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ABSTRACT 
 
Little is known about the first year of life for many of the world’s freshwater turtles. This 
is due in part to their cryptic nature and the difficulty of locating hatchlings in the wild. 
The lack of information about this demographically important age group has led 
researchers to draw conclusions from indirect inferences about survival rates and 
ecological roles of hatchlings that may or may not be accurate. To begin filling in some 
of these gaps, I focused on the first year in an alligator snapping turtle’s life. I studied: (1) 
circadian and circannual patterns of activity, (2) growth rates and how they are related to 
activity rates, (3) habitat preferences, (4) fall movement patterns, and (5) predation 
patterns. My study site was within the species’ natural range in southeastern Oklahoma. 
Unlike adults, hatchlings followed a predominantly diurnal activity pattern for much of 
the year, with peak activity occurring during the mid-hours of the day. The diurnal habit 
of hatchlings may be a strategy to temporally partition themselves from nocturnal 
predators. There were no significant relationships between growth rates and activity rates 
during any period, potentially due to small sample size. Hatchlings were located in areas 
of increased cover and shallower water depths, when compared to random locations. 
Their movement patterns were characterized by an initial movement away from the site 
of release to a location with suitable habitat characteristics, and they tended to stay at 
these locations for extended periods. I documented depredation by fish, but not by 
terrestrial predators such as raccoons.   
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OVERVIEW 

 

Due to limited information regarding the first years in the life of a turtle, they are 

often termed the “lost years” or “missing links” in a species’ life history (Carr, 1987; 

Morafka, 1994). While the stability of a population is dependent upon survival at all age 

classes (Congdon et al., 1993; Congdon et al., 1994; Heppell et al., 1996), insufficient 

information on the most vulnerable years can lead to inferences that end in poor 

management decisions (Pullin and Knight, 2003). For hatchling freshwater turtles, the 

deficit in knowledge largely stems from difficulty in locating and monitoring small turtles 

in their natural habitats (Wilbur, 1975; Congdon et al., 1994).  

Activity patterns of freshwater hatchling turtles have not been well described in 

the literature. Most studies of hatchling turtles’ activity patterns tend to be associated 

with nest emergence behavior and experiments focused on survival during the overland 

trek from a nest to an aquatic habitat (Burger, 1976; Janzen, 1993; Janzen et al., 2000a,b; 

Tuttle and Carrol, 2005; Tucker et al., 2008). Therefore, I set out to study several aspects 

of the ecology of hatchling alligator snapping turtles (Macrochelys temminckii) to fill in 

missing gaps in the literature.  

Chapter 1 focuses on circadian and circannual activity patterns of hatchling M. 

temminckii in a semi-natural environment. These patterns were assessed using the signal 

change method (Tucker et al., 2014) that allowed differentiation between bouts of activity 

and inactivity, but does not lend itself to ascribing higher resolution characterization of 

behaviors that contribute to overall activity. Effect of temperature on activity was also 

addressed to better characterize seasonal changes. Furthermore, Chapter 1 investigates 
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the relationship between levels of activity for specific hatchlings with growth rates, with 

the assumption that high activity rates likely stem from more active foraging.  

Chapter 2 focuses on movement patterns of hatchling M. temminckii in a natural 

system after release. In this chapter, habitat characteristics were quantified and 

associations are made between what is considered preferable habitat. Chapter 2 describes 

instances of depredation and makes inferences about the lack of depredation by raccoons 

(Procyon lotor), a known common predator of hatchling turtles.  

This study has been approved through the Missouri State University Institutional 

Animal Care and Use Committee (Approved: 9/29/15; IACUC ID 16-005.0).  
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ACTIVITY PATTERNS AND GROWTH RATES OF HATCHLING 

ALLIGATOR SNAPPING TURTLES (MACROCHELYS TEMMINCKII) 

 

Abstract 

Descriptions of circadian and circannual activity patterns for a species provide 

insight into ecologically important behaviors. However, daily activity of a species can be 

difficult to assess and therefore a generalization about annual activity often serves the 

purpose of describing both circadian and circannual activity. While circannual patterns 

allow inferences on reproductive cycles, they do not provide information for sexually 

immature age classes. Freshwater hatchling turtles are an understudied age class due in 

part to the difficulty in monitoring small, cryptic, aquatic species. However, 

understanding their circadian and circannual activity patterns may lead to greater success 

in head-start programs, which are being utilized more frequently as populations decline. 

Alligator snapping turtle (Macrochelys temminckii) are one such species that is part of a 

captive breeding and head-starting program. In this study the daily and seasonal activity 

pattern of hatchling M. temminckii were categorized by using an automated receiver that 

allowed continuous monitoring of activity.  A temperature profile of the environment was 

recorded by data loggers to assess the role temperature plays in the activity of a 

freshwater ectotherm throughout the year; while growth measurements were collected to 

test for relationships with activity. Activity patterns were significantly diurnal during 

months of increased water temperature, however they remained diurnal even during the 

coldest months of the year when activity was minimal. There was no significant 

relationship between growth rates and activity rates during any period. 
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Introduction 

As with most animals, turtles typically exhibit predictable circadian and 

circannual activity patterns. Such patterns vary among taxa, but are often influenced by 

environmental variables such as temperature, humidity, day length, rainfall (and 

availability of standing water), and the activity patterns of concomitant predators and 

prey (Lovich, 1988; Lindeman, 1996; Nieuwolt, 1996; Cooley et al., 2003; Ernst and 

Lovich, 2009). The seasonal activity patterns of many turtle species are well described, 

likely because these annual patterns correspond with other traits of biological importance 

such as foraging, mating, and nesting seasons (Pluto and Bellis, 1988; Brown and Brooks 

1993; Thomas et al., 1999). Daily activity patterns, on the other hand, are often less 

carefully described, and species’ patterns are sometimes painted with a broad brush and 

with little explicit supporting evidence (Ernst and Lovich, 2009). With few exceptions, 

species are typically assigned to one of three categories—diurnal, crepuscular, or 

nocturnal—with little recognition of how activity patterns may vary temporally or among 

different demographic groups.   

Circadian activity patterns of a species can vary demographically, and, in fact, 

differences in the behavior of females and males are often specifically compared to gain 

insights into mating strategies and reproductive patterns (Brown and Brooks, 1993; 

Thomas et al., 1999; Grayson and Dorcas, 2004). Age-specific variation in activity is less 

frequently addressed (Standing et al., 1997; Tuttle and Carroll, 2005). In general, 

hatchling turtles are more cryptic and difficult to monitor than their adult and sub-adult 

counterparts, and therefore activity patterns in this group are rarely studied.  However, 

there are exceptions, and several studies of terrestrial turtles and tortoises have focused 
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on behavior of hatchlings and young juveniles during the first year post-hatching (Berry 

and Turner, 1986; Keller et al., 1997; Epperson and Heise, 2003; Pike, 2006; Sievers, 

2015). Fewer studies have reported activity patterns of hatchling freshwater turtles, a 

deficit that likely stems from the logistical challenges involved in monitoring small 

aquatic animals. However, among species for which data are available, ontogenetic shifts 

in activity are frequently evident (Ernst et al., 1989a; Tucker et al., 1995; Thomas, 2002). 

Such differences are not surprising—hatchling turtles differ in many important ways 

from adult conspecifics. For example, adult turtles may exhibit activity when engaged in 

foraging, thermoregulation, predator avoidance, and behaviors associated with 

reproduction such as mate searching and nesting (Gibbons, 1990). In contrast, foraging, 

thermoregulation, and predator avoidance are relevant for hatchlings, but activities 

related to reproduction are not. Furthermore, the specific nutritional resources and 

predators with which hatchlings are concerned often differ from those of adults (Clark 

and Gibbons, 1969; Janzen et al., 2000a), thereby necessitating different activity patterns. 

In this study, I quantified daily and seasonal activity patterns of hatchling alligator 

snapping turtles (Macrochelys temminckii). I predicted that overall activity levels would 

vary seasonally, and that they would vary predictably with water temperature. 

Additionally, I hypothesized that because M. temminckii seldom bask (Carr et al., 2011) 

most activity during this life stage would be dedicated to foraging, and therefore that 

individuals that exhibited more activity would also exhibit faster growth rates. 
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Materials and Methods 

Location. I conducted my investigations from 2015–2016 in an outdoor pond 

(dimensions: 25 × 12 m) at Tishomingo National Fish Hatchery (Appendix A). A chain-

link fence with aluminum flashing positioned around the bottom and two electrified 

wires—one on top and one along the bottom—surrounded the pond to exclude 

mammalian predators. However, there was still potential for predation by avian, reptilian, 

and amphibian predators. The pond had a relatively uniform bottom with steeply sloped 

sides, and averaged ~1 m deep. Logs were positioned along the shoreline to provide 

possible cover for the hatchlings. Vegetation in the pond primarily consisted of coontail 

(Ceratophyllum demersum), pondweed (Potamogetonaceae sp.), and cattails (Typha 

latifolia), and the pond was stocked with western mosquitofish (Gambusia affinis) and 

fathead minnows (Pimephales promelas) as potential prey items for hatchling M. 

temminckii. The pond was also a habitat for myriad macroinvertebrates, including 

damselfly, dragonfly, and mayfly nymphs as well as crayfish (superfamily: Astacoidea), 

several frog species (American bullfrog, Lithobates catesbeiana; southern leopard frog, 

Lithobates sphenocephala; Blanchard’s cricket frog, Acris blanchardi) and their larvae. 

Snakes, including diamondback water snakes (Nerodia rhombifer), cottonmouths 

(Agkistrodon piscivorous), and ribbon snakes (Thamnophis proximus), were common in 

the surrounding habitat but rarely seen in the study pond, possibly due to exclusion by the 

metal flashing. The pond received inflow from a nearby creek, from which fry and small 

fish could populate the pond incidentally. 

Activity patterns and thermal profiles. Fifteen turtles equipped with radio 

transmitters (L.L. Electronics, Mahomet, IL or Holohil Corp., Ontario, Canada) were 
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released into the fenced outdoor pond on 25 September 2015 to quantify the daily and 

seasonal activity patterns of hatchling M. temminckii. The transmitters weighed 1.9 g 

each and were approximately 11 mm long with a 100-mm long whip antenna. 

Transmitters were attached with waterproof epoxy (Marine Epoxy; Loctite, Westlake, 

OH, USA) to the hatchlings’ carapace between the midline vertebral ridge and the right 

or left lateral ridges (Appendix B). Hatchlings were reweighed after transmitter 

attachment, with the proportion of transmitters mass to hatchling mass initially being 

between 10–11% of hatchlings’ mass. By the last measurement event, transmitters 

averaged 8% of hatchlings’ mass. An antenna set atop a 9-m tall tower was connected to 

an automatic receiving unit (ARU) (Sparrow Systems, Fisher, Illinois, USA) stationed 

just east of the pond. The ARU was used to collect activity data using the signal change 

method (Tucker et al., 2014). Signal strength in decibel-milliwatts (dBm) for each 

transmitter was recorded each minute for the duration of the study.   

The nominal battery life of the transmitters was 60–90 days. However, to 

minimize the risk of premature battery failure, the hatchlings were hand-captured 

approximately every 56 days. This schedule resulted in a total of six rounds of transmitter 

replacement for each animal, in order to capture most of a year’s worth of activity data. 

Upon recapture, each turtle was weighed and measured prior to removing the transmitter. 

The transmitters were removed from the animals using a rotary tool to separate the epoxy 

from the carapace of the turtle. A new or re-furbished transmitter was attached in the 

same manner as described above. The hatchlings were weighed and measured again 

before being released back to the location in which they were found, and releases 

occurred within 24 h of capture. Despite the conservative replacement schedule, some 
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transmitters failed before they were retrieved. Therefore, the number of hatchlings being 

monitored decreased over the duration of the study. At the conclusion of the study, in 

August 2016, four hatchlings were recaptured. 

Three temperature-recording data loggers (Thermocron iButton, model DS1922L, 

Maxim Integrated Products, Inc., Sunnyvale, CA) were secured in waterproof containers, 

attached equidistantly from one another to a length of plastic pipe, and then secured at the 

deepest portion of the pond to record surface, middle, and deep water column 

temperatures. I also deployed a single temperature-recording logger attached to a 

cinderblock and placed it in shallow water on the south side of the pond. This location 

was near cattails, and previous observations indicated that hatchlings often inhabited this 

portion of the pond. The data loggers were programmed to record temperatures at a 

resolution of 0.5 °C at 68-min intervals to capture 365 days of data. 

Analyses. Diel activity patterns were analyzed using repeated measures analysis 

of variance (ANOVA) and, when appropriate, Tukey’s post-hoc t-tests. Average minutes 

active were pooled by hour of day for each individual to generate values that reflected 

average hourly activity rates. Seasonality in average time spent active was examined by 

dividing the study into six intervals of 54–55 day duration (Interval 1 = 27 September–19 

November; Interval 2 = 20 November–12 January; Interval 3 = 13 January–6 March; 

Interval 4 = 7 March–29 April; Interval 5 = 30 April–23 June; Interval 6 = 24 June–17 

August).  

Repeated measures ANOVA and Tukey’s pair-wise t-tests were also used to 

analyze activity patterns across temperatures. As above, data were separated into six time 

intervals, and average activity data were pooled by 1° increments for each individual, 
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resulting in values that reflect average activity rates per 1 °C temperature increments.   

Data lost to failed transmitters (and possibly to depredation) limited the extent of 

growth data available, as the number of turtles that were released at the beginning of the 

study were not all available for measurement at the end. Therefore, my assessment of 

growth rates is restricted to the period 19 October–17 March. This period was divided 

into three periods corresponding with: warm but falling water temperatures (daily mean 

temperatures ranged from 17.65–25.40 °C), cool winter-time temperatures (6.09–20.09 

°C), and cool late winter temperatures (7.28–18.49 °C). These periods spanned 19 

October–23 January (period 1), 24 January–17 March (period 2), and 18 March –8 April 

(period 3); the duration of each period differs because they were defined by when turtles 

were recaptured for measurements and to replace radio transmitters. To test whether 

average activity rates influenced growth rates, I conducted linear regressions of growth 

rates on average activity rates during each of the three periods. Growth rates were 

calculated as change in mass per gram of initial mass per day to correct for variation in 

hatchlings’ size at the onset of the study and for slight differences in the time between 

measurements for individual turtles. Minitab 17 (Minitab, Inc., State College, PA, USA) 

was used to perform all statistical tests. The significance threshold was set at α=0.05 for 

all tests.  

 

Results 

There was a significant effect of time of day on the average time spent active 

across all hatchlings for the entirety of the study tested (27 September, 2015 – 17 August, 

2016) (F 23, 57874 = 144.65, P < 0.001) (Figure 1), and this effect remained significant 
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when the study’s duration was divided into six discrete time intervals (Figure 2). Post-hoc 

pairwise comparisons indicated that hatchlings consistently exhibited diurnal activity 

patterns; activity rates between the hours of 08:00 to 15:00 showed no significant 

differences, but were higher than all other hours of the days when analyzed over the 

entire study duration. Similarly, intervals 1–6 all indicated that the mid-portion of the day 

always had higher activity than during other hours. However, during intervals 2 and 3 (20 

November–6 March), which correspond with low water temperatures (Figure 3), the 

differences between means was less pronounced and for interval 2 only the hours of 

03:00, 05:00, and 06:00 were significantly lower than the middle hours of the day. 

Intervals 5 and 6 both showed a trend in significantly increased activity during the mid-

hours of the day when compared with the evening hours. 

Average water temperature for intervals 1–6 ranged from 11.88 °C, during 

interval 2, to 31.15 °C, during interval 6 (Figure 3).  There was a significant effect of 

temperature on average percent of time spent active for the entire duration of the study 

(F29,291 = 4.01, P < 0.001) (Figure 4). There were significant effects of temperature on 

average percent of time spent active for intervals 1,3,4,5, and 6 as well (P < 0.05), but not 

interval 2 (P = 0.92) (Figure 5). Post-hoc pairwise comparisons for the effect of 

temperature on the percentage of time spent active at each temperature increment for the 

entire study were largely non-significant, most likely due to a small number of hours at 

which extreme temperatures occurred. However, during specific date ranges, the high and 

low temperatures were significantly different. During interval 1, temperatures 25–27 °C 

all had significantly higher average percent of time spent active by hatchlings when 

compared to temperatures 14–17 °C. Yet, during interval 2 there were no significant 
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differences between any of the average percent of time spent active for any of the 

temperatures experienced. During interval 3, average percent of time spent active at the 

temperatures of 12, 13, and 14 °C were significantly different from 5 °C, but these were 

the only significant differences in temperature-specific activity rates. The trend was 

similar for interval 4, as well. Activity during intervals 5 and 6 cleanly split into two 

groups, daytime and nighttime, within each of which activity rates were consistent. 

There was no significant relationship between growth rates and activity rates, 

potentially due to small sample size (Period 1, t4 = 1.94, P = 0.12, R2= 0.49; Period 2, t4 = 

-0.21, P = 0.84, R2= 0.01; Period 3, t4 = 1.67, P = 0.17, R2= 0.41) (Figure 6). 

 

Discussion 

Macrochelys temminckii have been described as predominantly nocturnal, 

although this conclusion apparently has only limited support in the literature (Allen and 

Neill, 1950; Ewert et al., 2006). However, there are several published observations of 

daytime and evening activity, and authors have characterized these instances as 

deviations from the typical activity patterns for the species (Ewert, 1976; Harrel et al., 

1996; Ewert et al., 2006). In contrast, the activity patterns that I documented for hatchling 

M. temminckii were clearly diurnal during times of the year when they were active. This 

pattern disappeared during the coldest intervals, but only because the turtles became 

inactive—not due to a shift to an alternative daily activity schedule.  

It is important to recognize that measuring activity using the signal change 

method provides a measure of changes in distance and orientation of a radio transmitter 

affixed to an animal relative to a stationary receiving antenna, but does not ascribe 
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behaviors to detected movements (Tucker et al., 2014). Therefore, during bouts of 

recorded activity, animals might be engaging in behaviors of great ecological 

consequence, such as foraging or mating, or they may be engaged in something more 

mundane such as burying in mud. Similarly, bouts of inactivity cannot necessarily be 

inferred to indicate periods of sleep or torpor; it is equally possible that intervals of low 

activity correspond with bouts of sit-and-wait foraging. Despite these limitations on 

interpreting signal change data, the consistently high daytime activity rates that I 

observed can only reasonably be inferred to indicate that hatchling M. temminckii are 

ecologically diurnal.  

There are three possible explanations for the apparent contradiction in the activity 

patterns of M. temminckii described in this study (wholly diurnal) to that previously 

reported in the literature. First, the conclusion that M. temminckii are predominantly 

nocturnal is supported by very limited data (Ewert et al., 2006); therefore, it is 

conceivable that previous researchers have simply drawn inaccurate conclusions. Second, 

much of the evidence for nocturnal activity came from populations in Florida and 

Georgia (Allen and Neill, 1950; Johnson, 1989; Moler, 1996; Jensen and Birkhead, 

2003), and in fact some is likely derived from a different species, the recently described 

Macrochelys suwanniensis (Allen and Neill, 1950; Thomas et al., 2014). I conducted my 

study in a more northern location in Oklahoma, and it is possible that geographical and/or 

phylogenetic variation explains the apparently conflicting conclusions. Finally, it is 

possible that M. temminckii generally is nocturnal, but that the activity patterns of 

seldom-observed hatchlings follow a distinctly different pattern than do those of older 

age classes. 
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If hatchling M. temminckii do in fact follow an activity pattern that differs from 

that of older conspecifics, it seems plausible that it could be a means of reducing 

predation risk. Although hatchling M. temminckii are larger than hatchlings of other 

North American freshwater turtle species, they are nonetheless at great risk until they 

attain a larger size (Dreslik et al., 2017, chapter 1). The relative absence of nocturnal 

activity may effectively reduce exposure to predators. As previously noted, hatchling 

turtles are at risk from a wide variety of nocturnal and diurnal predators; however, 

evidence suggests that raccoons (Procyon lotor) may have the greatest impact on young 

turtles nearly everywhere they co-occur (Seigel, 1980; Stancyk et al., 1980; Christiansen 

and Gallaway, 1984; Congdon et al., 1987; Garmestani and Percival, 2005; Ernst and 

Lovich, 2009), and this relationship has been documented for alligator snapping turtles 

specifically (Redmond, 1979; Holcomb and Carr, 2013; Dreslik et al., 2017). Other 

predators, such as river otters (Lontra canadensis) (Ligon and Reasor, 2007), great blue 

herons (Ardea herodias) (Ligon, pers. obs.) and even adult M. temminckii (Sloan et al., 

1996; Ligon, pers. obs.) are known to prey upon hatchlings, but I predict that their impact 

would be less influential in shaping activity patterns than that of raccoons, for two 

reasons. First, as mentioned, the overall predation rate by raccoons is likely higher than 

by any other species. Therefore, this single predatory species likely represents a strong 

force in natural selection. Second, of the several documented predators, only raccoons 

adhere to a reasonably strict nocturnal foraging pattern (Sharp and Sharp, 1956; 

Greenwood, 1982; Kaufmann, 1982).  Ardea herodias, L. canadensis, and adult M. 

temminckii all reportedly forage both day and night (Black and Collopy, 1982; Ewert et 
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al., 2006; Martin et al., 2010). Therefore, adjusting the timing of activity might do little to 

alter their exposure to these predators.  

I cannot dissociate potential changes in activity rates due to water temperature 

from other seasonal variables such as day length. However, it seems likely that much of 

the reduction in activity during the coldest intervals was in fact due in large part to low 

temperature itself. Interestingly, some level of activity was observed at all temperatures 

experienced throughout the study. Activity that occurred during the coldest intervals—

and at the lowest temperatures occurring within those intervals—provide evidence that 

hatchling M. temminckii do not achieve the deep states of torpor during the winter that 

some other aquatic turtle species do (Ernst, 1972; Obbard and Brooks, 1981; Ernst et al., 

1989b; Meeks and Ultsch, 1990; Ernst et al., 2014). However, this might vary with 

latitude. Winter activity of M. temminckii has not previously been described; it is possible 

that the infrequent low-temperature movements that I documented were to the surface to 

breathe, or may have been triggered by a perceived predatory threat. The absence of 

growth during the coldest interval suggests that turtles likely were not engaging in 

foraging behavior. 

The high activity rates that occurred at extreme temperatures might indicate that 

hatchling M. temminckii seek seasonally-adjusted moderate water temperatures; the high 

rates of activity at comparatively cold and warm temperatures could be attempts to find 

alternative thermal microclimates. Interestingly, evidence of moderating 

thermoregulatory behavior in other M. temminckii demographic groups is mixed. In a 

study conducted in northern Louisiana, movements (which are different than but likely 

correlated with activity as measured using the signal change method) of juvenile M. 
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temminckii were positively correlated with water temperature (Harrel et al., 1996). 

However, even when water temperature reached its maximum in July (29.1 °C), turtles 

did not retreat from near-shore refugia to deeper, cooler water. In contrast, in a telemetry 

study conducted in eastern Oklahoma, adult M. temminckii moved downstream to deeper 

water during hot summer months (Riedle et al., 2006). Thermoregulatory behavior was 

observed in a study in eastern Texas, as well; adult M. temminckii apparently 

thermoregulated by selecting microhabitats that were warmer and more stable than at 

randomly selected locations (Fitzgerald and Nelson, 2011).  

Predictably, there was no relationship between activity and growth rates during 

the coldest winter interval because both rates were extremely low and exhibited little 

variation among individuals. This is consistent with observations that adult M. temminckii 

do not feed when water temperatures are below 18 °C (Allen and Neill, 1950). During the 

first and third periods over which growth was measured, 41–49% of the variation in 

growth was attributable to variation in activity rates. Although there was no significant 

relationship between growth and activity rates, possibly due to my small sample size, the 

positive trend between growth and activity during the warmer fall and spring intervals 

were likely due to higher average water temperatures stimulating higher and more 

variable activity rates and foraging. High growth rates are a common evolutionary 

strategy to increase survival, and many studies of hatchling freshwater turtles have 

confirmed that “bigger is better” in a variety of important ways (Miller et al., 1987; 

Janzen, 1993; Miller, 1993; Janzen et al., 2000a,b). Larger size correlates with increased 

locomotor performance (Miller et al., 1987; Janzen, 1993; Miller, 1993) and larger 

hatchlings also exhibit increased foraging success during feeding trials (Froese and 



16 

Burghardt, 1974). Furthermore, larger hatchling turtles tend to be faster, which might 

lead to achieving greater survival rates through enhanced predator escape or prey 

acquisition (Froese and Burghardt, 1974; Miller et al., 1987; Janzen, 1993; Miller, 1993).   

In conclusion, hatchling M. temminckii are diurnal throughout the year, and there 

is the potential that individuals that are more active tend to exhibit faster growth rates. 

Both traits may contribute to a higher probability of survival through a combination of 

predator (raccoon) avoidance and limiting the time of exposure to gape-limited predators. 

Annual activity patterns were similar to those reported for other age classes, with high 

activity rates occurring during warm periods and low (but not negligible) activity rates 

during cold periods. In light of the fact that M. temminckii conservation relies on head-

start efforts, it is possible that early exposure to naturally occurring seasonal cycles may 

enhance future post-release behavior and survival. Therefore, it may be beneficial in such 

programs to rear hatchlings outdoors with exposure to natural cycles. 
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Figure 1. Average daily activity patterns of hatchling alligator snapping turtles measured 
from 27 September, 2015 through 17 August, 2016. Data were obtained from 15 
hatchlings that were monitored for variable intervals during the study period. Error bars 
indicate ±1 standard error.  
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Figure 2. Activity patterns exhibited by alligator snapping turtles during their first year 
after hatching. The study period was divided into six discreet time periods to examine 
variation in activity patterns. Fifteen individual hatchlings were included in the study, but 
sample size varied throughout the year, ranging from 5–10, due to periodic transmitter 
failures. Error bars indicate ±1 standard error. 
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Figure 3. Temperature profile for the duration of the study as collected by a near-shore 
data logger that was at a depth frequented by hatchling turtles. Minimum temperature is 
shown in blue, average temperature is shown in black, and maximum temperature is 
shown in red for each day. Timing and average water temperatures for Periods 1–3 and 
Intervals 1–6 are indicated.  
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Figure 4. The upper graph indicates the number of hours for which each water 
temperature increment occurred over the duration of the study. The lower graph indicates 
the mean proportion of time at each temperature increment that hatchling alligator 
snapping turtles were active. Data were obtained from 15 turtles, for which activity was 
monitored from 27 September, 2015 to 17 August, 2016. Error bars indicate ±1 standard 
error. 
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Figure 5. The top portion of each pair of graphs indicates the number of hours for which 
each water temperature increment occurred over the duration of a time interval. The 
bottom portion of each pair of graphs indicates the mean proportion of time at each 
temperature increment that hatchling alligator snapping turtles were active. Data were 
obtained from 15 turtles for which activity was monitored for different durations between 
27 September, 2015 and 17 August, 2016. Error bars indicate ±1 standard error.
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Figure 6. Regression analyses of average activity rates of hatchling alligator snapping 
turtles against growth rates for three different time periods: 19 October–23 January 
(period 1), 24 January–17 March (period 2), and 18 March–8 April (period 3). 
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MOVEMENT PATTERNS AND HABITAT ASSOCIATIONS OF HATCHLING 

ALLIGATOR SNAPPING TURTLES 

(MACROCHELYS TEMMINCKII) 

 

Abstract 

Hatchling turtles have a reputation for being cryptic and secretive; as a result, there are 

few species for which habitat associations and movement patterns of hatchlings and small 

juveniles are well understood. Such data are important because hatchlings may 

experience high mortality rates, making them a sensitive life stage whose success has 

important impacts on overall population stability. Additionally, among species in which 

hatchlings and adults occupy distinctly different niches, conservation of resources for 

both is necessary for effective management. The aim of my study was to characterize the 

movement patterns, habitat use, and sources of mortality of hatchling alligator snapping 

turtles (Macrochelys temminckii) in a southeastern Oklahoma stream. Movement patterns 

were typically characterized by an initial move away from the site of release, followed by 

prolonged occupancy of an area with increased cover and shallow water depth, when 

compared to random locations. Of the 12 turtles released, three were preyed upon by fish 

and seven were confirmed to be alive in mid-November, eight weeks after the study was 

launched. A single hatchling turtle was washed downstream during high flow events, and 

the fate of another turtle could not be confirmed at that time, either because they were 

transported away from the study area by a predator or because their transmitters failed 

prematurely. Surprisingly, I found no evidence of depredation by raccoons (Procyon 

lotor), a common predator of hatchling turtles.  
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Introduction 

As is the case for most taxa, turtles experience varying mortality rates at different 

life stages, with eggs and hatchlings typically being most vulnerable and mortality rates 

decreasing with growth. Adults of many species enjoy >95% annual survival (Iverson, 

1991; Congdon et al., 1993; Congdon et al., 1994; Shine and Iverson, 1995), but the 

stability of a population is contingent on adequate survival at all life stages (Congdon et 

al., 1994; Heppell et al., 1996; Dreslik et al., 2017). Early life stages of many turtles are 

difficult to monitor in the wild and calculating survival rates is difficult. For example, the 

nests of at least one species (Chelodina rugosa) are laid underwater, making embryo 

survival impractical to monitor (Kennett et al., 1993). Similarly, hatchlings of many turtle 

species are small and secretive, and therefore are rarely caught. For this reason, hatchling 

survival rates are often inferred from other life history parameters (Wilbur, 1975; 

Congdon et al., 1994; Pike et al., 2008). Sea turtles offer an extreme and oft-cited 

example of the problems of secrecy and low-detectability in assessing hatchling life 

history. The ambiguity surrounding the first several years of a sea turtle’s life was so 

extreme that this time frame has been termed “the lost years” (Carr, 1987). Technological 

advancements have improved researchers’ ability to study some variables during this 

early life stage, such as diet, incubation temperature effects on fitness, and movement 

patterns (Booth et al., 2004; Reich et al., 2007; Mansfield et al., 2014; Wood et al., 2014; 

Anderson et al., 2015), but natural history studies of hatchling turtles remain substantially 

more challenging than investigations of other life stages. As more turtle species 

experience population declines and conservation measures become ever more critical, 

understanding the ecology and life history parameters of early, enigmatic, life stages is a 
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pressing issue. Critical but often missing pieces of information include early dietary and 

habitat preferences, activity patterns, and growth and survival rates (Ernst and Lovich, 

2009).  

Conservation actions often cannot be delayed until the entire life history of a 

species is known; therefore, conservation action plans are often developed and executed 

based on relatively limited knowledge of only a portion of a species’ life history 

(Congdon et al., 1993; Semlitsch, 1998; Semlitsch, 2002). These potentially incomplete 

management plans are not due to a lack of effort on the part of the decision makers, but 

rather due to a lack of scientific evidence informing appropriate practices (Pullin and 

Knight, 2003). Often, information is especially lacking for the life stages of species 

during which individuals are most cryptic or secretive, typically during the first several 

years. Early age classes of most aquatic turtles are small and well camouflaged. These 

traits impede reliable and consistent monitoring and recapture of individuals at regular 

intervals, which in turn increases the difficulty of detecting hatchlings in natural 

environments to determine habitat preferences. It is also extremely challenging to 

monitor movement and dispersal patterns, and to quantify predation and mortality rates 

(Morafka et al., 2000; Pike et al., 2008). Due to these challenges, most studies of 

hatchling turtle ecology have focused on emergence and movement away from nesting 

sites, predation rates during dispersal from the nest to water, and sex determination 

during incubation (Vogt and Bull, 1984; Semlitsch and Gibbons, 1989; Ewert and 

Nelson, 1991; Kolbe and Janzen, 2002; DeGraaf and Nein, 2010; Miller and Ligon, 

2014).  

The alligator snapping turtle (Macrochelys temminckii) is an aquatic turtle species 
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that, due to declining numbers, is a species of conservation concern and reintroduction 

efforts. It is also a species for which there are many gaps in what is known of hatchling 

and juvenile life history and ecology. The ramifications of these gaps in our 

understanding of the species’ life history were highlighted by policy makers when it was 

denied protection under the Endangered Species Act (1973) in part because of 

insufficient information regarding its life history (Riedle et al., 2008). With the declines 

alligator snapping turtle populations have incurred across their range over the past several 

decades, it has become imperative to improve our understanding of the life history of this 

species so that future species status assessments are accurate (Reed et al., 2002).  

Alligator snapping turtles are long-lived and iteroparous, and populations are 

sensitive to the removal of just a few adults (Congdon et al., 1993; Congdon et al., 1994; 

Reed et al., 2002). Population viability assessment models demonstrate that reduction in 

female adults by as little as 2% annually can cause rapid declines (Reed et al., 2002). 

Alligator snapping turtles reach reproductive maturity at 11–21 years of age (Dobie, 

1971; Tucker and Sloan, 1997). As such, there is more than a decade during which these 

animals are sexually immature. While there have been many studies of adult alligator 

snapping turtles, and a small subset that include sub-adults, the first few years remain 

little-studied. While the protection of reproductively mature adults is critical to the future 

success of the species, it is also critical to ensure that the needs of the most vulnerable 

early life stages are also addressed. 

 Home range and movement patterns of alligator snapping turtle hatchlings were 

studied in northern Louisiana (Bass, 2007). Daily movement of hatchlings were greatest 

in the spring, and temperature and precipitation correlated with an increase in distance 
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moved (Bass, 2007). Average home range size was larger in the fall than the spring or 

summer, and hatchlings showed a selection for certain habitat characteristics, such as 

shallow water, submerged woody structures, emergent woody plants, and floating aquatic 

vegetation (Bass, 2007). This study is one of the few field studies that has been 

conducted on hatchling alligator snapping turtles, and it provides useful insights into the 

ecology and life history of this age class. However, alligator snapping turtles inhabit a 

range that spans almost 6.5° latitude; studies across the species’ range may be necessary 

to accurately characterize within-species variation.  

The aim of my study was to assess movement patterns, habitat selection, and 

survival of hatchling alligator snapping turtles in a natural setting from emergence from 

the egg until the middle of winter (September–January), when activity presumably 

decreases significantly. This time period is crucial, as hatchlings are likely highly 

susceptible to predation due to lack of experience in their habitat, as well as their 

diminutive size. This is also a time during which hatchlings are likely learning the 

locations of resources (e.g., food, refugia), and thus must choose suitable habitat 

characteristics for survival.  

 

Materials and Methods 

My study site was located in Pennington Creek, a spring-fed tributary of the 

Washita River in southeastern Oklahoma. The portion of the creek that I used was a 

segment (~345 linear m) near the upper portion of the drainage. It was characterized by a 

slow flowing pool (~780 m2) bordered both upstream and downstream by a series of 

cascades (Figure 1). Structures throughout the pool included submerged and partially 
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submerged logs, overhanging trees, piles of organic debris, boulders, beaver lodges, and 

deeply undercut banks. The substrate in the creek was spatially heterogeneous and 

included areas dominated by silt, mud, sand, gravel, boulders, bedrock, and densely 

compacted clay. The depth along the midline of the pool ranged from 0.25–2.60 m deep, 

although much shallower conditions occurred along some edges and embankments within 

the creek. Vegetation in the creek was primarily yellow pond lily (Nuphar lutea). There 

was not an abundance of emergent vegetation, but lizard’s tail (Saururus cernuus) and 

green algae (Spirogyra spp.) occurred in varying amounts throughout the seasons. The 

surrounding landscape vegetation is regionally characterized as cross-timbers and was 

predominately defined by oaks, elms, and cedars, along with a variety of understory 

species, including buckbrush (Symphoriocarpus orbiculatus) and invasive multiflora rose 

(Rosa multiflora).  

Twelve hatchling alligator snapping turtles were selected for release and 

subsequent monitoring in Pennington Creek. Hatchlings were selected from five clutches 

produced in 2015 by a captive population of adult alligator snapping turtles at 

Tishomingo National Fish Hatchery.  Prior to release, each hatchling’s straight carapace 

length, plastron length, and mass were measured before attaching a transmitter (Table 1). 

Each transmitter weighed 1.9 g and was 11 mm long with a 10 cm long whip antenna 

(two manufacturers were used: L.L. Electronics, Mahomet, IL and Holohil Corporation, 

Ontario, Canada). Transmitters were attached to the carapace in between the midline 

vertebral ridge and the right or left lateral ridges with waterproof epoxy (Marine Epoxy; 

Loctite, Westlake, OH, USA). Each hatchling was released at a different location on the 

banks of the pool. Hatchlings were relocated daily after release (with exceptions) 
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following their release on either 13 September 2015 (n = 10) or 5 October 2015 (n = 2), 

using a radio receiver (model R-1000, Communication Specialists, Inc., Orange, CA) and 

directional antenna (model RA-23, Telonics, Mesa, AZ). These daily re-locations were 

conducted until the end of October, when activity began to decrease as water 

temperatures declined. The hatchlings were then tracked monthly until either their 

transmitter failed or they moved out of the study site and could not be relocated. All radio 

tracking concluded in February 2016.   

Upon locating each hatchling, I recorded the location, distance from the last 

location, water temperature at the top and bottom of the water column, canopy cover, and 

water depth. I initially recorded distance to the nearest bank and substrate composition, 

but consistently interpreting these variables proved impossible because hatchlings were 

frequently in undercuts beneath banks and substrates of hard clay was indiscernible from 

bedrock or cobble when water became turbid. Therefore, these variables were not 

included in analyses. Habitat measurements obtained at hatchlings’ locations were paired 

with comparable measurements at random locations. Random locations were determined 

by checking the fraction of a second recorded by a digital stopwatch, with 1) even 

number indicating upstream and odd number indicating downstream, 2) a second 

observation determining the number of meters away from a hatchling’s location, and 3) a 

third observation determining the proportional distance across the stream from right-hand 

bank.  

Hatchlings were periodically located and re-captured for transmitter replacement 

and to collect morphometric data. Epoxy was allowed to cure overnight before releasing 

animals at the location of recapture.  
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Water depth, over story canopy cover, and temperature that were measured at 

turtles’ locations and paired random points were compared using paired t-tests. Minitab 

17 was used for all statistical analyses, with a significance threshold of α = 0.05 for all 

tests.  

 

Results 

Habitat Use. Hatchling alligator snapping turtles collectively were located a total 

of 327 times from September 2015 to February 2016. The number of times each 

hatchling was located varied due to differences in release date, transmitter failures, failure 

to relocate, and depredation. Hatchlings exhibited selection for shallower water depths 

than was randomly available (at hatchlings’ locations, mean = 23 cm, range = 1–245 cm; 

at random locations, mean = 177 cm, range = 2–2600 cm, t = -7.25, df = 326, P < 0.001). 

On average, hatchlings were located in areas with more canopy cover than at random 

locations (mean canopy cover at hatchlings’ locations = 45%; mean canopy cover at 

random locations = 24%, t = 10.09, df = 326, P < 0.001). There was no significant 

difference in water temperature selected by hatchlings and water temperature at random 

locations (mean temperature hatchlings’ locations = 19 °C, mean temperature at random 

locations = 19 °C, t = -1.89, df = 322, P = 0.06). 

Movement. Hatchlings (n = 12) were each tracked on 7–41 occasions, with the 

number affected in 5 cases by transmitters failing before they were scheduled to be 

replaced, depredation, or movement out of study area associated with high water flow 

events. Overall, hatchlings exhibited no change in location between relocation events 

51% of the time, and individuals remained at the previous day’s location 13–75% of the 
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time. When movements did occur between relocation efforts, most movements were <1 

m; movements >5 m were rare (Figure 2). Hatchlings that did change locations between 

tracking events, moved 2.76–19 m (median) (Table 2). The following are descriptions of 

movement patterns of each hatchling during the time in which it was tracked.  

Hatchling Movements (Figure 3, Table 2). Hatchling 1:  Hatchling 1 was 

located 41 times in a 151-day period, with a consecutive 29-day period of consecutive 

locations. Over the 41-day period this hatchling was tracked, it moved a total of 139 m. 

Although this hatchling typically did not move between tracking events, when it did 

move its median movement was 3.60 m. Hatchling 1 was inactive for 71% of the days in 

which it was tracked. However, it was also the turtle with the greatest movement overall, 

at 139 m in 41 days.  Its largest single-day movement was 79 m from the last known 

location. At the time of release on 13 September, it was observed crawling into an 

undercut in the bank. Over the course of the first 4 days its movement was minimal, at 

2.14 m. Nine days after release, it left the undercut and moved 79 m upstream, navigating 

over two low waterfalls, and crossed from the left bank to the right bank of the stream. 

Thereafter, it remained in a deep undercut with substrate of bedrock and cobble for 22 

consecutive days, until it was captured to on 24 October to replace its transmitter and 

collect morphometric data. It was released at the location of capture within 24 hours. The 

transmitter signal remained in the same location throughout monthly radio tracking 

events in November, December, and January. However, the transmitter was recovered on 

23 January, 2016 and was no longer attached to the turtle. It is very likely that the 

transmitter became detached from the turtle during recovery efforts. 
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Hatchling 2:  Hatchling 2 was released on 13 September into shallow water on the 

right-hand side of the creek. It was located on just eight separate days, with a seven-day 

period of consecutive daily locations. Over the eight days this hatchling was tracked, it 

moved a total of 26 m, with a median movement of 3.35 m. Its largest movement was 9 

m from its location on the previous day. It moved upstream to an undercut bank with 

fibrous roots hanging down. After 10 days, I confirmed its location in a muddy bank by 

touch, at which point I could also visually just make out the posterior edge of its carapace 

sticking out from under the bank (Figure 3C). On day 11, the pinging from the transmitter 

was accompanied by a ticking noise, and I was unable to locate the hatchling. I did not 

attempt to relocate the turtle for six days, and when I returned the transmitter rapidly 

moved large distances within the pool. As a result, I was unable to pinpoint a location. 

The same experience occurred for three days, and then the transmitter remained at a 

depth of >1 m for the rest of the life of the transmitter. My conclusion is that the 

hatchling was preyed upon by a fish, which swam with the transmitter in its gut for 

several days, and then eventually defecated the transmitter onto the creek bottom.  

Hatchling 3:  Hatchling 3 was released on 13 September in an area directly below 

the upper falls where there was a large shallow area that extended at a consistent depth 

and then quickly dropped off. Within this shallow area was a tree that had fallen over and 

the root wad had formed a tunnel where it met the bank. There were debris piles all 

around the fallen tree and in the tunnel that was formed by the tree, and this was where 

the hatchling was released. There was a copious amount of sticks and leafy debris that the 

hatchling moved around in throughout the first 34 days of tracking. The hatchling was 

located on 35 separate days, with an initial seven-day period of consecutive daily 
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locations. Over the 35 days it was tracked, this hatchling moved a total of 26 m. Although 

it did not change locations over 50% of the days it was tracked, when it did move its 

median movement was 0.78 m. Its largest movement was 8 m from its last known 

location, which was two days prior. On 19 October, it was captured for transmitter 

replacement and to collect morphometric data, then re-released at the location of capture 

within 24 hours. On 13 November, the hatchling had moved above the set of low falls at 

the upstream end of the pool, and was in an undercut that had fibrous roots hanging down 

(Figure 3D). During the December and January tracking events, I was unable to locate the 

hatchling, possibly due to transmitter failure or the hatchling moving beyond the portion 

of stream to which I had access.  

Hatchling 4:  Hatchling 4 was released on 13 September into a debris pile along 

left-hand side of the river. It was located on 40 separate days, with a 32-day period of 

consecutive daily locations. Over the 40 days it was tracked, Hatchling 4 moved a total of 

101 m with a median movement of 0.33 m. Its largest movement was 27 m from its last 

known location; however, the signal was very weak and difficult to locate. This was the 

last time in which the transmitter was working or within the study site; it is unclear 

whether this was due to depredation by a terrestrial predator or a malfunctioning 

transmitter. The hatchling moved along the shore and then on the ninth day after release it 

moved to a half-submerged log oriented horizontally in the water with one end against 

the bank (Figure 3E). The hatchling moved around beneath the log for the next 23 days, 

during which I repeatedly visually confirmed its location. After a recapture and release 

event on 18 October for transmitter replacement and collection of morphometric data, the 

hatchling moved away from the log for two days, and then back to the log. On 13 
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November, the hatchling moved 14 m upstream. A month elapsed without efforts to 

locate it, and when my tracking efforts re-started, the hatchling could not be relocated.  

Hatchling 5:  Hatchling 5 was released on 13 September on the left-hand side of 

the creek into a small debris pile. It was located on 13 separate days, with a seven-day 

period of consecutive daily locations. Over the 13 days it was tracked, the hatchling 

moved a total of 53 m with a median movement of 0.59 m. Its largest movement was 27 

m from its last known location, which occurred four days prior. There was visual 

confirmation five days after release, but on the tenth day of tracking the signal moved 

erratically. The transmitter remained at the same location in >1 m of water for the 

remainder of the life of the transmitter. My conclusion is that, like Hatchling 2, Hatchling 

5 was preyed upon by a fish, which swam with the transmitter in its gut for several days, 

and then eventually defecated the transmitter onto the bottom of the creek. Attempts to 

retrieve the transmitter were unsuccessful.  

Hatchling 6:  Hatchling 6 was released on 13 September on the right-hand side of 

the creek. It was located on 40 separate days, with a 19-day period of consecutive daily 

locations. Over the 40 days it was tracked, the hatchling moved a total of 47 m. The 

hatchling had not moved from its previous location on 75% of the days that it was 

tracked, but when it did move its median movement was 2.67 m. Its largest movement 

was 19 m from its last known location, which was recorded seven days prior. Upon its 

initial release, it moved downstream along the bank until it reached an undercut with 

green briar and multi-flora rose hanging down in front of it. It remained very close to this 

location for the remainder of the days it was tracked. I made tactile confirmation of its 

location on multiple days during this time period, including on 18 October when I 
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recaptured it for transmitter replacement and collection of morphometric data, before 

releasing it within 24 hours. It moved up- and downstream, but each movement was 

typically <1 m. After 23 January, I could not relocate the hatchling.  

Hatchling 7:  Hatchling 7 was released on 13 September in an undercut on the 

left-hand side of the river. The undercut was shallow, but the bank quickly dropped off. I 

located Hatchling 7 on seven separate days, with a five-day period of consecutive daily 

locations. Over the seven days it was tracked, the hatchling moved a total of 108 m. 

Although the hatchling was only locatable for a short period of time, it did not change its 

location over 50% of the time. However, when it did move, its median movement was 14 

m. Its largest movement was 89 m from its last known location, which was taken six days 

prior on the day it was released. Shortly after its release, the signal became erratic, giving 

a strong reading that would quickly fade, as if going very deep. My conclusion is that this 

hatchling, too, was preyed upon by a fish, which swam with the transmitter in its gut for 

several days, and then eventually defecated the transmitter onto the bottom of the creek. 

Hatchling 8:  Hatchling 8 was released on 13 September on the right-hand side of 

the creek, just above the lower falls at the downstream end of the pool. It was released 

into a shallow area with woody debris piled up on the substrate. It was located on 32 

separate days, with a 20-day period of consecutive daily locations. Over the 32 days it 

was tracked, the hatchling moved a total of 125 m. Although the hatchling did not change 

locations over 50% of the time it was tracked, when it did move its median movement 

was 1.70 m. Its largest movement was 56 m from its last known location, which was 

taken nine days prior. For the first five days after its release, the hatchling moved 

downstream but stayed very close to its release location. The sixth day after release, it 
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moved 10 m downstream, towards one of the downstream waterfalls. I did not attempt to 

track this turtle for six days, and upon my return I could not relocate it. However, 20 days 

after its release, I detected its signal again and visually confirmed the hatchling’s location 

56 m from its original release location. It moved below one of the upstream waterfalls to 

a very shallow area in which the substrate was bedrock. At the time there was a single 

leaf covering the hatchling. It continued to move downstream and I again visually 

confirmed its location under a small quantity of floating algae. The hatchling moved 19, 

18, and then 10 m on three consecutive days. It ended its movements under a small 

boulder that was in a small eddy on the right-hand side of the creek, located just above 

one of the downstream waterfalls (Figure 3B). It stayed at this location and was visually 

confirmed to remain there for 17 days, with a recapture event on 18 October for 

transmitter replacement and collection of morphometric data before re-releasing at the 

location of capture within 24 hours. It changed locations but consistently remained under 

the boulder before and after each release. Three days after its second release, the creek 

received >12 cm of rain over the course of two days (Figure 2), and the hatchling was no 

longer located under the rock. The best signal from its transmitter was within the set of 

cascades directly below the boulder, but the current was too dangerous to enter the stream 

during the high flow period. Two days after the rain event, the hatchling was >300 m 

downstream from its last known location. It remained on the right-hand side of the creek 

where it was observed multiple times, with its head oriented toward a muddy bank or in a 

shallow undercut. After a 2-week gap in tracking, I was unable to relocate this turtle. 

Hatchling 9:  Hatchling 9 was released on 13 September on the left-hand side of 

the creek, almost directly above the set of lower falls. There was a crescent-shaped 
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shallow area with woody debris and large branches on the substrate. There was also an 

undercut area with fibrous roots hanging down in the bank. It was located on 39 separate 

days, with a 31-day period of consecutive daily locations. Over the 39 days it was 

tracked, the hatchling moved a total of 67 m with a median movement of 0.50 m. Its 

largest movement was 16 m from its last location on the previous day. The hatchling 

stayed near the undercut where a large elm tree was coming out of the bank for the first 

nine days after release. After six days without tracking, the hatchling was located 8 m 

downstream in a pile of fallen trees in the creek. The hatchling continued moving 

downstream and moved below the lower set of falls. I visually confirmed the location of 

the hatchling below the falls in a shallow pool lying on the sandy substrate in tree roots. 

The hatchling then moved to mid-channel and occupied the roots of a downed tree in the 

creek on 7 October. It was captured within the root wad on 19 October for transmitter 

replacement and collection of morphometric data, before being released within 24 hours. 

It moved throughout the root wad and was observed numerous times for the remainder of 

the 11-day period for which it was tracked. It remained in the root wad during a tracking 

event in November, but I was not able to relocate it in December, potentially due to 

transmitter failure.    

Hatchling 10:  Hatchling 10 was released on 13 September along the bank of the 

far-right arm of the creek, on the left-hand side of the arm, into a shallow area along the 

side. It was located on 38 separate days, with a 22-day series of consecutive daily 

locations. Over the 38 days it was tracked, the hatchling moved a total of 46 m with a 

median movement of 0.39 m. Its largest movement was 10 m from its last known 

location, which was the day prior. Upon release, the hatchling moved downstream along 
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the bank and in the undercuts, where I was able to make tactile confirmation of its 

location. The hatchling was in a location in which it was not completely submerged in 

water, although it was hidden by the undercut. It subsequently moved to a small “grass 

island” that was formed at the tip of a peninsula that was separated from the shoreline by 

water. The hatchling moved around the grass roots on the “island” and was seen clinging 

to the roots many times, with its head oriented upward (Figure 3A). The hatchling was 

also found in small undercuts on the “grass island” and around the base of the yellow 

pond lily that surrounded the “grass island”. Fifteen days after its release, it was captured 

for transmitter replacement due to a malfunctioning transmitter. For 13 days after re-

release, the hatchling moved around the “island”, until I recaptured it for another 

transmitter replacement and to collect morphometric data, before releasing it at the 

location of capture within 24 hours. The hatchling then started moving up the right-hand 

side bank of the middle arm of the creek, into a large pile of woody debris. The hatchling 

continued to move upstream and I made visual confirmation of its presence when it sat 

completely exposed under 14 cm of water. It moved to a location that was very shallow 

(2 cm), with the shallow area extending out from the bank for approximately 1 m. The 

hatchling moved 2.5 m downstream from this location, and moved into an undercut. On 

the last day of successful tracking, the hatchling was seen barely tucked into the undercut, 

but completely covered in mud with its head oriented towards the bank.  

Hatchling 21:  Hatchling 21 was released on 5 October at the “grass island” that 

hatchling 10 stayed at for an extended period of time (Figure 3A). It was released on the 

right-hand side of the “grass island”, opposite the side that hatchling 10 was typically 

located. It was located on 25 separate days, with a 25-day series of consecutive daily 
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locations. Over the 25 days it was tracked, the hatchling moved a total of 14 m with a 

median movement of 0.30 m. Its largest movement was 2.76 m from its last known 

location, which was on the previous day. Hatchling 21 stayed at the “grass island” for the 

entirety of the days it was successfully tracked, even after a recapture even on 18 October 

for transmitter replacement and collection of morphometric data, before re-releasing 

within 24 hours. During the time it was tracked, I observed it many times either clinging 

to grass roots, tucked into muddy undercuts, or buried in mud.  

Hatchling 22:  Hatchling 22 was released on 5 October in a shallow undercut with 

fibrous roots hanging down in front of it, located on the right-hand side of the river. It 

was located on nine separate days, with a nine-day series of consecutive daily locations. 

Over the nine days it was tracked it moved a total of 13 m with a median movement of 

0.50 m. Its largest movement was 5 m from its last known location on the previous day. 

The hatchling stayed in the undercut and moved upstream and downstream, but within 5 

m of where it was released for the short period of time it was tracked, before the 

transmitter’s signal disappeared.  

 

Discussion 

The results of my study indicate that hatchling alligator snapping turtles prefer 

habitats with shallow water and increased canopy cover. This is consistent with habitat 

preferences that have been reported for other age classes of this species. Juvenile and 

subadult alligator snapping turtles in Louisiana and Oklahoma reportedly also exhibit a 

preference for increased canopy cover, association with structure, and shallow water 

(Harrel et al., 1996; Moore et al., 2014). Adults in Oklahoma also exhibited a preference 
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for increased cover, and were typically located in shallower water, although a shift 

occurred during late summer when they moved to deeper water, possibly to avoid the 

high water temperatures that occur above the thermocline (Riedle et al., 2006).  

Although hatchling alligator snapping turtles in my study ultimately experienced a 

variety of fates, there were some consistencies in their behavior. The turtles that I 

released into Pennington Creek almost ubiquitously followed the same initial pattern of 

movement, in which they moved away from the site of release to a location with 

increased cover and shallow water, and then remained in that area for an extended period 

of time. The type of cover that turtles elected to associate with varied widely; therefore, I 

had to rely on strictly qualitative descriptions. Nonetheless, the high frequency with 

which individual turtles were found associated with structure or cover of some sort 

highlights its importance, regardless of form. Of the 319 times that I relocated individual 

turtles, there were just 23 instances in which a hatchling was located fully or mostly 

exposed in shallow water. However, in these instances turtles never remained exposed 

long-term, preferring instead to move to other locations. Of the 12 hatchlings tracked on 

Pennington Creek, eight moved to a location of increased cover and stayed in that 

location for 17 or more days, often even after a re-capture and re-release for 

measurements and transmitter replacement. These hatchlings were found in undercuts or 

beneath structures that included a log, a boulder, and a root wad.  

During my study, sample size decreased due to a number of factors, including one 

hatchling that was lost to transmitter failure before re-capture for replacement. However, 

eight out of the 12 hatchlings were successfully radio-tracked from the end of September 

to the end of October, and of those six were recaptured again in November. After 
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November, the number of successful locations decreased until February, when I was able 

to locate just one hatchling. The decrease in the number of trackable animals 

corresponded with reduced frequency of radio tracking efforts, and could have resulted 

from transmitter failures, depredation, or moving out of the portion of the creek to which 

I had access. 

One hatchling washed downstream during a high-flow event. Interestingly, none 

of the other hatchlings were swept from their locations during the high flow, and the 

different fates likely trace to the location of individual turtles when flow increased. 

Whereas most hatchlings were located under cover along edges of the creek where 

turbulent flow patterns reduce the stream velocity, the turtle that washed downstream 

occupied space mid-stream under a boulder. To my knowledge, this is the first study to 

report hatchling turtles’ fate during flooding; however, studies of adults suggest that 

turtles have some capacity to resist being washed downstream, and are capable of at least 

short-range homing on occasions when they are displaced by flood events (Ligon, 2001; 

Jones and Sievert, 2009; Jergenson et al., 2014).  

Depredation by raccoons (Procyon lotor) of turtle eggs, hatchlings, and even 

adults of many species is a common theme in many studies of turtle ecology (Siegel, 

1980; Christiansen and Gallaway, 1984; Kolbe and Janzen, 2002; Engeman et al., 2005; 

Buzuleciu et al., 2016). Furthermore, a recent study that was conducted at three 

geographically disparate sites found that raccoons were consistently the primary predator 

of juvenile alligator snapping turtles, and it was concluded that young turtles’ tendency to 

remain in shallow water near the shoreline likely increased their detection and predation 

by raccoons (Dreslik et al., 2017). Raccoons occurred at my study site, and so it was 
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surprising that I found no evidence of raccoon predation of hatchling alligator snapping 

turtles. However, although hatchling alligator snapping turtles in my study were usually 

located in shallow water near shore, it was almost always difficult to access them via the 

shoreline because the banks were steep, heavily vegetated, and often had deep undercuts 

that would have been inaccessible to raccoons. Furthermore, the creek bottom dropped 

off steeply throughout much of my study site; these characteristics would have made 

patrolling the shoreline difficult for raccoons. This could have important implications for 

reintroduction efforts for this and other turtle species; selecting release sites that have 

shorelines that are difficult for raccoons to patrol could improve survival rates of 

hatchlings and juveniles.  

Despite the lack of predation by raccoons, of the hatchlings released into 

Pennington Creek, at least 25% were preyed upon by fish. The documented cases all 

occurred within 14 days after release, and their exposure to large fish might have been 

high during this initial period when hatchlings were moving to locate preferred habitat. 

Interestingly, experimental studies of fish predation of hatchling turtles have suggested 

that predation risk is low (Semlitsch and Gibbons, 1989). In one study, aposematically-

colored hatchling pond sliders (Trachemys scripta) and painted turtles (Chrysemys picta) 

were found to be readily consumed by largemouth bass (Micropterus salmoides) when 

the turtles were anesthetized, but were egested or ignored when the turtles were awake 

and active. Furthermore, cryptically colored hatchling eastern snapping turtles (Chelydra 

serpentina) were both difficult for fish to swallow and frequently egested (Briston, 1998). 

These results suggest that largemouth bass do not commonly prey upon turtles. Given 

that alligator snapping turtle hatchlings are larger than the hatchlings of any other 
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sympatric turtle species, it appears unlikely that largemouth bass were responsible for the 

predation events that I observed. Predation patterns of other fish species on hatchling 

freshwater turtles have not been conducted. However, several other large-bodied 

carnivorous fish species were present in my study system, including smallmouth bass 

(Micropterus dolomieu), spotted bass (Micropterus punctulatus), channel catfish 

(Ictalurus punctatus), and flathead catfish (Pylodictis olivaris) (pers. obs.), and may have 

been responsible for the predation events that occurred. 

 Although my study represents a limited investigation of just the first several 

months of life following emergence from the nest, understanding the ecology of turtles 

during this period is critical because it likely represents the time during which turtles are 

most at risk. Furthermore, the observation that stream bank morphology might have 

important implications for predation risk could prove important in reintroduction efforts 

for this and other aquatic turtle species. Expanding this study into the first full activity 

season for hatchling alligator snapping turtles would provide important additional 

insights into annual mortality and growth rates, as well as possible seasonal variation in 

habitat preferences and activity patterns. Finally, additional studies of fish predation 

patterns on hatchling turtles are necessary to fully assess the overall impact that fish 

might have on young turtles. 
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Table 1. Straight carapace length, plastron length, and mass of hatchlings collected prior 
to release, on 12 September, 2015.  

Turtle 
Identification 

Straight Carapace 
Length (mm) 

Plastron 
Length (mm) Mass (g) 

1 38.82 29.83 18.0 

2 38.15 29.16 17.7 

3 38.06 28.65 17.5 

4 37.99 29.81 18.3 

5 38.08 29.86 17.2 

6 39.73 29.70 18.2 

7 38.12 30.03 17.5 

8 39.84 29.84 18.3 

9 38.68 29.12 16.9 

10 36.73 30.50 17.7 

21 37.03 27.91 17.0 

22 37.93 29.01 17.0 
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Table 2. Movements of hatchling alligator snapping turtles from September 2015 to 
January 2016, in Pennington Creek in southeastern Oklahoma. 1-Median distance moved 
is restricted to days with non-zero movements, while 2-Median distance moved was 
calculated from the full data set that included days with zero movement.  

Turtle 
ID 

# of 
Days 

Tracked 

% of Days 
with No 

Movement 

 
1-Median 
Distance 

Moved(m) 

2-Median 
Distance 

Moved(m) 

Maximum 
Distance 
Between 

Locations(m) 

Total 
Distance 

Moved(m) 
1 41 71 3.60 0.00 18.50 138.99 

2 8 13 5.00 3.35 9.00 26.03 

3 35 54 0.78 0.00 4.16 26.12 

4 40 43 1.30 0.33 12.00 100.77 

5 13 46 1.37 0.59 4.07 52.56 

6 40 75 2.67 0.00 5.00 46.75 

7 7 57 14.00 0.00 5.00 108.00 

8 32 56 1.70 0.00 19.00 124.50 

9 39 38 1.20 0.50 16.00 66.52 

10 38 37 0.70 0.37 10.00 46.16 

21 25 36 0.65 0.30 2.76 14.29 

22 9 22 0.50 0.50 5.00 12.70 
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Figure 1. Aerial image of a ~345-m stretch of Pennington Creek in Johnston County, 
Oklahoma into which hatchling alligator snapping turtles equipped with radio 
transmitters were released (Google Earth Pro, accessed 15 February, 2016; image date 8 
February, 2015). Numbers indicated release locations for hatchlings, with numbers 
corresponding to hatchlings’ identification.
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Figure 2. Frequency distribution of distances moved between successive relocations of 
hatchling alligator snapping turtles during the autumn and winter following hatching.  
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Figure 4. Microhabitats selected by hatchlings from September 2015 to February 2016, 
in Pennington Creek in Johnston County, Oklahoma. A: Grass overhanging roots, B: a 
boulder with a cavity under it, C: a cavity in a muddy bank, D: undercut in a bank, and E: 
a shallow area under a half-submerged log. 
 

 

 

 
  



 

62 
 

SUMMARY 

 

Understanding the ecology of hatchling alligator snapping turtles (Macrochelys 

temminckii) is critical for developing life tables and making conservation decisions. My 

thesis research highlights hatchling alligator snapping turtles’ activity patterns, effects of 

temperature on movement patterns, habitat associations, and depredation. Therefore, my 

thesis contributes novel information that may influence management decisions made on 

the species’ behalf.  

The circadian rhythms of hatchlings are diurnal. Hatchlings maintain this diurnal 

pattern even during the coldest months of the year, although overall activity decreases 

dramatically during the winter months. Unsurprisingly, temperature affects hatchling 

alligator snapping turtle’s activity; however, it was surprising that an increase in activity 

occurred at extreme high and low temperatures. 

As has been described for other age classes of this species, hatchling alligator 

snapping turtles were associated with shallow water and dense canopy cover, both of 

which tend to correspond with near-shore refugia. Hatchlings also exhibited a tendency to 

move away from a release site and then remained in a location with shallow water and 

increased canopy cover for extended periods. While no depredation by terrestrial 

predators was documented, 25% of hatchlings in this study were preyed upon by fish of 

unknown species.  
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APPENDICES 
 

Appendix A. 
Aerial view of the fenced pond at Tishomingo National Fish Hatchery that was 
used in my study (Google Earth Pro, accessed 21 August, 2017; image date 8 
February, 2015). Yellow polygon demarcates the fence that encloses the pond, and 
the star symbol indicates the location of the radio tower and automated receiving 
unit. Hatchling alligator snapping turtles released into this pond were used to study 
daily and seasonal activity patterns, temperature preferences, diet preferences, and 
comparative growth rates. 
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Appendix B. 
Transmitters were attached to hatchlings using epoxy, and transmitter placement was to 
either the right or left of the vertebral ridge, dependent upon fit.  
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