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ABSTRACT 

Island Biogeography Theory (IBT) explains and quantifies broad-scale ecological 

patterns among islands and isolated habitat patches. IBT predicts that the number of 

species per habitat patch varies as a function of area and isolation as a result of local 

colonization and extinction. IBT has been extended to habitat islands and hosts as islands 

for their associated parasites. In the latter system, host body mass acts as a substitute for 

island area, whereas host population density is used as a measure of isolation. Using the 

fragmented Ozark glades and the small mammals therein as a model system, I 1) used a 

multi-species occupancy model to correct for imperfect detection of species and generate 

species richness estimates, and 2) used the model to evaluate the effects of patch area, 

isolation, and shape on species richness. I then considered the mammalian hosts of the 

glades as islands for their associated ectoparasites, and evaluated 1) the effects of host 

population size on ectoparasite diversity metrics, and 2) tested for associations between 

mammalian host and ectoparasite communities. I captured a total of 8 mammal species 

and 7 ectoparasite orders in May–July 2016–2017. Glade area, but not isolation or shape, 

affected mammalian species richness. Ectoparasite richness and diversity were positively 

affected by host population size, and strong host-ectoparasite associations were present. 

IBT explains many of the patterns in small mammal and ectoparasite richness in the glade 

network, but matrix effects and host specificity may limit its applicability in this system.  
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OVERVIEW 

 

 Research on islands and island-like systems has influenced biological theory for 

over a century. Beginning in the 19th century with the work of Charles Darwin and Alfred 

Russell Wallace, island research has provided key insights into mechanisms of evolution 

(Clegg et al. 2002, Darwin 1859, Rowe et al. 2016, Wallace 1880), habitat fragmentation 

and conservation (Laurance 2009, Pimm 1991), and metacommunity dynamics (Diamond 

1975, Gotelli 2000, Hubbell 2001). Islands have several properties that make them ideal 

for ecological study, including clearly defined boundaries, presence of local (within-

island) and regional (across archipelago) processes, and greater simplicity than mainland 

systems (Santos et al. 2016). One crucial theory that arose from island research is Island 

Biogeography Theory (IBT). First proposed by Munroe (1948), the theory went largely 

unnoticed until it was independently formulated by MacArthur and Wilson (1963, 1967; 

Brown and Lomolino 1989). This theory quickly became a paradigm of spatial ecology 

and has heavily influenced other areas of ecology in decades since (Lomolino 2000, 

Santos et al. 2016). 

 IBT explains and quantifies patterns of large-scale ecology among oceanic or 

habitat islands (MacArthur and Wilson 1967). IBT hypothesizes that species richness, or 

the number of species present on an island, depends on island size, isolation from the 

mainland and other islands, and habitat complexity as a result of varying rates of 

colonization and extinction (MacArthur and Wilson 1967). Larger islands will host more 

species than smaller islands due to lower rates of extinction, and isolated islands will host 

fewer species than less isolated islands due to reduced colonization rates (Figure 1). The  
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theory also predicts that the species richness on each island will ultimately reach a 

dynamic equilibrium, where the total species richness will remain constant but species 

composition will fluctuate due to colonization and extinction of individual species. 

 The Ozark glades, open and rocky habitats embedded within the surrounding 

forest, can be considered habitat islands embedded in a forest “sea” (Figure 2). Shallow 

soils and the absence of a developed tree canopy characterize glades (Heikens 1999, 

Kucera and Martin 1957, Nelson and Ladd 1983). Typically, glades are arid relative to 

the surrounding forest but may contain seasonal seeps or pools (Nelson 2010). Glades  

Figure 1. Species richness on islands is determined by colonization and extinction 

rates, which in turn are affected by island isolation and area. Species richness of an 

island is predicted by the point at which the colonization and extinction curves 

intersect. Figure modified from MacArthur and Wilson (1963).  
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vary in size and quality due to the underlying bedrock and fire frequency (Ladd 1991, 

Nelson and Ladd 1983, Nelson et al. 2013). Glades support a variety of small mammals 

including habitat generalists such as the white-footed mouse (Peromyscus leucopus) and 

Eastern wood rat (Neotoma floridana), as well as open-canopy specialists such as the 

Texas mouse (P. attwateri) and Fulvous harvest mouse (Reithrodontomys fulvescens). 

The small mammal communities, in turn, host a suite of ectoparasites such as fleas (Order 

Siphonaptera) and ticks (Order Ixodida). The patchy distribution of the glades and the 

diversity of small mammal and ectoparasite species they contain makes them a suitable 

system to examine IBT. 

 My research tests the predictions of IBT in two hierarchically organized 

assemblages in the Ozark glades. The first chapter implements a multi-species occupancy 

model to correct for imperfect detection of small mammals, a common source of 

sampling error in ecology (MacKenzie et al. 2005). I then used the detection-error 

corrected community data to evaluate the effects of area, isolation, and other patch 

characteristics on species occupancy and richness. The second chapter treats the small 

mammals as a series of habitat patches and evaluates the roles of host characteristics on 

A A 

A 

A 

B 

C 

C 
D 

Figure 2. Conceptual diagram of species A–D in a series of habitat islands. Area and 

isolation determine species richness of habitat islands in a manner similar to oceanic 

islands. Arrows represent dispersal routes. 
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ectoparasite community composition. Because ecological processes are often dependent 

on scale (Wiens 1989), evaluating IBT in the context of the hierarchically organized 

small mammals and ectoparasites will provide insight on the applicability of broad-scale 

theories to different levels of community organization. 

  



 

5 

APPLYING ISLAND BIOGEOGRAPHY TO SMALL MAMMALS IN THE 

OZARK GLADES WHILE ACCOUNTING FOR IMPERFECT DETECTION 

 

Introduction 

 Island biogeography theory (IBT) predicts that species richness on an island 

increases with area and decreases with isolation due to higher rates of extinction on small 

islands and lower rates of colonization on distant islands (MacArthur and Wilson 1963, 

1967). Shortly after its publication, IBT was applied to small mammals on isolated 

mountaintops in the Great Basin, in which area but not isolation had a significant effect 

on species richness (Brown 1971). IBT has been extended to a variety of habitat types in 

years since, with varying results (Belmaker et al. 2007, Fox and Fox 2000, Lomolino 

1984, Watling and Donnelly 2006). Although the species-area relationship predicted by 

IBT is typically present in terrestrial islands (Fox and Fox 2000, Lomolino 1984, Watling 

and Donnelly 2006; but see Cook et al. 2002), isolation effects tend to be less consistent 

for terrestrial habitat patches (Watling and Donnelly 2006, but see Prevedello and Vieira 

2010). 

 The discrepancy in isolation effects between oceanic and habitat islands largely is 

due to differences between the intervening matrix, the habitat or habitats surrounding the 

focal patches (Cook et al. 2002, Evans et al. 2017, Ewers and Didham 2006, Ricketts 

2001). Matrix types between habitat islands vary considerably in their permeability to 

dispersing individuals (Evans et al. 2017, Ewers and Didham 2006,  Kupfer et al. 2006, 

Prevedello and Vieira 2010), and many habitat islands are embedded in a heterogeneous 

matrix consisting of a variety of habitat types (Biswas and Wagner 2012, Deans and 
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Chalcraft 2016, Kupfer et al. 2006, Ricketts 2001). In addition to variation in matrix 

permeability, isolation effects can be masked by spill-over of species from the matrix to 

the habitat patch of interest (Brown and Dinsmore 1988, Cook et al. 2002). Thus, 

effective isolation between habitat patches is more complex than geographic distance 

alone. 

 The Ozark glades, open and rocky habitats embedded within the surrounding 

forest, can be considered habitat islands embedded in a forest matrix. Shallow soils, the 

absence of a developed tree canopy, and aridity relative to the surrounding forest 

characterize glades (Heikens 1999, Kucera and Martin 1957, Nelson 2010, Nelson and 

Ladd 1983). Glades require periodic fires to maintain ecosystem health (Ladd 1991, 

Nelson and Ladd 1983, Nelson et al. 2013); isolation therefore has the potential to affect 

recolonization after each disturbance event. Glades support a variety of small mammals 

including habitat generalists such as the white-footed mouse (Peromyscus leucopus) and 

Eastern wood rat (Neotoma floridana), as well as open-canopy specialists such as the 

Texas mouse (P. attwateri) and Fulvous harvest mouse (Reithrodontomys fulvescens). 

The patchy distribution of the glades and the diversity of small mammal species they 

contain makes them a suitable system for testing predictions of IBT. 

 Based on IBT, I predict that species richness will be a function of patch area; 

specifically that there will be a positive effect of area due to lower extinction rates on 

larger islands. While IBT predicts a negative effect of isolation on richness, I predict that 

the presence of several generalist species and permeability of the matrix will diminish or 

negate the effect of isolation on richness. Because patch shape, here defined as the 

amount of edge relative to area, should be correlated with habitat complexity, I predict 
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that it will affect species-specific occupancy, but the direction and magnitude of these 

effects will vary due to variation in life history of the species in the community. 

Alternatively, if species are essentially neutral in life history, there should be a positive 

effect of shape on occupancy given IBT. Because IBT predicts that small islands have 

higher rates of extinction than large islands, I predict that small islands will exhibit a 

higher rate of temporal turnover between sampling years. 

 Using a multi-species occupancy model, or MSOM, I 1) estimated occupancy and 

detection probability for each small mammal species in the glade network, 2) used these 

probabilities to correct for imperfect detection and generate species richness estimates 

and occurrence matrices, and 3) evaluated the effects of environmental covariates on 

individual species and the community as a whole. I then used the species richness 

estimates and occurrence matrices generated by the model to test for relationships 

between the environmental covariates and species richness and temporal turnover. 

 

Methods 

 Data collection. I sampled small mammals from a network of sixteen glades in 

southwest Missouri, spanning an east-west distance of approximately 125 km within the 

Ozark Highlands ecological section (Nigh and Schroeder 2002, Figure 3). The glades 

were located within four state or federal management units: Roaring River State Park 

(RRSP- 4 glades), Mark Twain National Forest Ava-Cassville District (MTNF- 3 glades), 

Drury-Mincy Conservation Area (DMCA- 5 glades), and Caney Mountain Conservation 

Area (CMCA- 4 glades). Glades were selected based distribution among management 

units and size; glades without sufficient length for a 250 m linear transect were excluded  
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from sampling. All glades were sampled in May–July 2016 and resampled in May–July 

2017. 

 I used a combination of Sherman live-traps, 7.62×8.89×22.86 cm (“regular”) and 

10.16×11.43×38.10 cm (“large”), baited with sunflower seeds and/or a peanut-butter oat 

mixture, to capture small mammals. To standardize trapping effort, each glade was 

sampled using a ~250 m linear transect, with trap stations set ~10 m apart. Two traps 

were placed at each station and arranged to maximize capture efficiency (e.g. along 

runways such as fallen logs or rock ledges). I randomly selected 12 of 25 stations to have 

one large and one regular Sherman trap; the other 13 stations had two regular Sherman 

traps. I used GPS receivers to record positions at the beginning, midpoint, and end of 

each transect. I opened traps each evening and checked them the following morning; each 

transect was sampled for a period of 4 consecutive trap days. 

 Upon checking traps, captured mammals were transferred to a cloth bag and 

handled according to American Society of Mammalogists guidelines (Sikes 2016). 

Figure 3. Map of sampling sites. Each point represents a glade. 
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Individuals were identified to species, sexed, and weighed, and standard external 

measurements (ear length, tail length, and right hind foot length) were taken. Prior 

approval for this project was obtained from the Missouri State University Institutional 

Animal Care and Use Committee (IACUC, ID #16-020.0). 

 Patch area and perimeter were computed by recording the perimeter of each glade 

with a GPS unit and then converting this output to a polygon shapefile using ArcGIS 

10.3.1. Glade area was calculated using the R packages rgdal and rgeos (Bivand et al. 

2016, Bivand and Rundel 2017). Isolation between glades was determined by calculating 

pairwise distances between glade centroids and the shortest pairwise distances between 

glade edges in R using the rgdal and rgeos packages. Because the longitudinal range of 

the management units was much greater than the latitudinal range, pairwise distances 

were only calculated between glades within the same management unit to prevent biased 

isolation measures of glades near the edges of the longitudinal gradient. Thus, “isolation” 

as described here is a modified version of the two-or-more nearest neighbors metric 

(Moilanen and Nieminen 2002). Pairwise distance values were used to calculate 

standardized distance (Krasnov et al. 2010, Equation 1). Differences in patch shape were 

quantified using the corrected perimeter-area ratio (Farina 2006, Equation 2).  

𝐷𝑆𝑇 =
𝐷𝐶

𝐷𝐶 − 𝐷𝐸
 

Equation 1. Standardized distance (DST), where DC = pairwise distance between centroids 

and DE = pairwise distance between edges. 

 

 

𝐶𝑃𝐴 =
0.282 × 𝐿

√𝐴
 

 

Equation 2. Corrected perimeter-area ratio (CPA), where L = perimeter length and A = 

area. Modified from Farina (2006). 
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 Vegetation data were collected to account for habitat heterogeneity between 

glades. Though IBT assumes habitat islands are homogenous with respect to 

environmental filters other than area and isolation, variation in insular species 

composition may be a result of variation in environmental characteristics such as 

vegetation composition (Lomolino 2000). Vegetation data were collected by placing a 1 

m2 quadrat at ten randomly selected trap stations; the percent cover for grasses, forbs, 

shrubs, trees, and total cover was recorded. The dimensionality of the vegetation data was 

reduced using a principal components analysis (PCA) using the prcomp function in R. 

 Multi-Species Occupancy Model. Area and isolation effects on species richness 

can be masked if species are detected imperfectly during sampling (Figure 4). Detection 

rates of species are variable due to species traits and landscape characteristics (Iknayan et 

al. 2014), resulting in biased estimates of species occurrence for rare or hard-to-detect 

species (MacKenzie et al. 2005). Recent advances in statistical methodology and 

A 

A 

A 
B 

B 

B 

C 

C 
D 

E 

F 

D 

1 

A 

A 

A 
B 

B 

B 

C 

C 
D 

F 

D 

2 

Figure 4. (1) Network of islands inhabited by species A–F. When species are 

imperfectly detected, such as species E in (2), effects of area and isolation can be 

masked due to lower observed richness counts. 
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computing have led to community-level hierarchical models (or multi-species occupancy 

models, MSOMs) that leverage information from across the community to estimate 

species-specific occupancy and detection (Dorazio and Royle 2005, Zipkin et al. 2010).  

 I constructed a single-season hierarchical model in which occurrence of species i 

at site j, denoted Zij, is equal to 1 if the species is present at the site and 0 otherwise. 

Occurrence is assumed to be an outcome of a Bernoulli trial, Zij ~ Bern(Ψij), where Ψij is 

the probability that species i is present at site j. The true occupancy state Zij usually is 

unknown and imperfectly observed, which leads to confounded estimates of Ψij. 

However, when site j is sampled multiple times over a short period, observation data can 

be incorporated into a detection model that distinguishes between true species absences 

and non-detection (MacKenzie et al. 2002). 

 The detection model is defined as xijk ~ Bern(pijk * Zij), where pijk is the probability 

of detecting species i at site j during sampling period k, given that species i is present at 

site j. The dependency of the detection model on the occupancy state ensures that 

detection probability is zero when the species is not present at a site. 

 Because MSOMs leverage information from the entire community, rare or poorly 

detected species which lack sufficient data to model individually can be analyzed by 

“borrowing” data from the community as a whole (Iknayan et al. 2014). This is done by 

assuming each species-level parameter is drawn from a common community-level 

distribution, or “hyper-parameter” (Kéry and Royle 2009, Zipkin et al. 2009). 

Nondetected species for which there are no data can also be represented by including all-

zero encounter histories in a process known as zero augmentation (Kéry and Royle 2009, 

Royle et al. 2007). Thus, MSOMs generate more accurate estimates compared to single-
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species models by accounting for the similarity in the ecology of all members (Link and 

Sauer 1996, Sauer and Link 2002, MacKenzie et al. 2005). 

 To account for potential differences in occupancy between sampling years, I used 

an unpaired-site model (Tingley and Beissinger 2009, Tingley et al. 2012) in which 

“year” is included as a covariate in a single-season model. This modeling framework is 

particularly useful for data sets with few sites and/or when there are few changes in 

occupancy. In addition to year, I incorporated four environmental covariates into the 

model using the logit-link function (Dorazio and Royle 2005): 

𝑙𝑜𝑔𝑖𝑡(𝛹𝑖𝑗) = 𝑢𝑖 + 𝛼1𝑖𝐴𝑟𝑒𝑎𝑗 + 𝛼2𝑖𝐼𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑗 + 𝛼3𝑖𝑆ℎ𝑎𝑝𝑒𝑗+𝛼4𝑖𝑌𝑒𝑎𝑟𝑗 

in which α1i–α3i are the effects of the site-level covariate on the occupancy probability of 

species i. Detection probability pijk was modeled in a similar manner: 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗𝑘) = 𝑣𝑖 + 𝛽1𝑖𝐷𝑎𝑡𝑒𝑗𝑘 

where vi is the species-specific intercept and β1i is effect of Julian date on the detection 

probability of species i. With the exception of year, all covariates were scaled to have a 

mean zero and a standard deviation of one. Model parameters were estimated using a 

Bayesian analysis and uninformed priors for the community-level hyperparameters in the 

program OpenBUGS (Spiegelhalter et al. 2007) based on code modified from Zipkin et 

al. (2010). Significance of covariates were evaluated using the 95% credible interval (CI); 

CIs that did not overlap zero were considered significant. 

 I used three chains of length 16000 including a burn-in of 8500 and posterior 

chains were thinned by 35 to reduce autocorrelation. I evaluated convergence using the 

R-hat statistic (Gelman and Rubin 1992); convergence is reached when R-hat is near 1.  
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 Statistical Analysis. Species richness, including unobserved species, was 

calculated for each glade by summing the estimated species in the occurrence matrix 

(Zipkin et al. 2010). Because this modeling framework did not explicitly include 

relationships between site-level richness and covariates, effects of covariates on species 

richness were evaluated using a general linear model (GLM) using patch area, isolation, 

and shape as predictor variables. Year was included in each GLM to account for temporal 

variation in richness. Detection error-corrected species richness estimates derived from 

the model were used as the response variable.  

 IBT predicts that small islands have higher rates of extinction than larger islands; 

thus, small islands should also exhibit a higher rate of temporal turnover. To test this 

prediction, I first used the occupancy and detection probabilities estimated by the model 

to generate 22,500 occurrence matrices for each year. I calculated the Jaccard index to 

compare the two years using the R package betapart (Baselga and Orme 2012); a large 

value of the Jaccard index indicates greater similarity than a smaller value (Jaccard 

1901). I tested for associations between patch area and Jaccard values using Spearman’s 

correlation coefficient. I also used Spearman’s correlation coefficient to test for 

associations between Jaccard index values and patch isolation and shape. Confidence 

intervals were calculated using a general additive model (GAM).  

 To determine whether differences between years were due to species replacement 

or species gain/loss, I used the package betapart to determine the amount of turnover (i.e. 

replacement) and nestedness (i.e. gain or loss) between years. To test whether species 

nestedness was greater than expected by chance, I treated the contributions of the two 

variables as the outcome of a Bernoulli trial in which a success occurred when nestedness 
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was greater than turnover. The probability of success was set at 0.5. All analyses were 

carried out in R version 3.3.1 (R Core Team 2016) unless otherwise noted.   

  

Results 

I captured a total of 344 individuals representing eight species in the glade 

network (Table 1). The most frequently detected species was Neotoma floridana, which 

was detected on 11 glades in 2016 and 8 glades in 2017; the least frequently detected 

species was Tamias striatus which was detected on 3 glades in 2016. Overall, detections 

in 2017 were less than in 2016 across all mammal species.  

Glades ranged in size from approximately 3,500–92,000 m2. The PCA of the 

vegetation data yielded two principal components with an eigenvalue greater than 1, 

which together explained 70.8% of the variation in the vegetation data (Figure 5). PC1 

and PC2 were correlated with patch area and shape, respectively, so vegetation data were 

not included in the model.  

 The MSOM yielded an estimate of 8.67 species across the region. Year was the 

only significant occupancy covariate; all species had lower occupancy in year 2 (Figure 

6). There was strong evidence for a community-wide effect of area on occupancy 

(Estimate, 75% CI), although there were no significant species-specific effects of area. 

Peromyscus attwateri and P. leucopus demonstrated negative responses to patch shape 
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(i.e. occupancy probability was higher in glades with less edge), whereas Sigmodon 

hispidus demonstrated a positive response to shape (Figure 7).  

 

The general linear model was significant (F = 12.99; df = 4, 27; P < 0.001) and 

explained 60.7% of the variation in species richness. Coefficients for area (β = 1.898, t = 

2.469, df = 27, P = 0.020) and year (β = -2.277, t = -6.305, df = 27, P < 0.001) were 

significant (Figure 8), but coefficients for isolation and patch shape were not different 

from zero (β = -0.038, t = -0.244, df = 27, P = 0.876; β = 0.014, t = 0.028, df = 27, P = 

0.977, respectively). 

 

Figure 5. Results of the PCA for vegetation data. PC1 and PC2 explained a cumulative 

70.8% of the variation in the data. Each point represents a glade; colors denote years. 

PC1 was negatively correlated with area; PC2 was positively correlated with shape. 
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Table 1. Occupancy of mammal species at each site. Presences denoted by an “X”. 
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1

 

0   X X  X   3 3.54 

1 X  X X X X  X 6 6.16 

2 X  X X X X  X 6 6.15 

3 X   X  X  X 4 4.14 

4 X  X  X X X  5 5.39 

5   X X X X X  5 5.43 

6  X X X X X   5 5.28 

7 X  X X X    4 4.81 

8 X   X  X   3 3.51 

9 X     X   2 2.85 

10 X        1 1.96 

11   X  X    2 2.63 

12  X X X X    4 4.51 

13  X X X X    4 4.62 

14 X X X X X X X  7 7.33 

15 X  X X X X   5 5.33 

            

Y
ea

r 
2

 

0   X X X    3 3.50 

1    X  X   2 2.18 

2 X   X  X   3 2.79 

3 X   X     2 2.67 

4   X  X    2 2.41 

5   X  X    2 2.30 

6   X  X X   3 3.09 

7         0 1.28 

8      X   1 1.19 

9 X     X  X 3 3.03 

10 X        1 1.39 

11 X     X   2 2.12 

12         0 1.33 

13   X      1 1.38 

14  X  X  X   3 3.40 

15  X  X  X   3 3.14 
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Figure 7. Species-level responses to patch shape. Negative values for shape 

correspond to a low perimeter/area ratio (less edge), positive values a high ratio (more 

edge). Error bars represent the 95% credible interval; error bars which do not overlap 

zero (dashed line) are considered significant. Significant responses are denoted by an 

asterisk (*). Species abbreviations are as follows: NEFL N. floridana, PEAT P. 

attwateri, PELE P. leucopus, PEMA P. maniculatus, REFU R. fulvescens, SIHI S. 

hispidus, SYFL S. floridanus, TAST T. striatus. 

 

Figure 6. Species-level responses to year. Error bars represent the 95% credible 

interval; error bars which do not overlap zero (dashed line) are considered significant. 

Species abbreviations are as follows: NEFL N. floridana, PEAT P. attwateri, PELE P. 

leucopus, PEMA P. maniculatus, REFU Reithrodontomys fulvescens, SIHI Sigmodon 

hispidus, SYFL S. floridanus, TAST Tamias striatus. 

 

* * 

* 
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 The mean Jaccard similarity index for each site ranged from little turnover (J = 

0.096) to nearly complete turnover (J = 0.961). There were no significant associations 

between Jaccard values and patch area (ρ = 0.038, P = 0.891) or patch shape (ρ = -0.45, P 

= 0.082). There was a significant positive relationship between the Jaccard values and 

isolation (ρ = 0.532, P = 0.036, Figure 9). There was significantly greater nestedness than 

turnover than predicted by chance (P = 0.038). 

 

 

 

Figure 8. Site-level species richness plotted against log-transformed area. Species 

richness increased with patch area for both years (β = 1.898, t = 2.469, P = 0.020). 

Year 2 also had significantly lower richness than year 1 (β = -2.277, t = -6.305, P < 

0.001). 
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Discussion 

 Consistent with predictions of IBT, patch area had a significant effect on species 

richness and there was evidence for an effect on community-wide occupancy. However,  

area did not significantly influence the occupancy probability of individual species. 

Although this finding seems counterintuitive, it is consistent with the neutrality 

assumption of IBT. Neutrality in the context of IBT means that all species are assumed to 

be ecologically equivalent (Bell 2001, Hubbell 2001, MacArthur and Wilson 1967), and 

stochastic processes rather than environmental filters determine community structure 

(Cottenie 2005, Hubbell 2001, Leibold et al. 2004). The lack of significant signal for the 

Figure 9. Jaccard index values plotted as a function of isolation. Shading represents 

the 95% confidence interval as determined by a GAM. 
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species-specific area covariate suggests the patterns in species richness likely are the 

result of varying rates of stochastic extinction. 

 Isolation effects on occupancy and species richness were not significant, a 

common finding in studies of habitat islands (Brown 1971, Cook et al. 2002, Watling and 

Donnelly 2006). In the glade network, isolation effects were probably masked by 

colonization of generalists such as N. floridana and P. leucopus from the matrix. 

Additionally, nearest-neighbor isolation metrics such as the one used here frequently are 

inferior to other types of metrics due to oversimplification of the landscape, especially 

when the matrix is heterogeneous (Biswas and Wagner 2012, Kindlmann and Burel 2008, 

Moilanen and Nieminen 2002, Ricketts 2001). Isolation metrics which account for 

heterogeneity in the matrix, such as landscape friction (McRae et al. 2008),could provide 

a more accurate picture of isolation effects, but also require assumptions of metrics of 

conductance and resistance.  

 The lack of significant associations between patch area and turnover is not 

consistent with the predictions of IBT. The significant relationship between the Jaccard 

index and patch isolation indicates that more isolated glades were more similar, and 

therefore experienced less turnover, between years. Lower colonization rates on more 

isolated islands as predicted by IBT could explain this pattern. Additionally, differences 

between years were due more to species nestedness than turnover. Based on this result 

and the lower occupancy in 2017 derived from the model (Figure 7), differences between 

years were primarily due to species loss. 

 Patch shape, usually in the form of edge effects, also can influence species 

richness and turnover. Species richness can increase with increasing edge due to co-
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occurrence of focal habitat and matrix species (Bátary et al. 2014, Guirado et al. 2006, 

Ingham and Samways 1996, Magura 2002) or decrease due to behaviors such as edge 

avoidance by certain species (Besnard et al. 2016, Bieringer and Zulka 2003, Orrock and 

Danielson 2005). Additionally, increasing edge increases the probability that the patch 

will be encountered by a dispersing individual (Collinge and Palmer 2002) and reduces 

population persistence (Bevers and Flather 1999, Van Kirk and Lewis 1999), thereby 

increasing the amount of turnover in a habitat patch. However, individual species 

responses to patch shape often differ (Figure 7), and the inconsistency of shape effects in 

the literature reflects this variation (Ewers and Didham 2006). 

 It should be noted that there are many criticisms of previous attempts to study 

turnover. Artificially inflated turnover rates, termed pseudoturnover (Nilsson and Nilsson 

1983), are usually the result of sampling error. This error can be a result of poor study 

design, such as when sampling methods are inconsistent (Abbott 1983, Gilbert 1980, 

Nilsson and Nilsson 1982) or because of variation in detectability between species 

(Nilsson and Nilsson 1983). Using MSOMs to generate presence-absence matrices that 

have been corrected for detection error reduces the amount of pseudoturnover in the data, 

allowing for more accurate estimates of turnover. 

 Multi-species occupancy models can be a powerful tool for conservation. By 

assuming that occupancy and detection probabilities of each individual species are drawn 

from a common distribution, rare species for which data are sparse can be modeled with 

reasonable accuracy by deriving information from the entire community (Iknayan et al. 

2014, Zipkin et al. 2009, 2010). The ability to evaluate rare species in the context of the 

community, as well as the use of occupancy rather than abundance data, allows for more 
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efficient use of data than single-species models and can reduce the time and cost 

necessary for effective biological monitoring (Manley et al. 2005, Rich et al. 2017, 

Zipkin et al. 2009).  

 The hierarchical framework used in MSOMs is highly flexible and can be readily 

applied to a variety of situations (Dorazio and Royle 2005). MSOMs have been extended 

to quantifying range shifts in response to climate change (Tingley et al. 2012), accounting 

for open communities by allowing for periods of immigration and emigration (Kéry et al. 

2009), predicting species occurrences at unsampled sites (Zipkin et al. 2012), evaluating 

the effects of land use changes on occupancy (Goijman et al. 2015), and integrating 

occupancy data from multiple spatial scales (Rich et al. 2017). The efficiency and 

adaptability of MSOMs provides a solid framework for investigating patterns in species 

occupancy and informing management decisions.  

 A natural extension of MSOMs is the construction of multi-species abundance 

models, or MSAMs (Iknayan et al. 2014). This modeling framework, which is a multi-

species version of the N-mixture model (Royle 2004), estimates (1) the abundance of a 

species in each site and across the entire metacommunity, and (2) the probability of 

detecting an individual of that species (Dénes et al. 2015, Guillera-Arroita 2017, Iknayan 

et al. 2014). The use of MSAMs to reduce detection error in abundance data allows for 

more accurate tests of abundance-based frameworks such as Hubbell’s neutral theory of 

biodiversity and biogeography (here “neutral theory”, Hubbell 2001) and the 

metacommunity concept (Leibold et al. 2004). Neutral theory, which arose from IBT, 

predicts that patterns of species abundance in a series of habitat patches arise as a result 

of stochastic colonization and extinction (Bell 2001, Hubbell 2001). Like IBT, neutral 
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theory assumes ecological equivalence among members of the network of habitat 

patches, but unlike IBT neutral theory assumes equivalence among individuals rather 

than species (Hubbell 2001). The metacommunity concept goes a step further, integrating 

dispersal-based processes such as neutral theory and niche-based processes such as 

environmental filtering to describe patterns of community structure in a landscape 

(Cottenie 2005, Holyoak et al. 2005, Leibold et al. 2004). The flexibility of hierarchical 

models such as MSOMs and MSAMs allows them to be readily incorporated into 

frameworks such as the metacommunity concept, leading to novel methods for 

disentangling the processes responsible for patterns of community structure.  
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APPLYING ISLAND BIOGEOGRAPHY THEORY TO ECTOPARASITE 

ASSEMBLAGES ON MAMMALIAN HOSTS 

 

Introduction 

Determining the mechanisms underlying parasite community structure is of great 

importance in parasitology. Poulin (2004) proposed two main theoretical frameworks to 

describe the ecological mechanisms underlying parasite diversity: island biogeography 

theory (IBT) and epidemiological models. Traditional IBT, upon which the first 

framework is based, predicts that species richness on an island or habitat patch increases 

with increasing area and decreases with increasing isolation (MacArthur and Wilson 

1963, 1967). In host-parasite systems, host population density is frequently substituted 

for isolation because larger host populations are expected to have greater contact rates 

between individuals, increasing colonization opportunities (Dearing et al. 2015, Kuris et 

al. 1980, Stanko et al. 2002). On macroecological scales, host analogues for area include 

body size, lifespan, and geographic range, which may affect ectoparasite extinction rates 

(Bossard 2014, Guégan et al. 2005, Kuris et al. 1980, Lindenfors et al. 2007, Morand and 

Poulin 1998). This concept can be extended to include frameworks such as Hubbell’s 

neutral theory (Hubbell 2001) or the metacommunity concept (Leibold et al. 2004), 

which still treat hosts as habitat islands but use parasite abundance rather than richness 

data. I will refer to the use of community-based frameworks to describe parasite diversity 

as the community assembly perspective. 

Poulin’s second framework, epidemiological modeling, uses transmission 

functions to relate host traits to parasite diversity (Anderson and May 1985, Dobson 
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1989, Poulin and Morand 2000). Transmission functions describe the manner and rate at 

which parasitic infections spread through the host population (Begon et al. 2002). The 

transmission rate for density-dependent transmission functions, for example, increases 

with host population density (Kermack and McKendrick 1927). By contrast, transmission 

rates for frequency-dependent functions are independent of population density and are 

instead affected by contact rates between infected and susceptible individuals (de Jong 

1995, McCallum et al. 2001). The effects of specific host traits on parasite diversity will 

vary according to the transmission function used, but in general hosts with traits that 

facilitate parasite transmission should harbor a higher diversity of parasites than hosts 

with traits that inhibit transmission (Poulin 2004, 2014).  

There is considerable overlap in the predictions derived from community 

assembly and epidemiological models (Poulin 2004). Community assembly models and 

density-dependent epidemiological models predict that increasing host population 

density, for example, will lead to higher parasite diversity due to increased colonization 

rates (Arneberg et al. 1998; Arneberg 2002; Poulin 2004, 2014). Despite the similarities 

between the two frameworks, their applicability to specific host-parasite systems varies. 

Community assembly models such as IBT, which frequently use host density as a proxy 

for isolation, implicitly assume transmission is density-dependent; an assumption that 

may be violated in some host-parasite assemblages. However, the transmission function 

of epidemiological models also is chosen based on biological assumptions of the system 

at hand (Wonham et al. 2006). Transmission functions which do not accurately model the 

host-parasite system can lead to erroneous estimates of parasite transmission rates 

(McCallum et al. 2001, Wonham et al. 2006). Epidemiological models also tend to focus 
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on one host/one parasite dynamics (Anderson and May 1991, Johnson et al. 2015; but see 

Holt et al. 2003) and do not explicitly link transmission rates to parasite community 

structure.  

 The Ozark glades, open and rocky habitats embedded within the surrounding 

forest (Heikens 2007, Kucera and Martin 1957, Nelson 2010, Nelson and Ladd 1983), 

contain a diverse array of small mammal species including habitat generalists such as the 

Eastern wood rat (Neotoma floridana) as well as open-canopy specialists such as the 

Texas mouse (Peromyscus attwateri). These species support a suite of ectoparasites, 

including fleas (Siphonaptera), ticks (Ixodida), and lice (Phthiraptera). If ectoparasite 

transmission is density-dependent, then mammalian hosts can be conceptualized as 

habitat islands for their ectoparasites, and community assembly models such as IBT can 

be applied. 

 Using small mammals and ectoparasites of the Ozark glades as a model system, I 

1) evaluated the effects of host density on ectoparasite richness, evenness, and diversity 

per host population, and 2) determined whether host density per se or host community 

composition drives ectoparasite community structure. Based on IBT and the hosts-as-

islands extension, I predict that increases in host population density will correspond to 

increases in ectoparasite richness and diversity due to higher rates of ectoparasite 

transmission. Additionally, because many ectoparasites specialize on one or a few hosts 

(Dick 2007, Giorgi et al. 2004, Guerra et al. 2016, Krasnov et al. 2004a, Marshall 1976, 

Poulin 2011), mammalian community structure will be a significant predictor of 

ectoparasite community structure. 
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Methods 

 Data collection. I sampled small mammals from a network of sixteen glades in 

southwest Missouri, spanning an east-west distance of approximately 125 kilometers 

within the Ozark Highlands ecological section (Nigh and Schroeder 2002). Glades are 

located within four state or federal management units: Roaring River State Park, Mark 

Twain National Forest Ava-Cassville District, Drury-Mincy Conservation Area, and 

Caney Mountain Conservation Area. Glades were selected based on size and distribution 

among management units. All glades were sampled in May–July 2016 and 2017. 

 I used a combination of Sherman live-traps, 7.62×8.89×22.86 cm and 

10.16×11.43×38.10 cm, baited with sunflower seeds and/or a peanut-butter oat mixture, 

to capture small mammals. To standardize sampling effort, each glade was sampled using 

a ~250 m linear transect, with trap stations set ~10 m apart. At each station, two traps 

were placed to maximize capture efficiency (e.g. along runways). I used GPS receivers to 

record positions at the beginning, midpoint, and end of each transect. I opened traps each 

evening and checked them the following morning; each transect was sampled for a period 

of 4 consecutive trap days.  

 Upon checking traps, captured mammals were transferred to a cloth bag and 

handled according to American Society of Mammalogists guidelines (Sikes 2016). 

Individuals were identified to species, sexed, weighed, and standard external 

measurements (ear length, tail length, and right hind foot length) were collected. To 

collect ectoparasites, each individual’s fur was thoroughly brushed using a denture brush 

while the animal was held over a plastic 5-gallon bucket. Parasites were collected from 

the mammal, bucket, and handling bag, and stored in 95% ethanol. Each individual was 
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marked by snipping off a patch of fur near the rump or by attaching a unique ear tag. 

Mammals were released from the trap station immediately after processing.  

 Fleas were identified to species using Benton (1983); the genus Orchopeas was 

identified to species using Lewis (2000). Ticks were identified to species using Keirans 

and Litwak (1989) and Goddard and Layton (2006). All other ectoparasites were 

identified to order using Krantz and Walter (2009) and then morphotyped. All collected 

ectoparasites were deposited at Missouri State University. Prior approval for this project 

was obtained from the Missouri State University IACUC (IACUC ID #16-020.0). 

Statistical Analysis. Because ectoparasites were not detected on all mammalian 

host species, only host species for which ectoparasites were collected were used in 

analyses. I fit an N-mixture model (Royle 2004) using the R package unmarked (Fiske 

and Chandler 2011) to estimate the abundance of each host species per transect per year. 

The latent abundance distribution was set as a negative binomial random variable and the 

upper index of integration was set at 50. Because each transect was standardized for 

sampling area, estimating abundance per transect allows abundance estimates to be used 

as a stand-in for host population density. To test this assumption, I constructed a linear 

model with glade area as the predictor and host abundance as the response. A significant, 

positive relationship between area and host abundance would indicate that large 

abundance estimates are an artifact of large glade size rather than large densities within a 

sampling area. 

The mode of transmission of ectoparasites can be determined by evaluating the 

relationship between host and ectoparasite abundance (Figure 11). To test the assumption  
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that ectoparasite exhibit positive density-dependence, I first log-transformed the total 

ectoparasite abundance for each host population and the host abundance estimates 

derived from the N-mixture model. I then constructed a linear model with log-

transformed host abundance as the predictor and log-transformed ectoparasite abundance 

as the response. If a significant linear relationship is present, a slope less than 1 would 

indicate negative density-dependence, a slope greater than 1 would indicate positive 

density-dependence, and a slope of 1 would indicate frequency-dependence (Figure 12).  

 

 

Figure 10. Predicted relationships between host abundance and ectoparasite abundance 

at the scale of the host population. Negative density-dependence occurs when the rate 

of ectoparasite accumulation decreases at high host abundances (solid line). In 

frequency-dependent systems, the rate of ectoparasite accumulation is unaffected by 

host abundance (dashed line). In positive density-dependent systems, the rate of 

ectoparasite accumulation increases with increasing host abundance (dotted line). 
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To evaluate the effects of host abundance on ectoparasite species richness, I 

constructed a general linear model (GLM) with ectoparasite richness as the response 

variable and host abundance and host species as predictor variables. An interaction term 

between host abundance and host species was also included. Host species with low 

abundance were excluded from the analysis. 

To evaluate the effects of host abundance on ectoparasite diversity and evenness, 

I quantified ectoparasite diversity with the Shannon diversity index (Shannon 1948) using 

the R package vegan (Dixon 2003). I constructed a linear model with host abundance as 

the predictor and the Shannon index as the response. I then quantified ectoparasite 

evenness using Pielou’s evenness metric (Pielou 1975) and included it as the response 

variable in a linear model with host abundance as the predictor.   

Figure 11. Positive density-dependence (dotted line), frequency-dependence (dashed 

line), and negative density-dependence (solid line) plotted in log-log space.  
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To test for associations between host communities and ectoparasite communities, 

I first characterized site-level differences between small mammal communities using the 

Bray-Curtis distance index (Bray and Curtis 1957); I repeated the procedure for 

ectoparasite communities. I used multiple matrix regression with randomization (MMRR, 

Wang 2013) to test for associations between mammal and ectoparasite communities. 

Significant, positive coefficients would indicate that host communities that differ have 

ectoparasite communities that differ. Significant, negative coefficients would indicate 

that different host communities have similar parasite communities, whereas non-

significant coefficients would suggest independence. Euclidian pairwise distances 

between glades were included in the MMRR to control for effects of geographic isolation 

by distance. Bray-Curtis and Euclidean distance metrics were scaled to have a mean of 

zero. All analyses were performed in R version 3.3.1 (R Core Team 2016).   

 

Results 

I collected 268 ectoparasites representing seven orders on six host species (Figure 

13). Host species varied in abundance, with Sigmodon hispidus having the highest 

abundances and Reithrodontomys fulvescens the lowest (Table 2). Reithrodontomys 

fulvescens was removed from subsequent analysis due to low abundances and few 

ectoparasite samples. The N-mixture model yielded site-level abundance estimates 

between 0 and 42 individuals across all hosts with considerable variability within hosts. 

Abundances generally were greater in 2016 (Table 3) than in 2017 (Table 4). 

The most abundant ectoparasite orders were Trombidiformes with 97 individuals 

and Siphonaptera with 87 individuals (Table 5, Figure 13). The most species-rich orders 
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were Siphonaptera with five species and Mesostigmata with four species. All other orders 

were represented by two or fewer species.  

 

Table 2. Raw abundance counts of small mammal host species by site. 

Site 
Neotoma 

floridana 

Peromyscus 

attwateri 

P. 

leucopus 

P. 

maniculatus 

Reithrodontomys 

fulvescens 

Sigmodon 

hispidus 

0 3 0 6 1 0 33 

1 2 1 2 1 0 20 

2 2 11 8 1 0 13 

3 1 8 0 0 0 11 

4 1 1 8 6 0 0 

5 3 0 9 6 0 1 

6 3 0 3 6 1 6 

7 0 2 3 1 0 9 

8 2 2 0 0 0 1 

9 3 17 0 0 0 0 

10 0 8 0 0 0 0 

11 2 1 6 1 0 0 

12 0 0 3 1 1 4 

13 0 0 14 6 3 1 

14 3 5 14 3 7 7 

15 4 6 2 4 1 14 

 

 

The linear model yielded no significant relationship between area and host 

abundance (F = 1.184; df = 1, 158; β < 0.001; P = 0.278), therefore the assumption that 

host abundance can be used as a proxy for density was not violated. Additionally, there 

was no significant relationship between host and ectoparasite abundance (F = 3.602; df = 

1, 29; β = 0.328; P = 0.068; Figure 14), which does not violate the assumption that 

ectoparasite transmission is density-dependent.   
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Table 3. Results of the N-mixture model for 2016. The parameter α is a measure of 

dispersion; lower values of α indicate higher variance. 

Site N. floridana P. attwateri P. leucopus P. maniculatus S. hispidus Total 

1 5.97 0.38 3.05 0.06 41.67 51.13 

2 3.57 2.86 3.62 1.09 33.90 45.04 

3 2.17 19.52 11.15 1.09 5.95 39.88 

4 2.17 8.97 0.32 0.06 11.94 23.46 

5 2.85 3.87 9.51 5.96 0.31 22.5 

6 5.97 0.38 10.04 3.53 1.91 21.83 

7 2.85 0.38 2.30 1.34 10.52 17.39 

8 0.90 6.49 8.57 1.34 13.90 31.2 

9 2.17 6.03 0.32 0.06 1.91 10.49 

10 2.85 13.90 0.32 0.06 0.31 17.44 

11 0.90 12.49 0.32 0.06 0.31 14.08 

12 0.90 0.38 15.10 1.34 0.31 18.03 

13 0.90 0.38 7.76 1.58 6.17 16.79 

14 0.90 0.38 23.68 3.58 2.68 31.22 

15 2.17 14.67 20.62 3.93 1.91 43.3 

16 4.70 15.86 17.97 3.74 2.68 44.95 

Total 41.94 106.94 134.65 28.82 136.38 448.73 

α 1.22 -0.54 -0.22 0.54 -0.66  

 

Table 4. Results of the N-mixture model for 2017. The parameter α is a measure of 

dispersion; lower values of α indicate higher variance. 

Site N. floridana P. attwateri P. leucopus P. maniculatus S. hispidus Total 

1 1.77 0.15 3.41 1.02 13.90 20.26 

2 2.77 0.15 0.00 0.01 8.26 11.19 

3 2.77 4.91 0.00 0.01 16.44 24.13 

4 1.77 15.78 0.00 0.01 3.43 20.98 

5 1.77 0.15 2.10 1.04 0.08 5.14 

6 1.77 0.15 4.38 1.01 0.08 7.39 

7 2.77 0.15 2.26 2.20 0.08 7.46 

8 1.77 0.15 0.00 0.01 0.08 2.01 

9 2.77 0.15 0.00 0.01 0.08 3.01 

10 2.77 29.64 0.00 0.01 0.08 32.50 

11 1.77 25.18 0.00 0.01 0.08 27.04 

12 4.00 3.44 0.00 0.01 0.08 7.53 

13 1.77 0.15 0.00 0.01 0.08 2.01 

14 1.77 0.15 1.01 0.01 0.08 3.02 

15 3.41 0.15 0.00 0.01 6.19 9.76 

16 2.77 0.15 0.00 0.01 20.40 23.33 

Total 38.18 80.60 13.19 5.35 69.43 206.74 

α 6.64 -1.99 -1.16 0.26 -1.69  



 

40 

Table 5. Abundances of ectoparasite species per host species per site. 
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S
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0 2 0 0 0 0 0 6 1 0 0 0 0 0 2 6 0 28 

1 0 1 0 0 0 0 5 4 0 0 1 0 0 6 5 0 11 

2 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 15 

3 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 

6 1 0 0 0 0 0 9 0 1 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

14 0 1 0 0 0 0 0 0 0 0 0 0 0 0 2 1 7 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 35 

Total 3 2 0 0 0 0 28 5 1 0 1 0 1 10 16 1 97 

                   

N
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o
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d
a
n
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0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 

1 0 0 0 1 0 0 0 0 0 0 0 6 0 0 0 0 0 

2 0 0 0 1 0 0 0 0 0 0 0 22 0 0 0 0 0 

3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

8 0 0 0 1 0 0 1 0 0 0 0 3 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 0 1 7 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 

Total 0 0 0 3 0 0 1 0 0 0 1 59 0 0 0 0 0 
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Table 5 Continued. Abundances of ectoparasite species per host species per site. 
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4 3 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 1 0 0 0 0 0 2 0 0 0 0 

12 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 

13 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

15 0 0 0 0 0 0 2 0 0 0 0 0 1 0 0 0 0 

Total 6 0 0 0 3 0 4 0 0 0 0 0 11 0 0 0 0 
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4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Total 0 0 0 0 0 0 0 1 0 0 0 0 3 0 0 0 0 
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Table 5 Continued. Abundances of ectoparasite species per host species per site. 
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7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Total 1 0 0 0 0 1 0 0 1 1 0 0 8 0 0 0 0 
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14 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Total 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
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Figure 13. Log ectoparasite abundance plotted as a function of log host abundance. 

Each variable was log-transformed prior to analysis. The lack of significant 

relationships between the two variables does not conclusively demonstrate frequency-

dependent or density-dependent transmission. 

Figure 12. Species-by-site plot of ectoparasite species on host species. Shaded boxes 

indicate that a parasite species was found on a particular host. Colors denote 

ectoparasite orders. Host abbreviations are as follows: REFU R. fulvescens, PEMA P. 

maniculatus, PEAT P. attwateri, PELE P. leucopus, SIHI Sigmodon hispidus, NEFL 

Neotoma floridana. 
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The GLM for host abundance and ectoparasite richness was significant (F = 

33.04; df = 10, 149; P < 0.001; Figure 15) and explained 67% of the variation in the data. 

The coefficient for host population size was significant (df = 129, β = 0.265, t = 3.542, P 

< 0.001). Peromyscus attwateri and Peromyscus leucopus were significantly different 

than the other species (Table 4). There were no significant differences between years (df 

= 129, β = 0.061, t = 0.670, P = 0.504).  

 

 

 

 

Figure 14. Ectoparasite species richness plotted as a function of host abundance. Richness 

was significantly positively correlated with host abundance (β = 0.265, t = 3.542, P < 

0.001). Colors denote host species. Host abbreviations are as follows: REFU R. 

fulvescens, PEMA P. maniculatus, PEAT P. attwateri, PELE P. leucopus, SIHI 

Sigmodon hispidus, NEFL Neotoma floridana. 
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Table 6. Coefficients derived from the linear model. Species that are significantly 

different than N. floridana are shown in bold. 

Host Species  Coefficient t Value P-Value 

Abundance *N. floridana 0.265 3.542 < 0.001 

Abundance*S. hispidus 0.136 -1.713 0.089 

Abundance*P. maniculatus 0.149 -1.181 0.239 

Abundance*P. leucopus 0.082 -2.404 0.017 

Abundance*P. attwateri 0.051 -2.826 0.005 

 

 

Figure 15. Shannon diversity index values of ectoparasites plotted as a function of 

host abundance pooled across host species.  
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A significant, positive relationship was present between host abundance and 

ectoparasite diversity as measured by the Shannon diversity index (F = 36.73; df = 1, 30; 

β = 0.027; P < 0.001; R2 = 0.535; Figure 16). There was no significant relationship 

between ectoparasite evenness and host abundance (F = 0.63; df = 1, 22; β = -0.069; P = 

0.690). 

For each year of data, the MMRR results were significant (2016: F = 7.299, P = 

0.005, R2 = 0.111; 2017: F = 22.18, P = 0.001, R2 = 0.286; Figure 16). Models for both 

years yielded significant, positive relationships between host and ectoparasite Bray-Curtis 

distances (β = 0.308, t = 3.76, P = 0.002; β = 0.430, t = 5.874, P = 0.001, respectively; 

Figure 16. Ectoparasite Bray-Curtis distance plotted as a function of host Bray-

Curtis distance. Significant, positive correlations were present for host and parasite 

Bray-Curtis distances in both years (β = 0.308, t = 3.76, P = 0.002; β = 0.430, t = 

5.874, P = 0.001, respectively). Distance metrics were scaled to have mean 0. Colors 

denote years. 
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Figure 16). Euclidean geographic distances did not have significant results in either year 

(2016: β = -0.095, t = -1.291, P = 0.255; 2017: β = 0.027, t = 0.445, P = 0.668).  

 

 

Discussion 

Consistent with the predictions of IBT, ectoparasite species richness increased 

with host abundance. Ectoparasite diversity also demonstrated a significant, positive 

relationship with host abundance. Because richness, but not evenness, increased with host 

population sizes, the positive relationship between parasite diversity and host abundance 

was likely due to an increased number of rare species in larger host populations.  

The significant, positive relationships between host and ectoparasite Bray-Curtis 

distances suggest that strong associations are present between the host and ectoparasite 

communities. Specifically, when host communities at two sites differ, the ectoparasite 

communities at those sites are likely to differ. This result suggests that ectoparasites are 

responding to host community composition, rather than host abundance per se.  

Many tests of IBT in host-parasite systems have failed to detect significant effects 

of “area” metrics such as host body size (Bossard 2014, Krasnov et al. 2004b, Morand 

and Poulin 1998, Nunn et al. 2003, Poulin and Rohde 1997, Stanko et al. 2002), or host 

population density (Bossard 2006, 2014). The general inconsistency in results could be 

due to methodological problems such as variation in sampling effort (Gregory 1990, 

Guégan and Kennedy 1996, Walther et al. 1995) or as a result of different processes 

operating at different spatial scales (Kamiya et al. 2014, Poulin 2014) or hierarchical 

levels of study (Kamiya et al. 2014, Kuris et al. 1980, Poulin 2014). However, 
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inconsistencies in tests of the hosts-as-islands concept may be due to the use of metrics 

that are inappropriate substitutes for area and isolation. Many flea species, for example, 

spend a portion of their life cycle in the host burrow or nest (Vatschenok 1988), and thus 

nest density may be a better measure of isolation than host density (Krasnov et al. 2002). 

Additionally, host density is not an adequate proxy for isolation in frequency-dependent 

systems in which density does not affect transmission rate (de Jong et al. 1995, 

McCallum et al. 2001). Although there are some host characteristics, such as host body 

size and population density, which seem to be universal predictors of ectoparasite 

richness (Kamiya et al. 2014), the choice of substitutes for area and isolation must be 

tailored to the system at hand. 

Community dynamics of hosts and ectoparasites are often complex. Factors 

contributing to ectoparasite community structure, such as individual host traits (Dallas 

and Presley 2014, Perkins et al. 2003, Streicker et al. 2013, Stutz et al. 2014), host 

environment (Ekholm et al. 2017, Krasnov et al. 1997, Krasnov et al. 2004b, Maher & 

Timm 2014, Poulin and Rohde 1997), interactions between parasites (Krasnov et al. 

2010, Heeb et al. 2000, Sebastián Tello et al. 2008, Tripet et al. 2002), and interactions 

between host and parasite (Heeb et al. 2000, Poisot et al. 2017, Vázquez et al. 2005), 

often show considerable variability across spatial and hierarchical scales (Kamiya et al. 

2014, Poisot et al. 2017, Stutz et al. 2014). IBT is a relatively simple framework, and 

though it can successfully predict drivers of ectoparasite richness and diversity in some 

systems (Kamiya et al. 2014, Lindenfors et al. 2007), community assembly models such 

as the metacommunity concept or network theory may be more suitable for describing 
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variation in host and ectoparasite communities across organizational and spatial scales 

(Diuk-Wasser et al. 2016, Johnson et al. 2015). 

Due to the recent increase in emerging zoonotic diseases (Jones et al. 2008, 

Lloyd-Smith et al. 2009), a call has been made for the integration of community assembly 

and epidemiological models (Johnson et al. 2015). Such an approach would allow for 

multilevel evaluation of disease dynamics, from the level of the individual host to the 

entire host/pathogen assemblage. Merging community assembly models such as IBT and 

epidemiological theory will not only provide new insights into the ecological processes 

driving parasite diversity, but may also lead to more efficient methods for managing 

zoonotic disease (Diuk-Wasser et al. 2016, Johnson et al. 2015, Lloyd-Smith et al. 2009, 

Webster et al. 2016). 
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SUMMARY 

 

 My results demonstrate the variability in responses of species richness to patch 

area and isolation among different levels of community organization. Results of the first 

chapter suggest that patterns of species richness in small mammals of the Ozark glades do 

align with the predictions of IBT, though it is likely that the lack of matrix homogeny and 

resistance to movement masked isolation effects. Ectoparasite communities on the small 

mammal “islands” showed the opposite trend: host size did not have consistent effects on 

ectoparasite richness, but an “isolation” effect was detected in the form of a positive 

relationship between host population size and richness. My results suggest that small 

mammal and ectoparasite communities are structured by mechanisms more complex than 

those accounted for in traditional IBT. Differences in small mammal and ectoparasite 

responses to patch area and isolation suggest that different assemblages can be structured 

by different mechanisms, even when occupying the same geographic space.  

 The simplicity of IBT is one of the features that allows the theory to be applicable 

to a broad spectrum of real and conceptual islands. However, the generality of IBT has 

often been called into question (Gilbert 1980, Lomolino 2000, Santos et al. 2016). A 

subject of frequent debate is the applicability of IBT to habitat islands. Species-area 

relationships of oceanic islands tend to have shallower slopes than those of habitat islands 

(Matthews et al. 2016), and the presence of a heterogeneous, permeable matrix can mask 

or confound isolation effects (Prevedello and Vieira 2010, Ricketts 2001). Additionally, 

many communities are structured by mechanisms other than the neutral processes of 

colonization and extinction assumed by IBT. In non-neutral systems, more complex 
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models such as the metacommunity concept (Cottenie 2005, Leibold et al. 2004) and 

epidemiology theory (Anderson and May 1985, Dobson 1989, Poulin 2004) may be more 

appropriate for determining mechanisms of community assembly.    

 Despite these criticisms, IBT is still relevant to many areas of ecology and 

evolution. IBT and the related unified neutral theory of biodiversity and biogeography 

still influence research in community assembly (Burns et al. 2016, Lowe and McPeek 

2014, Tucker et al. 2016). New theories such as the General Dynamic Model extend 

classical IBT to geological and evolutionary time scales (Borregaard et al. 2016, 2017; 

Whittaker et al. 2008). Islands also act as natural laboratories for conservation issues such 

as climate change and invasive species due to their clear boundaries, and because the 

relative dates of human arrival are usually known (Sax et al. 2002, Sax and Gaines 2008). 

Research on islands and island systems is still active, and will continue providing insights 

into biological processes in the years to come.  
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