
with [OCl]= 1.64M; b) chlorate ions formed as a function of time [OCl}= 1.64M. (13) 

 

a) 
b) 
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It is not fully understood how chlorate concentrations behave if pH is changed 

before generation. Jung et al showed that chlorate formation rose with increasing pH, up 

to pH 7.2, and then remained constant up to pH 9 (the upper pH limit of the study). The 

proposed reason for that is that, at low pH levels, the dominant species in the solution is 

hypochlorous acid, (F4) does not contribute as much to the chlorate formation as 

hypochlorite ions do. (15) Jung’s results were specifically for Ti/Pt electrodes with 

relatively low salt concentrations and moderate current densities, so their direct 

application to the current investigation may be limited. 

The last factor that will have an effect on chlorate formation is temperature. As 

discussed earlier, publications have clearly established a strong correlation between 

temperature and rates of hypochlorite decomposition and chlorate formation (F7). 

 

 

Figure 7. Effects of temperature on the formation rate constant of chlorate for three 
different samples with an ionic strength of 3.727 (3). 

 

The following relationship (3) can be used to model the rates in chlorate 

formation in the pH range above 11 with increasing temperature: 
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log k2 = 0.149 + log[2.083 x 1010T exp(-0.1018 x 105/RT) exp(-56.5/R)]        (T) 

(Where k2 = rate constant,  = ionic strength of solution, T = temperature and R = gas 

constant) 

This equation (T) predicts experimental rate constants (F7) within an average 

error of < 5%. This is in agreement with experimental findings in other publications. (3, 

4) The relationship described applies to behavior at pH   11 where Foerster and Dolch 

(10) mechanism dominates.  It is not strictly applicable to the pH 7 – 11 range most 

relevant to this study, but is illustrative of the influence of temperature on chlorate 

decomposition rates.  At this point, there do not appear to be any published studies 

detailing the temperature dependence of hypochlorite decomposition in the pH 7 – 11 

range. 

 

Study Objectives 

The objective of this research is to analyze the parameters responsible for chlorate 

formation in operational settings. The publications discussed earlier studied the effects of 

temperature, pH and storage times under lab conditions, but there is little information 

available based on the applicability for an operational setting. Thus, it is important to 

look at the aforementioned parameters in the context of operational capability and in the 

formation of hypochlorite using electrolytic cells. Parameters for chlorate formation in 

electrolytic cells will be considered pre- and post-hypochlorite generation and will be 

discussed in relation to its feasibility and application for treatment conditions. Of 

particular concern is that any alterations in conditions do not adversely affect the quantity 

of hypochlorite produced, the key chemical required for the disinfection process. 
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Post-generation adjustments cannot reduce the concentration of chlorate produced 

by electrolysis in the generation step. (6) The primary goal of adjusting parameters post-

generation is simply to stop or slow down the decomposition reaction resulting in 

chlorate formation.  

 

Systems 

The experiment was conducted in cooperation with City Utilities of Springfield, 

MO. Springfield is located in southwest Missouri and has a population of around 165,000 

and a service area population of around 230,000. The city of Springfield is provided with 

drinking water by two municipally-owned facilities, James River and water pump 

stations: Blackman Water Treatment Plant (BWTP) and Fulbright Water Treatment Plant 

(FWTP). BWTP provides drinking water for about 150,000 Springfield residents while 

FWTP provides water for the remaining 80,000 people.  

From 1980 to 2013, BWTP used gaseous chlorine as its disinfection method. 

BWTP switched to an on-site sodium hypochlorite generation system in April 2013. 

FWTP completed its switch to on-site sodium hypochlorite  in late October 2016 (the 

changeover started at the beginning of August 2016). Both plants use generator systems 

from PSI On-Site Disinfection. BWTP uses three Microclor Model MC-1600 skid 

systems, each rated to produce 1,600 pounds (725 kg) per day of free chlorine as sodium 

hypochlorite. FWTP uses three Microclor Model MC-800 skid systems capable of 

producing up to 800 pounds (360 kg) per day of free chlorine as sodium hypochlorite. 

The material used for the electrodes is titanium with DSA (dimensionally stable anodes) 

proprietary coating for best sodium hypochlorite generation (F8). Both systems are able 
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to produce approximately 0.8% sodium hypochlorite under optimal settings. The systems 

typically operate under the conditions in T6, but are not strictly limited to all of these 

settings. 

 

 

Figure 8 Schematic of sodium hypochlorite formation system using a PSI Generator 
(http://www.4psi.net/microclor-diagram.php) 

 

Under typical operating conditions, the hypochlorite emerging from the 

generation system is somewhat warmer than the supply water, with outlet temperatures of 

around 35°C.  The hypochlorite solution is directed into one of three 150,000 L storage 

tanks for BWTP, or one of the four 75,000 L storage tanks for FWTP. (12) These are not 

temperature controlled, but because of the containers’ large volumes and the high heat 

capacity of aqueous solutions, the hypochlorite solutions tend to remain at elevated 

temperatures. 
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Table 6. Operation settings for the two sodium hypochlorite generation systems of 
interest. 

Operation settings Blackman WTP Fulbright WTP 

Potable water source 
James River,        

Fellows Lake 

Fulbright Spring,      

McDaniel Lake 

Potable water temperature 20℃ 20℃ 

Potable water pH 7.8 to 8.2 7.4 to 7.8 

Brine Flow 5.3 L/min 2.8 L/min 

Cell Flow 53.0 L/min 30.3 L/min 

Current on the system* 450 amp 250 amp 

Free Chlorine produced 0.6 to 0.8% 0.75 to 0.85 % 

*current to the power supply with 240 VAC 
 

Sodium hypochlorite is injected into the treatment system at a concentration 

between 2-10 ppm depending on the disinfection demand corresponding to a 800 to 

4,000-fold dilution of the stored hypochlorite. Water from the two treatment plants flow 

into the same City of Springfield water distribution system. The residence time of treated 

water in the distribution system varies with location. The longest residence time sites in 

the system have been identified as the Expedia site for FWTP and the Evans Road site for 

BWTP (see F9). 

 

Overview of Key Analytical Methods 

Ion chromatography is the most commonly used method for measuring chlorate 

concentrations. A schematic of a typical ion chromatograph (IC) can be found below in 
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F10. The sample is then injected into an eluent (mobile phase) typically containing KOH 

or a mix of NaHCO3 and Na2CO3. The mixture is pumped through a separation column 

containing a stationary phase composed of porous resins with fixed charge-carrying 

groups using a high pressure non-metallic pump. After separation, the sample then runs 

through an electrolytic eluent conductivity suppressor and is then detected and made 

visible with a data management instrument.  

 

Figure 9. Locations of water treatment plants and maximum residence locations in 
Springfield, MO. 

 

Free chlorine was determined using a colorimetric method based on the reaction 

of free chlorine with DPD (N,N-diethyl-p-phenylenediamine), which is oxidized to form 

a highly colored Würster dye (radical species) which absorbs at  = 520 nm. 
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Time Location 

Water Treatment Plant 
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Figure 10. Schematic of a typical Ion Exchange Chromatograph. 
(http://www.chromacademy.com/Introduction_to_Ion_Chromatography_Essential_Guide
.html) 
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METHODS 

 

Instrumental Method Details 

For the detection of chlorate concentrations, a ThermoScientific™ Dionex™ ICS-

5000+ Capillary HPIC™ System with Chromeleon 7.0 software was used. The detection 

method for chlorate was Method 300.1 published by the USEPA. 

The analytical column was a Dionex IonPac AS22 packed column, 250 mm long 

with a 2 mm inner diameter, along with a 50 mm long 2 mm diameter guard column. The 

A22 stationary phase is a porous resin functionalized with alkanol quaternary ammonium 

groups for ultralow hydrophobicity.  The column’s capacity is 52.5 eq/column. 

Additionally, the system was operated under the following conditions: 

Detector: Suppressed Conductivity Detector, Dionex CD20 

Suppressor: ASRS-2mm, external source electrolytic mode, 4 mA 

current 

Eluent: 2.3 mmol Na2CO3, 0.7 mmol NaHCO3 

Eluent flow: 0.3 mL/min 

Sample loop: 10 L 

System Backpressure: 1300 psi 

Analysis time: 15 min 

 

A small detection window was needed for this analysis. Chloride was present in 

high concentrations in the sample since only a small part of chloride ions reacted to form 

hypochlorite ions. Thus, the conductivity due to chloride is very high compared to 
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chlorate’s conductivity. Additionally, the chloride peak and chlorate peak were in close 

proximity to each other and the detection window had to be adjusted to only show the 

chlorate peak in an effort to keep chlorate from being dwarfed by the chloride peak (F11). 

Samples from the generators, storage tanks, and generation studies had to be diluted 

(typically 500-fold) to fit the calibration range. Samples from the distribution system 

were injected without any dilutions. 

 

 

 
 
 
 
 
 
Figure 11. Chromatograph using Dionex ICS-5000+. a) chromatograph with detections 
times 1-19min. First peak shows a chloride peak, second shows a chlorate peak. b) 
chromatograph with adjusted detection times of 9.6-11.6min where the first peak shows 
chlorate. 

 

a) 

b) 
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In addition, samples were collected at the maximum residence times in the water 

system (Expedia serves as the maximum residence location for FWTP, Evans Road 

serves as the maximum residence location for BWTP). (F9) 

 

Post-Generation Study: Age, Temperature and pH Studies 

For the study, fresh sodium hypochlorite samples were collected from running 

generator systems at BWTP and FWTP (9 samples each for FWTP and BWTP). Samples 

were collected in white 1000 mL Nalgene bottles to eliminate the influence of light on 

chlorate formation. For the age study, no further changes were made. For the temperature 

study, one sample was put into a refrigerator and kept at 5C, another one was kept at 

21C and the third was put in an incubator at 35C. For the pH study, the pH of the 

sodium hypochlorite solutions were adjusted using 1M sodium hydroxide (NaOH). One 

sample was not adjusted and kept at its original pH of around 9.2. A second sample was 

adjusted to a pH 10.0 and a third sample to pH 11.0. Data collection started one day after 

the initial collection day (day 0) and is labeled as day 1. The pH, free chlorine 

concentration, and chlorate concentration of each sample was measured regularly over a 

28 day period, a time period chosen to reflect storage times for on-site generated 

hypochlorite. 

 

Pre-Generation Study: Temperature and pH Level 

To study effects of adjusting parameters before sodium hypochlorite generation, 

the residential sodium hypochlorite generator Breeze 540 by Saline Generating System 

was used. This system generates sodium hypochlorite in the same process as the PSI 
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systems except it is smaller in size and it is easier to modify the generator’s settings.  

According to the manufacturer’s specifications, the system is designed to generate up to 

1.35 pounds of free chlorine per day, equivalent to about 25 g free chlorine per hour.  The 

generator, as configured by the manufacturer, is designed to be part of a high flow 

volume / low free chlorine concentration system for chlorination of swimming pools. The 

electrodes consisted of a similar type of material as the PSI generators (titanium with 

DSA coating). 

For these studies, the system’s flow chamber was replaced by a PVC chamber to 

allow circulation of a relatively small volume of solution (F13,F14), allowing generation 

of higher concentrations of free chlorine in short periods of time. 

Solutions for the runs were made using softened water and brine solution from 

BWTP and mixed at a 12:1 ratio to ensure a similar solution concentration compared to 

the generator systems at BWTP and FWTP in order to imitate their production settings as 

much as possible. 

A total volume of 2500 mL of solution was pumped through the reaction chamber 

using a peristaltic pump (Masterflex Easy Load II, Cole Parmer) with a pump rate of 

325ml/min. The solution was cycled through the cell for a total time of 60 min (total 

number of cycles are about 10). Samples were collected before and after the run. 

Temperature, pH values and free chlorine concentrations were determined immediately 

after collection (see procedure for post-generation study).  Samples were brought to 

BWTP for IC analysis to determine chlorate concentrations. 

pH adjustments to the brine solution were made by adding the following 

solutions: 10 mM sodium carbonate, 10mM sodium bicarbonate and 10 mM sodium 



 

 34 

hydroxide. In all cases, the change was performed before every run. The carbonate and 

bicarbonate solutions were prepared by adding solid reagents, and the sodium hydroxide 

solution by adding 1 M NaOH solution. The solutions were then used for the specific 

runs.  

The cold run was performed by cooling the solution to 10C initially and was then 

cycled through the system for 60 min (F13,F14). 

Every prepared brine solution (diluted 1:12) was used for two runs. One run was 

performed without changing any parameters (which served as a baseline reading). The 

second run was then performed with the changed parameters (NaOH, NaHCO3, Na2CO3, 

temperature) to compare the concentrations to the unchanged run. 

 

 

Figure 13. Picture of the setup of the Saline Generating System Breeze 540. 
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Figure 14. Schematic of the pool generator setup 

 

The system had no provisions for temperature control.  Modifications to allow 

temperature control were planned.  However, difficulties with the power supply 

(overheating, leading ultimately to failure of control circuitry) made it impossible to 

implement the modifications. 
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RESULTS 

 

Samplinmg of Different Locations at BWTP 

Samples were collected throughout BWTP. (AA) The results show that the first 

basin does not contain any chlorate because it is raw water that is not disinfected. Basin 

#2 shows chlorate concentrations because samples were collected after disinfection of the 

drinking water. However, elevated chlorate concentrations were found in the outlet of the 

hypochlorite generation system (average chlorate concentration 365 ppm) as well as in 

storage tank #2 (average chlorate concentration 590 ppm). Based on these observations, it 

can be concluded that chlorate formation occurs in the generation system and storage. 

 

Maximum Residence Study 

The Evans Road and Expedia sampling sites evaluated here correspond to the 

maximum residence locations (locations furthest from the water treatment plant) for 

BWTP and FWTP, respectively. Maximum residence locations were selected because the 

UCMR3 study used maximum residence locations for its data collection. The samples, 

collected over a 2-month period, showed elevated concentrations of chlorate in drinking 

water (AB, F15). Four samples from the Evans Road site showed concentrations above 

210 ppb, the concentration chosen as a reference value because it is likely to be the 

concentration at which chlorate will be regulated. All samples collected from Evans Road 

exceeded 100 ppb.  
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Figure 16. Change in pH levels compared to Day 1 values for a total of six different 
samples over a 28-day time period; error bars represent one standard deviation. 

 

 
Figure 17. Change in free chlorine concentration compared to Day 1 values for a total of 
six samples compared to their initial free chlorine concentration over a 28-day period, in 
percent; error bars represent one standard deviation. 
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Figure 18. Change in chlorate concentration compared to the Day 1 values over a 28-day 
period, in percent; error bars represent one standard deviation. 

 

all six collected samples (both BWTP and FWTP) were error bars equivalent to 

one standard deviation were added to compare result. 

Figure 16 shows the pH change over the 28 day duration for the six samples. All 

samples show an initial pH of 9.3 ± 0.05. Over this specific period a pH change can be 

observed for all six samples with an ending pH of 9.15 ± 0.07. Even though there is not a 

completely consistent decrease in pH, a clear trend can be observed for the samples. This 

trend can be explained by looking at concentrations of free chlorine and chlorate. 

The free chlorine plots and chlorate plots show concentration changes compared 

to the initial concentration (where the initial concentration is considered as 0% change). 

Initial free chlorine concentrations averaged 6900 ppm for BWTP and 7900 ppm for 

FWTP. These dropped to average values of 6300 ppm at BWTP and 6600 ppm at BWTP. 
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The decrease in free chlorine was not consistent for all samples and ranges from ~7% 

(BWTP) to ~18% for (FWTP). 

However, the decomposition of free chlorine would also decrease the sample’s pH 

to a small extent. A 30% drop in OCl- would change the pH by about 0.08 (by changing 

the HClO:OCl- ratio). In addition, the decomposition of free chlorine enhances chlorate 

concentration.  

The average initial chlorate concentrations were 128 ppm for BWTP and 214 ppm 

for FWTP. After the 28-day period these concentrations increased to 586 ppm (average at 

BWTP) and 915 ppm (average at FWTP). Chlorate concentration increases ranged from 

293% (BWTP) up to a maximum of 410% (BWTP).  

 

Effects of Temperature Adjustments. Samples from both BWTP and FWTP 

were held at a range of temperatures (5°C, 21°C, and 35°C) and monitored for a 28 day 

period. For both cold and intermediate temperatures the pH dropped only slightly over 

the experimental duration. (F19, AF) The pH for intermediate temperature had a slightly 

lower final pH compared to the cold temperature (intermediate temperature final pH 

levels of 9.17 (FWTP) and 9.20 (BWTP), cold temperature final pH levels of 9.37 

(FWTP) and 9.38 (BWTP)).  

The biggest decrease in pH can be observed for warm temperature (35°C) 

samples. For both systems, the pH dropped by at least 0.5 units (FWTP: 0.52 units; 

BWTP: 0.59 units).  

Free chlorine concentrations (F20, AG) were essentially stable at 5°C. Both 

systems showed minor losses of free chlorine at intermediate temperature, with a 10%  
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Figure 19. Change in pH levels compared to Day 1 values for the two sodium 
hypochlorite generators at 5 ºC (blue), 21 ºC (green) and 35 ºC (red) over a 28-day 
period. 

 

 
Figure 20. Change in free chlorine concentrations compared to Day 1 values for the two 
sodium hypochlorite generators at 5 ºC (blue), 21 ºC (green) and 35 ºC (red) over a 28-
day period (in percent) in comparison to the initial concentration. 
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drop for BWTP and 18% drop for FWTP in comparison to their initial free 

chlorine concentration. There were big decreases in free chlorine concentrations for both 

BWTP (46%) and FWTP (53%) at high temperatures. Again, the trends in free chlorine 

are similar to the trends in pH for the same samples, with the greatest decreases occurring 

at the highest temperature.  

Chlorate results (F21, AH) showed that BWTP had a lower initial chlorate 

concentration with around 121-146 ppm, compared to 194-257 ppm for FWTP. At 5°C, 

chlorate concentration increases by approximately 60%, compared to their initial 

concentration for both locations. At intermediate temperatures, for both sites the chlorate 

concentrations had increased by about 380% over 28 days, despite FWTP’s higher initial 

chlorate concentration. The biggest change can be observed for both warm temperature 

samples. Chlorate concentrations for FWTP increased by about 800%, while BWTP 

increased by almost 1200%. FWTP had an initial chlorate concentration of 257 ppm and 

showed a final concentration of 2350 ppm, and increase of nearly 2100 ppm. In 

comparison, BWTP started with 145 ppm and ended at 1892 ppm after the 28-day period, 

and increase of about 1750 ppm. In absolute terms, FWTP showed a higher chlorate 

concentration increases compared to BWTP after 28 days. 

Overall, the BWTP had a higher percent increase in chlorate concentration than 

FWTP, but it showed lower free chlorine concentrations compared to FWTP. For pH 

levels, no distinct change can be seen between the two systems. 
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Figure 21. Change in chlorate concentrations compared to Day 1 values for the two 
sodium hypochlorite generators at 5 ºC (blue), 21 ºC (green) and 35 ºC (red) over a 28-
day period (in percent) in comparison to the initial concentration. 

 

Effects of pH adjustments. The effects of initial pH adjustments (to pH 11.3 or 

10.3, or unadjusted at pH 9.2) on samples from both treatment systems were followed for 

28 days (F22, AI). For each initial pH, the solution pH remain nearly constant throughout 

the whole study since they have been adjusted initially at day 0.  

Considering free chlorine concentrations there is no clear trend (F23, AJ). The 

samples with pH ~9.2 shows a slight decrease in free chlorine concentration (FWTP: 

15%, BWTP: 7%). For a pH of ~10.3, there were slight rises in free chlorine. These 

concentrations increased mostly in the first two days and then remained constant until the 

end of the study, suggesting that a low initial reading may have skewed the results. At pH 

11.3, FWTP showed a decrease of 4% while BWTP showed a minimal increase of less 

than 2%.  
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Figure 22. pH compared to the Day 1 values for the two sodium hypochlorite generators 
after adjustment to pH 9.2 (blue), ~10.3 (red) and ~11.3 (green) over a 28-day period. 

 

 
Figure 23. Change in free chlorine concentrations compared to the Day 1 values for the 
two sodium hypochlorite generators for adjusted pH levels ~9.2 (blue), ~10.3 (red) and 
~11.3 ºC (green) over a 28-day period in percent in comparison to the initial 
concentration. 
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Chlorate concentrations show modest increases for the higher pH samples and a 

pronounced increase for the lowest pH samples, (F24, AK) At pH ~11.3 an increase of 

50% can be observed for both systems. pH ~10.3 had elevated chlorate concentrations of 

112% (FWTP) and 129% (BWTP). The biggest increase in chlorate concentration was 

observed at the pH ~9.2. Here, FWTP showed an increase of 310% and BWTP showed 

an increase of 410%. It should be noted that the initial chlorate concentrations for BWTP 

were lower (110-130 ppm) compared to FWTP (190- 210 ppm). The final chlorate 

concentrations were also higher for FWTP (334 ppm, 399 ppm and 885 ppm) than BWTP 

(168 ppm, 281 ppm and 650 ppm). So, although the percent increase at BWTP was 

greater than at FWTP, the greater absolute increase in chlorate concentration was 

observed for FWTP.  

 

 
Figure 24. Change in chlorate concentrations compared to the Day 1 values for the two 
sodium hypochlorite generators for adjusted pH-level ~9.2 (blue), ~10.3 (red) and ~11.3 
(green) over a 28-day period in percent in comparison to the initial concentration. 
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Pre-Generation Study  

Changing parameters in pre-generation using the Breeze540 generation system 

resulted in alterations in chlorate concentrations (F25, AL). For every altered parameter a 

duplicate was run without alterations that serves as a control run in order to create two 

points of data for every parameter. The 0% line in F24 represents no difference in 

chlorate concentration compared to the baseline run. 

Adding 10 mmol of sodium hydroxide per liter of brine mixture had almost no 

effect on chlorate concentration (1% and 6% increase). For sodium bicarbonate, 

increased chlorate concentrations were observed (33% and 46%). Sodium carbonate was 

the parameter change that showed the highest increase in chlorate concentration when 

added to the brine solution (58% and 78%). 

The only decrease in chlorate concentration was observed for a temperature 

adjustment with an initial temperature of 21C for the baseline run and a final 

temperature of ~55C. In comparison, the cold runs started at 11C and 6C and 

increased to temperatures of ~55C for both runs. Both samples showed a decrease in 

chlorate concentration of 21% (baseline run: 455 ppm; 11C: 361 ppm) and 24% 

(baseline run: 401 ppm; 11C: 306 ppm). 

A complication in interpreting these results stems from significant delays between 

sampling and chlorate measurements made necessary by the need for service to the IC 

system. 
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Figure 25. Change in chlorate concentrations for the pool generator for the addition of 
sodium carbonate, sodium bicarbonate, sodium hydroxide and an initial temperature of 
10C in comparison to the initial concentration. 
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DISCUSSION 

 

Operational Adjustments 

The main purpose of this research was to determine and evaluate operational 

solutions to effectively decrease chlorate concentrations in drinking water. The study’s 

goal was to make adjustments from an application basis. Many studies have focused on 

research under lab conditions (samples of deionized water spiked with chlorate), but the 

research from an application base has restrictions on the range of variable that are 

considered in this paper. 

First, it is important that changes in parameters do not reduce the quantity of free 

chlorine produced. There is a need to effectively change parameters while still providing 

an adequate supply of free chlorine for the disinfection purpose of drinking water. Also, 

there are limitations to the adjustment of pH in the generation process. The chlorine 

generation system has a specific pH range for optimal hypochlorite generation. Operating 

the system at a pH below or above the range could result in decreased electrode lifetime, 

decreased hypochlorite generation, or loss of warranties provided by the manufacturer. 

Finally, there are also practical limitations to temperature changes. Because of the large 

requirement of water and the temperature rise occurring primarily within the generation 

apparatus (not amenable to modifications), and the high heat capacity of that water 

involved, the ability to control temperature is limited. 

This study showed trends comparable to previous reports, but it also has 

substantial differences that will be discussed. The maximum residence study for BWTP 

and FWTP established that chlorate concentrations still exceed the amount of 210 ppb 
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and thus have to be addressed. From an operational perspective, two possible options to 

reduce chlorate can be considered which can be achieved by changes pre- and post-

generation. It can be assumed that there is a relationship between hypochlorite 

decomposition and chlorate formation. 

For future simplicity, it can be expected that, on average, the electrolysis 

apparatus generates a product solution of 8,000 ppm of hypochlorite and 500 ppm of 

chlorate which then goes into the storage tanks. One approach to decrease chlorate 

concentrations in drinking water would be to reduce chlorate concentrations in the 

storage tanks (see next sections). 

One opportunity to have a decrease in chlorate in water is to modify the 

disinfection process so that less hypochlorite is required. This might be achieved with the 

construction of a clear well at BWTP. A clear well can be generally defined as a reservoir 

for storing large quantities of drinking water of high quantities to accommodate 

fluctuations in water demands and thus the changing filtration rate with varying demand. 

Whereas FWTP has been using a clear well for many decades, BWTP is hoping to use 

one by the end of 2018. A clear well would provide longer chlorine contact time for the 

disinfection. Because of the longer disinfectant contact time, it is possible to feed 

hypochlorite further down in the water treatment process. This gives the flocculating 

agent more time to eliminate fungi, bacteria and viruses resulting in a lower hypochlorite 

demand for disinfection. Consequently, hypochlorite requirements could be lowered 

significantly while still providing the same level of disinfection. Because chlorate’s 

source is hypochlorite disinfectant, reducing hypochlorite additions would reduce 

chlorate proportionally. 
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Relationship of Changes in Free Chlorine with Chlorate 

The overall stoichiometric relationship between hypochlorite and chlorate is 

based on the following reaction. 

3 ClO-   ⇌  2Cl- + ClO3
- 

Hence, there should be a direct relationship between the decrease in free chlorine 

concentration (expressed as equivalent free Cl2 in g/L or %) and increase in chlorate 

(expressed as mass ClO3
‒/L, commonly as ppm).   The quantitative relationship between 

a 1.0 g free chlorine (0.10% or 1000 ppm) loss per liter and the expected chlorate 

increase is: 

1𝑔 𝐶𝑙2

1𝐿 
×

1 𝑚𝑜𝑙𝑒 𝐶𝑙2

70.906𝑔 𝐶𝑙2
×

1 𝑚𝑜𝑙𝑒 𝐶𝑙𝑂3
−

3 𝑚𝑜𝑙𝑒 𝐶𝑙2
×

83.451 𝑔 𝐶𝑙𝑂3
−

1 𝑚𝑜𝑙𝑒 𝐶𝑙𝑂3
− =  

0.392𝑔𝐶𝑙𝑂3
−

1𝐿 

≡  392 𝑝𝑝𝑚 𝐶𝑙𝑂3
−  

Table 7 presents comparisons between observed changes in free chlorine and 

chlorate, and in expected chlorate increases based on the relationships discussed above.   

For example, for hypochlorite produced at FWTP, the free chlorine dropped by 1000 ppm 

(0.10%) over the course of 28 days, while the chlorate concentration increased by 579 

ppm.  The increase in chlorate concentration based on hypochlorite decomposition is 392 

ppm.  Hence, the observed chlorate increase is much larger than expected: 

579 𝑝𝑝𝑚 𝐶𝑙𝑂3
−

392 𝑝𝑝𝑚 𝐶𝑙𝑂3
− ×  100% = 148% 

T7 and T8 summarizes all results for comparisons over a range of conditions previously 

considered. 
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Table 7. Contribution of hypochlorite decomposition to chlorate concentration at FWTP. 

    Measured values 
(ppm) 

Theoretical 
value (ppm) 

contribution 
in % 

Run Δ free 
Cl- 

Δ 
chlorate chlorate   

Storage Time  1000 579 392 148 

      Temperature 5C *    
 21C 1400 737 549 134 

 35C 4100 2095 1608 130 

      pH 9 1100 670 432 155 

 10       11 300 121 118 103 
* calculations not possible because the final free chlorine concentration was bigger than 
the initial 
 

Table 8. Contribution of hypochlorite decomposition to chlorate concentration at BWTP. 

    Measured values 
(ppm) 

Theoretical 
value (ppm) 

contribution 
in % 

Run Δ free 
Cl- 

Δ 
chlorate chlorate   

Storage Time  **    
      Temperature 5C *    
 21C 700 455 275 166 

 35C 2900 1746 1138 153 

      pH 9 500 523 196 267 

 10 *      11 *       
* calculations not possible because the final free chlorine concentration was bigger than 
the initial 
**data for BWTP storage time included in FWTP data 

 

The results show that chlorate concentration increases in the sample were much 

greater than predicted based on the observed loss of free chlorine. This can be explained 

based on the times that concentrations were determined. While free chlorine 

concentrations were measured almost instantaneously after collection, chlorate 
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determination was somewhat delayed, allowing more hypochlorite to disproportionate. 

The one example with good agreement between predicted and actual chlorate 

concentration increase is the sample at adjusted to pH 11, where the disproportionation 

reaction is pretty much completely quenched.  Hence, it is likely that some portion of 

observed chlorate concentration increases reflect experimental artifacts.  If the 

experiment were repeated, some measure should be taken to limit further hypochlorite 

decomposition, e.g., the sample pH should be raised, or the solution diluted substantially, 

in order to stop hypochlorite decomposition. 

 

Reducing Chlorate by Altering Storage Time in Post-Generation 

From a cost perspective, changing storage time would be the most affordable 

solution to prevent chlorate formation. Collected data show that keeping storage time 

under seven days would limit increasing the chlorate concentrations to a maximum of 

50%. This approach would require more frequent generation but would have an effect to 

control chlorate concentrations in the tanks. (13, 23) The main limitation is that this 

approach would require reduction in the amount of hypochlorite held in reserve, which 

could be problematic should there be any interruption in the hypochlorite generation. 

A variant on the approach would be to dilute the hypochlorite as soon as it is 

produced. Diluting the solution would have two beneficial effects:  

1. Decrease of solution temperature in tanks (see effects of temperature)  

2. dilution of the solutions reduces chlorate formation rate.  

In addition, a greater volume of hypochlorite would be required for disinfection, so the 

storage time would be reduced. The main practical drawback of dilution is that the 



 

 53 

hypochlorite solution would only be half as strong, so twice as much would be required 

to achieve the same disinfection. In order to have the same total disinfectant capacity, 

storage tanks need to be doubled (increasing storage time) or hypochlorite would need to 

be generated twice as frequently. 

 

Reducing Chlorate by Altering pH in Post-Generation 

Previous publications suggested that the rate of chlorate formation is reduced 

significantly at pH ≥ 10. (2, 3, 13) The data collected for this project showed that an 

increase of pH effectively reduced chlorate formation over time. pH adjustments in the 

drinking water industry are typically achieved with the use of sodium carbonate or 

sometimes sodium hydroxide. However, the use of either compound would require 

increased capital cost. As an example, hypochlorite solutions were adjusted to a pH 10 

and 11 by using 1N sodium hydroxide. Considering the solution’s buffering capacity 

(water used to prepare the brine is softened to remove Ca2+ and Mg2+, but the softening 

does not remove HCO3
− or CO3

2−, anions that contribute to alkalinity ), it takes 3 mL of 

sodium hydroxide per liter of solution to change the solution’s pH to 10 and 7 mL to 

change it to pH 11.  Additionally, increasing pH increases the possibility of corrosion not 

only in storage tanks but also in the pipe system. 

At increased pH, the disproportionation reaction is still thermodynamically 

favorable but the reaction rate slows down with increasing pH. As discussed, the 

disproportionation reaction shows its highest rate at a pH of 7.24 (Equation 9) and 

declines with increasing pH. (2, 3) 
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Controlling Chlorate by Altering Temperature in Post-Generation 

Warm temperature samples show the most rapid increases in chlorate 

concentration throughout the 28-day period, with up to a 200% increase after seven days. 

Normally, samples taken after the generation process show temperatures at around 35C, 

which is consistent with the temperature study at warm temperature. Also, there is 

minimal temperature drop in the storage tanks due to their insulation capability, allowing 

the temperature of 35C to remain consistent for long periods of time.  

Using the temperature study and comparing concentration after seven days for the 

35C and 21C, it can be concluded that decreasing the temperature to 21C could reduce 

the rate of formation by half compared to 35C samples. (3, 4) This rate is still not ideal 

but would at least slow down chlorate formation. A drop of temperature post-generation 

could be achieved by either using dilutions of the hypochlorite (see above) or cooling the 

solution. Cooling the solution can be achieved using a heat exchanger (high cost to 

effectively cool solution) or using potable water as a cooling agent in some way. 

It is known that cooling the solution has an impact on the disproportionation 

reaction. At lower temperatures, the disproportionation reaction slows down significantly, 

which reduces chlorate concentrations. 

 

Effects of Pre-Generation Adjustments  

A modified commercial pool generator was chosen to identify the effects of 

parameter changes in pre-generation for several reasons:  

1. The system is smaller than the units used by City Utilities to generate less    
hypochlorite solution.  

2. The pool generator gives the opportunity to change parameters without  
impacting the water treatment process  
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3. The pool generator requires less maintenance  
4. It was portable. 

Even though electrolysis was the driving factor in hypochlorite generation, different 

characteristics made it difficult to directly compare the pool generator with City Utilities 

system. One major difference was the current densities on the electrodes’ surfaces. 

Calculations were made for both systems. 

PSI Microclor Models MC-1500 and MC-800: 
Flow rate: 15 gal/min ≅ 1 L/s 
Hypochlorite generation: 0.8% NaClO- = 8 g/L NaClO 
Total area of anodes: 50,600 cm3 

 

1 𝐿

1 𝑠
× 

8 𝑔 ClO − 

1 𝐿
 × 

1 𝑚𝑜𝑙𝑒 𝑁𝑎ClO 

74.44 𝑔 𝑁𝑎ClO 
≅  

0.11 𝑚𝑜𝑙𝑒𝑠 𝑁𝑎ClO 

1𝑠
 

 
0.11 moles NaClO/s = 0.22 moles e-/s 
 
0.22 𝑀𝑒−

1 𝑠
×  

96485 𝑐𝑜𝑢𝑙𝑜𝑚𝑏

1 𝑚𝑜𝑙𝑒𝑠 𝑒−
≅

2.1 × 104 𝑐𝑜𝑢𝑙𝑜𝑚𝑏

1𝑠
=  2.1 × 104 𝐴 

 
2.1 × 104𝐴

50600 𝑐𝑚2
≅ 0.41 𝐴/𝑐𝑚2 

 
 
Saline Generating System Breeze 540: 

Flow rate: 325 mL/min ≅ 0.005 L/s 
Hypochlorite generation: 0.7% NaClO = 7 g/L NaClO 
Total area of anodes: 500 cm3 

Cycling time: 1h = 3600sec 
 

 
7 𝑔 𝑁𝑎ClO 

1 𝐿
 ×  

1 𝑚𝑜𝑙𝑒 𝑁𝑎ClO 

74.44 𝑔 𝑁𝑎ClO 
×  2.5𝐿 ≅  0.24 𝑚𝑜𝑙𝑒𝑠 𝑁𝑎𝐶𝑙𝑂 

 
0.24 moles NaClO = 0.48 moles e- 
 

0.48 𝑀𝑒−  ×  
96485 𝑐𝑜𝑢𝑙𝑜𝑚𝑏

1 𝑚𝑜𝑙𝑒𝑠 𝑒−
÷ 3600𝑠𝑒𝑐 ≅

12.86 𝑐𝑜𝑢𝑙𝑜𝑚𝑏

1𝑠
=  12.86 𝐴 

 
12.86 𝐴

500 𝑐𝑚2
≅ 0.026 𝐴/𝑐𝑚2 
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Looking at the above calculation, it can be concluded that the current density for 

the PSI Microclor is 16 times higher than for the Breeze Saline Generating System. It is 

believed that the formation reaction for chlorate happens at close proximity to the anode 

surface.  

For the mechanism of hypochlorite formation, oxidation reactions at the anode 

convert two chloride ions into chlorine gas which reacts with water to form hypochlorous 

acid and hydrochloric acid. 

Cl2 + H2O                    HClO + H+ + Cl−                                                               (S) 

On the anode surface, high amounts of hydrogen ions are produced as part of the 

formation mechanism of hypochlorite, thus creating a very acidic environment on the 

electrode’s surface. Adding sodium bicarbonate, sodium carbonate or sodium hydroxide 

to the brine mixture will increase the pH of the feed solution but will not have much 

effect on the pH on the electrodes surface.  

Adding sodium hydroxide to the brine mixture did not have any effect on the 

observed chlorate concentration. In contrast, observed chlorate increased upon addition of 

either bicarbonate or carbonate. One potential explanation for increased chlorate 

concentration with the use of sodium bicarbonate is its buffering capacity which could 

lower the product’s pH where hypochlorite decomposition would be faster. The increase 

of chlorate upon adding carbonate is not clear. The pH should be high enough that 

chlorate formation slows down. It is also possible that the high chlorate concentrations 

measured for some samples reflected artifacts due to delays between sample collection 

and IC analysis. 
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Considering the issue with increasing pH at the anode’s surface, using sodium 

carbonate and bicarbonate, another possibility could be to lower the pH of the solution to 

drive the pH at the surface to an even more acidic pH. This could result in moving the pH 

substantially below 7.0, away from the pH with the highest formation rate and thus 

reducing it. This concept was not considered in this research paper as it is not preferable 

from an application perspective due to corrosion issues. Another problem associated with 

low pH is that the equilibrium of the reaction would shift towards the formation of 

hypochlorous acid and also releasing chlorine gas as a byproduct of the equilibrium shift. 

The only parameter change that showed a decrease in chlorate concentration was 

a change in temperature. At low temperature, the disproportionation reaction slows down 

which makes the reaction very temperature dependent. Even though it was not tested in 

this research it can be assumed that the disproportionation is the slowest for a solution of 

0C and increases with increasing temperature. This assumption needs further research to 

confirm the dependency of temperature for the system. At this point, it cannot be 

determined whether the lower chlorate concentration reflects less production of chlorate 

from the electrolysis, per se, or suppressed disproportionation in the solution. 

Even though the data collected from the pool generator lines up well with the 

theory, the effects of artifacts need to be discussed as well. Throughout the runs of 60 

min, temperatures increased to about 50C and were about 15C higher than what was 

observed for the PSI Microclor systems. This same temperature increase also appeared 

at low temperature runs that started at decreased initial temperatures. Furthermore, it is 

possible that evaporative loss of solution could have had an influence because of high 

solution temperatures, but this may only be minor. 
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Overall, the data show a trend that lowering solution temperature in pre-

generation can have a great influence on chlorate concentration but it is necessary to 

investigate the effects of temperature and eliminate the specific artifacts. Even though 

current densities of the different systems do not coincide with each other, the Breeze 

Saline Generating System can be used as a good reference for altering parameters that 

can be applied to the PSI Microclor systems. 
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CONCLUSION 

 

Chlorate in drinking water appears rather commonly throughout the U.S. with 

varying concentrations. Chlorate is a disinfection byproduct of hypochlorite generation. 

Springfield, MO, which uses on-site hypochlorite generation systems, is facing the issue 

of producing high concentrations of chlorate in their drinking water above a possible 

HRL of 210 g/L. This concentration was exceeded several times in the past year. 

With the move by the USEPA to regulate chlorate concentrations in drinking 

water, this research is very important to understanding the mechanisms behind chlorate 

formation in on-site generation systems and in evaluating what parameters can have a 

positive impact on chlorate reduction. Being able to successfully demonstrate how to 

reduce chlorate in drinking water can have a big influence on PWS that are using some 

kind of hypochlorite as their disinfectant. 

Different possibilities of reducing chlorate formation were considered and 

evaluated. Reduced storage time, low temperatures and high pH were identified to lower 

decomposition rates of hypochlorite in post-generation. Decreasing storage time reduces 

the time for hypochlorite decomposition. From an application perspective, it is important 

to reduce storage time as much as possible. 

A correlation has been found between hypochlorite decomposition rates and 

solution temperatures. Low temperatures (10C) reduce hypochlorite decomposition 

while high temperatures (35C) increase hypochlorite decomposition compared to room 

temperature (21C). Previous publications looked at chlorate formation under lab 
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conditions. This research showed that findings from these publications can also be 

applied to settings with a more complex matrix.  

Furthermore, increasing pH of hypochlorite solutions also has a positive effect on 

reducing decomposition rates and also agrees with findings from previous publications. 

Increasing the solution pH to 11 during storage almost stopped the decomposition of 

hypochlorite, maintained free chlorine strength, and prevented significant increases in 

chlorate concentration. 

Additionally, an increased solution pH using sodium carbonate and sodium 

bicarbonate in pre-generation showed an increase in chlorate concentration, but no effect 

on chlorate concentration was observed by changing the pH using sodium hydroxide. A 

decrease in solution temperature appeared to reduce chlorate concentrations. Overall, 

changes in temperature for pre- and post-generation as well as reduced storage time in 

post-generation are showing the most promising effect in reducing decomposition rates 

from an operational perspective, but the results and conclusions are suspect due to 

potential artifacts. 

It needs to be emphasized that adjustments made in post-generation do not reduce 

chlorate concentrations. Its purpose is to reduce hypochlorite decomposition rates to 

minimize further increases in chlorate concentration. 

Results from adjustments in post-generation were successful and agree with 

findings from previous papers. The\results are a good representation of the hypothesis 

and underline the success of this research. Results from adjustments in pre-generations 

did not yield comparable results for several reasons. First, little data was gathered and 

only one duplicate was collected for every adjustment. This makes it difficult to 
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determine the correctness of this experiment. Also, artifacts of the instrumentation set up 

may have skewed the results. Additionally, throughout the test runs for pre-generation 

adjustments some instrumentation error was observed. Since the Breeze Saline 

Generating System was not manufactured for the production of high hypochlorite 

concentrations, the instrument increased in temperature and caused melting of some of 

the insulation which required a modification of the instrument setup.  Because the 

experimental system was not stable, obtaining reproducible data comparable over 

multiple runs was not possible.    

If adjustments in pre-generation are considered in future research, it may be 

advisable to purchase a complete hypochlorite generation system that is able to withstand 

changes in parameters and provide data closer to the application settings. This purchase, 

however, would require some capital cost. Also, the system may lose its warranty by 

changing some of the parameters considered. 

Using the current system setup of the Breeze Saline Generating System, more 

data points on the effect of temperature changes in pre-generation will be required in 

order to make a better statement regarding control of chlorate formaition. It is crucial to 

eliminate artifacts in the system setup to remove the influence of other undesirable 

parameter changes. To eliminate the artifact of temperature in the pH run it is necessary 

to keep the solution temperature close to the initial temperature. Putting the reaction 

chamber into a temperature controlled water bath may prevent the increase in 

temperature. This also applies to the temperature runs. 
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APPENDICES 
 

Appendix A. Chlorate concentrations in ppm at different locations throughout the 
treatment process at BWTP. 
 

Sampling 
events 

First 
Basin 

Second 
Basin 

Post 
Filter 

Potable 
Water 

Water 
Softener 

Hypochlorite 
Generation 

System 

Storage 
Tank 

#2 
1 0 0.16 0.15 0.23 0.16 248 413 
2 0 0.14 0.15 0.21 0.14 587 491 
3 0 0.10 0.11 0.23 0.19 541 510 
4 0 0.09 0.10 0.15 0.13 444 591 
5 0 0.11 0.10 0.15 0.11 332 575 
6 0 0.08 0.09 0.16 0.11 221 537 
7 0 0.07 0.08 0.13 0.00 200 539 
8 0 0.08 0.08 0.15 0.10 346 259 

 

Appendix B. Chlorate concentrations in ppm for the two different maximum 
residence locations. 
 

Date Evans Rd Expedia 
3/18/2013 78.0 23.1 
9/30/2013 149 149 
12/16/2013 202 112 
3/25/2014 213 76.5 
4/1/2014 179 81.3 
6/24/2014 523 285 
9/30/2016 218 178 
10/4/2016 381 97.3 
10/11/2016 358 136 
10/18/2016 248 206 
10/25/2016 186 183 
11/1/2016 156 124 
11/8/2016 159 106 
11/15/2016 101 48.2 
11/29/2016 159 90.1 
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Appendix C. pH-levels for the storage time runs over a 28-day period. 
 

 Fulbright WTP Blackman WTP   

Day Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 Average std. dev. 

1 9.34 9.34 9.35 9.25 9.34 9.36 9.33 0.040 
3 9.30 9.31 9.29 9.34 9.35 9.35 9.32 0.027 
4 9.25 9.26 9.29 9.33 9.33 9.34 9.30 0.039 
7 9.26 9.26 9.27 9.30 9.31 9.29 9.28 0.021 
8 9.26 9.27 9.30 9.29 9.32 9.31 9.29 0.023 

10 9.25 9.27 9.30 9.31 9.33 9.34 9.30 0.035 
11 9.20 9.22 9.25 9.25 9.27 9.28 9.25 0.030 
14 9.17 9.20 9.22 9.24 9.26 9.26 9.23 0.036 
15 9.17 9.19 9.21 9.18 9.23 9.25 9.21 0.031 
17 9.17 9.19 9.23 9.24 9.27 9.27 9.23 0.041 
18 9.16 9.18 9.22 9.22 9.26 9.27 9.22 0.043 
21 9.17 9.18 9.24 9.19 9.26 9.27 9.22 0.044 
22 9.14 9.17 9.19 9.17 9.20 9.22 9.18 0.028 
25 9.05 9.12 9.15 9.16 9.22 9.21 9.15 0.062 
28 9.08 9.14 9.17 9.13 9.21 9.20 9.16 0.048 
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Appendix D. Free Chlorine concentrations in percent (top) and change in free 
chlorine in percent (bottom) for the storage time runs over a 28-day period. 
 

 
 

Fulbright WTP 
 

Blackman WTP 
 

 

Day 
 

Run 1 Run 2 Run 3 
 

Run 1 Run 2 Run 3 
 

Average 

1  0.81 0.76 0.79  0.69 0.69 0.68  0.74 
3  0.81 0.73 0.75  0.70 0.65 0.71  0.73 
4  0.79 0.79 0.77  0.73 0.70 0.72  0.75 
7  0.77 0.76 0.78  0.71 0.67 0.71  0.73 
8  0.76 0.78 0.76  0.69 0.68 0.70  0.73 

10  0.77 0.76 0.77  0.68 0.68 0.70  0.73 
11  0.76 0.76 0.76  0.69 0.69 0.69  0.73 
14  0.74 0.73 0.75  0.68 0.68 0.68  0.71 
15  0.75 0.74 0.74  0.68 0.67 0.68  0.71 
17  0.73 0.73 0.72  0.68 0.67 0.67  0.70 
18  0.73 0.72 0.72  0.66 0.64 0.68  0.69 
21  0.69 0.70 0.70  0.67 0.65 0.65  0.68 
22  0.69 0.68 0.69  0.66 0.65 0.66  0.67 
25  0.68 0.66 0.68  0.65 0.65 0.64  0.66 
28  0.67 0.65 0.65  0.63 0.64 0.61  0.64 

 
 

 
 

Fulbright WTP 
 

Blackman WTP 
 

  

Day 
 

Run 1 Run 2 Run 3 
 

Run 1 Run 2 Run 3 
 Average 

% 
Std. 
dev. 

1  0.00 0.00 0.00  0.00 0.00 0.00  0.00 0.00 
3  0.00 -3.95 -5.06  1.45 -5.80 4.41  -1.58 4.08 
4  -2.47 3.95 -2.53  5.80 1.45 5.88  1.81 3.85 
7  -4.94 0.00 -1.27  2.90 -2.90 4.41  -0.45 3.51 
8  -6.17 2.63 -3.80  0.00 -1.45 2.94  -1.13 3.59 

10  -4.94 0.00 -2.53  -1.45 -1.45 2.94  -1.36 2.62 
11  -6.17 0.00 -3.80  0.00 0.00 1.47  -1.58 2.92 
14  -8.64 -3.95 -5.06  -1.45 -1.45 0.00  -3.62 3.15 
15  -7.41 -2.63 -6.33  -1.45 -2.90 0.00  -3.62 2.86 
17  -9.88 -3.95 -8.86  -1.45 -2.90 -1.47  -4.98 3.71 
18  -9.88 -5.26 -8.86  -4.35 -7.25 0.00  -6.11 3.58 
21  -14.8 -7.89 -11.4  -2.90 -5.80 -4.41  -8.14 4.51 
22  -14.8 -10.5 -12.7  -4.35 -5.80 -2.94  -8.82 4.83 
25  -16.1 -13.2 -13.9  -5.80 -5.80 -5.88  -10.4 4.78 
28  -17.3 -14.5 -17.7  -8.70 -7.25 -10.3  -12.9 4.49 
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Appendix E. Chlorate concentrations in ppm (top) and change in chlorate 
concentration in percent (bottom) for the storage time runs over a 28-day period. 
 

 
 

Fulbright WTP 
 

Blackman WTP 
 

 

Day 
 

Run 1 Run 2 Run 3 
 

Run 1 Run 2 Run 3 
 

Average 

1  232 215 194  135 128 121  171 
3  278 294 285  180 179 192  235 
4  298 288 290  191 204 195  244 
7  363 348 361  222 263 278  306 
8  332 353 339  203 202 209  273 

10  410 402 427  259 280 270  341 
11  381 398 434  222 238 254  321 
14  500 585 543  327 348 365  445 
15  579 587 594  349 376 377  477 
17  587 671 726  363 431 378  526 
18  664 697 690  410 424 429  552 
21  697 708 714  425 459 458  577 
22  721 738 762  439 510 466  606 
25  865 887 835  541 570 593  715 
28  928 885 931  530 651 576  750 

 
 

 
 

Fulbright WTP Blackman WTP 
 

  

Day 
 

Run 1 Run 2 Run 3 Run 1 Run 2 Run 3 
 Average 

% std. dev. 

1  0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.0 
3  20 37 47 33 40 59  39.3 13 
4  28 34 50 41 60 61  45.7 13 
7  57 62 86 64 106 130  84.2 29 
8  43 64 75 51 59 72  60.7 12 
10  77 87 120 92 120 123  103 20 
11  64 85 124 64 86 110  88.8 24 
14  115 172 180 143 173 202  164 31 
15  149 173 206 159 195 212  182 26 
17  153 212 274 169 238 213  210 44 
18  186 225 256 204 233 255  226 28 
21  200 230 269 215 260 278  242 32 
22  210 243 293 225 300 285  260 38 
25  272 313 330 301 347 390  326 41 
28  300 312 380 293 410 376  345 50 
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Appendix F. pH levels for the temperature runs over a 28-day period. 
 

    Fulbright WTP   Blackman WTP 

Days   5°C 21°C 35°C   5°C 21°C 35°C 
1 

 
9.33 9.35 9.19 

 
9.52 9.36 9.20 

3 
 

9.33 9.29 9.15 
 

9.47 9.35 9.15 
4 

 
9.35 9.29 9.15 

 
9.39 9.34 9.08 

7 
 

9.40 9.27 9.06 
 

9.43 9.29 9.01 
8 

 
9.39 9.30 9.08 

 
9.44 9.31 9.05 

10 
 

9.30 9.30 9.06 
 

9.46 9.34 9.03 
11 

 
9.40 9.25 9.00 

 
9.40 9.28 8.94 

14 
 

9.37 9.22 8.92 
 

9.38 9.26 8.89 
15 

 
9.35 9.21 8.91 

 
9.38 9.25 8.85 

17 
 

9.35 9.23 8.89 
 

9.41 9.27 8.84 
18 

 
9.40 9.22 8.88 

 
9.42 9.27 8.83 

21 
 

9.40 9.24 8.84 
 

9.41 9.27 8.79 
22 

 
9.38 9.19 8.79 

 
9.40 9.22 8.74 

25 
 

9.37 9.15 8.70 
 

9.38 9.21 8.65 
28   9.37 9.17 8.67   9.38 9.20 8.61 
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Appendix G. Free chlorine concentrations in percent (top) and change in free 
chlorine in percent (bottom) for the temperature runs over a 28-day period. 
 

    Fulbright WTP   Blackman WTP 

Days   5°C 21°C 35°C   5°C 21°C 35°C 
1   0.76 0.79 0.77   0.66 0.68 0.68 
3  0.79 0.75 0.74  0.68 0.71 0.69 
4  0.80 0.77 0.76  0.70 0.72 0.68 
7  0.78 0.78 0.70  0.68 0.71 0.62 
8  0.78 0.76 0.68  0.70 0.70 0.62 
10  0.75 0.77 0.64  0.69 0.70 0.57 
11  0.78 0.76 0.61  0.69 0.69 0.56 
14  0.80 0.75 0.57  0.72 0.68 0.51 
15  0.81 0.74 0.54  0.71 0.68 0.50 
17  0.77 0.72 0.49  0.70 0.67 0.46 
18  0.79 0.72 0.49  0.72 0.68 0.47 
21  0.78 0.70 0.43  0.72 0.65 0.41 
22  0.77 0.69 0.43  0.72 0.66 0.38 
25  0.71 0.68 0.31  0.71 0.64 0.37 
28   0.78 0.65 0.36   0.74 0.61 0.37 

 
 
 

    Fulbright WTP   Blackman WTP 

Days   5°C 21°C 35°C   5°C 21°C 35°C 
1  0.00 0.00 0.00  0.00 0.00 0.00 
3  3.95 -5.06 -3.90  3.03 4.41 1.47 
4  5.26 -2.53 -1.30  6.06 5.88 0.00 
7  2.63 -1.27 -9.09  3.03 4.41 -8.82 
8  2.63 -3.80 -11.7  6.06 2.94 -8.82 
10  -1.32 -2.53 -16.9  4.55 2.94 -16.2 
11  2.63 -3.80 -20.8  4.55 1.47 -17.7 
14  5.26 -5.06 -26.0  9.09 0.00 -25.0 
15  6.58 -6.33 -29.9  7.58 0.00 -26.5 
17  1.32 -8.86 -36.4  6.06 -1.47 -32.4 
18  3.95 -8.86 -36.4  9.09 0.00 -30.9 
21  2.63 -11.4 -44.2  9.09 -4.41 -39.7 
22  1.32 -12.7 -44.2  9.09 -2.94 -44.1 
25  -6.58 -13.9 -59.7  7.58 -5.88 -45.6 
28   2.63 -17.7 -53.3   12.1 -10.3 -45.6 
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Appendix H. Chlorate concentrations in ppm (top) and change in chlorate 
concentration in percent (bottom) for the temperature runs over a 28-day period. 
 

    Fulbright WTP   Blackman WTP 

Days   5°C 21°C 35°C   5°C 21°C 35°C 

1  188 194 257  124 121 146 
3  194 285 436  135 192 319 
4  201 290 516  135 195 330 
7  227 361 808  156 278 537 
8  206 339 765  129 209 536 
10  210 427 940  158 270 681 
11  196 434 914  118 254 649 
14  263 543 1349  180 365 1120 
15  272 594 1513  178 377 1200 
17  264 726 1663  179 378 1400 
18  277 690 1653  169 429 1400 
21  270 714 1900  175 458 1550 
22  277 762 1926  188 466 1690 
25  301 835 2186  193 593 1860 
28   295 931 2352   197 576 1890 

 
 

    Fulbright WTP   Blackman WTP 

Days   5°C 21°C 35°C   5°C 21°C 35°C 
1  0.00 0.00 0.00  0.00 0.00 0.00 
3  3.30 46.8 69.5  8.67 59.0 119 
4  7.20 49.9 101  8.80 61.1 127 
7  20.9 86.0 214  26.2 130 269 
8  9.56 74.7 197  4.11 72.4 268 
10  11.8 120 265  27.4 123 368 
11  4.19 124 255  -4.93 110 345 
14  40.1 180 424  45.0 202 668 
15  45.1 206 488  43.7 212 721 
17  40.8 274 546  44.5 213 859 
18  47.6 256 542  36.7 255 860 
21  43.7 269 638  41.5 278 961 
22  47.4 293 648  51.7 285 1060 
25  60.3 330 750  55.9 390 1180 
28   57.2 380 814   59.1 376 1200 
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Appendix I. pH levels for the pH runs over a 28-day period. 
 

    Fulbright WTP   Blackman WTP 

Days   pH=9 pH=10 pH=11   pH=9 pH=10 pH=11 
1  9.34 10.20 11.39  9.34 10.37 11.46 
3  9.31 10.15 11.34  9.35 10.33 11.41 
4  9.26 10.10 11.33  9.33 10.33 11.42 
7  9.26 10.12 11.34  9.31 10.30 11.40 
8  9.27 10.14 11.34  9.32 10.33 11.45 
10  9.27 10.14 11.35  9.33 10.36 11.48 
11  9.22 10.10 11.31  9.27 10.26 11.38 
14  9.2 10.06 11.28  9.26 10.26 11.35 
15  9.19 10.06 11.28  9.23 10.22 11.34 
17  9.19 10.07 11.30  9.27 10.27 11.38 
18  9.18 10.07 11.30  9.26 10.25 11.39 
21  9.18 10.06 11.28  9.26 10.24 11.36 
22  9.17 10.05 11.27  9.20 10.21 11.34 
25  9.12 10.01 11.24  9.22 10.22 11.34 
28   9.14 10.03 11.27   9.21 10.21 11.34 
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Appendix J. Free chlorine concentrations in percent (top) and change in free 
chlorine in percent (bottom) for the pH runs over a 28-day period. 
 

    Fulbright WTP   Blackman WTP 

Days   pH=9 pH=10 pH=11   pH=9 pH=10 pH=11 
1  0.76 0.75 0.83  0.69 0.67 0.71 
3  0.73 0.78 0.79  0.65 0.70 0.72 
4  0.79 0.80 0.82  0.70 0.70 0.71 
7  0.76 0.79 0.80  0.67 0.70 0.71 
8  0.78 0.81 0.81  0.68 0.71 0.72 
10  0.76 0.82 0.81  0.68 0.71 0.73 
11  0.76 0.81 0.81  0.69 0.73 0.73 
14  0.73 0.79 0.81  0.68 0.72 0.73 
15  0.74 0.80 0.78  0.67 0.73 0.73 
17  0.73 0.81 0.80  0.67 0.72 0.71 
18  0.72 0.79 0.82  0.64 0.72 0.71 
21  0.70 0.79 0.82  0.65 0.71 0.68 
22  0.68 0.80 0.79  0.65 0.72 0.73 
25  0.67 0.80 0.80  0.64 0.70 0.73 
28   0.65 0.82 0.80   0.64 0.69 0.72 

 
 

    Fulbright WTP   Blackman WTP 

Days   pH=9 pH=10 pH=11   pH=9 pH=10 pH=11 
1  0.00 0.00 0.00  0.00 0.00 0.00 
3  -3.95 4.00 -4.82  -5.80 4.48 1.41 
4  3.95 6.67 -1.20  1.45 4.48 0.00 
7  0.00 5.33 -3.61  -2.90 4.48 0.00 
8  2.63 8.00 -2.41  -1.45 5.97 1.41 
10  0.00 9.33 -2.41  -1.45 5.97 2.82 
11  0.00 8.00 -2.41  0.00 8.96 2.82 
14  -3.95 5.33 -2.41  -1.45 7.46 2.82 
15  -2.63 6.67 -6.02  -2.90 8.96 2.82 
17  -3.95 8.00 -3.61  -2.90 7.46 0.00 
18  -5.26 5.33 -1.20  -7.25 7.46 0.00 
21  -7.89 5.33 -1.20  -5.80 5.97 -4.23 
22  -10.5 6.67 -4.82  -5.80 7.46 2.82 
25  -11.8 6.67 -3.61  -7.25 4.48 2.82 
28   -14.5 9.33 -3.61   -7.25 2.99 1.41 
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Appendix K. Chlorate concentrations in ppm (top) and change in chlorate in 
percent (bottom) for the pH runs over a 28-day period. 
 

    Fulbright WTP   Blackman WTP 

Days   pH=9 pH=10 pH=11   pH=9 pH=10 pH=11 
1  215 188 213  128 123 114 
3  294 244 268  179 169 146 
4  288 233 212  204 146 152 
7  348 243 237  263 177 169 
8  353 225 198  202 142 128 
10  402 249 229  280 179 145 
11  398 205 193  238 140 112 
14  585 297 234  348 215 193 
15  587 299 236  376 202 167 
17  671 358 260  431 219 170 
18  697 343 260  424 244 176 
21  708 332 249  459 237 182 
22  738 349 277  510 218 182 
25  887 377 274  570 246 233 
28   885 399 334   651 281 168 

 
 

    Fulbright WTP   Blackman WTP 

Days   pH=9 pH=10 pH=11   pH=9 pH=10 pH=11 
1  0.00 0.00 0.00  0.00 0.00 0.00 
3  37.0 29.9 25.9  40.4 37.6 28.2 
4  33.8 23.8 -0.31  59.6 19.1 34.1 
7  61.9 29.2 11.2  106 44.5 48.6 
8  64.5 19.9 -7.11  58.6 15.8 12.6 
10  87.3 32.3 7.71  120 45.8 28.0 
11  85.3 8.80 -9.33  86.5 13.9 -1.70 
14  172 58.0 10.7  173 75.3 69.7 
15  173 59.3 10.7  195 65.0 46.8 
17  212 90.4 22.1  238 78.9 49.9 
18  225 82.3 22.0  233 98.9 55.0 
21  230 76.4 17.0  260 93.3 60.5 
22  243 85.8 30.0  300 77.9 60.4 
25  313 101 28.7  347 100 105 
28   312 112 56.9   410 129 48.0 
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Appendix L. Pre-Generation runs. 
 

Setting Initial   Final         

  T 
(∘C) pH   T 

(∘C) pH   Free Cl 
(%) 

Chlorate 
(ppm) 

Chlorate 
change 

(%) 
Unchanged 24.3 8.5  56.4 9.23  0.63 309  
10mmol NaOH 23.7 9.5  56.8 9.42  0.65 311 0.68 

          
Unchanged 20.1 7.81  52.3 9.39  0.81 369  
10mmol NaOH 21.1 11.01  52.2 10.54  0.74 390 5.69 

          
Unchanged 21.7 8.19  52.2 9.25  0.77 331  
10mmol Na2CO3 21.6 10.34  21.6 10.05  0.77 523 58.1 

          
Unchanged 24 8.27  54.3 9.11  0.71 350  
10mmol Na2CO3 24.9 10.08  51.5 9.88  0.66 625 78.3 

          
Unchanged 22.1 8.27  54.2 9.27  0.57 364  
10mmol NaHCO3 22.1 7.84  53.4 9.04  0.51 485 33.2 

          
Unchanged 21.3 8.18  53.5 9.65  0.54 425  
10mmol NaHCO3 19.4 8.23  51.3 9.35  0.47 532 25.0 

          
Unchanged 21.9 8.13  54.4 9.72  0.78 456  
10°C temperature 11.4 8.04  48.1 9.43  0.8 361 -20.8 

          
Unchanged 21.5 8.16  55.5 9.6  0.73 401  
10°C temperature 6.5 8   53.7 9.52   0.8 306 -23.8 
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