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INTRODUCTION

In bifurcation theory, there is a theorem (called Sotomayor’s theorem) which proves the ex-

istence of one of three types of bifurcations based on the conditions that the system satisfies.

The bifurcations that Sotomayor’s theorem proves the existence of (Saddle-Node, Trans-

critical, or Pitchfork bifurcations) are what are called codimension-1 bifurcations. It turns

out that there is a “similar” result for proving the existence of one type of codimension-2 bi-

furcation (called the Bogdanov-Takens bifurcation) based on the conditions that the system

satisfies.

In this thesis, we first provide some basic results from calculus, and linear algebra

that will be used in this thesis. We also provide an introduction to dynamical systems,

where we define equilibrium points of a system, periodic orbits of a system, and their sta-

bilities. Furthermore, we introduce a few theorems (Stable Manifold, Hartman-Grobman,

etc.) which can determine the behavior of the system near an equilibrium point/periodic

orbit. Once we have a basic idea of what is going on with dynamical systems, we provide

an introduction to bifurcation theory. We will look at some more common bifurcations, and

see how the behavior of the system changes as the parameters of the system changes. We

also define the codimension of a bifurcation, and provide a couple of examples to prove

what the codimension of a bifurcation is. We also discuss the Center Manifold Theorem,

and its importance for this thesis. We then discuss the Bogdanov-Takens bifurcation, and

provide the statement of a theorem (and the details of its proof) which proves the exis-

tence of the Bogdanov-Takens bifurcation (under certain conditions of the system). We

also provide an example of a system which undergoes a Bogdanov-Takens bifurcation.

The main goal of this thesis is to provide the details of the proof of the existence

of a Bogdanov-Takens bifurcation, provided that certain conditions of the system satisfies.

To the author’s knowledge, we could only find one place where the proof of this theorem
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could be found (in [2]). However, there are little details provided in the proof from [2]. For

this reason, my main contribution is to provide the details of the proof of this theorem.
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CHAPTER 1: PRELIMINARIES

In this chapter, we present some topics from calculus and functional analysis that will be

used in this thesis.

1.1. Taylor Series Expansion in 2-Dimensions

We introduce Taylor series here since we will need this idea later. We will also

provide an example to demonstrate how to compute the Taylor series.

THEOREM 1. (Taylor Series Expansion) Suppose a function f : R2→ R and its partial

derivatives through n+1 are continuous throughout an open region R centered at a point

(a,b). Then, throughout R,

f (a+h,b+k) = f (a,b)+(h fx+k fy) |(a,b)+ 1
2!(h

2 fxx+2hk fxy+k2 fyy) |(a,b)+ ...+

1
n!(h

∂

∂x + k ∂

∂y)
n f |(a,b)+ r(a+h,b+ k), where r is the error term of order n+1. �

This theorem basically says that in the region R, f can be approximated by its Taylor

polynomial. We provide an example to demonstrate how we apply Theorem 1.

EXAMPLE 2. Suppose we want to approximate the function f (x,y) = xey near the origin.

Then we have fx(x,y) = ey, fy(x,y) = xey, fxx(x,y) = 0, fxy(x,y) = ey, and fyy(x,y) = xey.

Also, we have f (0,0) = 0e0 = 0, fx(0,0) = e0 = 1, fy(0,0) = 0e0 = 0, fxx(0,0) = 0,

fxy(0,0) = e0 = 1, and fyy(0,0) = 0e0 = 0. Hence, we have

f (x,y)≈ f (0,0)+ x fx(0,0)+ y fy(0,0)+
1
2!
(x2 fxx(0,0)+2xy fxy(0,0)+ y2 fyy(0,0))

f (x,y)≈ 0+ x(1)+ y(0)+
1
2!
(x2(0)+2xy(1)+ y2(0))

f (x,y)≈ x+ xy.
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Hence, f (x,y) ≈ x+ xy. That is, f (x,y) can be approximated by its Taylor polynomial

P(x,y) = x+ xy of degree two, around (0,0). O

We say that a function f : E → Rn is analytic in the open set E ⊂ Rn if f has a

Taylor series which converges to f in some neighborhood of a point x0 in E.

1.2 The Fredholm Alternative Theorem

In this section, we introduce the Fredholm Alternative Theorem. This theorem

basically says that either a vector is a solution to a linear system, or it is not. In which

case, it gives a characterization that will be useful when we study the proof of Theorem 41,

which will be discussed later.

THEOREM 3. [2], [4] (The Fredholm Alternative Theorem) Let A be a m×n matrix, and

let b ∈ Rm. Then either x ∈ Rn is a solution of the linear system Ax = b or AT y = 0 has a

solution with y ∈ Rm satisfying bT y 6= 0. �

1.3 The Implicit Function Theorem

Here, we discuss the Implicit Function Theorem, which we will also use in the

proof of Theorem 41, which will be discussed later.

THEOREM 4. [2], [4] (Implicit Function Theorem) Let F : Rn×Rm→ Rn be a smooth

function defined in a neighborhood of (x,y) = (0,0) such that F(0,0) = 0, and let

A = DF(0,0) be the Jacobian of the function F evaluated at (0,0). If A is nonsingular,

then there exists a smooth locally defined function f : Rn→ Rm such that F(x, f (x)) = 0

for all x in some neighborhood of the origin of Rn. �

This theorem basically suggests that under certain conditions that if the origin is a

solution to the equation F(x,y) = 0, then there are more possible solutions to the equation

F(x, f (x)) = 0 for all x in some neighborhood of the origin in Rn.
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1.4 Generalized Eigenvectors

Here we introduce the idea of a generalized eigenvector v of a matrix A correspond-

ing to an eigenvalue λ . We say that v is a generalized eigenvector of a n× n matrix A

corresponding to an eigenvalue λ with algebraic multiplicity m≤ n if

(A−λ I)kv = 0,

for some k = 1,2, ...,m. So we have that an eigenvector is a generalized eigenvector (where

k = 1).

It turns out that there is an equivalent way to write the generalized eigenvectors of

a matrix corresponding to an eigenvalue. To see this, let v1,v2, ...,vm be the generalized

eigenvectors of a n×n matrix A corresponding to the eigenvalue λ . Then we have

(A−λ I)mvm = 0

(A−λ I)m−1(A−λ I)vm = 0.

Since vm−1 is a (generalized) eigenvector, and from the above system, we can define

(A−λ I)vm = vm−1. Using a similar argument, we can write one of the generalized eigen-

vectors in terms of another. It turns out that we can find linearly independent generalized

eigenvectors of a matrix A corresponding to an eigenvalue λ . This fact will be stated in

Chapter 2.
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CHAPTER 2: INTRODUCTION TO DYNAMICAL SYSTEMS

The main idea of dynamical systems is to study the qualitative behavior of solutions of a

system of ordinary differential equations. In other words, the area of dynamical systems

tries to answer the question: as the independent variable of the system (usually time t)

increases, and parameters vary, what does the solution to a given system of ordinary differ-

ential equations tend to do? In particular, we look to see if the system is stable (solutions

stay near a certain region of the system) or unstable (solutions go away from certain regions

of the system). We also look for special solutions, attractors, etc. With this in mind, we

can study the stability of a system locally or globally. To study local stability is to study

what the system tends to do in a neighborhood of an equilibrium point, or around periodic

orbits. In this thesis, we will be considering systems of the form

ẋ = f (x,µ) (0.1)

where x ∈ Rn and µ ∈ Rm. So, we will be working with systems that depends not only on

x, but also on a vector of parameters µ = [µ1,µ2, ...,µm]
T . Since µ is allowed to change,

the stability of the vector field f can also change. This will be discussed in further detail in

Chapter 4.

2.1 The Basic Background

Before we start looking at bifurcations of system (0.1) (which is the main subject

studied here), we first need to define some terms that will be used throughout this thesis.

We also need to discuss the local and global stability of systems of the form

ẋ = f (x) (0.2)

6



where f : Rn→ Rn and x ∈ Rn. Once we are familiar with these ideas, we will introduce

some bifurcations and state Sotomayor’s Theorem, which helps us prove the existence of

certain bifurcations.

We begin by introducing some terminology we will be using throughout this thesis.

We define an equilibrium point of (0.2) to be a point x0 ∈ Rn such that f (x0) = 0. In other

words, an equilibrium point of is a point where there is no change in the system (0.2). Now,

before we go further, we need to define linearization of (0.2) about an equilibrium point.

We define the linearization of (0.2) about an equilibrium point x0 as the linear system

ẋ = Ax,

where A = D f (x0) is the Jacobian of the system (0.2) evaluated at x0. Furthermore, we say

an equilibrium point x0 is hyperbolic if the real parts of all the eigenvalues of the Jacobian

of (0.2) evaluated at x0 are nonzero (i.e., if λ j = a j± ib j, j = 1,2, ...,n are the eigenvalues

of D f (x0), then for x0 to be a hyperbolic equilibrium point of (0.2), we must have that

a j 6= 0 for all j = 1,2, ...,n). If an equilibrium point x0 of (0.2) is not hyperbolic, we say x0

is nonhyperbolic (i.e., if λ j = a j± ib j, where j = 1,2, ...,n, are the eigenvalues of D f (x0),

then for x0 to be a nonhyperbolic equilibrium point of (0.2), we must have a j = 0 for some

j = 1,2, ...,n).

Now, before we look at the behavior of the system (0.2), we first need to define

some behavior we get in a linear system

ẋ = Ax (0.3)

around the origin, where A is a nonsingular 2× 2 matrix.1 Let λ1,2 = a± bi be the eigen-

values of A. We say that the origin is a saddle if λ1 and λ2 are real numbers such that either

1While we are considering the 2×2 case, it turns out we can generalize the matrix A to be n×n (where
n≥ 3).
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λ1 < 0 < λ2 or λ2 < 0 < λ1. We say the origin is a node if λ1 and λ2 are real numbers

such that either λ1 < λ2 < 0 or 0 < λ1 < λ2. Note that the order of λ1 and λ2 does not

matter. Furthermore, if we see that a node has λ1 < λ2 < 0, we say that the origin is a

(asymptotically) stable node. Also, if we see that a node has 0 < λ1 < λ2, we say that the

origin is a unstable node. The origin is a focus if λ1 and λ2 are both complex numbers

such that either a > 0 or a < 0. If we see that a focus has a < 0, we say the origin is a

(asymptotically) stable focus. Also, if we see that a focus has a > 0, we say the origin is an

unstable focus. The origin is a center if λ1 and λ2 are both pure imaginary numbers (i.e.,

a = 0).

There is a result to study the behavior of a linear system based on the trace and

determinant of a matrix (which is referred to as the Trace-Determinant Analysis). This

analysis is quite useful in determining the stability of the origin of a linear system.

THEOREM 5. [1] (Trace-Determinant Analysis) Let A be a 2×2 matrix with trace T and

determinant D 6= 0. Consider the system ẋ = Ax.

(1) If D < 0, then the origin is a saddle.

(2) If D > 0 and T 2−4D≥ 0, then the origin is a node (stable if T < 0 and unstable

if T > 0).

(3) If D > 0 and T 2−4D < 0, then the origin is a focus (stable if T < 0 and unstable

if T > 0).

(4) If D > 0, T 2−4D < 0, and T = 0, then the origin is a center. �

REMARK 6. The Trace-Determinant Analysis only works in two dimensions. M

The types of behavior we get around the origin that was mentioned above are what

we see when we have a linear system. There are other types we can have in a nonlin-

ear system around an equilibrium point (which may or may not be the origin). To define

these other behavior types, we need to define a few terms first.2 Assume the origin is a
2See [1] for details.
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nonhyperbolic equilibrium point of a system that can be written in the form


ẋ = P(x,y)

ẏ = Q(x,y)
(0.4)

where P and Q are analytic in some neighborhood of the origin. The solution curves of (0.4)

which approach the origin along tangent lines which divide a neighborhood of the origin

into a finite number of open regions are called sectors. A sector which is topologically

equivalent to the left side of F13 below is called a hyperbolic sector. Furthermore, the

trajectories that lie on the boundary of a hyperbolic sector are called separatrices. A sector

that is topologically equivalent to the right side of F1 below is called a parabolic sector. A

sector which is topologically equivalent to F24 below is called an elliptic sector.

-25 -20 -15 -10 -5 0 5
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0.6

0.8

1

y

Figure 1

Figure 1. Phase portrait to describe hyperbolic and parabolic sectors.

3This figure came from Example 25 in Chapter 4.
4This figure came from an example from [1], in section 2.11.
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Figure 2. Phase portrait to describe an elliptic sector.

Now that we have introduced the idea of a sector and the different types of them,

we are ready to define the new types of nonhyperbolic equilibrium point. A saddle-node

is a type of nonhyperbolic equilibrium point of a system where there are two hyperbolic

sectors and one parabolic sector. A cusp is a type of nonhyperbolic equilibrium point of a

system where there are two hyperbolic sectors. A critical point with an elliptic domain is

a type of nonhyperbolic equilibrium point where there are one hyperbolic, one elliptic, and

two hyperbolic sectors.

Now, we give another definition. Let E be an open subset of Rn. Let φ(t,x0) be the

solution of the differential equation


ẋ = f (x)

x(0) = x0

(0.5)

We define the flow of the differential equation (0.5) as a mapping φt : E → E

defined by φt(x0) = φ(t,x0).

In Chapter 1, we discussed the idea of a generalized eigenvector. It turns out that

we have two theorems that tells us that we can find a collection of generalized eigenvectors

10



that forms a basis for Rn (or R2n if the eigenvalues are complex).

THEOREM 7. [1] Let A be a real n×n matrix with real eigenvalues λ1,λ2, ...,λn repeated

according to their multiplicities. Then there is a basis of generalized eigenvectors for Rn.

�

The next theorem is for the case where the eigenvalues are complex.

THEOREM 8. [1] Let A be a real 2n×2n matrix with complex eigenvalues λ j = a j± ib j,

for j = 1,2, ...,n. Then there is a basis of generalized eigenvectors for R2n. �

REMARK 9. We cannot guarantee the existence of a basis of eigenvectors, because some

eigenvalues may be deficient (that is, for a repeated eigenvalue λ , there might be smaller

number of linearly independent eigenvectors associated to λ ). M

We say that a point p is a ω-limit point of (0.2) if there is a sequence tn→ ∞ such

that

limn→∞φ(tn,x) = p.

In other words, the trajectory moves toward p as t → ∞. The set of all ω-limit points of a

trajectory Γ is called the ω-limit set of Γ. We also say that a point p is an α-limit point of

(0.2) if there is a sequence tn→−∞ such that

limn→∞φ(tn,x) = p.

In other words, the trajectory moves away from p as t→∞. The set of all α-limit points of

a trajectory Γ is called the α-limit set of Γ.

Now, we define a periodic orbit of (0.2) as any closed solution curve of (0.2) that

is not an equilibrium point of (0.2). A limit cycle Γ is a periodic orbit which is the ω or

11



α-limit set of some trajectory of (0.2). If a cycle Γ is the ω-limit set of every trajectory in

a neighborhood of Γ, then it is called a stable limit cycle. If a cycle Γ is the α-limit set of

every trajectory in a neighborhood of Γ, then it is called a unstable limit cycle.

Now, as with equilibrium points, we can define hyperbolic periodic orbits. How-

ever, in order to define a hyperolic periodic orbit, we need to define some other terms first.

Let Γ : x= γ(t), be a periodic orbit of (0.2) of period T that is contained in an open subset E

of Rn, where 0≤ t ≤ T . We define the linearization of (0.2) about Γ as the nonautonomous

linear system

ẋ = A(t)x (0.6)

where

A(t) = D f (γ(t))

is a continuous, T -periodic function of t for all t ∈ R.

The fact that the linear system (0.6) is nonautonomous is a problem, since the matrix

given above changes as t changes. If we can, we would like to change the linear system

(0.6) so that the matrix is constant. To help us with this problem, we will introduce a

theorem that will be helpful. Now before we see this theorem, we need to introduce another

term. We define a fundamental matrix solution of (0.6) as a nonsingular n×n matrix Φ(t)

which satisfies the matrix differential equation

Φ̇(t) = A(t)Φ(t),

for all t ∈ R. Now that we have this definition, we introduce a theorem (which is referred

to as Floquet’s Theorem) to help us overcome the problem mentioned above.

THEOREM 10. [1] (Floquet’s Theorem) Let A(t) be a continuous, T -periodic matrix.

12



Then for all t ∈ R, any fundamental matrix solution of (0.6) can be written in the form

Φ(t) = Q(t)eBt (0.7)

where Q(t) is a nonsingular, differentiable, T -periodic matrix and B is a constant matrix.

Furthermore, if Φ(0) = I, then Q(0) = I. �

So, why is this theorem useful? While the matrix Q(t) from (0.6) still depends on

t, but we now have reduced the system so that Q(t) is multiplied to a constant matrix eBt .

However, we have a corollary of this theorem that will solve the problem we were having

above.

COROLLARY 11. [1] Under the hypothesis of Floquet’s Theorem, x(t) is a solution of

ẋ = A(t)x if and only if y(t) is a solution of ẏ = By, where y = Q−1(t)x. �

The idea behind this corollary is that to study the nonlinear system (0.2) around

a periodic orbit is equivalent to studying the linear system given in the previous corollary.

From this, we give another definition that will help us define a hyperbolic periodic orbit. We

define a monodromy matrix M to be the matrix M = Φ(T ), where Φ is any fundamental

matrix solution of (0.3) such that Φ(0) = I. In particular, we have Φ(T ) = Q(T )eBT =

Q(0)eBT = IeBT = eBT (i.e., M = eBT ). The eigenvalues of M = eBT are referred to as

Floquet multipliers, which are of the form µ j = eλ jT , where j = 1,2, ...,n and λ j = a j± ib j

are the eigenvalues of the constant matrix B. The eigenvalues of the constant matrix B are

called the Floquet exponents. Note that for every periodic orbit, µ j = 1 (or λ j = 0) is

always an eigenvalue of M, for some j = 1,2, ...,n. Also, we have that Re(λ j) < 0 if and

only if ||µ j||< 1 and Re(λ j)> 0 if and only if ||µ j||> 1, for some j = 1,2, ...,n.

We are now ready to define a hyperbolic periodic orbit. We say a periodic orbit

is hyperbolic if it has exactly one eigenvalue µ j with ||µ j|| = 1. If a periodic orbit is not

hyperbolic, we say that periodic orbit is nonhyperbolic.
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CHAPTER 3: LOCAL AND GLOBAL STABILITY ANALYSIS OF DYNAMICAL

SYSTEMS

Now that we have a basic idea of dynamical systems, we will look at the local and global

stability analysis of dynamical systems. Once again, consider the system

ẋ = f (x) (0.8)

3.1 Local Stability Analysis

In the previous chapter, we discussed the concept of hyperbolic and nonhyperbolic

equilibrium points of the system (0.8). So, why do we care if an equilibrium point is

hyperbolic or not? Here are two theorems that might give some insight to this question. In

the following theorems, let

ẏ = Ay, A = D f (0) (0.9)

where 0 is the equilibrium point of (0.8).

Before we state these theorems, we need a definition. We say a set E ⊂ Rn is

invariant with respect to the flow φt of ẋ = f (x) if φt(E) ⊂ E. In other words, if x0 is a

point in E and t ≥ 0, then the point φt(x0) is also a point in E.

THEOREM 12. [1] (Stable Manifold Theorem) Let E be an open subset of Rn containing

the origin; let f ∈C1(E), and let ϕt be the flow of the nonlinear system (0.8). Suppose

f (0) = 0 and that A = D f (0) has k eigenvalues with negative real part and (n− k)

eigenvalues with positive real part (i.e., 0 is a hyperbolic equilibrium point of (0.8)). Then

there exists a k-dimensional (stable) differentiable manifold S tangent to the stable
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subspace ES of (0.9) such that for all t ≥ 0, ϕt(S)⊂ S, and for all x0 ∈ S:

limt→∞ ϕt(x0) = 0

and there exists an (n− k) dimensional (unstable) differentiable manifold U tangent to the

unstable subspace EU of (0.9) such that for all t ≥ 0, ϕt(U)⊂U , and for all x0 ∈U :

limt→−∞ ϕt(x0) = 0. �

THEOREM 13. [1] (Hartman-Grobman Theorem) Let E be an open subset of Rn

containing the origin; let f ∈C1(E), and let ϕt be the flow of the nonlinear system (0.8).

Suppose f (0) = 0 and that A = D f (0) has no eigenvalues with zero real part (i.e., 0 is a

hyperbolic equilibrium point of (0.8)). Then there exists a homeomorphism H of an open

set U containing the origin onto an open set V containing the origin such that for each

x0 ∈U , there is an open interval I0 ⊂ R containing zero such that for all x0 ∈U and for all

t ∈ R, we have

H ◦ϕt(x0) = eAtH(x0). 2

The main idea behind these two theorems (when combined) is that we can determine

the behavior around an equilibrium point by seeing what happens in the corresponding

linear system (0.9). Now, the main assumption of these two theorems is that the equilibrium

point is hyperbolic. So, if an equilibrium point is not hyperbolic, then these two theorems

do not apply. So, we have to turn to some other results to determine the behavior around

nonhyperbolic equilibrium points.

This is the beginning of what we call Local Stability Analysis of Equilibrium Points,

that is, we analyze the system to determine the behavior around equilibrium points. So, if an
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equilibrium point is hyperbolic, then the Stable Manifold and Hartman-Grobman Theorems

apply and we can determine what happens in a neighborhood around that equilibrium point.

EXAMPLE 14. (Application)

Consider the system


Ṡ = µ(H−S)−aS f (B)

İ = aS f (B)− rI

Ḃ =−γB+ eI

where S(t) and I(t) represent populations of susceptible and infected individuals

respectively (total population is H), and B(t) represents the concentration of bacteria in

water reservoirs. all the parameters are positive.

µ is the rate of growth and death of susceptibles,

a is the rate at which susceptibles are exposed to bacteria,

f (B) = B
K+B is the probability of susceptibles to get infected,

K is the half-saturation constant,

r is the loss rate of infected (due to recovery or death),

γ is the death rate of bacteria,

e is the rate at which individuals release bacteria into water reservoirs.

Then the equilibrium points of this system are:

P1 = (H,0,0) and P2 = ( eHµ+γKr
e(a+µ) , µ(aeH−γKr)

er(a+µ) , µ(aeH−γKr
γr(a+µ) ) = (S∗, I∗,B∗).

So, these are the two points in the system where the rates of S, I,B do not change.

P1 is called the disease-free equilibrium point (i.e., at P1, there is no disease). P2 is called

the endemic equilibrium point. Also, the Jacobian of the system is
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D f (S, I,B) =


−µ− aB

K+B 0 − aSK
(K+B)2

aB
K+B −r aSK

(K+B)2

0 e −γ

. So the Jacobian at P1 is

D f (P1) =


−µ− a(0)

K+(0) 0 − a(H)K
(K+(0))2

a(0)
(K+(0))2 −r a(H)K

(K+(0))2

0 e −γ

 =


−µ 0 −aH

K

0 −r aH
K

0 e −γ

. The eigenvalues

of this Jacobian are λ1 =−µ , λ2 =
−(γ+r)−

√
(γ+r)2− 4(γrK−eaH)

K
2 , and λ3 =

−(γ+r)+
√
(γ+r)2− 4(γrK−eaH)

K
2 .

Note that all of the eigenvalues have nonzero real part. Hence, P1 is a hyperbolic

equilibrium point of this system. So, we can apply the Stable Manifold Theorem and the

Hartman-Grobman Theorem. Assume (γ + r)2− 4(γrK−eaH)
K ≥ 0. Note that we have λ1 < 0

and λ2 < 0. If λ3 < 0, then P1 is a stable node. If λ3 > 0, then P1 is an unstable saddle.

Now, assume (γ +r)2− 4(γrK−eaH)
K < 0. Note that P1 cannot be a center. For if it were, then

we would have −(γ + r) = 0 which gives γ =−r < 0 or r =−γ < 0, a contradiction either

way. Hence, we have P1 is a focus (stable if −(γ + r)< 0 and unstable if −(γ + r)> 0).

We claim that the endemic equilibrium point P2 exists if and only if the disease-

free equilibrium point is unstable. To show this, first we assume that P2 exists. Then we

have µ(aeH−γKr)
er(a+µ) > 0 and µ(aeH−γKr)

γr(a+µ) > 0 =⇒ µ(aeH − γKr) > 0 =⇒ aeH − γKr > 0

=⇒ λ3 > 0. Hence, P1 is unstable. Conversely, assume P1 is unstable. Then we have

aeH− γKr > 0 =⇒ µ(aeH− γKr)> 0 =⇒ µ(aeH−γKr)
er(a+µ) > 0 and µ(aeH−γKr)

γr(a+µ) > 0. Thus,

P2 exists. This proves the claim.

So, what does this mean in the context of the application here? Basically, if λ3 < 0

(or R0 =
aeH
γrK < 1, where R0 is the so-called Basic Reproduction Number), the disease will

eventually die out. On the other hand, if R0 > 1, the disease will spread out throughout the

community. O

The phase portraits for this system are given as follows. (See F3 - F4.)
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Figure 3. Phase portrait of a stable disease-free equilibrium point.
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Figure 4. Phase portrait of an unstable disease-free equilibrium point and a stable endemic

equilibrium point.

Now, what if an equilibrium point is not hyperbolic? There are two theorems that

work for nonhyperbolic equilibrium points (in two dimensions). Now, the assumptions

in these theorems depend on how many eigenvalues of the Jacobian at the nonhyperbolic

equilibrium point are zero. The first theorem that will be mentioned here assumes there
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is exactly one eigenvalue equal to zero, while the second theorem assumes there are two

eigenvalues equal to zero.

If the Jacobian at a nonhyperbolic equilibrium point has exactly one eigenvalue

equal zero, then the system can be written as


ẋ = p(x,y)

ẏ = y+q(x,y)
(0.10)

where p and q are analytic in a neighborhood of the origin and have expansions starting

with second degree terms of x and y.

THEOREM 15. [1] Let the origin be an isolated equilibrium point for the analytic system

(0.10). Let y = φ(x) be the solution of the equation y+q(x,y) = 0 in a neighborhood of

the origin and let the function Ψ(x) = p(x,φ(x)) be a series expansion in a neighborhood

of the origin have the form Ψ(x) = amxm+am+1xm+1+ ..., where m≥ 2 and am 6= 0. Then

(i) for m odd and am > 0, the origin is an unstable node,

(ii) for m odd and am < 0, the origin is a (topological) saddle and

(iii) for m even, the origin is a saddle-node. �

REMARK 16. The previous theorem is a particular case of the Center Manifold Theorem,

which will be presented in Chapter 5. M

If the Jacobian at a nonhyperbolic equilibrium point has two eigenvalues equal to

zero, then the system can be written in the form


ẋ = y

ẏ = akxk[1+h(x)]+bnxny[1+g(x)]+ y2R(x,y)
(0.11)

where h, g, and R are analytic in a neighborhood of the origin, h(0) = g(0) = 0, k ≥ 2,

ak 6= 0, and n≥ 1.
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Now, let’s look at the case for the analytic system (0.11).

THEOREM 17. [1] Let the origin be an isolated equilibrium point for the analyic system

(0.11). Let k = 2m+1 with m≥ 1 in (6) and let λ = b2
n +4(m+1)ak. If ak > 0, then the

origin is a (topological) saddle. If ak < 0, then the origin is

(i) a focus or a center if bn = 0 and also if bn 6= 0 and n > m or if n = m and λ < 0,

(ii) a node if bn 6= 0, n is an even number and n < m and also if bn 6= 0, n is an even

number, n = m and λ ≥ 0 and

(iii) a critical point with an elliptic domain if bn 6= 0, n is an odd number and n < m

and also if bn 6= 0, n is an odd number, n = m and λ ≥ 0.

Let k = 2m with m≥ 1 in (0.11). Then the origin is

(i) a cusp if bn = 0 and also if bn 6= 0 and n≥ m and

(ii) a saddle-node if bn 6= 0 and n < m. �

We now provide an example of how we can apply Theorem 17. We will provide

examples of how to apply Theorem 15 later in this thesis.

EXAMPLE 18. Consider the following system


ẋ = y

ẏ = x4 + xy
(0.12)

We see that the Jacobian of the system (0.12) is

D f (x,y) =

 0 1

4x3 + y x


The Jacobian of (0.12) evaluated at the origin is

D f (0,0) =

 0 1

4(0)3 +(0) (0)

=

0 1

0 0
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It can be shown that the eigenvalues of D f (0,0) are λ1 = λ2 = 0. From this, we can

see that the system (0.12) is of the form (0.11) (with k = 4, m = 2, n = 1, and b1 = 1 6= 0,

a4 = 1, h(x) = g(x) = R(x,y) = 0). Since we have that k = 4 (so k is even), b1 6= 0, and

1 = n < m = 2, then by Theorem 17, we see that the origin is a saddle-node. O

Now, we can ask the same question about the importance of hyperbolic periodic

orbits versus nonhyperbolic periodic orbits. It turns out that there is a Stable Manifold

Theorem for periodic orbits. Here, we will state the Stable Manifold Theorem for Periodic

Orbits.

THEOREM 19. [1] (Stable Manifold Theorem for Periodic Orbits) Let f ∈C1(E), where

E is an open subset of Rn containing a periodic orbit

Γ : x = γ(t)

of period T . Let ϕt be the flow of a given system and γ(t) = ϕt(x0). If k of the Floquet

exponents of γ(t) have negative real part where 0≤ k≤ n−1 and (n−k−1) of them have

positive real part (i.e., Γ is hyperbolic), then there is a δ > 0 such that the stable manifold

of Γ,

S(Γ) = {x ∈ Nδ (Γ) | d(ϕt(x),Γ)→ 0 as t→ ∞ and ϕt(x) ∈ Nδ (Γ) f or t ≥ 0}

is a (k+1)-dimensional, differentiable manifold which is positively invariant under the

flow ϕt and the unstable manifold of Γ,

U(Γ) = {x ∈ Nδ (Γ) | d(ϕt(x),Γ)→ 0 as t→−∞ and ϕt(x) ∈ Nδ (Γ) f or t ≤ 0}

is an (n− k)-dimensional, differentiable manifold which is negatively invariant under the

flow ϕt . �
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3.2 Global Stability Analysis

Now, we’re ready to talk about the global stability of the system

ẋ = f (x)

where f : Rn→ Rn and x ∈ Rn. There are two main results we have to study the global

stability of the system (0.8): Lyapunov’s Theorem and LaSalle’s Invariance Principle.

THEOREM 20. [1] (Lyapunov’s Theorem) Let x0 ∈Rn such that f (x0) = 0. Assume there

is a real-valued function V : Rn→ R such that

(1) V (x0) = 0

(2) V (x)> 0, for all x 6= x0.

If V̇ (x)≤ 0 for all x ∈ Rn, then x0 is stable. If V̇ (x)< 0 for all x ∈ Rn ∼ {x0}, then

x0 is asymptotically stable. If V̇ (x) > 0 for all x ∈ Rn ∼ {x0}, then x0 is unstable, where

V̇ (x) = dV (t)
dt denotes the derivative of the function V with respect to time t. �

REMARK 21. For Lyapunov’s theorem, the point x0 does not have to be hyperbolic for

the theorem to apply. M

Before we look at the next result, we first need to define another term. We say that

a set E ⊂Rn is invariant with respect to ẋ = f (x) if for all x0 ∈ E and for all t ≥ 0, we have

x0(t) ∈ S. In other words, if x0 is a point in E and t ≥ 0, then x0(t) will also be in the set E.

Now, we look at LaSalle’s invariance principle.

THEOREM 22. [8] (LaSalle’s Invariance Principle) Let Ω⊂ D be a compact invariant set

with respect to ẋ = f (x). Let Q : D→ R be a C1 function such that Q′(x(t))≤ 0 in Ω. Let

E ⊂Ω be the set of all points in Ω where Q′(x) = 0. Let M ⊂ E be the largest invariant set

in E. Then

limt→∞[in f ||x(t)− y||] = 0. �
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The main idea of LaSalle’s invariance principle is that every solution starting in Ω

approaches M as t→ ∞. So, M is globally stable.

At this time, we introduce a theorem that can be used to get a Lyapunov function

to apply LaSalle’s Invariance Principle. To make better sense of the notation, consider the

system defined as follows:


ẋ = F (x,y)−H (x,y)

ẏ = g(x,y)
(0.13)

with g = [g1,g2, ...,gm]
T , x = [x1,x2, ...,xn]

T ∈ Rn represents the population in dis-

ease compartment, y = [y1,y2, ...,ym]
T ∈ Rm represents the population in nondisease com-

partment, F = [F1,F2, ...,Fn]
T , and H = [H1,H2, ...,Hn]

T (where Fi represents the

rate of new infections in the ith disease compartment, Hi represents the transition terms,

for example, death and recovery in the ith disease compartment).

THEOREM 23. [7] Let F , V , and f (x,y) be defined as follows:

F =

[
∂Fi
∂x j

(0,y0)

]
, V =

[
∂Hi
∂x j

(0,y0)

]
, and f (x,y) = (F−V )x−F (x,y)+H (x,y).

If f (x,y)≥ 0 in Γ⊂Rn+m
+ , F ≥ 0, V−1 ≥ 0, and R0 ≤ 1 (where R0 is an eigenvalue

of the matrix V−1F associated to the left eigenvector wT ), then the function Q = wTV−1x

is a Lyapunov function of the model (0.13) on Γ. �

We provide an example to show how to apply LaSalle’s Invariance Principle to a

particular model.

EXAMPLE 24. (Application)

Consider the system from the application from the previous section
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Ṡ = µ(H−S)−aS f (B)

İ = aS f (B)− rI

Ḃ =−γB+ eI

(0.14)

First we define the system (0.14) in the form:


S I

B


 :=

y

x



Then we have that the system (0.14) in the compartment form


ẋ = F∗(x,y)−V ∗(x,y)

ẏ = g(x,y)

where x =
[

aSB
K+B eI

]T

is the disease compartment, y = S, F∗(x,y) = [
∂F∗i
∂x j

(0,y0)],

and V ∗(x,y) = [
∂V ∗i
∂x j

(0,y0)], for 1 ≤ i ≤ n, and 1 ≤ j ≤ n. So, the system (0.14) can be

written into the form:

F∗(x,y) =
[

aSB
K+B eI

]T

and V ∗(x,y) =
[

rI γB

]T

=⇒
ẋ1 =

aSB
K+B − rI

ẋ2 = eI− γB

ẏ = µ(H−S)− aSB
K+B .

Now, we need to find F =
∂F∗i
∂xi

(0,0,H) and V =
∂V ∗i
∂xi

(0,0,H).
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F =

0 (K+B)(aS)−aSB
(K+B)2

e 0

=

0 aSK
(K+B)2

e 0

=

0 aH
K

e 0

 and V =

r 0

0 γ

 =⇒ V−1 =

1
rγ

γ 0

0 r

 =

1
r 0

0 1
γ

. So, we have V−1F =

1
r 0

0 1
γ


0 aH

K

e 0

 =

0 aH
rK

e
γ

0

, which has

eigenvalues λ =±
√

aeH
γrK . Let λ ∗ =

√
aeH
γrK , and assume that λ ∗ ≤ 1. Now, we need to find

w. To do this, we need to solve the system (A−λ I)w= 0 =⇒

−
√

aeH
γrK

e
γ

aH
rK −

√
aeH
γrK


w1

w2

=

0

0

 =⇒ w =

 w1

γ

e λ ∗w1

=

 1

γ

e λ ∗

 (by letting w1 = 1).

Let Q(I,B) =
[

1 γ

e λ ∗
]1

r 0

0 1
γ


 I

B

=

[
1
r

λ ∗

e

] I

B

= 1
r I + λ ∗

e B. Then we have

Q(0,0) = 1
r (0)+

λ ∗

γ
(0) = 0 and Q(I,B) > 0 for all other

[
I B

]T

∈ R2 since I > 0 and

B > 0. By definition, Q is a Lyapunov function for (0.14). Also, we have Q′(I,B) =

1
r İ + λ ∗

e Ḃ = 1
r (

aSB
K+B − rI) + λ ∗

e (−γB+ eI) = aSB
r(K+B) − I− γλ ∗

e B+ λ ∗I = aSB
r(K+B) −

λ ∗SB
e +

(λ ∗−1)I. We claim that Q′ ≤ 0. To see this, we note that Q′ ≤ 0 iff aSB
r(K+B) −

λ ∗γB
e ≤ 0 iff

B( aS
r(K+B)−

λ ∗γ
e )≤ 0 iff aeSH−λ ∗−γrH(K+B)

erH(K+B) ≤ 0 iff aeSH−λ ∗− γrH(K+B)≤ 0. Note that

we have aeHS−λ ∗γrHK−λ ∗γrHB≤ aeHS−λ ∗γrHK ≤ aeH−γrKH ≤ 0 since λ ∗ ≤ 1.

This proves the claim.

We will now show that the disease-free equilibrium point is globally stable by using

LaSalle’s invariance principle. Let Q(x) = wTV−1x be the Lyapunov function as defined

above (where x =

[
I B

]T

). Then we have that Q is a C1 function, and as shown above,

Q′(x) ≤ 0. Now, consider Q′(x) = 0. Then from above, we have Q′(x) = (λ ∗− 1)I +

( aS
r(K+B) −

λ ∗γ
e )B = 0. However, Q′(x) = 0 whenever I = B = 0. So, the set of all points

such that Q′(x) = 0, which is E = {(I,B,S) | I = B = 0}. On E, the system reduces to

Ṡ = µ(H − S). Solving this differential equation using an integrating factor gives us the

solution S(t) = H +Ce−µt , for some C ∈ R. Hence, the largest (and only) invariant set in
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E is M = (0,0,H), since limt→∞S(t) = H. But, M is the disease-free equilibrium point of

(0.14). Thereore, by LaSalle’s Invariance Principle, M is globally stable. O
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CHAPTER 4: BIFURCATIONS

In Chapters 2 and 3, we only considered systems of the form ẋ = f (x). That is, the only

thing that the system depended on was the solution to the system itself. In this Chapter, we

consider systems of the form

ẋ = f (x,µ) (0.15)

That is, the system not only depends on the solution of the system, but also on the

vector µ ∈ Rm. The components of the vector µ usually are parameters to the system that

is allowed to change. Since µ is allowed to change, then so can the behavior of the system.

If we see that the behavior of vector fields near f behaves “similarly” for any vector µ , we

say that f is a structually stable vector field. On the other hand, if we see that there is a

vector µ0 ∈Rm so that the behavior near f changes drastically (e.g. number of equilibrium

points (or periodic orbits) changes, the stability of equilibrium points (or periodic orbits)

changes, etc.), we say that f is a structually unstable vector field. It is the structually

unstable vector field we are interested in studying (in fact, one can define a bifurcation at

µ0 when f is structually unstable at µ0). Basically, bifurcation theory studies bifurcations

(what properties do they have, when do they exist, etc.).

We will first introduce some basic bifurcations (using examples to help define the

bifurcations). After we introduce these bifurcations, we will introduce a theorem that will

mathematically prove the existence of these bifurcations called Sotomayor’s Theorem. To

have a better understanding of the bifurcations, we will look at an example to introduce

them. For each of the bifurcations we look at here, we will provide some phase portraits

(a geometric interpretation of what the qualitative behavior of the system looks like) and

a bifurcation diagram (a geometric interpretation of the relationship between the parame-

ters and a solution of the system). The value in which a bifurcation occurs is called the

bifurcation value.
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4.1 Types of Bifurcations

EXAMPLE 25. (Transcritical Bifurcation)

Consider the system


ẋ = µx− x2

ẏ =−y
(0.16)

where µ ∈ R. First, we can see that the equilibrium points of are (0,0), and (µ,0).

Notice that when µ = 0, there is only one equilibrium point. However, if µ 6= 0, then there

are two equilibrium points.

Now, we have that the Jacobian of the system (0.16) is

D f (x,y) =

µ−2x 0

0 −1

 .
From this, we get that the Jacobian of (0.16) at (0,0) is

D f (0,0) =

µ−2(0) 0

0 −1

 =

µ 0

0 −1

. The eigenvalues of D f (0,0) are

λ1 = µ and λ2 = −1. Since µ is allowed to change, the stability of (0,0) could also

change. We claim that µ = 0 is the bifurcation value for this system, since the dynamics

of the system changes as µ goes from negaive to positive. For instance, if µ < 0, then we

have that (0,0) is hyperbolic and is a stable node. Now, if µ > 0, then we have that (0,0)

is hyperbolic and is a (unstable) saddle.

We get that the Jacobian of (0.16) at (µ,0) is

D f (µ,0)=

µ−2(µ) 0

0 −1

=

−µ 0

0 −1

. The eigenvalues of D f (µ,0) are

λ1 =−µ and λ2 =−1. If µ < 0, then we have that (µ,0) is hyperbolic and is a (unstable)

saddle. If µ > 0, then we have that (µ,0) is hyperbolic and is a stable node.

28



Now, if µ = 0, then (0,0) is nonhyperbolic; so, we have to use either Theorem 15

or Theorem 17 to determine the behavior around (0,0).

Now, we will look at some phase portraits of this system. (See F5 - F7.)
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Figure 5. Phase portrait of transcritical bifurcation (when µ < 0).
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Figure 6. Phase portrait of transcritical bifurcation (when µ > 0).
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Figure 7. Phase portrait of transcritical bifurcation (when µ = 0).

Here is the bifurcation diagram of the system. (See F8.)

Figure 8. Bifurcation diagram of transcritical bifurcation.

Now, let us look at some of the characteristics of this bifurcation. First, we see

that there were two equilibrium points, followed by one equilibrium point, followed by
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two equilibrium points again. Second, while the number of equilibrium points remains the

same (so we did not create any new equilibrium points), the stability of these equilibrium

points are interchanged at the bifurcation value µ0 = 0. This type of bifurcation is called a

transcritical bifurcation. O

EXAMPLE 26. (Saddle-Node Bifurcation)

Consider the system


ẋ = µ− x2

ẏ =−y
(0.17)

where µ ∈ R. First, we can see that the equilibrium points of are (
√

µ,0) and

(−√µ,0). Again, observe that if µ < 0, there are no equilibrium points. Also, if µ = 0,

there is one equilibrium point. However, if µ > 0, there are two equilibrium points. So,

assume that µ ≥ 0.

Now, we have that the Jacobian of (0.17) is

D f (x,y) =

−2x 0

0 −1

.

From this, we have that the Jacobian of (0.17) at (
√

µ,0) is

D f (
√

µ,0) =

−2(
√

µ) 0

0 −1

.

The eigenvalues of D f (
√

µ,0) are λ1 =−2
√

µ and λ2 =−1. We again claim that

µ = 0 is the bifurcation value for this system, since the dynamics of the system changes

as µ goes from negative to positive. For instance, if µ > 0, then we have that (
√

µ,0) is

hyperbolic and is a (stable) node.

We also have that the Jacobian of (0.17) at (−√µ,0) is

D f (−√µ,0) =

−2(−√µ) 0

0 −1

=

2
√

µ 0

0 −1

.
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The eigenvalues of D f (−√µ,0) are λ1 = 2
√

µ and λ2 = −1. If µ > 0, then we

have that (−√µ,0) is hyperbolic and is a (unstable) saddle.

Note that if µ < 0, then there are no equilibrium points since
√

µ /∈ R. Also, if

µ = 0, then (0,0) is nonhyperbolic and we have to use one of the theorems mentioned

above to determine the behavior around (0,0).

Now, let’s look at some of the phase portraits of this bifurcation. (See F9 - F11.)
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Figure 9. Phase portrait of saddle-node bifurcation (when µ > 0).
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Figure 10. Phase portrait of saddle-node bifurcation (when µ = 0).
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Figure 11. Phase portrait of saddle-node bifurcation (when µ < 0).

Note that there are no equilibrium points in Figure 11.

Now, let’s look at the bifurcation diagram of this bifurcation. (See F12.)

Figure 12. Bifurcation diagram of saddle-node bifurcation.
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Now, let’s look at some of the characteristics of this bifurcation. Mainly, we see

that we have no equilibrium points before the bifurcation value µ0 = 0, followed by one

equilibrium point, followed by two equilibrium points (one stable, one unstable). This type

of bifurcation is called a saddle-node bifurcation. O

EXAMPLE 27. (Pitchfork Bifurcation)

Consider the system


ẋ = µx− x3

ẏ =−y
(0.18)

where µ ∈ R. First, we see that the equilibrium points of are (0,0), (
√

µ,0), and

(−√µ,0). Once more, we see that if µ ≤ 0, there is one equilibrium point. However, if

µ > 0, there are three equilibrium points.

We have that the Jacobian of (0.18) this system is

D f (x,y) =

µ−3x2 0

0 −1

.

From this, we have that the Jacobian of this system at (0,0) is

D f (0,0) =

µ 0

0 −1

. The eigenvalues of D f (0,0) are λ1 = µ and λ2 =−1.

We claim that µ = 0 is the bifurcation value for this system, since the dynamics of the

system change as µ goes from negative to positive. For instance, if µ < 0, then (0,0) is

hyperbolic and is a (stable) node. If µ > 0, then (0,0) is hyperbolic and is a (unstable)

saddle.

Now, the Jacobian of (0.18) at (±√µ,0) is
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D f (±√µ,0) =

µ−3(±√µ)2 0

0 −1

 =

−2µ 0

0 −1

. The eigenvalues of

D f (±√µ,0) are λ1 =−2µ and λ2 =−1. If µ > 0, then (±√µ,0) are hyperbolic and are

a (stable) node.

Note that if µ = 0, then (0,0) is nonhyperbolic and we have to use either Theorem

15 or Theorem 17 to determine the behavior around (0,0). Note also that if µ < 0, then the

equilibrium points (±√µ,0) does not exist. In such a case, then the only equilibrium point

to the system is (0,0).

Now, let’s look at some of the phase portraits of this bifurcation. (See F13 - F15.)
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Figure 13. Phase portrait of pitchfork bifurcation (when µ > 0).
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Figure 14. Phase portrait of pitchfork bifurcation (when µ = 0).
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Figure 15. Phase portrait of pitchfork bifurcation (when µ < 0).

Now, let’s look at the bifurcation diagram of this bifurcation. (See F16.)
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Figure 16. Bifurcation diagram of pitchfork bifurcation.

Now, let us look at some of the characteristics of this bifurcation. Mainly, we see

that we have one equilibrium point before the bifurcation value µ0 = 0, followed by one

equilibrium point, followed by three equilibrium points (two stable, one unstable). Now,

one of these equilibrium points continues to exist for values below and above µ0 = 0, but

it will change its stability (from unstable to stable or vice versa). This type of bifurcation

is called a pitchfork bifurcation. O

EXAMPLE 28. (Hopf Bifurcation)

Consider the system


ẋ =−y+ x(µ− x2− y2)

ẏ = x+ y(µ− x2− y2)

(0.19)

where µ ∈ R. Then the only equilibrium point of the system is the origin (0,0).

The Jacobian of (0.19) is
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D f (x,y) =

µ−3x2− y2 −1−2xy

1−2xy µ− x2−3y2

. The Jacobian of (0.19) at (0,0) is

D f (0,0) =

µ−3(0)2− (0)2 −1−2(0)(0)

1−2(0)(0) µ− (0)2−3(0)2

 =

µ −1

1 µ

. The eigen-

values of the Jacobian of (0.19) at (0,0) are λ1 = µ + i and λ2 = µ − i. We claim that

µ = 0 is the bifurcation value of this system, since the dynamics of the system changes

as µ goes from negative to positive. For instance, if µ < 0, then we have that (0,0) is a

(stable) focus. If µ > 0, then we have that (0,0) is an (unstable) focus. If µ = 0, then (0,0)

is nonhyperbolic so linearization fails us.

Now, if we rewrite the system into polar coordinates, we get
ṙ = r(µ− r2)

θ̇ = 1

If µ < 0, then ṙ < 0 (i.e., r decreases to 0). If µ > 0, then ṙ = 0⇔ r = 0 or r =
√

µ .

So, there is a periodic orbit of radius r =
√

µ (e.g., Γ : γ(t) =
√

µ(cos(t),sin(t))). If µ = 0,

then ṙ < 0. So, if µ = 0, then (0,0) is a (stable) focus.

Let’s look at some phase portraits of this bifurcation. (See F17 - F19.)

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25
x

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

y

Hopf Bifurcation Phase Portrait
(mu = -1)

Figure 17. Phase portrait of Hopf bifurcation (when µ < 0).
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Figure 18. Phase portrait of Hopf bifurcation (when µ = 0).
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Figure 19. Phase portrait of Hopf bifurcation (when µ > 0).

Note that the circle in the last phase portrait is to represent the periodic orbit that is

formed as µ passes through µ0 = 0.

Here is the bifurcation diagram of this bifurcation. (See F20.)
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Figure 20. Bifurcation diagram of Hopf bifurcation.

Now, let’s discuss some of the characteristics about this bifurcation. The main

characteristic of this bifurcation is that some periodic orbits are formed as µ passes through

the bifurcation value, and this happens when a focus point changes stability from stable to

unstable. This type of bifurcation is referred to as a Hopf bifurcation. Note that the circles

in F20 represent periodic orbits. O

Before we introduce Sotomayor’s Theorem, we first need a definition. Let E ⊂ Rn

be open, f : E → Rn be a function such that f ∈C2(E). For D2 f (x0) : E×E → Rn and

for (x,y) ∈ E×E, we define

D2 f (x0)(x,y) = ∑
n
j1, j2=1

∂ 2 f (x0)
∂x j1∂x j2

x j1y j2 .

We are now ready to introduce Sotomayor’s Theorem.

THEOREM 29. [1] (Sotomayor’s Theorem) Suppose f (x0,µ0) = 0, and let

A = D f (x0,µ0) have a simple eigenvalue λ = 0. Let v be an eigenvector of A, and w be a

left eigenvector of A corresponding to λ = 0.
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(1) If wT fµ(x0,µ0) 6= 0 and wT D2 f (x0,µ0)(v,v) 6= 0, then there is a saddle - node

bifurcation as µ passes through µ = µ0.

(2) If wT fµ(x0,µ0) = 0, wT D fµ(x0,µ0)v 6= 0, and wT D2 f (x0,µ0)(v,v) 6= 0, then

there is a transcritical bifurcation as µ passes through µ = µ0.

(3) If wT fµ(x0,µ0) = 0, wT D fµ(x0,µ0)v 6= 0, wT D2 f (x0,µ0)(v,v) = 0, and

wT D3 f (x0,µ0)(v,v,v) 6= 0, then there is a pitchfork bifurcation as passes through

µ = µ0. �

Sotomayor’s Theorem gives us sufficient conditions for the existence of either a

saddle-node, transcritical, or pitchfork bifurcations (provided that the system meets certain

conditions).

EXAMPLE 30. (Application)

Consider the system from a previous example


Ṡ = µ(H−S)−aS f (B)

İ = aS f (B)− rI

Ḃ =−γB+ eI

where the parameters µ > 0, a > 0, r > 0, γ > 0, e > 0, H > 0, and f (B) = B
K+B ,

where K > 0. Here, we will consider e to be the bifurcation parameter for this sys-

tem. Using Sotomayor’s Theorem, we will prove that there is a transcritical bifurca-

tion at the disease-free equilibrium point. Recall that the eigenvalues of the Jacobian of

this system at the equilibrium point P1 are λ1 = −µ , λ2 =
−(γ+r)−

√
(γ+r)2− 4(γrK−eaH)

K
2 , and

λ3 =
−(γ+r)+

√
(γ+r)2− 4(γrK−eaH)

K
2 . Note that we have a simple eigenvalue, say λ2 = 0 ⇐⇒

(γ + r) =
√

(γ + r)2 + 4aeH
K . Solving this for e gives e = γrK

aH := e∗. At this point, we would

like to find the eigenvector v associated to λ2 = 0. So, we have
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D f (P1)v =


−µ 0 −aH

K

0 −r aH
K

0 e∗ −γ




v1

v2

v3

 =


0

0

0

 =⇒ −µv1 − aH
K v3 = 0 =⇒ v1 =

− aH
µK v3. Also, we have e∗v2− γv3 = 0 =⇒ v2 =

γ

e∗ v3. Hence, we have v =


− aH

µK v3

γ

e∗ v3

v3

 =


− aH

µK

− γ

e∗

1

. Now, we would like to find a left eigenvector w of D f (P1) associated to λ2 = 0.

So, we get wT D f (P1)
T = [w1,w2,w3]

T


−µ 0 0

0 −r e∗

−aH
K

aH
K −γ

 =


0

0

0

 =⇒ −µw1 = 0 =⇒

w1 = 0. Also, −rw2+e∗w3 = 0 =⇒ w2 =
e∗
r w3. So, we have w =


0

e∗
r w3

w3

=


0

e∗
r

1

. Now,

we need to find fe∗(S, I,B), which is fe∗(S, I,B) =


0

0

I

. So, at P1we have fe∗(P1) =


0

0

0

.

Hence, we have wT fe∗(P1) = [0, e∗
r ,1]

T


0

0

0

 = 0. Now, we need D fe∗(S, I,B), which is

D fe∗(S, I,B) =


0 0 0

0 0 0

0 1 0

. So, at the disease-free equilibrium point (H,0,0), we have

D fe∗(H,0,0) =


0 0 0

0 0 0

0 1 0

. Hence, we get
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wT D fe∗(H,0,0)v =
[

0 e∗
r 1

]
0 0 0

0 0 0

0 1 0




aH
µK

γ

e∗

1

=

[
0 0 e∗

r

]
0

0

γ

e∗

= γ

r 6= 0.

Now, we need to find D2 f (H,0,0)(v,v). For this, we have

∂ f1
∂x1

=−µ− aB
(K+B) ,

∂ f1
∂x2

= 0, ∂ f1
∂x3

=− aSK
(K+B)2 , ∂ f2

∂x1
= aB

(K+B) ,
∂ f2
∂x2

=−r, ∂ f2
∂x3

= aSK
(K+B)2 ,

∂ f3
∂x1

= 0, ∂ f3
∂x2

= e, and ∂ f3
∂x3

=−γ , where f1 = Ṡ, f2 = İ, f3 = Ḃ, x1 = S, x2 = I, and x3 = B.

Now, to find D2 f (H,0,0)(v,v), we need to compute ∑
3
j=1 ∑

3
i=1

∂ 2 f (x0)
∂xi∂x j

uiv j. All we need is
∂ 2 fi(x0)
∂x j∂xk

(where i, j,k = 1,2,3). From the information above, we have

∂ 2 f1
∂x2

1
= 0, ∂ 2 f1

∂x1∂x2
= 0, ∂ 2 f1

∂x1∂x3
=− aK

(K+B)2 , ∂ 2 f1
∂x2∂x1

= 0, ∂ 2 f1
∂x2

2
= 0, ∂ 2 f1

∂x2∂x3
= 0, ∂ 2 f1

∂x3∂x1
=

− aK
(K+B)2 , ∂ 2 f1

∂x3∂x2
= 0, ∂ 2 f1

∂x2
3
=− 2aSK

(K+B)3 ,

∂ 2 f2
∂x2

1
= 0, ∂ 2 f2

∂x1∂x2
= 0, ∂ 2 f2

∂x1∂x3
= aK

(K+B)2 , ∂ 2 f2
∂x2∂x1

= 0, ∂ 2 f2
∂x2

2
= 0, ∂ 2 f2

∂x2∂x3
= 0, ∂ 2 f2

∂x3∂x1
=

aK
(K+B)2 , ∂ 2 f2

∂x3∂x2
= 0, ∂ 2 f2

∂x2
3
=− 2aSK

(K+B)3 ,

∂ 2 f3
∂x2

1
= 0, ∂ 2 f3

∂x1∂x2
= 0, ∂ 2 f3

∂x1∂x3
= 0, ∂ 2 f3

∂x2∂x1
= 0, ∂ 2 f3

∂x2
2
= 0, ∂ 2 f3

∂x2∂x3
= 0, ∂ 2 f3

∂x3∂x1
= 0,

∂ 2 f3
∂x3∂x2

= 0, ∂ 2 f3
∂x2

3
= 0. So the components of D2 f (H,0,0)(v,v) are as follows:

∑
3
j=1 ∑

3
i=1

∂ 2 f (x0)
∂xi∂x j

uiv j = (− aK
(K+B)2 )v1v3 +(− aK

(K+B)2 )v3v1 +( 2aSK
(K+B)3 )v2

3

= (− aK
(K+B)2 )(

−aH
µK )+(− aK

(K+B)2 )(− aH
µK )+( 2aSK

(K+B)3 )(1)2 = 2a2H
µ(K+B)2 +

2aSK
(K+B)3 ,

∑
3
j=1 ∑

3
i=1

∂ 2 f (x0)
∂xi∂x j

uiv j = ( aK
(K+B)2 )v1v3 +( aK

(K+B)2 )v3v1 +(− 2aSK
(K+B)3 )v2

3

= ( aK
(K+B)2 )(

−aH
µK )+( aK

(K+B)2 )(− aH
µK )+(− 2aSK

(K+B)3 )(1)2 =− 2a2H
µ(K+B)2 − 2aSK

(K+B)3 , and

∑
3
j=1 ∑

3
i=1

∂ 2 f (x0)
∂xi∂x j

uiv j = 0. Hence, we have D2 f (H,0,0)(v,v) =


2a2H

µ(K+B)2 +
2aSK

(K+B)3

− 2a2H
µ(K+B)2 − 2aSK

(K+B)3

0

.

Now, we have wT D2 f (H,0,0)(v,v) =
[

0 e∗
r 1

]
2a2H

µ(K+B)2 +
2aSK

(K+B)3

− 2a2H
µ(K+B)2 − 2aSK

(K+B)3

0

 = − 2a2e∗H
µr(K+B)2 −

2ae∗SK
r(K+B)3 6= 0, since all of the parameters are positive. Therefore, by Sotomayor’s Theorem,

there exists a transcritical bifurcation at e = e∗. O
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As Sotomayor’s Theorem can provide sufficient conditions for the existence of a

bifurcation (either saddle-node, transcritical, or pitchfork), we now introduce a theorem

that can prove the existence of a Hopf bifurcation. However, before we state this theorem,

we first need to define a term. Consider the system


ẋ = ax+by+ p(x,y)

ẏ = cx+dy+q(x,y)
(0.20)

where a∈R, b∈R, c∈R, d ∈R, A=D f (0) =

a b

c d

, D= det(A) = ad−bc> 0,

T = tr(A) = a+d = 0, and p(x,y), q(x,y) are analytic functions defined as follows:

p(x,y) = ∑i+ j≥2 ai jxiy j = (a20x2 +a11xy+a02y2)+(a30x3 +a21x2y+a12xy2 +a03y3), and

q(x,y) = ∑i+ j≥2 bi jxiy j = (b20x2 +b11xy+b02y2)+(b30x3 +b21x2y+b12xy2 +b03y3).

We define the Lyapunov coefficient as follows:

σ = −3π

2bD3/2 [ac(a2
11 + a11b02 + a02b11) + ab(b2

11 + a20b11 + a11b02) + c2(a11a02 +

2a02b02)−2ac(b2
02−a20a02)

−2ab(a2
20−b20b02)−b2(2a20b20 +b11b20)+ (bc−2a2)(b11b02−a11a20)− (a2 +

bc)[3(cb03−ba30)

+2a(a21 +b12)+(ca12−bb21)]].

Now that we have defined the Lyapunov coefficient, we are now ready to state a

theorem which proves the existence of a Hopf bifurcation.

THEOREM 31. [1] (Existence of Hopf bifurcation) Let σ be the Lyapunov coefficient. If

σ 6= 0, then a Hopf bifurcation occurs at the origin of the planar system (0.20) at the

bifurcation value α = 0. Furthermore, if σ < 0, then there exists a unique stable limit

cycle which bifurcates from the origin of (0.20) as α increases from zero and if σ > 0,
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then there exists a unique unstable limit cycle which bifurcates from the origin of (0.20) as

α decreases. �

4.2 The Codimension of a Bifurcation at a Nonhyperbolic

Equilibrium Point

In this section, we introduce the concept of the codimension of a bifurcation at a

nonhyperbolic equilibrium point. We will define the codimension of a bifurcation at a non-

hyperbolic equilibrium point, and we will give examples to demonstrate how to determine

the codimension of a bifurcation at a nonhyperbolic equilibrium point. Consider the system

ẋ = f (x,µ), µ ∈ R (0.21)

Before we can define the codimension of a bifurcation at a nonhyperbolic equilib-

rium point, we first introduce the idea of a structrually stable vector field.

Let E be an open subset of Rn. We say a vector field f ∈ C1(E) is structurally

stable if there is an ε > 0 such that for all g ∈ C1(E) with || f − g|| < ε , f and g are

topologically equivalent on E. In other words, f is structurally stable if for small changes

in f , the qualitative behavior of solutions remains about the same. If a vector field f is not

structrually stable, then we say f is structurally unstable.

Let f0(x) = f (x,µ0) be a structurally unstable vector field. We define an unfolding

of f0(x) to be a family of m-parameter vector fields that contains f0(x). We define a uni-

versal unfolding of f0(x) at a nonhyperbolic equilibrium point x0 to be an unfolding of

f0(x) with the additional condition that all the other unfoldings of f0(x) are homeomorphic

(or topologically equivalent) to the family of m-parameter vector fields, in a neighborhood

of x0. The minimum number of parameters needed for (0.21) to be a universal unfolding of

f0(x) at a nonhyperbolic equilibrium point x0 is called the codimension of the bifurcation

at x0.
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Before we give an example, we need to define the normal form of a system. The

normal form of a system ẋ = f (x) is basically a rewriting of the system, which is topolog-

ically equivalent to the original system, to help simplify the nonlinear part of the system.

So, we may have a system that is complicated, and we would like to work with a simpler

version of the system. The normal form of a system helps simplify the nonlinear part of a

system, which is topologically equivalent to the system we started with.

EXAMPLE 32. Consider the saddle-node bifurcation, which has the normal form (up to

time scaling)


ẋ =−x2

ẏ =−y.
(0.22)

We first determine the behavior around (0,0). First, we note that the Jacobian of

(0.22) is

D f (x,y) =

−2x 0

0 −1

.

So, we have that the Jacobian of (0.22) at (0,0) is

D f (0,0) =

−2(0) 0

0 −1

=

0 0

0 −1

.

The eigenvalues of D f (0,0) are

λ1 = 0 and λ2 =−1.

Since (at least) one of the eigenvalues of D f (0,0) is zero, then by definition, (0,0) is

a nonhyperbolic equilibrium point. So, we cannot determine the behavior of (0.22) around

(0,0) using the Stable Manifold/Hartman-Grobman Theorems. However, the eigenvalues

of D f (0,0) tell some information about this system. Since there is exactly one eigenvalue

of D f (0,0) equal to zero, then Theorem 15 applies to (0.22). Let ϕ(x) be the solution of

46



the equation−y = 0 in a neighborhood of the origin (i.e., ϕ(x) = 0). Let Ψ(x) = p(x,ϕ(x))

be the expansion of p(x,y) in a neighborhood of the origin (i.e., Ψ(x) = −x2). Since

am =−1 < 0 and m = 2 is even, then (0,0) is a saddle-node.

Claim: Adding higher degree terms to the first equation of this system will not

affect the behavior around (0,0). In other words, (0,0) is a saddle-node in the system


ẋ =−x2 +µ3x3

ẏ =−y.
(0.23)

Before we prove this claim, we first note that as a consequence of adding higher

degree terms, we get an extra equilibrium point. This can be seen as follows:

−x2 +µ3x3 = 0 =⇒ x2(1−µ3x) = 0 =⇒ x = 0 or x = 1
µ3

−y = 0 =⇒ y = 0 =⇒ The equilibrium points of the claimed system are (0,0)

and ( 1
µ3
,0).

Now, the Jacobian of (0.23) is as follows:

D f (x,y) =

−2x+3µ3x2 0

0 −1


Note that the equilibrium point ( 1

µ3
,0) is hyperbolic since

D f ( 1
µ3
,0) =

−2( 1
µ3
)+3µ3(

1
µ3
)2 0

0 −1

=

 1
µ3

0

0 −1

 =⇒ λ1 =
1
µ3

and λ2 =

−1.

Since µ3 6= 0, then the real part of both of the eigenvalues are nonzero. Therefore,

by definition, ( 1
µ3
,0) is a hyperbolic equilibrium point of (0.23).

We will now prove the claim. Notice that the Jacobian at (0,0) is:

D f (0,0) =

−2(0)+3µ3(0)2 0

0 −1

=

0 0

0 −1

 =⇒ λ1 = 0 and λ2 =−1.
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Since (at least) one of the eigenvalues is zero, then by definition, (0,0) is a nonhy-

perbolic equilibrium point of (0.23). Notice that there is exactly one eigenvalue of D f (0,0)

is equal to zero . So Theorem 15 also applies to (0.23). Let ϕ(x) be the solution of −y = 0

(i.e., ϕ(x) = 0). Let Ψ(x) be the series expansion of p(x,ϕ(x)) (i.e., Ψ(x) =−x2 +µ3x3).

Since it is the first term of Ψ(x) that determines the behavior around (0,0) and the first term

of Ψ(x) for (0.23) is identical to Ψ(x) of (0.22), therefore, we reach the same conclusion.

That is to say that (0,0) is a saddle-node in (0.23). This proves the claim. 2

Now consider the system


ẋ = µ1 +µ2x− x2

ẏ =−y
(0.24)

If we translate the system so that (µ2
2 ,0) is the new origin by a change of variables

defined by α = x− µ2
2 and β = y. Then the system (0.24) becomes


α̇ = µ−α2

β̇ =−β

(0.25)

Hence, (0.25) is a universal unfolding of the original system of this example. There-

fore, the saddle-node bifurcation is a codimension-1 bifurcation. O

EXAMPLE 33. Consider the pitch-fork bifurcation, which has a normal form (up to time

scaling)


ẋ =−x3

ẏ =−y
(0.26)

We first determine the behavior around (0,0) in this system. First, we note that the

Jacobian of (0.26) is
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D f (x,y) =

−3x2 0

0 −1

.

So, we have that the Jacobian of (0.26) at (0,0) is

D f (0,0) =

−3(0)2 0

0 −1

=

0 0

0 −1

.

The eigenvalues of D f (0,0) are

λ1 = 0 and λ2 =−1.

Since (at least) one of the eigenvalues of D f (0,0) is zero, then by definition, (0,0) is

a nonhyperbolic equilibrium point. So, we cannot determine the behavior of (0.26) around

(0,0) using the Stable Manifold/Hartman-Grobman Theorems. However, the eigenvalues

of D f (0,0) tells some information about (0.26). Since there is exactly one eigenvalue of

D f (0,0) equal to zero, then Theorem 15 applies to (0.26). Let ϕ(x) be the solution of the

equation −y = 0 in a neighborhood of the origin (i.e., ϕ(x) = 0). Let Ψ(x) = p(x,ϕ(x))

be the expansion of p(x,y) in a neighborhood of the origin (i.e., Ψ(x) = −x2). Since

am =−1 < 0 and m = 2 is even, then (0,0) is a saddle-node.

Claim: Adding higher degree terms to the first equation of this system will not

affect the behavior around (0,0). In other words, (0,0) is a saddle-node in the system


ẋ =−x3 +µ4x4

ẏ =−y.
(0.27)

Before we prove this claim, we first note that as a consequence of adding higher

degree terms, we get an extra equilibrium point. This can be seen as follows:

−x3 +µ4x4 = 0 =⇒−x3(1−µ4x) = 0 =⇒ x = 0 or x = 1
µ4

−y = 0 =⇒ y = 0 =⇒ The equilibrium points of (0.27) are (0,0) and ( 1
µ4
,0).
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Now, the Jacobian of (0.27) is as follows:

D f (x,y) =

−3x2 +4µ4x3 0

0 −1


Note that the equilibrium point ( 1

µ4
,0) is hyperbolic since

D f ( 1
µ4
,0) =

−2( 1
µ4
)+3µ4(

1
µ4
)2 0

0 −1

=

 1
µ4

0

0 −1

 =⇒ λ1 =
1
µ4

and λ2 =

−1.

Since µ4 6= 0, then the real part of both of the eigenvalues are nonzero. Therefore,

by definition, ( 1
µ4
,0) is a hyperbolic equilibrium point of (0.27).

We will now prove the claim. Notice that the Jacobian at (0,0) is:

D f (0,0) =

−2(0)+3µ4(0)2 0

0 −1

=

0 0

0 −1

 =⇒ λ1 = 0 and λ2 =−1.

Since (at least) one of the eigenvalues of D f (0,0) is zero, then by definition, (0,0)

is a nonhyperbolic equilibrium point of (0.27). Notice that there is exactly one eigenvalue

of D f (0,0) that is equal to zero. So Theorem 15 applies to (0.27). Let ϕ(x) be the solution

of −y = 0 (i.e., ϕ(x) = 0). Let Ψ(x) be the series expansion of p(x,ϕ(x)) (i.e., Ψ(x) =

−x3 + µ4x4). Since it is the first term of Ψ(x) that determines the behavior around (0,0)

and the first term of Ψ(x) for (0.27) is identical to Ψ(x) of (0.26), therefore, we reach the

same conclusion. That is to say that (0,0) is a saddle-node in (0.27). This proves the claim.

2

Now consider the system


ẋ = µ1 +µ2x+µ3x2− x3

ẏ =−y
(0.28)

If we translate the system so that (µ3
3 ,0) is the new origin by change of coordinates

defined by α = x− µ3
3 and β = y. Then the system (0.28) become
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α̇ = a+bα−α3

β̇ =−β

(0.29)

Hence, the above system is a universal unfolding of the original system of this

example. Therefore, the pitchfork bifurcation is a codimension-2 bifurcation.

To determine the qualitative behavior of (0.29), note that for b > 0, the cubic equa-

tion x3− bx− a = 0 has three roots iff a2 < 4b3

27 , two roots iff a2 = 4b3

27 , and one root iff

a2 > 4b3

27 . It turns out that the two curves of the bifurcation points intersect, giving what

is called a cusp bifurcation. Here are some phase portraits of (0.29) to illustrate this idea.

(See F21 - F23.)
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Cusp Bifurcation Phase Portrait
(a = 2.5, b = 3)

Figure 21. Phase portrait of cusp bifurcation (with one equilibrium point).
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Figure 22. Phase portrait of cusp bifurcation (with two equilibrium points).
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Figure 23. Phase portrait of cusp bifurcation (with three equilibrium points).

Now, here are some of the bifurcation diagrams of the cusp bifurcation (where

a = 1.2, b = 1, α = 0.5, and β = 0.5). (See F24 - F25.)
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Figure 24. Bifurcation diagram of cusp bifurcation (on ax-axis).

Figure 25. Two-parameter bifurcation diagram of cusp bifurcation (on ab-axis).

The first bifurcation diagram shows us that when a < −0.3849... or a > 0.3849...

(roughly), there is only one equilibrium point (which is stable). It also shows that when

−0.3849... ≤ a ≤ 0.3849... (roughly), there are three equilibrium points (two of them are

stable and one of them is unstable). So, we see that (µ1,µ2) = (0,0) is the bifurcation

value.
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Now, in F24, we let see a relationship between the solution x(t) and the bifurcation

parameter a.

In F25, we see that the two codimension-1 bifurcation curves collide at (0,0), creat-

ing the codimension-2 cusp bifurcation. Also, we have that the region to the left side of the

left curve of F25, there are no equilibrium points to the system (locally). Similarly, we have

that the region to the right side of the right curve of F25, there are no equilibrium points

(locally). Now, in the region between the two curves in F25, there are three equilibrium

points (locally). O

REMARK 34. From the previous example, we see that two fold bifurcations (which are

codimension-1 bifurcations) collide to give us a codimension-2 bifurcation at the origin.

Later, we will see the case where two curves of distinct bifurcations will collide. M
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CHAPTER 5: CENTER MANIFOLD THEOREM

In Chapter 2, we discussed the Stable Manifold Theorem, which tells us that there ex-

ists a stable (and an unstable) manifold which behave similarly to the stable and unstable

subspaces respectively of a linear system. The main assumption of the Stable Manifold

Theorem is that the equilibrium point is hyperbolic. Note also that it does not mention

about the existence of a center manifold.

Also, in Chapter 2, we mention the Hartman - Grobman Theorem, which tells us

about the qualitative behavior of nonlinear dynamical systems around hyperbolic equilib-

rium points. Once again, the main assumption for the Hartman - Grobman Theorem is that

the equilibrium point is hyperbolic.

In this chapter, we will look at what we need in order for a center manifold to exist,

which will be called the Center Manifold Theorem. This theorem will be broken into two

parts5, since this theorem tells a lot about the center manifold. The equilibrium point will

be arbitrary (hyperbolic or not).

5.1 The Center Manifold Theorem (Part I)

As mentioned above, the Center Manifold Theorem will be explained by breaking

it into two parts. In this section, we will mention the first part of the Center Manifold

Theorem.

THEOREM 35. (Center Manifold Theorem Part I) Let E ⊆ Rn be open, x0 = 0 ∈ E,

f (0) = 0, and f ∈Cr(E) (with r ≥ 1). Assume A = D f (0) has c eigenvalues with real part

equal to zero (i.e., Re(λ j) = 0, where λ j ( j = 1,2, ...,c) are the eigenvalues of A), s

eigenvalues with Re(λ j)< 0, and u eigenvalues with Re(λ j)> 0 (i.e., c+ s+u = n). Then

there exists a c-dimensional invariant (center) manifold W c(0) of class Cr, which is

tangent to the center subspace Ec at 0. �
5The Center Manifold Theorem (both parts combined) can be found in [1].
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The main idea behind the first part of the Center Manifold Theorem is that the center

manifold exists and is tangent to Ec. Now, before we move forward, we should make a few

remarks regarding this part of the Center Manifold Theorem.

REMARK 36. The existence of the stable and unstable manifolds is also guaranteed with

the Center Manifold Theorem. Also, the only thing this part of the center manifold

theorem gives us is the existence of a center manifold, but no information about the

dynamics of the system on the center manifold. M

5.2 The Center Manifold Theorem (Part II)

Recall from the previous section that the only thing the first part of the center man-

ifold theorem tells us is the existence of a center manifold. It does not tells us the behavior

on the center manifold. So, how can we determine what happens on the center manifold?

That is what the second part of the Center Manifold Theorem gives us. For simplicity, we

assume that u = 0, and x0 = 0 ∈ Rn. We also assume that D f (x0) has no eigenvalues with

Re(λ j)> 0, for all j = 1,2, ...,n. Note that the following theorem generalizes Theorem 15.

We will denote the local center manifold with W c
loc(x0).

THEOREM 37. (Center Manifold Theorem Part II) Let E ⊆ Rn be open, x0 = 0 ∈ E,

f (0) = 0, and f ∈Cr(E) (with r ≥ 1). Assume A = D f (0) has c eigenvalues with real part

equal to zero (i.e., Re(λ j) = 0, where λ j ( j = 1,2, ...,n) are the eigenvalues of A), and s

eigenvalues with Re(λ j)< 0, (i.e., c+ s = n). Then the system ẋ = f (x) can be written as


ẋ =Cx+F(x,y)

ẏ = Py+G(x,y)
(0.30)

where x ∈Rc, y ∈Rs, F : Rn→Rc, G : Rn→Rs, F(0,0) = 0, G(0,0) = 0, DF(0,0) = 0,

and DG(0,0) = 0. Furthermore, there is δ > 0 and a function h ∈ Cr(Nδ (0)) such that

W c
loc(0) = {(x,y) ∈ RcxRs : y = h(x), ||x||< δ}, with h(0) = 0, Dh(0) = 0, and satisfies
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Dh(x)[Cx+F(x,h(x))]−Ph(x)−G(x,h(x)) = 0. (0.31)

Also, the flow on the center manifold W c(0) can be defined by the system

ẋ =Cx+F(x,h(x)). � (0.32)

There are some remarks that should be mentioned here before we look at an exam-

ple of how to use this theorem.

REMARK 38. We have that (0.31) helps us find the function h that approximates the

center manifold, and (0.32) helps us determine the qualitative behavior on the center

manifold. M

We also have the following remark.

REMARK 39. While the statement of the second part of the theorem assumes that there

are no eigenvalues with positive real part (i.e., u = 0), it turns out that basically we get the

same result even when u 6= 0. M

5.3 Example

Consider the system


ẋ1 = x1y− x1x2

2

ẋ2 = x2y− x2
1x2

ẏ =−y+ x2
1 + x2

2.

(0.33)

It can be shown that (0.30) can be written as
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ẋ1

ẋ2

ẏ

=


0 0 0

0 0 0

0 0 −1




x1

x2

y

+


x1y− x1x2
2

x2y− x2
1x2

x2
1 + x2

2



where C =

0 0

0 0

, P =−1, F(x1,x2,y) =
[

x1y− x1x2
2 x2y− x2

1x2

]T

, and

G(x1,x2,y) = x2
1 + x2

2. Let h(x1,x2) = ax2
1 +bx1x2 + cx2

2 + .... Then

Dh(x1,x2) =

[
2ax1 +bx2 + ... bx1 +2cx2 + ...

]T

, and we have h(0,0) = 0, and

Dh(0,0) =
[

0 0

]T

. Substituting these into (0.31) gives us

[
2ax1 +bx2 + ... bx1 +2cx2 + ...

]ax3
1 +bx2

1x2 + cx1x2
2 + ...− x1x2

2

ax2
1x2 +bx1x2

2 + cx3
2 + ...− x2

1x2

+(ax2
1 +bx1x2 +cx2

2 + ...)−

x2
1− x2

2 = 0

Notice that when you multiply out the first part of the equation, the smallest power

of the polynomial is 4, so we will overlook this part and focus on the last part of the

equation. With this in mind, we have

(a−1)x2
1 +bx1x2 +(c−1)x2

2 + ...= 0

This gives us a = 1, b = 0, c = 1, and so on. If we need more terms, we just go

out a few more terms in the function h as defined above and follow the procedure we went

through above. Hence, we get that h(x1,x2) = x2
1 + x2

2 +O(||x||3). So, the Center Manifold

Theorem (Part II) tells us that the center manifold looks like the surface h(x1,x2) = x2
1 +x2

2

(locally).

Now, to determine the behavior on the center manifold, we substitute the function

h into the system (0.32), which gives us (plus O(||x||3))
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ẋ1 = x3

1

ẋ2 = x3
2.

(0.34)

To determine the behavior of the system (0.34), we can use polar coordinates to see

that r2 = x2
1 + x2

2 =⇒ rṙ = x1ẋ1 + x2ẋ2 =⇒ ṙ = x4
1+x4

2
r > 0 (since r > 0). Therefore, if our

initial value lands on the center manifold, then solutions would go away from the origin.

Here is the phase portrait of the center manifold in this example. So, we can see that

the center manifold is approximated by the surface of the paraboloid h(x1,x2) = x2
1 + x2

2.

Note that we did not give some solutions of what happens outside of the center manifold.

This is because outside the center manifold, the origin is hyperbolic; so, we can use the

Stable Manifold and Hartman-Grobman theorems. O

Now, let us look at a phase portrait to illustrate a center manifold from the example

in this section. (See F26.)
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Figure 26. Phase portrait to describe the center manifold of (0.34).

REMARK 40. The Center Manifold Theorem tells us that if D f (x0) has c eigenvalues

with Re(λ j) = 0, we can restrict our study to a c-dimensional system to describe the

59



behavior of solutions on a c-dimensional center manifold. This fact will be used in the

next chapter. M
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CHAPTER 6: BOGDANOV - TAKENS BIFURCATION

In Chapter 4, we discussed several bifurcations. It turns out that most of the bifurca-

tions we discussed are codimension-1 bifurcations. In this chapter, we discuss a special

codimension-2 bifurcation: a Bogdanov-Takens bifurcation. We also state and provide the

details of a proof which shows under certain conditions that there exists a Bogdanov-Takens

bifurcation. We will provide some examples where a Bogdanov-Takens bifurcation occurs

as well.

6.1 Bogdanov - Takens Bifurcation

A Bogdanov-Takens bifurcation is an example of a codimension-2 bifurcation,

which is by far more complex than codimension-1 bifurcations, and it describes very rich

dynamics of the given system. The basic idea of what happens with a Bogdanov-Takens

bifurcation is that we have two codimension-1 bifurcation curves that collide at a single

point. The point where the two bifurcation curves collide is where the Bogdanov-Takens

bifurcation happens.

6.2 The Bogdanov - Takens Bifurcation Existence Theorem

Recall from a previous section that Sotomayor’s Theorem proves the existence of a

saddle-node, transcritical, or pitchfork bifurcations (provided that certain conditions hold

for the given system). It turns out that there is a theorem that is “similar” to Sotomayor’s

Theorem to prove the existence of a bifurcation. The theorem is similar in the sense that

provided certain conditions of the system hold implies the existence of a Bogdanov-Takens

bifurcation. The difference is that Sotomayor’s Theorem can prove the existence of one of

three types of codimension-1 bifurcations, while the theorem in this section can prove the

existence of only one type of codimension-2 bifurcation.
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In this section, we will not only state this theorem, but we will also provide the

details of the proof of this theorem; this is the main contribution of this thesis. Before we

discuss this theorem, we mention that while we are assuming that we have a 2-dimensional

system in the statement of the theorem, our system can be n-dimensional (for an exam-

ple, see section 5.3). This is because one of the conditions for existence of a Bogdanov-

Takens bifurcation is that the Jacobian of our system has exactly two eigenvalues with

zero real part (i.e., a Bogdanov-Takens condition), and we do not worry what happens in

the other (n− 2)-dimensions of the system. We do not worry about what happens in the

other (n−2)-dimensions since the origin (the equilibrium point) will be hyperbolic in those

(n−2)-dimensions; so the Stable Manifold and Hartman-Grobman Theorems apply to the

other (n− 2)-dimensions. So, by the Center Manifold Theorem, it is enough to study a

2-dimensional system rather than a n-dimensional system. See also Remark 40.

The proof of the following theorem consists of applying a series of changes of

variables as well as time and space rescalings so that a given system can be expressed in a

simple polynomial form, locally.

THEOREM 41. [2] (Existence of Bogdanov-Takens Bifurcation) Suppose that a planar

system ẋ = f (x,α), x ∈ R2, α ∈ R2, with smooth f , at α = 0 the equilibrium

x = (x1,x2) = (0,0) with a double zero eigenvalue λ1,2(0) = 0. Assume that the following

genericity conditions are satisfied:

the Jacobian matrix

A(0) = D f (0,0) 6= 0; (0.35)

a20(0)+b11(0) 6= 0; (0.36)

b20(0) 6= 0; (0.37)
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the map

(x,α) 7→ ( f (x,α), tr(
∂ f (x,α)

∂x
),det(

∂ f (x,α)

∂x
)). (0.38)

is regular at point (x,α) = (0,0).

Then there exists a smooth invertible variable transformations smoothly depending

on the parameters, a direction-preserving time reparametrization, and smooth invertible

parameter changes, which together reduce the system to


η̇1 = η2

η̇2 = β1 +β2η1 +A2η2
1 ±B2η1η2 +O(||η ||3).

�

PROOF. We will prove this theorem in steps. Consider the planar system

ẋ = f (x,α), x ∈ R2, α ∈ R2 (0.39)

where f is smooth. Suppose that (0.39) has, at α = 0, the equilibrium x = (x1,x2) = (0,0)

with two zero eigenvalues, λ1,2(0) = 0.

(Step 0)

By Taylor’s Theorem, we can write (0.39) (at α = 0) in the form

ẋ = A0x+F(x), (0.40)

where A0 = D f (0,0) and F(x) = f (x,0)−A0x is a smooth function, and F(x) = O(||x||2).

We have det(A0) = 0 since det(A0) = λ1λ2 = (0)(0) = 0, and tr(A0) = 0 since tr(A0) =

λ1 + λ2 = 0 + 0 = 0. Assume (0.35) holds. By Theorem 7, we can find two linearly

independent vectors v0,1 ∈ R2 such that
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A0v0 = 0, A0v1 = v0. (0.41)

In particular, v0 is an eigenvector of A0 corresponding to the eigenvalue 0, and v1 is a gen-

eralized eigenvector of A0 corresponding to the eigenvalue 0, respectively. Furthermore,

again from Theorem 7, there exist two linearly independent left eigenvector (and general-

ized left eigenvector) w0,1 ∈ R2 of the matrix A0 such that

AT
0 w1 = 0, AT

0 w0 = w1. (0.42)

Since v0 and w1 are generalized eigenvectors, then they are not uniquely deter-

mined. Furthermore, we have that the vectors v1 and w0 are not uniquely determined, even

if the vectors v0 and w1 are fixed. (For example, if v1 is a fixed solution of the second

equation of (0.41), then the vector v = v1 + γv0 is also a solution for any γ ∈ R since

A0v = A0(v1 + γv0) = A0v1 + γA0v0 = v0 + 0 = v0). However, we claim that we can find

four vectors that satisfy (0.41), and (0.42) such that

vT
0 w0 = vT

1 w1 = 1. (0.43)

where xT y is the standard dot product of two vectors x,y ∈ R2. To show this, we first

show that vT
0 w0 = vT

1 w1. Using the relations from (0.41) and (0.42), we have vT
0 w0 =

(A0v1)
T w0 =(vT

1 AT
0 )w0 = vT

1 (A
T
0 w0)= vT

1 w1. Now, we use a property about the dot product

of two vectors; in particular, for the vectors v0, w0: vT
0 w0 = ||v0||× ||w0||× cos(θ), where

θ is the angle between the vectors v0 and w0. Now, we can control the vectors v0, w0 so

that ||v0||×||w0||= 1
cos(θ) so that vT

0 w0 = 1 (and then using a similar argument to show that

vT
1 w1 = 1).
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We also claim that we have

vT
0 w1 = vT

1 w0 = 0. (0.44)

We first show that vT
0 w1 = 0. Using the relations from (0.41) and (0.42), we have

that vT
0 w1 = (A0v1)

T w1 = (vT
1 AT

0 )w1 = vT
1 (A

T
0 w1) = vT

1 ∗ 0 = 0. To show that vT
1 w0 = 0,

consider the linear system

v1x = v0, (0.45)

where x∈R. Since v0 and v1 are linearly independent, then x is not a solution of the system

(0.45). By the Fredholm Alternative Theorem, we have that (in particular for y = w0)

vT
1 w0 = 0 has a solution with wT

0 v0 = vT
0 w0 = 1 6= 0. Hence, we have that (0.44) holds.

Select {v0,v1} as a basis for R2, then any x ∈ R2 can be uniquely written as

x = y1v0 + y2v1 (0.46)

by definition of {v0,v1} being a basis for R2, for some y1,y2 ∈ R. Using the relations

(0.41), (0.42), and (0.46), we have xT w0 = (y1v0 + y2v1)
T w0 = y1vT

0 w0 + y2vT
1 w0 = y1 ∗

1+ y2 ∗0 = y1. A similar calculation shows that xT w1 = y2. Now, the new coordinates are

given by


y1 = xT w0

y2 = xT w1

(0.47)

Again, using the relations (0.41) and (0.42) (along with (0.40)) gives us (for α = 0)

ẏ1 = ẋT w0
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ẏ1 = (A0x+F(x))T w0

ẏ1 = (xT AT
0 +F(x)T )w0

ẏ1 = xT AT
0 w0 +F(x)T w0

ẏ1 = xT w1 +F(x)T w0

ẏ1 = y2 +F(y1v0 + y2v1)
T w0

A similar argument gives ẏ2 = F(y1v0 + y2v1)
T w1. Hence, our new system takes

the form (for α = 0)


ẏ1 = y2 +F(y1v0 + y2v1)

T w0

ẏ2 = F(y1v0 + y2v1)
T w1.

(0.48)

For α 6= 0, we can write the system (0.39) in terms of the system (0.47). This would

gives us


ẏ1 = f (y1v0 + y2v1,α)T w0

ẏ2 = f (y1v0 + y2v1,α)T w1

(0.49)

At this point, we can represent the right hand side of (0.49) as a Taylor series at

y = (y1,y2) = (0,0). Doing this gives us:


ẏ1 = y2 +a00(α)+a10(α)y1 +a01(α)y2 +

1
2 a20(α)y2

1 +a11(α)y1y2 +
1
2 a02(α)y2

2 +P1(y,α)

ẏ2 = b00(α)+b10(α)y1 +b01(α)y2 +
1
2 b20(α)y2

1 +b11(α)y1y2 +
1
2 b02(α)y2

2 +P2(y,α)

,

(0.50)

where akl(α), bkl(α) (with k = 0,1,2, l = 0,1,2), and P1,2(y,α) = O(||y||3) are smooth

functions of their arguments, and (for example)
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a11(α) =
∂ 2

∂y1∂y2
[ f (y1v0 + y2v1,α)T w0] |y=0.

We claim that

a00(0) = a10(0) = a01(0) = b00(0) = b10(0) = b01(0) = 0. (0.51)

We first prove that a00(0) = b00(0) = 0. Observe that

a00(α) = [ f (y1v0 + y2v1,α)T w0] |y=0 = f (0,α)T w0

b00(α) = [ f (y1v0 + y2v1,α)T w1] |y=0 = f (0,α)T w1.

For α = 0, we have that a00(0) = f (0,0)T w0. Since x = 0 is an equilibrium point

of (0.39) (at α = 0), then, by definition of an equilibrium point, we have that f (0,0) = 0.

Hence, we have that a00(0) = f (0,0)T w0 = 0T w0 = 0. A similar argument shows that

b00(0) = 0. Hence, we just proved that a00(0) = b00(0) = 0.

Now, to prove that a10(0) = a01(0) = b10(0) = b01(0) = 0, observe that (0.50) can

be rewritten in the following way

ẏ1

ẏ2

=

a10(α) a01(α)

b10(α) b01(α)


y1

y2

+
a00(α)+ 1

2 a20(α)y2
1 +a11(α)y1y2 +

1
2 a02(α)y2

2 +P1(y,α)

b00(α)+ 1
2 b20(α)y2

1 +b11(α)y1y2 +
1
2 b02(α)y2

2 +P2(y,α)

 .
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Let us focus on the matrix

a10(α) a01(α)

b10(α) b01(α)

. At α = 0, the matrix gives us

a10(0) a01(0)

b10(0) b01(0)

. Since we get the system (0.50) at α = 0, the matrix gives us

a10(0) a01(0)

b10(0) b01(0)

 =

0 1

0 0

 . This gives us that a10(0) = b10(0) = b01(0) = 0.

However, since y2 is accounted for in (0.50), then in order for the first equation of (0.50) to

hold, then a01(0) = 0. Hence, we have proven that (0.51) holds.

This completes step 0.

(Step 1)

We will now define new coordinates (u1,u2), where u2 is just ẏ1 from (0.50) and u1

is just y1, i.e.,


u1 = y1

u2 = y2 +a00(α)+a10(α)y1 +a01(α)y2 +
1
2 a20(α)y2

1 +a11(α)y1y2 +
1
2 a02(α)y2

2 +P1(y,α)

(0.52)

Now, we will take the derivative to both sides of each equation in (0.52) with respect

to time t. Now, to make the calculations easier, we will remove α from the expression

akl(α) (i.e., akl = akl(α)). For the first equation, we get

u̇1 = ẏ1

u̇1 = y2 +a00 +a10y1 +a01y2 +
1
2

a20y2
1 +a11y1y2 +

1
2

a02y2
2 +P1(y, .)
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Hence, we have that u̇1 = u2. For the second equation, we get

u̇2 = ẏ2 +a10ẏ1 +a01ẏ2 +a20y1ẏ1 +a11(y1ẏ2 + ẏ1y2)+a02y2ẏ2 + Ṗ1(y, .)

u̇2 = (b00+b10y1+b01y2+
1
2 b20y2

1+b11y1y2+
1
2 b02y2

2+P2(y, .))+a10ẏ1+a01(b00+b10y1+

b01y2 +
1
2 b20y2

1 +b11y1y2 +
1
2 b02y2

2 +P2(y, .))

+a20y1ẏ1 +a11y1(b00 +b10y1 +b01y2 +
1
2 b20y2

1 +b11y1y2 +
1
2 b02y2

2 +P2(y, .))+a11ẏ1y2

+a02y2(b00 +b10y1 +b01y2 +
1
2 b20y2

1 +b11y1y2 +
1
2 b02y2

2 +P2(y, .))+ ˙P1(y, .)

u̇2 = b00+b10y1+b01y2+
1
2 b20y2

1+b11y1y2+
1
2 b02y2

2+P2(y, .)+a10ẏ1+a01b00+a01b10y1+

a01b01y2 +
1
2 a01b20y2

1 +a01b11y1y2 +
1
2 a01b02y2

2 +a01P2(y, .)

+a20y1ẏ1 +b00a11y1 +b10a11y2
1 +b01a11y1y2 +

1
2 b20a11y3

1 +b11a11y2
1y2 +

1
2 b02a11y1y2

2

+a11y1P2(y, .)+ a11ẏ1y2 + b00a02y2 + b10a02y1y2 + b01a02y2
2 +

1
2 b20a02y2

1y2 + b11a02y1y2
2 +

1
2 b02a02y3

2 +a02y2P2(y, .)+ Ṗ1(y, .)

Now, using the relations u1 = y1, u2 = ẏ1, letting y2 = u2− a00− a10u1− ..., and

substituting these into the most recent equation given above gives us:

u̇2 = b00 + b10u1 + b01(u2− a00− a10u1− ...) + 1
2 b20u2

1 + b11u1(u2− a00− a10u1− ...) +

1
2 b02(u2−a00−a10u1− ...)2 + P̃2(u, .)+a10u2 +a01b00 +a01b10u1 +a01b01(u2−a00−a10u1− ...)

+ 1
2 a01b20u2

1 +a01b11u1(u2−a00−a10u1− ...)+ 1
2 a01b02(u2−a00−a10u1)

2 +a01P̃2(u, .)+

1
2 a01b02(u2−a00−a10u1− ...)2 +a01P̃2(u, .)+a20u1u2 +b00a11u1 +b10a11u2

1

+b01a11u1(u2−a00−a10u1− ...)+ 1
2 b20a11u3

1 +b11a11u2
1(u2−a00−a10u1− ...)

+ 1
2 b02a11u1(u2−a00−a10u1− ...)2 +a11u1P̃2(u, .)+a11u2(u2−a00−a10u1− ...)

+b00a02(u2−a00−a10u1− ...)+b10a02u1(u2−a00−a10u1− ...)+b01a02(u2−a00−a10u1−

...)2 + 1
2 b20a02u2

1(u2−a00−a10u1− ...)+b11a02u1(u2−a00−a10u1− ...)2

+ 1
2 b02a02(u2−a00−a10u1− ...)3 +a02(u2−a00−a10u1− ...)P̃2(u, .)+ P̃1(u, .)

u̇2 = b00 + b10u1 + b01(u2− a00− a10u1− ...) + 1
2 b20u2

1 + b11u1(u2− a00− a10u1− ...) +

1
2 b02(a2

00 +2a00a10u1−2a00u2 +a2
10u2

1−2a10u1u2 +u2
2− ...)+ P̃2(u, .)+a10u2 +a01b00 +a01b10u1

+a01b01(u2−a00−a10u1− ...)+ 1
2 a01b20u2

1+a01b11u1(u2−a00−a10u1− ...)+ 1
2 a01b02(a2

00

+2a00a10u1−2a00u2 +a2
10u2

1−2a10u1u2 +u2
2− ...)+a01P2(y, .)+a20u1u2 +b00a11u1
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+b10a11u2
1 + b01a11u1(u2 − a00 − a10u1 − ...) + 1

2 b20a11u3
1 + b11a11u2

1(u2 − a00 − a10u1 −

...)+ 1
2 b02a11u1(a2

00 +2a00a10u1−2a00u2 +a2
10u2

1−2a10u1u2 +u2
2− ...)+a11u1P̃2(u, .)

+a11u2(u2−a00−a10u1− ...)+b00a02(u2−a00−a10u1− ...)+b10a02u1(u2−a00−a10u1−

...)+b01a02(a2
00 +2a00a10u1−2a00u2 +a2

10u2
1−2a10u1u2 +u2

2− ...)

+ 1
2 b20a02u2

1(u2−a00−a10u1− ...)+b11a02u1(a2
00+2a00a10u1−2a00u2+a2

10u2
1−2a10u1u2+

u2
2− ...)+ 1

2 b02a02(u2−a00−a10u1− ...)3 +a02(u2−a00−a10u1− ...)P̃2(u, .)+ P̃1(u, .)

u̇2 = b00 + b10u1 + b01u2− a00b01− a10b01u1− b01(...) +
1
2 b20u2

1 + b11u1u2− a00b11u1−

a10b11u2
1−b01(...)+

1
2 b02a2

00+a00a10b02u1−a00b02u2+
1
2 a2

10b02u2
1−a10b02u1u2+

1
2 b02u2

2− 1
2 b02(...)

+P̃2(u, .)+a10u2 +a01b00 +a01b10u1 +a01b01u2−a00a01b01−a10a01b01u1−a01b01(...)+

1
2 a01b20u2

1 +a01b11u1u2−a00a01b11u1−a10a01b11u2
1−a01b01u1(...)

+ 1
2 a01b02a2

00+a00a10a01b02u1−a00a01b02u2+
1
2 a2

10a01b02u2
1−a10a01b02u1u2+

1
2 a01b02u2

2−
1
2 a01b02(...)+a01P̃2(u, .)+a20u1u2 +b00a11u1 +b10a11u2

1 +b01a11u1u2

−a00b01a11u1−a10b01a11u2
1−b01a11u1(...)+

1
2 b20a11u3

1 +b11a11u2
1u2−a00b11a11u2

1

−a10b11a11u3
1−b11a11u2

1(...)+
1
2 a2

00b02a11u1 +a00a10b02a11u2
1−a00b02a11u1u2

+ 1
2 a2

10b02a11u3
1− a10b02a11u2

1u2 +
1
2 b02a11u1u2

2− 1
2 b02a11u1(...) + a11u1P̃2(u, .) + a11u2

2−

a00a11u2−a10a11u1u2−a11u2(...)+b00a02u2−a00b00a02−a10b00a02u1−b00a02(...)

+b10a02u1u2−a00b10a02u1−a10b10a02u2
1−b10a02u1(...)+b01a02a2

00 +2a00a10b01a02u1−

2a00b01a02u2 +a2
10b01a02u2

1−2a10b01a02u1u2

+b01a02u2
2− b01a02(...) +

1
2 b20a02u2

1u2− 1
2 a00b20a02u2

1− 1
2 a10b20a02u3

1−
1
2 b20a02u2

1(...) +

b11a02a2
00u1 +2a00a10b11a02u2

1−2a00b11a02u1u2

+a2
10b11a02u3

1−2a10b11a02u2
1u2+b11a02u1u2

2−b11a02u1(...)+
1
2 b02a02(u2−a00−a10u1)

3+

(a02u2−a00a02−a10a02u1−a02(...))P̃2(u, .)+ P̃1(u, .)

u̇2 = (b00−a00b01 +
1
2 b02a2

00 +a01b00−a00a01b01 +
1
2 a01b02a2

00−a00b00a02 +b01a02a2
00)

+(b10−a10b01−a00b11 +a00a10b02 +a01b10−a10a01b01−a00a01b11 +a00a10a01b02

+b00a11−a00b01a11 +
1
2 a2

00b02a11−a10b00a02−a00b10a02 +2a00a10b01a02 +b11a02a2
00)u1

+(b01−a00b02 +a10 +a01b01−a00a01b02−a00a11 +b00a02−2a00b01a02)u2

+ 1
2(b20−2a10b11 +a2

10b02 +a01b20−2a10a01b11−2a2
00a11b02−2a00b11a11

+2a00a10b02a11−2a10b10a02 +2a2
10b01a02− 1

2 a00b20a02 +4a00a10b11a02)u2
1
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+(b11−a10b02 +a01b11−a10a01b02 +a20 +b01a11−a00b02a11−a10a11 +b10a02

−2a10b01a02−2a00b11a02)u1u2

+ 1
2(b02 +a01b02 +2a11 +2b01a02)u2

2 +Q(u, .).

Let g00 = b00−a00b01+
1
2 b02a2

00+a01b00−a00a01b01+
1
2 a01b02a2

00−a00b00a02+b01a02a2
00,

g10 = b10−a10b01−a00b11 +a00a10b02 +a01b10−a10a01b01−a00a01b11 +a00a10a01b02 +

b00a11−a00b01a11 +
1
2 a2

00b02a11−a10b00a02−a00b10a02 +2a00a10b01a02 +b11a02a2
00,

g01 = b01−a00b02 +a10 +a01b01−a00a01b02−a00a11 +b00a02−2a00b01a02,

g20 = b20−2a10b11 +a2
10b02 +a01b20−2a10a01b11−2a00b11a11 +2a00a10b02a11

−2a10b10a02 +2a2
10b01a02− 1

2 a00b20a02 +4a00a10b11a02,

g11 = b11−a10b02 +a01b11−a10a01b02 +a20 +b01a11−a00b02a11−a10a11 +b10a02

−2a10b01a02−2a00b11a02, and

g02 = b02 +a01b02 +2a11 +2b01a02.

Then we have that

u̇2 = g00 +g10u1 +g01u2 +
1
2

g20u2
1 +g11u1u2 +

1
2

g02u2
2 +Q(u, .) (0.53)

Putting u̇1 = u2 and (0.53) together gives us a new system (after putting α back in

the expression gkl)


u̇1 = u2

u̇2 = g00(α)+g10(α)u1 +g01(α)u2 +
1
2g20(α)u2

1 +g11(α)u1u2 +
1
2g02(α)u2

2 +Q(u,α)

(0.54)

where gkl(α) and Q(u,α) are smooth functions of their arguments. We also have

that Q(u,α) = O(||u||3). Note that

g00(0) = b00(0)−a00(0)b01(0)+ 1
2 b02(0)a2

00(0)+a01(0)b00(0)−a00(0)a01(0)b01(0)
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+ 1
2 a01(0)b02(0)a2

00(0)− a00(0)b00(0)a02(0) + b01(0)a02(0)a2
00(0). From (0.51), we

have

g00(0) = 0− (0)(0)+ 1
2 b02(0)(0)+ (0)(0)− (0)(0)(0)+ 1

2(0)b02(0)(0)2− (0)(0)a02(0)+

(0)a02(0)∗ (0)2 = 0.

Similar calculations show that g10(0) = g01(0) = 0. Hence, we have that

g00(0) = g10(0) = g01(0) = 0.

Also note that

g20(0) = b20(0)−2a10(0)b11(0)+a2
10(0)b02(0)+a01(0)b20(0)−2a10(0)a01(0)b11(0)

−2a00(0)b11(0)a11(0)+2a00(0)a10(0)b02(0)a11(0)−2a10(0)b10(0)a02(0)

+2a2
10(0)b01(0)a02(0)− 1

2 a00(0)b20(0)a02(0)+4a00(0)a10(0)b11(0)a02(0).

Again, from (0.51), we have

g20(0)= b20(0)−2(0)b11(0)+(0)2b02(0)+(0)b20(0)−2(0)(0)b11(0)−2(0)b11(0)a11(0)+

2(0)(0)b02(0)a11(0)−2(0)(0)a02(0)+2(0)(0)a02(0)− 1
2(0)b20(0)a02(0)+4(0)(0)b11(0)a02(0) =

b20(0).

Similar calculations show that

g11(0) = b11(0)+a20(0), and g02(0) = b02(0)+2a11(0).

So, we get that 
g20(0) = b20(0)

g11(0) = b11(0)+a20(0)

g02(0) = b02(0)+2a11(0)

.

Assume that (0.36) holds. This completes step 1.

72



(Step 2)

We now go through another change of variables. Here, we go through a parameter

- dependent shift. Define


u1 = v1 +δ (α)

u2 = v2

. (0.55)

We now take the derivative of both sides of each equation of (0.55) with respect to

t. For the first equation of (0.55), we have

v̇1 = u̇1

v̇1 = u2

v̇1 = v2 (0.56)

For the second equation of (0.55), (again we remove α temporarily so we have

gkl = gkl(α)), we have

v̇2 = u̇2

v̇2 = g00 +g10u1 +g01u2 +
1
2g20u2

1 +g11u1u2 +
1
2g02u2

2 +Q(u, .).

Using the relations from (0.55) gives us

v̇2 = g00 +g10(v1 +δ )+g01v2 +
1
2g20(v1 +δ )2 +g11(v1 +δ )v2 +

1
2g02v2

2 +Q(u, .)

v̇2 = g00+g10v1+g10δ +g01v2+
1
2g20(v2

1+2δv1+δ 2)+g11v1v2+g11δv2+
1
2g02v2

2+

Q(u, .)

v̇2 = g00 +g10v1 +g10δ +g01v2 +
1
2g20v2

1 +g20δv1 +
1
2g20δ 2 +g11v1v2 +g11δv2 +

1
2g02v2

2 +Q(u, .)
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v̇2 = (g00+g10δ + 1
2g20δ 2)+(g10+g20δ )v1+(g01+g11δ )v2+

1
2g20v2

1+g11v1v2+

1
2g02v2

2 +O(||v||3)

v̇2 = (g00 +g10δ +O(δ 2))+(g10 +g20δ +O(δ 2))v1 +(g01 +g11δ +O(δ 2))v2

+
1
2
(g20 +O(δ ))v2

1 +(g11 +O(δ ))v1v2 +
1
2
(g02 +O(δ ))v2

2 +O(||v||3). (0.57)

Putting (0.56) and (0.57) together gives us the system


v̇1 = v2

v̇2 = (g00 +g10δ +O(δ 2))+(g10 +g20δ +O(δ 2))v1 +(g01 +g11δ +O(δ 2))v2

+1
2(g20 +O(δ ))v2

1 +(g11 +O(δ ))v1v2 +
1
2(g02 +O(δ ))v2

2 +O(||v||3)

.

(0.58)

Define the function G(α,δ ) = g01(α)+g11(α)δ +O(δ 2). Then we have that G is

continuously differentiable, and G(0,0) = g01(0)+g11(0)∗0+O(0) = 0+0+0 = 0. Tak-

ing the partial derivative of G with respect to δ gives us Gδ (α,δ ) = g11(α)+O(δ ). Since

we have that Gδ (α,δ ) = g11(0)+O(0) = g11(0)+ 0 = g11(0) 6= 0, then by the Implicit

Function Theorem, there exists a smooth function δ = δ (α)≈−g01(α)
g11(0)

near (0,0).

From the results given above about the Implicit Function Theorem, then substituting

δ (α) =−g01(α)
g11(0)

in for δ into (0.58) gives us

74





v̇1 = v2

v̇2 = (g00(α)+g10(α)(− g01(α)
g11(0)

)+O((− g01(α)
g11(0)

)2)+(g10(α)+g20(α)(− g01(α)
g11(0)

)+O((− g01(α)
g11(0)

)2))v1

+(g01(α)+g11(α)(− g01(α)
g11(0)

)+O((− g01(α)
g11(0)

)2))v2 +
1
2 (g20(α)+O((− g01(α)

g11(0)
)))v2

1

+(g11(α)+O((− g01(α)
g11(0)

)))v1v2 +
1
2 (g02(α)+O((− g01(α)

g11(0)
)))v2

2 +R(v,)

,


v̇1 = v2

v̇2 = h00(α)+h10(α)v1 +
1
2h20(α)v2

1 +h11(α)v1v2 +
1
2h02(α)v2

2

(0.59)

where we have

h00(α) = g00(α)− g01(α)
g11(0)

∗g10(α)+O(δ 2)

h10(α) = g10(α)− g01(α)
g11(0)

∗g20(α)δ +O(δ 2)

h20(α) = g20(α)+O(δ )

h11(α) = g11(α)+O(δ )

h02(α) = g02(α)+O(δ ).

Observe that since we have that g00(0)= g10(0)= g01(0)= 0, we have that h00(0)=

g00(0)− g01(0)
g11(0)

g10(0)+O( (g01(0))2

(g11(0))2 ) = 0− ( 0
g11(0)

)(0) = 0− 0+ 0 = 0. Similarly, we have

that h10(0) = g10(0)− g01(0)
g11(0)

g20(0)+O( (g01(0))2

(g11(0))2 ) = 0− ( 0
g11(0)

)(0)+O(0) = 0−0+0 = 0.

Hence, we have that h00(0)= h10(0)= 0. We also have that h20(0)= g20(0)+O(−g01(0)
g11(0)

)=

g20(0)+O(− 0
g11(0)

) = g20(0)+O(0) = g20(0)+ 0 = g20(0). Similar calculations shows

that h11(0) = g11(0), and h02(0) = g02(0). So, we get that
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h20(0) = g20(0)

h11(0) = g11(0)

h02(0) = g02(0)

.

This completes step 2.

(Step 3)

Now, we consider changing the time parameter from t to τ by the equation dt =

(1+θv1)dτ , where θ = θ(α) is a smooth function (which will be defined later). We claim

that the direction of time is preserved near the origin for small ||α||. This will be proven

later.

So, the first equation of (0.59) becomes (using the chain rule for differentiation)

v̇1 =
dv1

dt
× dt

dτ
= v2(1+θv1) = v2 +θv1v2 (0.60)

.

The second equation of (0.59) becomes

v̇2 =
dv2
dt ×

dt
dτ

= (h00(α)+h10(α)v1++ 1
2 h20(α)v2

1+h11(α)v1v2+
1
2 h02(α)v2

2+R(v,))(1+

θv1)

v̇2 = h00(α)+h10(α)v1 +
1
2 h20(α)v2

1 +h11(α)v1v2 +
1
2 h02(α)v2

2 +R(v,)+h00(α)θv1

+h10(α)θv2
1 +

1
2 h20(α)θv3

1 +h11(α)θv2
1v2 +

1
2 h02(α)θv1v2

2 +R(v,)

v̇2 = h00(α)+(h10(α)+h00(α)θ)v1 +
1
2
(h20(α)+2h10(α)θ)v2

1 +h11(α)v1v2 +
1
2

h02(α)v2
2 +O(||v||3).

(0.61)

Putting (0.60) and (0.61) together gives us the system
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v̇1 = v2 +θv1v2

v̇2 = h00(α)+(h10(α)+h00(α)θ)v1 +
1
2 (h20(α)+2h10(α)θ)v2

1 +h11(α)v1v2 +
1
2 h02(α)v2

2 +O(||v||3).
(0.62)

Here we (once again) change coordinates in the following way


ξ1 = v1

ξ2 = v2 +θv1v2

(0.63)

Now, we differentiate both sides of both equations of (0.63) with respect to τ . For

the first equation, we have

ξ̇1 = v̇1 = v2 +θv1v2 = ξ2. Hence, we have

ξ̇1 = ξ2 (0.64)

Now, taking the derivative of the second equation of (0.63) gives us

ξ̇2 = v̇2 +θv1v̇2 +θ v̇1v2

ξ̇2 = (h00(α)+ (h10(α)+ h00(α)θ)v1 +
1
2(h20(α)+ 2h10(α)θ)v2

1 + h11(α)v1v2 +

1
2h02(α)v2

2+O(||v||3))+θv1(h00(α)+(h10(α)+h00(α)θ)v1+
1
2(h20(α)+2h10(α)θ)v2

1+

h11(α)v1v2 +
1
2h02(α)v2

2 +O(||v||3))+θ v̇1v2

ξ̇2 = h00(α) + (h10(α) + h00(α)θ)v1 +
1
2(h20(α) + 2h10(α)θ)v2

1 + h11(α)v1v2 +

1
2h02(α)v2

2+O(||v||3)+h00(α)θv1+(h10(α)+h00(α)θ)θv2
1+

1
2(h20(α)+2h10(α)θ)θv3

1+

h11(α)θv2
1v2 +

1
2h02(α)θv1v2

2 +θv1O(||v||3)+θ v̇1v2

ξ̇2 = h00(α)+ (h10(α)+ 2h00(α)θ)v1 +
1
2(h20(α)+ 4h10(α)θ + 2h00(α)θ 2)v2

1 +

h11(α)v1v2 +
1
2h02(α)v2

2 +O(||v||3)+θ v̇1v2
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ξ̇2 = h00(α)+ (h10(α)+ 2h00(α)θ)ξ1 +
1
2(h20(α)+ 4h10(α)θ + 2h00(α)θ 2)ξ 2

1 +

h11(α)ξ1v2 +
1
2h02(α)v2

2 +O(||v||3)+θξ2v2.

Letting v2 = v̇1−θv1v2 = ξ2−θξ1v2 gives us the following

ξ̇2 = h00(α)+ (h10(α)+ 2h00(α)θ)ξ1 +
1
2(h20(α)+ 4h10(α)θ + 2h00(α)θ 2)ξ 2

1 +

h11(α)ξ1(ξ2−θξ1v2)+
1
2h02(α)(ξ2−θξ1v2)

2 +O(||v||3)+θξ2(ξ2−θξ1v2)

ξ̇2 = h00(α)+ (h10(α)+ 2h00(α)θ)ξ1 +
1
2(h20(α)+ 4h10(α)θ + 2h00(α)θ 2)ξ 2

1 +

h11(α)ξ1ξ2−h11θξ 2
1 v2 +

1
2h02(α)ξ 2

2 −h02θξ1ξ2v2 +
1
2h02θ 2ξ 2

1 v2
2 +O(||v||3)+θξ 2

2

−θ 2ξ1ξ2v2.

Observe that everything after ξ2 from the equation v2 = ξ2−θξ1v2 in the previous

equation would be of degree 3, so we overlook those terms to give us

ξ̇2 = h00(α)+ (h10(α)+ 2h00(α)θ)ξ1 +
1
2(h20(α)+ 4h10(α)θ + 2h00(α)θ 2)ξ 2

1 +

h11(α)ξ1ξ2 +
1
2(h02(α)+2θ)ξ 2

2 +O(||ξ ||3).

Letting

f00(α) = h00(α)

f10(α) = h10(α)+2h00(α)θ(α)

f20(α) = h20(α)+4h10(α)θ(α)+O(θ 2)

f11(α) = h11(α)

f02(α) = h02(α)+2θ(α),

gives us the equation

ξ̇2 = f00(α)+ f10(α)ξ1 +
1
2

f20(α)ξ 2
1 + f11(α)ξ1ξ2 +

1
2

f02(α)ξ 2
2 +O(||ξ ||3). (0.65)

Putting (0.64) and (0.65) together gives us the system
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ξ̇1 = ξ2

ξ̇2 = f00(α)+ f10(α)ξ1 +
1
2 f20(α)ξ 2

1 + f11(α)ξ1ξ2 +
1
2 f02(α)ξ 2

2 +O(||ξ ||3).
(0.66)

Now, to eliminate the ξ 2
2 term in (0.66), we let θ(α) = −h02(α)

2 (and also specify

the time reparametrization). Substituting in this choice of θ(α) gives us

ξ̇2 = f00(α)+ f10(α)ξ1 +
1
2 f20(α)ξ 2

1 + f11(α)ξ1ξ2 +
1
2 f02(α)ξ 2

2 +O(||ξ ||3)

ξ̇2 = h00(α)+(h10(α)+2h00(α)θ(α))ξ1+
1
2(h20(α)+4h10(α)θ(α)+O(θ 2))ξ 2

1 +

h11(α)ξ1ξ2 +
1
2(h02(α)+2θ(α))ξ 2

2 +O(||ξ ||3)

ξ̇2 = h00(α) + (h10(α) + 2h00(α)(−h02(α)
2 ))ξ1 +

1
2(h20(α) + 4h10(α)(−h02(α)

2 ) +

O((−h02(α)
2 )2))ξ 2

1 +h11(α)ξ1ξ2 +
1
2(h02(α)+2(−h02(α)

2 ))ξ 2
2 +O(||ξ ||3)

ξ̇2 = h00(α)+(h10(α)−h00(α)h02(α))ξ1 +
1
2(h20(α)−2h10(α)h02(α)

+O(
h2

02(α)
4 )ξ 2

1 +h11(α)ξ1ξ2 +
1
2(h02(α)−h02(α))ξ 2

2 +O(||ξ ||3)

ξ̇2 = h00(α)+(h10(α)−h00(α)h02(α))ξ1 +
1
2(h20(α)−2h10(α)h02(α)

+O(
h2

02(α)
4 )ξ 2

1 +h11(α)ξ1ξ2 +O(||ξ ||3).

Now, let

µ1(α) = h00(α)

µ2(α) = h10(α)−h00(α)h02(α)

A(α) = 1
2(h20(α)−2h10(α)h02(α)+O(

h2
02(α)

4 ))

B(α) = h11(α).

Then we have that

ξ̇2 = µ1(α)+µ2(α)ξ1 +A(α)ξ 2
1 +B(α)ξ1ξ2 +O(||ξ ||3).

Then the system (0.66) becomes the system
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ξ̇1 = ξ2

ξ̇2 = µ1(α)+µ2(α)ξ1 +A(α)ξ 2
1 +B(α)ξ1ξ2 +O(||ξ ||3).

. (0.67)

We claimed earlier that the direction of time is preserved for small ||α||. We now

prove that this is true. Observe that we have

θ(α) =−h02(α)
2 =−1

2(g02(α)+O(−g01(α)
g11(0)

)) =−1
2(b02(α)+a01(α)b02(α)

+2a11(α)+2b01(α)a02(α)+O(−g01(α)
g11(0)

)).

So, we have that θ(α) can be related to the system (0.50). Since y = 0 is the equi-

librium point of the system (0.50), then we can choose α small enough so that θ(α)v1 < 1.

So, from this and from dt = (1+ θv1)dτ , we have that the direction of time is preserved

(for small ||α||), which proves the claim.

This completes step 3.

(Step 4) Introduce a new time (denoted by t again) by

t = |B(α)

A(α)
|τ.

Observe that we have B(0)= h11(0)= g11(0)= a20(0)+b11(0) 6= 0 (by (0.36)), and

we have 2A(0) = h20(0) = g20(0) = b20(0) 6= 0 (by (0.37)). Now, we do another change of

coordinates by
η1 =

A(α)
B2(α)

ξ1

η2 = sign(B(α)
A(α))

A2(α)
B3(α)

ξ2

which scales the coordinates of the previous system. Taking the derivative to both

sides of the first equation from above with respect to t gives us (again removing α from

A(α) and B(α))

η̇1 =
dη1
dt = dη1

dτ
× dτ

dt
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η̇1 =
A(α)
B2(α)

ξ̇1×|AB |

η̇1 =
A(α)
B2(α)

ξ̇1× sign(A
B)×

A
B

η̇1 = sign(B
A)×

A2

B3 ×ξ2

η̇1 = η2. (0.68)

Now, taking the derivative to both sides of the second equation from above with

respect to t gives us

η̇2 =
dη2
dt = dη2

dτ
× dτ

dt

η̇2 = sign(B
A)×

A2

B3 × ξ̇2×|AB |

η̇2 = sign(B
A)×

A2

B3 × ξ̇2× sign(A
B)×

A
B

η̇2 = sign(B
A)× sign(B

A)×
A3

B4 × ξ̇2

η̇2 =
A3

B4 × ξ̇2

η̇2 =
A3

B4 × ξ̇2

η̇2 =
A3

B4 [µ1 +µ2ξ1 +Aξ 2
1 +Bξ1ξ2 +O(||ξ ||3)]

η̇2 =
A3

B4 µ1 +
A3

B4 µ2ξ1 +
A4

B4 ξ 2
1 + A3

B3 ξ1ξ2 +O(||ξ ||3)

η̇2 =
A3

B4 µ1 +
A2

B2 µ2× A
B2 ξ1 +A2× A2

B4 ξ 2
1 + A

B2 ξ1× A2

B ξ2 +O(||ξ ||3)

η̇2 =
A3

B4 µ1 +
A2

B2 µ2η1 +A2η2
1 +η1× sign(B

A)×B2×η2 +O(||ξ ||3)

η̇2 =
A3

B4 µ1 +
A2

B2 µ2η1 +A2η2
1 + sign(B

A)B
2η1η2 +O(||ξ ||3).

η̇2 =
A3

B4 µ1 +
A2

B2 µ2η1 +A2η2
1 ±B2η1η2 +O(||ξ ||3).

Letting β1(α) = A3(α)
B4(α)

µ1(α) and β2(α) = A2(α)
B2(α)

µ2(α) gives us

η̇2 = β1(α)+β2(α)η1 +A2
η

2
1 ±B2

η1η2 +O(||ξ ||3). (0.69)

Putting (0.68) and (0.69) together gives us (the final) system
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η̇1 = η2

η̇2 = β1 +β2η1 +A2η2
1 ±B2η1η2 +O(||ξ ||3).

(0.70)

We claim that β1(0) = β2(0) = 0. To show this, observe that

β1(0) =
A3(0)
B4(0)µ1(0) =

A3(0)
B4(0) [h00(0)] =

A3(0)
B4(0)×0 = 0 (since we have that h00(0) = 0).

Similarly, we have

β2(0) =
A2(0)
B2(0)µ2(0) =

A2(0)
B2(0) [h10(0)−h00(0)h02(0)] =

A2(0)
B2(0) [0−0×h02(0)] =

A2(0)
B2(0)×

0 = 0, since h00(0) = h10(0) = 0. This proves the claim. Since (0.38) holds, then step 4

and the proof of Theorem 41 is done. �

REMARK 42. The system given in Theorem 41 can be rescaled further to the following

system 
η̇1 = η2

η̇2 = ω1(α)+ω2(α)η1 +η2
1 ±η1η2 +O(||ξ ||3).

(0.71)

since (0.70) and (0.71) are topologically equivalent (meaning that the two systems

are “similar” from a topological point of view).6 M

6.3 Example

Here, we provide an example of a system that will experience a Bogdanov-Takens

bifurcation.

EXAMPLE 43. Consider the system given as follows:


ẋ = x− xy

1+ax

ẏ = xy
1+ax −2y−by2

6This result can be found in [3].

82



where x(t) is the population of a prey, y(t) is the population of a predator, and a and b are

positive parameters.

Here is the bifurcation diagram that we see with this example (where a = 0.1 and

b = 0.22). (See F27.)
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0.4

0.5
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0.7

0.8
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0 0.1 0.2 0.3 0.4
a

Figure 27. Bifurcation diagram of Bogdanov-Takens bifurcation for Example 43.
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Figure 28. Screenshot of data from XPPAUT which describes a Bogdanov-Takens

bifurcation.

In F27, we have that a and b are both free parameters. So, if you fix b = 0.2, then

there are two Hopf bifurcations and a saddle-node bifurcation. The point where the two

curves intersect is the Bogdanov-Takens bifurcation.

To better understand what is going on with the Bogdanov-Takens bifurcation, we

provide another example of a system that will undergo this bifurcaton.

Consider the system:


ẋ = y

ẏ = a+bx+ x2− xy
(0.72)
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where α =

[
a b

]T

∈R2. The bifurcation diagram of (0.72) is given as follows (in

F29):

Figure 29. Bifurcation diagram of Bogdanov-Takens bifurcation for Example 44.

It can be shown that if a = b = 0, then the origin is a cusp.7 The phase portrait for

this is as follows:

-0.2 0 0.2 0.4 0.6 0.8 1 1.2
x

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y

Bogdanov-Takens Phase Portrait
(a=0, b=0)

Figure 30. Phase Portrait of (0.72) at (a,b) = (0,0).

7This can be shown by applying Theorem 17 to the system (0.72).
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Now, the equilibrium points of system (0.72) are along the x-axis (i.e., when y = 0),

and satisfies the equation a+ bx + x2 = 0. So, the solutions of the equation are of the

form x = −b±
√

b2−4a
2 . Hence, the number of real solutions are based on the sign of the

discriminant b2−4a. The phase portrait for when b2−4a < 0 is as follows:

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8
x

-2

-1

0

1

2

3

4

5

y

Bogdanov-Takens Phase Portrait
(a=1, b=1.99)

Figure 31. Phase Portrait of (0.72) in region 1.

We claim that the (discriminant) parabola T = {(a,b) | b2− 4a = 0} gives us a

saddle-node bifurcation, which we shall prove in a moment. Now, along the curve T , we

claim that the system (0.72) has an equilibrium point with a zero eigenvalue. To show this,

consider the equilibrium point (−b
2 ,0) ∈ T . Observe that the Jacobian of the system (0.72)

is

D f (x,y) =

 0 1

b+2x− y −x

 . (0.73)

The Jacobian evaluated at (−b
2 ,0) is

D f (−b
2
,0) =

 0 1

b+2(−b
2)− (0) −(−b

2)

=

0 1

0 b
2

 .
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It can be shown that the eigenvalues of D f (−b
2 ,0) are λ1 = 0, and λ2 =

b
2 , which

proves the claim. Furthermore, we claim that the equilibrium point (−b
2 ,0) will be a saddle-

node.8 The phase portrait for this case is given as follows:
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Bogdanov-Takens Phase Portrait
(a=1, b=2)

Figure 32. Phase Portrait of (0.72) on T+.
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Bogdanov-Takens Phase Portrait
(a=1, b=-2)

Figure 33. Phase Portrait of (0.72) on T−.

We will now prove that points on T gives us a saddle-node bifurcation. Now, the

point α =

[
0 0

]T

separates the curve T into two parts: T− and T+, where b < 0 and b > 0

8This can be proven by fixing a point on T , shift it to the origin, and apply Theorem 15 to the new system.
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respectively. We claim that E2 is a saddle equilibrium point, whether the point α =

[
a b

]T

passes through T− or T+, and for all parameters to the left of the curve T . To prove this,

assume that b2−4a > 0 so that E2 exists. Plugging in E2 into (0.73) gives us:

D f (E2) =

 0 1

b+2(−b+
√

b2−4a
2 )− (0) −(−b+

√
b2−4a

2 )



D f (E2) =

 0 1
√

b2−4a b−
√

b2−4a
2

 . (0.74)

Observe that the determinant of the matrix (0.74) is D= det(D f (E2))=−
√

b2−4a<

0. So, by the Trace-Determinant Analysis, E2 is a saddle equilibrium point. We also claim

that E1 is a stable node if b < 0, and is an unstable node if b > 0. Plugging in E1 into (0.73)

gives us:

D f (E1) =

 0 1

b+2(−b−
√

b2−4a
2 )− (0) −(−b−

√
b2−4a

2 )



D f (E1) =

 0 1

−
√

b2−4a b+
√

b2−4a
2

 (0.75)

The eigenvalues of (0.75) are λ1,2 = 1
2(

b+
√

b2−4a
2 ±

√
(b+
√

b2−4a
2 )2−4

√
b2−4a).

We claim that E1 is a node. To prove this, consider the following function,

f (a) = λ1 +λ2

f (a) = [ 1
2(

b+
√

b2−4a
2 +

√
(b+
√

b2−4a
2 )2−4

√
b2−4a)]
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+[1
2(

b+
√

b2−4a
2 −

√
(b+
√

b2−4a
2 )2−4

√
b2−4a)]

f (a) = 1
2 ×

b+
√

b2−4a
2 + 1

2 ×
b+
√

b2−4a
2

f (a) = b+
√

b2−4a
2 .

Observe that f is continuous for b2−4a≥ 0, and that f (0) = 0 (as we will discuss

this below). Since this is the case, this indicates that λ1 and λ2 are either real or pure

imaginary. This is because if λ1 and λ2 can be written in the form: λ1 = A + iB and

λ2 = A− iB. Then we have that λ1 +λ2 = [A+ iB]+ [A− iB] = 2A, which does not follow

the assumption about the form of λ1 and λ2. Now, if we assume that λ1,2 = ±iB. Then

we have that the real part of λ1 = 0. However, the real part of λ1 is b+
√

b2−4a
2 , which is a

contradiction since we have that
√

b2−4a> 0. This shows that λ1,2 ∈R. Now, observe that

we have that
√
(b+
√

b2−4a
2 )2−4

√
b2−4a <

√
(b+
√

b2−4a
2 )2 = |b+

√
b2−4a
2 |. So, this shows

that the sign of the eigenvalues λ1,2 does not change, which implies that the equilibrium

point E1 is a node.

Now, we observe that if b > 0, then b+
√

b2−4a
2 > 0 since

√
b2−4a > 0. Hence, if

b > 0, then E1 is an unstable node. Similarly, if b < 0, then b+
√

b2−4a
2 < b+|b|

2 = b−b
2 = 0,

since we have that a > 0. Hence, if b < 0, then E1 is a stable node.

It turns out that there is a nonbifurcation curve (which is not shown in Figure 29) at

a > 0, where passing through the origin causes the equilibrium point E1 to change from a

node to a focus.

Now assume that a = 0. Then (0.75) becomes

D f (E1) =

 0 1

−
√

b2 b+
√

b2

2



D f (E1) =

 0 1

−|b| b+|b|
2

 . (0.76)
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So the eigenvalues of (0.76) are λ1,2 =
1
2(

b+|b|
2 ±

√
(b+|b|

2 )2−4|b|). For b < 0, the

curve H = {(a,b) | a = 0, b < 0} corresponds to a Hopf bifurcation.9 We claim that the

Hopf bifurcation H will form a stable limit cycle. Indeed for if we let (a,b) ∈ H, then the

system (0.72) will simplify to the system


ẋ = y

ẏ = bx+ x2− xy
(0.77)

Now, we compute the Lyapunov coefficient for the system (0.77). Recall that the

Lyapunov coefficient is defined as follows:

σ = −3π

2b′D3/2{[a′c′(a2
11+a11b02+a02b11)+a′b′(b2

11+a20b11+a11b02)+c′2(a11a02+

2a02b02)−2a′c′(b2
02−a20a02)

−2a′b′(a2
20−b20b02)−b′2(2a20b20+b11b20)+(b′c′−2a′2)(b11b02−a11a20)−(a′2+

b′c′)[3(c′b03−b′a30)

+2a′(a21 +b12)+(c′a12−b′b21)]}

where a′,b′,c′,d′ represent the entries of the matrix A =

a′ b′

c′ d′

, D = det(A) =

a′d′− b′c′ > 0, ai j are the coefficients of an analytic function p(η1,η2), and bi j are the

coefficients of an analytic function q(η1,η2). For the system (0.77), we have that a′ = 0,

b′ = 1, c′ = b, d′ = 0, a20 = 0, a11 = 0, a02 = 0, a30 = 0, a21 = 0, a12 = 0, a03 = 0, b20 = 1,

b11 = −1, b02 = 0, b30 = 0, b21 = 0, b12 = 0, b03 = 0, and D = −b > 0 (since b < 0).

Plugging in all of these numbers into σ as defined above gives us:

σ = −3π

2(1)(−b)3/2{[(0)(b)(02+(0)(0)+(0)(−1))+(0)(1)((−1)2+(0)(−1)+(0)(0))+

b2((0)(0)+2(0)(0))−2(0)(b)(02− (0)(0))

−2(0)(1)(02−(1)(0))−(1)2(2(0)(1)+(−1)(1))+((1)(b)−2(0)2)((−1)(0)−(0)(0))−

(02 +(1)(b))[3((b)(0)− (1)(0)

9This can be proven by using Theorem 31 (after fixing a point in H, and shifting the coordinates).
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+2(0)(0+0)+((b)(0)− (1)(0))]}

σ = −3π

2(−b)3/2{1}

σ = −3π

2(−b)3/2 < 0.

Since σ < 0, then by Theorem 31, this proves the claim that the Hopf bifurcation

H forms a stable limit cycle. The phase portrait for this case is as follows:
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0.3

0.4

0.5

0.6

y
Bogdanov-Takens Bifurcation

(a=0, b=-1)

Figure 34. Phase Portrait of (0.72) on H.

Since we have a Hopf bifurcation on the curve H, then the limit cycle will still exist

for parameters near the curve H (in particular, for a < 0 near H). The phase portrait for this

case is as follows:
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Bogdanov-Takens Phase Portrait
(a = -0.05, b = -0.5)

Figure 35. Phase Portrait of (0.72) in region 3.

As the bifurcation parameters move away from the curve H, the “size” of the limit

cycle gets larger, and eventually will give us a global bifurcation P. Once we pass through

P, the limit cycle disappears (which is region 4 in Figure 29.). The phase portrait for this

case is as follows:
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Bogdanov-Takens Phase Portrait
(a = -3, b = -1)

Figure 36. Phase Portrait of (0.72) in region 4.
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To summarize what we discussed in this example, we will make a round trip near

the origin. (We refer back to Figure 29.) We will begin in region 1, and work clockwise.

In region 1, we see that there are no equilibrium points (and no limit cycles). Going from

region 1 to region 2 through T−, we get two equilibrium points: a stable node E1, and a

saddle point E2 (hence a saddle-node bifurcation on T−). Then the node turns into a (stable)

focus, and looses its stability as it passes through the Hopf bifurcation curve H. We have

a set stable limit cycles for parameter values to the left of the curve H. Continuing from

H (in region 3) heading back to region 1, the “size” of the limit cycle increases, and then

eventually the limit cycle disappears. Hence, there must be a global bifurcation10 which

“destroys” the cycle somewhere between H and T+ (in region 4). It turns out that there

are only two types of codimension-1 global bifurcations we could have: saddle homoclinic

bifurcation11 and saddle-node homoclinic bifurcation12. Since a saddle-node equilibrium

at the saddle-node bifurcation cannot have a homoclinic orbit, then the only possible global

bifurcation is the appearance of an orbit homoclinic to the saddle E2. Hence, there is at

least one bifurcation curve originating at α = (0,0) along which (0.72) undergoes a saddle

homoclinic bifurcation. As we follow the homoclinic orbit along the curve P toward the

Bogdanov-Takens point, the looplike orbit shrinks and will eventually disappear. In region

4 heading back to region 1, we go from having E2 be a saddle and E1 be an unstable node

to no equilibrium points as we pass through T+ (that is, we have a saddle-node bifurcation

on T+). O

10Global bifurcations are beyond the scope of this thesis, but for more information, see [1].
11A saddle homoclinic bifurcation is a codimension-1 bifurcation that has a homoclinic orbit to a saddle

point.
12A saddle-node homoclinic bifurcation is a codimension-1 bifurcation that has a homoclinic orbit to a

saddle-node point.
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CHAPTER 7: CONCLUSION

We have studied a codimension-2 bifurcation, namely the Bogdanov-Takens bifurcation,

which happens when two codimension-1 bifurcations (namely the Hopf and saddle-node

bifurcations) collide to get a codimension-2 bifurcation.

The main contribution of this thesis is providing full details of the proof for The-

orem 41. While the proof of this theorem can be found in [2], it turns out that most of

the details of this proof were left out, and to the best of the author’s knowledge, a full and

complete proof of this theorem (in all details) was lacking in the literature. The dynam-

ics of Bogdanov-Takens bifurcations are very rich, which implies the existence of many

things such as global bifurcation, saddle-node bifurcation, Hopf bifurcation (and limit cy-

cle), and cusp equilibrium point as the bifurcation parameters vary. (See Figure 29.) For

more information on global bifurcations, see [2] and [5].

There are several applications of Bogdanov-Takens bifurcations, particularly in Bi-

ology and Population Dynamics (see [6]).
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