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ABSTRACT 

Self-assembled nature of block copolymer (BCP) makes them ideal for emerging 

technologies in nanometer scale. The micro phase separation between two or more 

dissimilar polymer blocks of BCP leads to uniform periodic nanostructures of different 

domains of dimension in the range of 5-100 nm, good for the development of emerging 

microelectronic and optoelectronics devices. Molecular weight and chain architecture of 

each blocks govern the morphology evolution; gives different structure like spherical, 

micelles, lamellae, cylindrical, gyroid etc. The morphology evolution of BCP 

nanostructure also depends on different external factors as well. In the first work of this 

thesis, three external factors temperature, BCP thickness and brush layer which 

influences microphase separation and orientation of the BCP have been varied to study 

their influence on a cylinder forming BCP poly (styrene-block-methyl methacrylate (PS-

b-PMMA). The well-organized periodic nanostructure of BCPs can be used as template 

to make inorganic nanopattern. In this work, titanium dioxide (TiO2) with unique 

structural and functional properties has been selected as inorganic material. In the second 

and third work of this thesis, I have used the same cylinder forming PS-b-PMMA as a 

template to deposit TiO2 nanodots using two different inorganic deposition methods.  In 

the second work, room temperature pulse laser deposition (PLD) and in the third work 

wet chemical method were used to deposit TiO2 nanodots. Scanning electron microscope 

(SEM), energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD), and 

photoluminescence (PL) were used to characterize BCP and TiO2 nanostructures. 
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INTRODUCTION 

 

Background 

Fabrication of nanoscale structures and studying their science “Nanoscience” is 

the key point for the innovation of new emerging technologies in different fields [1]. The 

reduction in size of the materials into nanoscale leads to quantization of electronic states, 

new and striking electrical, thermal ,magnetic ,optical and mechanical properties [2]. The 

use of nanomaterials for the fabrication of different optical, magnetic, chemical, 

biomedical and microelectronics devices has received tremendous attention because of 

lower power consumption, faster response and higher performances [1]. Top-down and 

bottom-up are two basic approaches which are carried out to fabricate such a 

nanostructure.  In top-down method, precise and small structures are fabricated from 

macroscopic objects through various ways whereas in bottom-up process, structure are 

fabricated through the assembly of atoms, molecules or other even smaller objects [3]. 

Photolithography, laser scanning, serial writing with charged particles, micro and 

nanomachining, direct writing and ball milling are widely used top down method, 

whereas various vapor deposition methods (such as chemical vapor deposition, atomic 

layer deposition, pulsed laser deposition), patterning through self-assembly of block 

copolymer, colloidal synthesis etc. are the common bottom-up approach used to fabricate 

nanomaterials [4-8]. 

Photolithography-a well-developed and successful technique for nanofabrication  

is limited to industrial implementation because of high cost in photo resist materials, 

masks and equipment; moreover, this process is facing its limitation to be extended 
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beyond the 22 nm node with nanolithography [9]. Nanostructures grown using other 

bottom up methods like chemical vapor deposition and colloidal synthesis usually are 

non-expensive in nature and mostly show good structural, electrical and optical 

properties, in practice these methods are not yet self-sufficient enough to produce 

multiple aspect-ratio (3D hierarchical), reproducible, well-ordered and large area patterns 

for devices. In this perspective, self-assembled materials for direct synthesis of 

nanostructures or as templates have received significant attention in the industry for well-

ordered and wide area patterning. Specifically, use of self-assembled behavior of block 

copolymer (BCP) for patterning the materials into nanoscale size 5-100nm with different 

shape is receiving significant attention recently [1,10–12]. By tuning molecular 

composition, chain architecture and chemistry of the BCPs, different varieties of 

nanopattern can be fabricated [13,14].  In my thesis work, a facile, low cost and effective 

nanopatterning method using BCPs was adopted and self-assembly of BCP molecules to 

form nanostructures and nanofabrication procedure using BCPs will be discussed in 

detail. 

 

Block co-polymer and self-assembly property 

Block copolymer molecule. In chemistry, a Monomer is defined as, a molecule 

of any of a class of compounds, mostly organic, that can react with other molecules to 

form very large molecules, or polymers. A molecule consisting of many repeated 

Monomer is called Polymer. If two or more homo polymer blocks connected at their ends 

via covalent bonds is called block co-polymers. The number and types of polymer and 

the way they link with each other determine the molecular structure of block copolymer. 
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If a homo polymer chain of monomer A is connected covalently with the homo polymer 

chain of monomer B, as shown in figure 1, called di-block copolymer. Similarly, the 

covalent bond between three physically and chemically different block copolymers, A, B 

and C gives triblock copolymer.  

If these blocks arranged randomly give random copolymer, the average size of 

block copolymer is usually defined in terms of number average molecular weight (Mn) 

and weight average molecular weight (Mw), is given as; 

Mn =  
∑ (𝑛𝑖𝑀𝑖)𝑖

∑ 𝑛𝑖𝑖
  ;       Mw = 

∑ (𝑛𝑖𝑀𝑖)×𝑀𝑖𝑖

∑ (𝑛𝑖𝑀𝑖)𝑖
 

Where ni is the number of molecules with molecular weight Mi. The 

polydispersity index is the ratio of Mw/Mn and is equal to 1 for a monodisperse system.  

Block copolymers usually have quite low polydispersity indices (Mw/Mn < 

1.1[15,16].  

Figure 1. Schematic representation of different types of copolymers consists of multiple 

homopolymers. 
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The effective volume of block copolymer is given as, 

V=
𝑀𝐴

𝜌𝐴
 +
𝑀𝐵

𝜌𝐵
+…. 

Where MA and MB are number average molecular weight of block A and B with 

corresponding density ρA and ρB. The effective volume fraction of blocks can be 

expressed in terms of number average molecular weight (MA or MB) 

fX =
𝑉𝑋

𝑉
 =

𝑀𝑋

𝜌𝑋𝑉
 

Where VA is the volume of a homo polymer corresponding to the monomer A. The 

average number of segments per copolymer (N) is, 

N= 
𝑉

𝑉𝑟𝑒𝑓
 

And average number of segments in a block A is  

NX =
𝑉𝑋

𝑉𝑟𝑒𝑓
 =fXN 

The covalent bond between the individual blocks of polymer prevent the 

macroscopic phase separation even when the polymer blocks are thermodynamically 

incompatible [15,16]. Despite that, the individual blocks can go for microscopic phase 

separation into nanoscale domain size below the range of 5-100nm with the influence of 

external influence like heat. The microphase separation of individual block known as 

self-assembly property (will be discussed in detail in next section), leads to regular and 

uniform arrangement of nanodomains which have different chemical and physical 

properties. The uniform regular arrangement of nanodomains can be used in different 

nanotechnology fields for device realization.  

Intermolecular force involved in self-assembly. The spontaneous process which 

promotes nanoscale materials pack into regular arrangements by attaining minimum free 
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energy through minimizing repulsive force and maximizing the attractive molecular 

interaction is called self-assembly. In other words, self-assembly is a spontaneous 

chemical process where entities within a mixture arrange themselves in a structured 

manner and these processes take place in normal chemistry environments [16]. In this 

process, it is assumed that the system with defects has higher energy states, so, any 

changes will lead to decrease in energy of the system. As it is go low, a driving force 

acting on it, which provides the regularity in those nanoscale entities [17].  

The self-assembly does involve many kinds of intermolecular forces. Which are 

classic polar forces including ionic, ion-dipole, dipole-dipole and hydrogen-bonding and 

hydrophobic interactions. The Π-π interactions and weak covalent forces such as 

coordination forces have been associated with self-assembly. Π-π interactions have 

importance in block copolymer self-assembly because of the potential for stacking. These 

latter forces may have relevance because they can accommodate classic inorganic             

chemistry to be applied to design systems [19]. 

Microphase separation. The phase separation only occurs in microscopic scale 

not in macroscopic. It takes long time because of the mass transport limits on large 

number of polymer units. The polymer subunits do not have sufficient energy to mobile 

themselves, so these units need external energy to get mobile and arrange in regular and 

uniform fashion [14]. i.e. the phase separation only happens when polymer is annealed 

around the glass transition temperature. The molecular weight also plays a role in chain 

mobility and interaction strength of the whole system, leading to microphase separation. 

In BCPs, complete phase separation of chemically distinct sub-groups cannot be achieved 

because of the chemical covalent bonds in between two blocks [14]. Thus, the chemical 



   

6 

immiscibility of the monomers which drives polymers to segregate and the restorative 

entropy cost for the deformation of random structure of the blocks during microphase 

separation are counter balanced by each other [14]. The balance in repulsive 

intermolecular forces between blocks and attractive restoring force results the regular 

periodic structure of microphase separated domains with the structure being formed to 

minimize the contact area between dissimilar blocks [14]. 

The thermodynamics involve in the self-assembly of BCP can be express in terms 

of Gibbs free energy equations, 

ΔGSA = ΔHSA – TΔSSA 

If ΔGSA is negative, the self-assembly process is spontaneous. Where ΔHSA is the 

change in enthalpy of the process, causes due to the potential and intermolecular forces 

between the assembled entities. ΔSSA is change in entropy during the process of self-

assembly. Generally, entropy of the system would decrease with organization of the 

system. For the spontaneous self-assembly, the enthalpy term must be negative and more 

than the entropy term. According to this equation, above a critical temperature the self-

assembly do not occur as the second term associated with change in entropy approaches 

the enthalpy [14]. 

If the entities are to be relatively large distances apart after self-assembly, the 

repulsive and attractive forces between the entities need to be relatively high or the 

potential energy will not provide an effective driving force at room temperature. Also, the 

increase in space between entities lead to the irregular arrangement of entities; hence, for 

effective self-assembly there needs to be a balance of the intermolecular forces. 
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The interaction parameter χ, called Flory Huygens parameter [20] is one of the 

key parameter which determines the BCP morphology. If a di-block copolymer A-b-B,  

the χ can be written as, 

χ = zΔw/kT 

Where χ is dimensional less, exchange energy per molecule normalized by kT. z 

is the number of neighbors surrounding one block. Δw is the energy required for a block 

of A from surrounding A blocks and placing in a B block environment; doing the same 

for a B block (from a B environment to an A environment). 

The change in molar enthalpy during mixing is, 

ΔHm = ƒAƒB χRT 

fA and fB are volume fractions of block A and block B. If there is no change in volume 

during microphase separation, the molar change in enthalpy can be written as 

χ = Vm (δA – δB)2/RT 

Where δA and δB are the solvent parameters of A and B blocks respectively. Thus, 

change in enthalpy during mixing is, 

ΔHm = ƒAƒB Vm (δA – δB)2 

So, blocks with different solubility parameter will have positive enthalpy of 

mixing, which leads to microphase separation and self-assembly provided the entropy 

change associated with this process is not too large to overcome the enthalpy 

contribution[14]. 

The entropy change during microphase separation can be written as[14], 

ΔSm/RT = (1/NA) ln ƒA + (1/NB) ln ƒB 

Where NA, NB are the degree of polymerization of each block and is given by,      
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ƒA = NA / (NA + NB) 

Phase diagram. At high temperature, the entropy of a polymer dominates over 

enthalpy, the polymer melts and distribute even randomly. But below a certain transition 

temperature, the polymer melts, a microphase separation occurs and form regular 

periodic nanostructure. Apart from temperature, the structure develop from the 

microphase separation also depends on chemical difference between blocks A and B, 

degree of polymerization (N) and relative volume fraction of BCPs (fA and fB, where fA + 

fB = 1). The phase diagram of the BCP self-assembly can be expressed, in which the 

product of flory-Huggins parameter (χ ) and degree of polymerization) (χAB N) in Y axes 

and volume fraction fA in X axes as shown in figure 2 [21].  

In phase diagram, the parameter (χAB N) controls the microphase separation of 

BCP. The region with χAB N <10, called weak segregation region, generally randomly 

arranged structure formed due to insufficient thermodynamic driving force to overcome 

the entropic stretching penalty associated with demixing. When χAB N>10.5, the 

microphase separation occurs and specific structure can be formed depending upon 

volume fraction.  Another controlling factor of the microphase separation is volume 

fraction which lies in the X axes of phase diagram. If fA≈ 0.15, sphere of the minority 

polymer A will form on the matrix of majority polymer. Increasing fA to the range of 0.2-

0.35 will produce hexagonally packed cylinders of minority polymer on matrix of 

majority. Further increase in fA, in the range a gyroid of majority formed with minority at 

the inner part. At fA=0.5, a thermodynamically stable lamellar structure will form. But, 

different polymer would have different interaction parameter χ, would give different 

structure with varying volume fraction. [14], [22], [23]. 
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Orientation of microdomains. As microphase separation occurred on the BCP, 

the microdomain can align either parallel or perpendicular to the surface of substrate. 

Perpendicular alignment of BCP are very attractive for many applications such as making 

ordered arrays of nanorods and nanodots [24-25,17–19]. To achieve perpendicular 

orientation, preferential wetting of BCP blocks need to be considered. The phase 

separation of BCP also depends upon the polymer-substrate and polymer-air interfaces 

[26]. The blocks which has lower interfacial tension with the substrates preferentially 

wets it, causes parallel alignment of that block with substrate and other block will follow 

same direction as the underlying block [26] as shown in figure 3 . If block A is preferred 

by substrate than B, the block A will be attached first to the substrate and B will follow 

same direction as A. 

For the perpendicular orientation of microdomain, both blocks should have 

similar affinity towards substrate surface, i.e. the surface energy of the substrate should 

be neutralized, so that both polymer would have equal opportunity to wet the substrate. 

The composition, hydrophobicity, surface charges are key factor to control wettability of 

the substrates [28]. Surface modification using brush layer, application of strong electric 

field and thermal annealing are common practices to get the perpendicular alignment of 

microdomain [29–32]. Overall, a combination of factors in different steps of BCP 

nanostructure fabrication such as the brush layer molecule, thickness of the BCP film and 

annealing temperature govern the orientation of BCP microdomain. 

Block co-polymer nanostructures. Utilization of BCP self-assemble behavior to 

fabricate nanostructure patterns for various applications has been done different way for 

example: drop casting, dip coating, and spin coating. In all approach, the polymer is 



   

10 

dissolved into a completely soluble solution. In drop casting method, drops of BCP 

solution are placed on the substrate and make it to dry. In dip coating method, sample is 

dipped into the BCP solutions for a while and make it dry. These two methods usually 

result in a non-uniform irregular thin film and regular and periodic BCP nanostructure 

cannot be expected from this type of film. 

 

 

 

 

 

 

 

 

Figure 2. Phase separation of Block copolymer microphase separation[24] 

 

 

 

 

 

 

 

Figure 3. Preferential wetting of the substrate (a) lamellae structure parallel to the 

substrate (b) Lamellae structure perpendicular to the substrate (c) Cylindrical structure 

parallel to the substrate (d) Cylindrical structure perpendicular to the substrate [27] 
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Among three methods, the most promising method is spin coating, in which BCP 

solution is dispensed on top of substrate and spun with different revolution per unit time 

(RPM).  

The spin coating method results a homogeneous, uniform thin film, from which 

we expect periodic regular BCP morphology. Along with the solution concentration, 

molecular weight of BCP, the spin coating parameters and the drying time and condition 

also influence the characteristic of film. Both static and dynamic dispensed method of 

spin coating are mostly used. The thickness of the film is governed mainly by the rotation 

time period of spin coating and solution concentration. The thickness (t) of thin film 

deposited by using the spin coater is inversely proportional to angular velocity (w) [33] as 

shown in figure 4. 

Thickness (t) =
1

√𝑤
 

Role of brush layer, thickness and annealing condition on BCP 

nanostructures. Brush layer usually a functionalized polymer or random copolymers is 

used to neutralize the surface energy; allowing perpendicular orientation of 

microdomains by non-preferential wetting of the substrate [26]. Self-assembled 

monolayers (SAMs) made from mixture of n-alkane thiols with polar and nonpolar end 

groups have been used to control the wetting properties of substrate, to get the surfaces 

with a controlled polar characteristic [11,34-35]. The variation in surface wetting 

behavior from preferential to neutral to dewetting happen by tuning the grafting density 

of SAMs [36]. Recently, random copolymers (RCPs) is used extensively as brush layer 

due to its extra attractive feature than SAMs [37]`. The molecular representation of such 

brush polymer is shown in figure 5. When polymer chains loss its entropy at the 
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interface, the brush polymer reduces the entropic driving force for dewetting, which 

improves adhesion and makes the brush-polymer interaction same all over the surface of 

substrate [37-38]. 

 

 

 

 

 

 

 

Figure 4. Relation between thickness and angular velocity [33] 

              

 

 

 

 

 

 

 

Figure 5. Molecular representation of brush polymer [39,40] 

                 

The dissimilarity in interfacial which acts on the blocks of BCP leads to the 

formation of layering effect on the film [41–44]. In lamellar morphology, one blocks 

experienced more interfacial force, which align first in parallel to the substrate. For 
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symmetric wetting condition, same block wets both surfaces, film thickness (t) must be 

equal to integral of domain spacing. i.e. t= nL0. When two interfaces attract different 

blocks (asymmetric wetting), the film thickness equals to (n+1/2) L0. But for spherical 

and cylindrical forming BCP, the spherical or cylindrical structure will observe when 

thickness (t) ~ nA+B. where n is integer number, A is sphere-sphere, or Cylinder-

Cylinder distance and B is thickness of brush layer [45]. 

Annealing of BCP above their glass transition temperature will cause microphase 

separation by minimizing the surface energy and maximizing the interaction with surface, 

[14]. The segregation force between blocks is the key factor to determine annealing time 

and temperature at which phase behavior of a BCP can observe. Phase separation is also 

controlled by a thermodynamic process-order disorder phase transition(ODT), when BCP 

thin film exhibits  a homogeneous morphology with all blocks are completely miscible 

upon annealing at certain temperature and in reverse, all blocks would be in immiscible 

due to decrease in temperature-exhibits a heterogeneous state of ordered microphase [46].  

Due to weak segregation force, parallel cylinder forming BCP show straightening process 

before order disorder transition (ODT) and do not show long range composition near 

ODT. But, perpendicular cylinder forming BCP with strong segregation force shows 

transition from perpendicular to parallel below ODT [47].   

Application of BCP nanostructure. The BCP has huge applications in current 

technological advancement in the field of biomedicine, biomaterials, microelectronics, 

photoelectric materials, catalysis etc. [48-49]. One of the attractive application of 

nanoscale BCP structures are as templates to fabricate thermodynamically stable 

inorganic and metallic nanopatterns for microelectronics, optoelectronics and biomedical 
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field [50]. BCP nanostructure can be used as  membrane in catalysis, which acts as 

selective barrier between at least two different compartments and regulates gas, liquid or 

substance to transport between them [51,52].  

The BCP assisted inorganic materials can be used as photonic materials which are 

designed accordance with periodic domain size, refractive index contrast and morphology 

[53]. Self-assembled behavior of BCP to arrange into periodic uniform structure are ideal 

materials to fabricate those photonic materials [54]. Similarly, BCPs are also used as 

structural directing agent for metal salts or nanoparticles to make bulk hybrid materials 

[55]. In addition, The BCP micelle structures have promising application in drug delivery 

inside the human body [56,57]. The patterned nanostructure  are also important features 

used in force sensor to study the cell behavior and cell biology [58,59]. 

Objective of the thesis. This thesis work can be outlined in three projects as 

mentioned below- 

Study of BCP morphology evolution through microphase separation 

(i) BCP templated TiO2 nanopatterning using solution method 

(ii) BCP templated TiO2 nanopatterning using pulsed laser deposition (PLD) method 

Two different polystyrene-block-polymethylmethacrylate (PS-b-PMMA) BCPs 

were used for this thesis work.  In the first project, the BCP nanostructure morphology 

and orientation were tuned by changing the different variables: brush polymer, thickness 

of BCP film and annealing time and temperature. In the second and third project, these 

PS-b-PMMA nanostructures were used as a template to pattern the inorganic oxide 

materials. In the second project, solution chemistry was used and in the third project 

room temperature PLD method was used to fabricate ordered TiO2 nanostructures. Field 

emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), x-
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ray diffraction (XRD), photoluminescence (PL) and energy dispersive x-ray diffraction 

(EDX) were used to characterize the BCP and TiO2 nanostructures.  The detail 

background and detail of these projects are described in the following chapters of the 

thesis. 
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A STUDY OF BLOCK COPOLYMER NANOSTRUCTURES 

MORPHOLOGICAL EVOLUTION 

 

Abstract 

The ability of self-assembled block copolymer (BCP) to form different 

morphologies and well-ordered structures is very attractive due to ease of fabrication in 

nanoscale and compatibility with different systems. These nanostructures provide 

potential or practical applications in many fields such as biomedicine, biomaterials, 

micro-electronics, photoelectric materials, catalysis. The BCP film morphology is defined 

by phase separated microdomain of different homopolymer and depends on many factors 

during deposition apart from synthesis factors like molecular composition and polymer 

architecture of BCP. Moreover, orientation of BCP microdomain is determined by 

strength of interfacial interaction which can be tuned by external interference. In this 

work, effect of three different BCP nanostructure assembly parameters: brush polymer 

composition and deposition condition, BCP film thickness, and BCP film annealing time 

and temperature are systematically studied on one PMMA cylinder forming BCP to show 

that, the evolution of morphology and orientation is dependent on all these factors and 

how all these factors are correlated with each other. It is shown that, the uniform periodic 

nanostructures with perpendicular orientation can be obtained only with proper match of 

all parameters in a definite window which gives the appropriate surface tension and 

interfacial energy for perpendicular orientation.  
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Introduction 

Block copolymers (BCPs) have received considerable attention recently  

due to their inherent self-assemble property which can lead to various nanoscale 

structures like spheres, cylinders, bi-continuous gyroid, and lamellae, depending on the 

composition and chain architecture of the BCPs [1]. The well-aligned and periodic 

nanostructures of BCPs with versatile morphology can be ranged from 5–100nm in size 

[2].  Therefore these self-assembled polymers are considered for direct and indirect (such 

as template) applications in biomedicine, biomaterials, microelectronics, photoelectric 

materials, catalysis etc. [3,4]. Particularly, in nanolithography utilization of self-

assembled BCP thin film nanostructure for patterning the substrates, has been widely 

recognized as an alternative or complementary approach to conventional 

photolithography [1,5-6]. 

During phase separation and morphology evolution, a non-equilibrium, poorly 

ordered and defective nanostructure with mixed morphologies may be formed due to 

variety of reasons [7]. To get desired structures, achieve long-range order and to control 

the orientation of the nanodomains, a range of experimental parameters need to be 

controlled and different post-treatment techniques such as thermal annealing, directed 

self-assembly on prepatterned substrates, application of mechanical stress and electric 

field have been proposed [5-6,8]. Understanding and controlling the external deposition 

factors of BCP nanostructures such as brush layer and annealing temperature is important 

because applications like microelectronics and biomedical require extremely low defect 

densities. 

Three different external parameters for depositing perpendicular orientation of 
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BCP cylinders (i) brush layer, (ii) BCP film thickness and (iii) BCP film annealing are 

varied to show the perfect window for obtaining perpendicular orientation and to 

understand the morphology evolution due to variation of these parameters. There are 

numerous report to understand the effect of these parameters individually for different 

BCPs [9–16] . In this report, a comprehensive study on the influence of these parameters 

for the orientation of one selecting BCP is presented. The background work on of these 

parameters on BCP nanostructures evolution are discussed below. 

A neutral coating layer/brush layer helps to tune the interfacial energy difference 

between two blocks at air-substrate interface. Cylinder forming diblock-copolymer 

typically orient parallel to the film plane, owing to preferential wetting of one of the 

blocks at the substrate and free interfaces. The wetting behavior of blocks on the surface 

and the orientation can be controlled by changing substrate air interface with brush layer 

[9,17]. A brush layer in most of the cases a random copolymer (RCP) with end functional 

groups like OH and tempo (2,2,6,6-tetramethylpiperidinoxyl) moiety is used before BCP 

nanostructure self-assembly for the purpose of dewetting, improved adhesion and 

uniform coverage over a large area by changing the interfacial energy [9]. While studying 

the effect of brush layer on BCP morphology, Mansky et al. have also shown that 

orientation and ordering of the microphase-separated BCPs can be controlled by 

controlling the relative interfacial energies between each copolymers block and the 

substrate [9]. It was shown that, for a same block lengths lamella forming di block 

copolymers, the lamellae orient parallel to the substrate and plane of the film with 

substrate-air interface; while by depositing a brush layer and changing the interfacial 

energies between both blocks and the substrate the lamellae orient perpendicular to the 
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substrate and plane of the film. Selecting the appropriate molecule as brush layer is vital 

for the perpendicular orientation and extensive study in this area is necessary for  

application purpose. 

BCP film thickness is one of the factors for parallel and perpendicular orientation 

of BCP nanostructures [12–14,18-19]. It is widely known that, there is a limited thickness 

window located in the proximity of lattice spacing or domain size L0 of the cylinders 

(center to center distance of cylinders) where perpendicular orientation can be obtained 

due to commensurability between the thickness of film and lattice spacing [12, 13,20-21]. 

Only in few works recently it is shown that, perpendicular orientation can be achieved 

with L0/2 thickness of BCP film as well [14].  With the  increase in film thickness from 

L0/2 to L0 mixed parallel and perpendicular morphology can be observed, and a complete 

coverage of parallel orientation was observed at 3/4L0 [14]. Further study on BCP 

morphology and orientation in these thickness windows and beyond will be beneficial for 

realizing BCP nanostructures in applications. 

The annealing temperature is another external experimental parameter which has 

significance role in defining the orientation of BCP microdomain [22]. Entropy of the 

system and enthalpy are key factors which governs the thermodynamics of BCP [23]. 

Although at room temperature the BCP phases are metastable, but no reordering occurs 

as it is frozen at that temperature. With external energy such as thermal annealing this 

metastable state tries to reorder through phase separation; usually the phase separation of 

BCP will not occur until the temperature of system is below glass transition temperature 

of the blocks. As it reached to the glass temperature, the increase in chain mobility leads 

microphase separation [24].  The incompatibility between two blocks linked by covalent 
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bond after annealing treatment organized into different shape and size of periodic 

structure [25]. The combination proper annealing time and temperature govern the phase 

separation and orientation of the blocks by playing with the surface tension of each 

blocks [16,22,26]. There are few independent study on the thermal effect on BCP phase 

transition and orientation [16,22,26-27].  Further study on the ordering of phases due to 

thermal effect using different combination of experimental parameters will strengthen the 

understanding of morphology evolution. 

A uniform periodic arrangement of BCP microdomain is result of a perfect 

combination of BCP thickness, annealing temperature/time along with surface 

modification via a brush polymer. This study is expected to strengthen the existing 

understanding of BCP morphology evolution and orientation, specifically on the PS-b-

PMMA BCPs. This understanding will help the BCP nanostructure fabrication process 

more promising and reproducible; which is still a challenge to achieve in different 

experimental setups. 

 

Experimental details 

In this work, all the chemicals were purchased from Sigma Aldrich and all the 

polymers were purchased from Polymer Source INC.  

A1. Substrate cleaning. Silicon (100) with thin layer of native oxide were used 

for this experiment.  A solution of hydrogen peroxide (H2O2), ammonium hydroxide 

(NH4OH) and distilled water (H2O), in the ratio of 1:1:5 at 65◦C for 2.5 hr. was used to 

eliminate residual organic traces from the Si surface. 
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 To study the BCP nanostructure morphology evolution, the experiments 

performed in this study are mentioned below- 

1. Effect of different brush polymers  

2. Effect of BCP film thickness 

3. Effect of BCP film annealing time and temperature 

A2. Effect of different brush polymers. In this study, two BCPs Polystyrene-

block-Polymethylmethacrylate (PS (Mw 52000)-b-PMMA (Mw 142000)) (named as 

PS52) and Polystyrene-block-Polymethylmethacrylate (PS (Mw 55000)-b-PMMA (Mw 

22000)) (named as PMMA22) were used. As mentioned above, brush polymer is used 

before BCP deposition to obtain perpendicular orientation of BCP nanostructures. To 

study the effect of brush layer three different polymers, monohydroxy terminated 

polystyrene (Mn:9500, PDI:1.04) (named as PS-OH), alpha hydroxy omega tempo 

moiety polystyrene-random-polymethylmethacrylate (Mn=11000, Mw/Mn=1.25) (named 

as OH tempo PS-r-PMMA) and polystyrene-random-polymethylmethacrylate (PS-r-

PMMA) with total molecular weight 15600 and 55 mole% PS (named as PS156) were 

taken as brush polymer to neutralize the surface energy of substrate. The brush layer was 

spin coated using 2000 rpm on cleaned Si and afterwards annealing was performed in a 

muffle furnace (KSL1100X) inside a nitrogen filled glove box at 172 oC for 72 hrs to 

allow the polymer chain ends to diffuse and react with the substrate surface. Following 

that, the annealed layer was toluene rinsed three times to remove the unreacted brush 

layer from the substrate. The resulting film had thickness of ~5nm. To study the effect of 

brush layer on BCP morphology evolution, BCP solutions of 1 Wt.% were spin casted 

using 2500 rpm followed by annealing at 180 oC for 24 hrs. in the muffle furnace 
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(KSL1100X) inside a nitrogen filled glove box to allow microphase separation for both 

PS52 and PMMA22. 

A3. Effect of BCP film thickness. In this study only PMMA22 BCP was used. 

OH- tempo PS-r-PMMA was deposited on cleaned Si substrate as brush layer for this 

experiment as perpendicular orientation of PMMA cylinders were observed using this 

brush layer in the previous study. The brush layer deposition was done using a 2 Wt.% 

solution and 2000 rpm angular speed same way as described in section A2.  BCP 

thickness was varied by varying the spin coating speed. PMMA22 solution (18 mg in 2 

ml toluene ,1 Wt. %) spun casted on the brush layer coated substrate with different 

angular velocity 2000, 2500, 3000 and 4000 RPM for 40s to get variation in BCP film 

thickness. After deposition, the samples were annealed at 180 for 24 hrs in the muffle 

furnace (KSL1100X) inside a nitrogen filled glove box to allow microphase separation. 

A4. Effect of BCP film annealing time and temperature. PMMA22 BCP of 1 

Wt. % solution was used to study the effect of annealing time and temperature. OH-

tempo PS-r-PMMA was used as brush layer, and was deposited and grafted to substrate 

using same method as described in the effect of BCP film thickness section. In the next 

step, the BCP film was spin casted using 2500 rpm on the brush layer. To study the 

annealing temperature and time effect the BCP films were annealed at 180 oC for 2.5 hrs, 

12 hrs, 24 hrs and 36 hrs, and 250 oC for 30 mints, 2.5 hrs, 12 hrs and 24 hrs.  

 

Characterization techniques 

Field emission scanning electron microscopy (FESEM-Quanta200) was used for 

imaging and morphology analysis of BCP nanostructure. BCP and brush layer film 
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thickness were measured by Filmetrics F50-UVX Film Thickness mapper. BCP 

microdomain size, inter domain distance was analyzed by ImageJ software. 

 

Results and discussion 

B1. Effect of different brush polymers. PS-OH and PS156 were used as brush 

layer for PS52 BCP, and PS-OH and OH tempo PS-r-PMMA were used as brush layer 

for PMMA22 BCP deposition.  As shown in figure 7(a) and (b) show the SEM images of 

PS52 a PS cylinder forming BCP after phase separation. Both OH-terminated PS polymer 

and 55 mole % PS-r-PMMA as brush layer changed the substrate BCP interface and 

helped the cylinders to orient perpendicularly. In case of PS-OH layer the end OH 

functional groups graft to the substrate surface and the PS layer forms the wetting layer 

for preferential PS perpendicular orientation in PS52 [10,11].  

 

 

 

Figure 6. Molecular representation of three different brush polymers used in this study 

 

Whereas in case of PS152 the 55 mole% of PS in the PS-r-PMMA gave a PS 

preferential wetting layer promoting the perpendicular orientation of PS cylinders in 

PMMA matrix. However, it is noted that, the sample with PS-OH brush layer was more 

defect free in the form of perpendicular cylinders as shown in figure 7 (a), whereas the 

PS-r-PMMA brush layered sample shows some defects in the form of parallel or touching 

cylinders in places as shown in figure 7(b).  In the subsequent experiment it is shown that 
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the brush layer PS152 with higher PS mole% (55 mole%) when used for PMMA22 BCP 

didn’t quite promote the PMMA cylinder perpendicular orientation as shown in Fig. 7 

(c). whereas the PS-r-PMMA brush layered sample shows some defects in the form of 

parallel lamellae as shown in figure 7(b).  In the subsequent experiment it is shown that 

the brush layer PS152 with higher PS mole% (55 mole. %) when used for PMMA22 BCP 

didn’t quite promote the PMMA lamellae perpendicular orientation as shown in figure 7 

(c). For PMMA22 BCP with PS152 mostly islands were formed. In case of PMMA22 

BCP the third polymer OH tempo PS-r-PMMA when used as brush layer promoted the 

PMMA cylinders to orient perpendicularly as shown in Fig 7 (d). In case of OH-tempo 

PS-r-PMMA, the OH groups are expected to graft on the oxide substrate whereas the 

tempo group attached to the PMMA (as shown in Fig. 6) stays towards the BCP layer 

interface, and promotes PMMA cylinders to orient perpendicularly. 

B2. Effect of BCP film thickness. In this work, the morphology variation with 

the BCP thickness variation is shown with the PMMA cylinder forming BCP (PMMA22) 

used for studying effect of brush layer. In this experiment, OH tempo PS-r-PMMA was 

used as the brush layer which gave perpendicular orientation in section B1. The BCP film 

thicknesses were varied by varying the spin coating angular velocity keeping all other 

experimental conditions same as the conditions mentioned in the section B1 for obtaining 

perpendicular cylinders of PMMA22. The thicknesses of BCP films measured were ~18 

nm, ~29nm, ~42nm and ~53nm with spin coater angular velocity of 4000rpm, 3000rpm, 

2500rpm and 2000rpm, respectively. The PMMA cylinders domain size (center to center 

distance) and the average diameter noted from the Gaussian fitting of the histogram plot 

are ~40 nm and ~18nm, respectively, as shown in figure 9 (a) & (b). The plot in figure 9 
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was done from SEM image of the cylindrical PMMA sample shown in figure 8 (b). The 

perpendicular orientation of PMMA cylinders was observed with the thicknesses (t) of 

BCP films t~42nm (2500 rpm velocity and 1.05L0 or ~L0) and t~18nm (4000 rpm 

velocity and 0.45L0 or ~1/2 L0) and lies within the window of PMMA cylinder domain 

size and half of domain size (L0 ~ 40nm & L0/2 ~20nm) as shown in figure 8 (b) and (d), 

respectively. figure 8 (c) shows the parallel cylinders (lamellar structure) were obtained 

with the spin coating velocity 3000 rpm, and thickness ~ 29nm (~3/4Lo/~0.75 Lo), which 

is consistent with the literature report [12–14, 20, 28]. As for the samples with 

thicknesses 53nm (1.3Lo), mixed parallel and perpendicular morphologies were obtained 

shown in figure 8 (a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. SEM images showing change in BCP thin film morphology with different brush 

layer (a) PS52 on PS-OH (b) PS52 on PS156 (c) PMMA22 on PS-OH, and (d) PMMA22 

on OH tempo PS-r-PMMA 
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Figure 8. SEM images showing change in BCP morphology of PMMA22 BCP with 

decrease in film thickness a) 1.3L0 (~53nm) b) 1.05L0 (~42nm) c) 0.75L0 (~29nm) and 

d) 0.45L0 (~18 nm)) 

 

 

 

 

 

 

 

 

Figure 9. Histogram plotted from Fig.8(b) with Gaussian fitting for a) PMMA cylinder 

size b) Distance between PMMA Cylinder. 
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B3. Effect of BCP film annealing time and temperature. The difference in 

surface energy between PS and PMMA at the surface can be tuned and balanced by 

varying annealing time and temperature [26].The segregation factor, flory huygens 

interaction parameter () between two blocks  decreases with the increase in temperature 

of the BCP system [29]. As the temperature exceeds the glass transition temperature, the 

chain mobility increases, eventually the microdomain arrange themselves in particular 

fashion.  

Dewetting occurs as a result of higher surface energy of BCP compared to the 

substrate. In this study, the PMMA22 BCP was used; in the deposition process, BCP 

deposition was done using 2500rpm and BCP film annealing time and temperature were 

varied keeping all other conditions same as section B1 and B2. Annealing temperatures 

of 180 oC was used for 2.5, 12, 24 and 36 hours, and 250 oC was used for 30 mins, 2.5 hrs 

12hrs and 24 hrs. With increasing temperature and time of annealing should be less to 

optimize the surface energy of two blocks and surface energy between the blocks and 

substrate for microphase separation. In the first study at 180 oC for 12 hrs annealing the 

microphase separation resulted only few perpendicularly oriented cylinders spread 

randomly at different parts as shown in figure 10(a). It can be attributed due to supplied 

amount of energy for proper chain mobility is not optimum for complete phase separation 

throughout the film. As annealing time increased to 24 hrs, morphology conversed into 

PMMA vertical cylinder only structures, as shown in figure 10 (b). At 36 hrs some defect 

start to appear in terms of horizontal/parallel cylinders mixed with vertical/perpendicular 

cylinders, indicating conversion of perpendicular cylinders into parallel/horizontal 

cylinders with increasing time in agreement with other studies [15, 16].  The small 
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difference in surface tension between PS and PMMA facilitates the appearance of vertical 

orientation in the beginning; eventually this small difference is partially responsible for 

parallel/horizontal orientation with annealing time or in other word with increasing 

energy by equating the surface energy [22,26]. The same trend was observed for sample 

treated at higher temperature of 250 oC, for different times.  

 

Figure 10. SEM images showing change in BCP morphology of PMMA22 BCP with 

annealing at 180oC for a) 12 hrs b) 24 hrs, and C) 36 hrs 

 

 

To show that both temperature and time have influence on the phase separation 

and orientation, in the second experiment of this study samples were prepared at 180 oC 

2.5 hrs and 250 oC 2.5 hrs.  The SEM images in figure 11 shows, the phase separation 

just started at 180 oC 2.5 hrs timeline as seen from the indistinct structures at figure 11 

(a); whereas a parallel cylinder was formed for the 250 oC 2.5 hrs sample as shown in 

figure 11 (b). The formation of parallel cylinders in patches or formation of islands is 

probably due to the modification of brush layer beneath the BCP layer at relatively high 

temperature  as observed by others as well [27]. Further experiments at 250oC for 30 

minutes, 2.5 hrs, 12 hrs and 36 hrs were performed to see the higher temperature effect at 

different times. Figure 12(a) shows at 250 oC 30 mints no phase separation can be seen 

indicating the time is not enough for the threshold of the phase separation to start in this 
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case. For annealing at 250 oC 2.5 hrs, 12 hrs and 24 hrs discontinuous films of parallel 

cylinders are observed (shown in figure 12 (b), (c) and (d), respectively) most probably 

due to the degradation of the random copolymers in the brush layer at higher temperature 

as stated above. While comparing the orientation at two different temperatures it is shown 

that, for 250 oC temperature, time as low as 2.5 hrs (figure 12 (b)) is enough for obtaining 

the parallel morphology which is expected to appear post the perpendicular morphology 

appearance while annealing; whereas for 180 oC mixed parallel and perpendicular 

structures were observed (figure 10 (c)) after 36 hrs anneal, and perpendicular cylinders 

were observed until 24 hrs annealing (figure 10 (a) & (b)). This results at different 

temperatures and times of annealing clearly show the importance of external thermal 

energy to modulate the surface energy and as a result formation of parallel or 

perpendicular orientation of PMMA cylinders. 

In summary, the conditions which gave the perpendicular orientation of PMMA22 BCP 

are listed below: 

 

Deposition parameter Name and value used 

Brush layer polymer name Alpha hydroxy omega tempo moiety 

polystyrene random-polymethylmethacrylate 

 

Brush layer weight % in solution 2 wt% 

 

Brush layer annealing temperature 

and time 

 

1720C 72hrs 

BCP weight % 1 wt % 

 

BCP spin coating velocity 2500 and 4000 rpm (thickness -42nm and 

29nm) 

 

BCP annealing time and temperature 24 hrs at 1800C 



   

30 

 

 

 

 

 

 

 

Figure 11. SEM images to show annealing temperature effect on PMMA22 BCP using 

same annealing time of 2.5 hrs a) 180oC for 2.5 hrs b) 250oC for 2.5 hrs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. SEM images showing change in BCP morphology of PMMA22 BCP with 

annealing at 250oC for (a) 30 mints, (b) 2.5 hrs, (c) 12 hrs and (d) 24 hrs 

 



   

31 

Conclusion 

A systematic study of BCP morphology evolution by changing different 

parameters was performed in this work. Cylinder forming PS-b-PMMA BCPs were used 

to study the effect of three external experimental parameters on the orientation of the 

cylinders. In the first study, different brush polymers were selected and studied for two 

different BCPs to show the proper polymer for perpendicular orientation. It is shown that 

perpendicular orientation depends on the preferential wetting layer between substrate 

BCP interface and largely depend on proper selection of brush molecule with respect to 

the BCP molecule.  In the second study, it is shown that with the variation in BCP film 

thickness perpendicular and parallel orientations were observed only with BCP 

thicknesses lies within a particular domain size multiple. The third study shows the 

influence of different annealing times and temperatures on the orientation and formation 

of BCP microdomain. It is shown that, the temperature and time of annealing need to be 

optimized for obtaining perpendicular orientation. With too low temperature and less 

time the energy is not sufficient to promote chain mobility and subsequent microphase 

separation; whereas with too high temperature and more time the BCP phase separated 

nanostructures orient in parallel/horizontal/equilibrium orientation due to equal surface 

energy between two blocks. 
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BLOCK COPOLYMER TEMPLATED TIO2 NANODOTS USING ROOM 

TEMPERATURE PULSED LASER DEPOSITION 

 

Abstract 

Block copolymer (BCP) templated inorganic material nanopatterning often 

termed as BCP lithography has received significant attention recently as it’s self-

assembly property offers different morphology of nanostructures. The BCP lithography 

method which is a combination of self-assembled BCP nanostructures fabrication and 

inorganic material deposition requires a low temperature inorganic deposition process to 

avoid polymer degradation. In this regard, there are only few methods like sol-gel 

deposition and atomic layer deposition to synthesize superior quality metal oxides and 

metals at low temperature. In this paper, we are reporting a novel method combining BCP 

template and room temperature pulsed laser deposition (PLD) to synthesize TiO2 nanodot 

films. This BCP templated TiO2 nanodots maintain the morphology of the template; 

which is a promising result for using this method to explore other self-assembled 

morphologies.  Energy dispersive x-ray spectroscopy (EDX) confirms the presence of Ti 

and O2 in the nanodot films, and x-ray diffraction (XRD) data shows mixture of both 

anatase and rutile TiO2 crystalline phase. The photoluminescence (PL) spectrum for the 

synthesize TiO2 is dominated by a broad peak extending from visible to near infrared 

(NIR), which consists of characteristic peaks for TiO2 anatase (visible) and rutile phase 

(NIR). The fabricated closely-packed well-ordered TiO2 nanodot films will be attractive 

for different optoelectronics, sensing and catalysis applications. This fabrication method 

combining BCP and PLD has been explored only in few works so far, and is expected to 
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give a promising method to synthesize highly ordered nanostructures of different 

morphologies, and of different materials.  

 

Introduction 

Well-ordered low dimensional nanostructures are gaining significant attention 

because of their unique optical, electrical, magnetic and chemical properties in advanced 

technological field[1]. The properties of these structures usually depend on their shape, 

size, arrangements and overall material quality. There are several bottom up approaches 

for nanofabrication to perform the direct synthesis of nanostructures at the atomic or 

molecular level, such as various vapor deposition methods (e.g. atomic layer deposition 

(ALD), pulsed laser deposition (PLD) & chemical vapor deposition (CVD)), and 

chemical solution process etc.[2–5]. Although nanostructures grown using these methods 

show good structural, electrical and optical properties, in practice these methods are not 

yet self-sufficient enough to produce reproducible, well-ordered and large area patterns 

for devices. In this field of research, self-assembled materials for direct synthesis of 

nanostructures or as templates have received significant attention in the industry for well-

ordered and wide area patterning; especially the use of block copolymers (BCPs) material 

is advancing remarkably to provide the microelectronic and optoelectronic industry a new 

method for low dimension and well-ordered patterning technology[6,7]. BCPs self-

assemble into a range of morphologies like lamellar, cylindrical and spherical that makes 

it suitable candidates for two and three dimensional lithographic processes [7–9]. 

Subsequent deposition of inorganic materials in these nanostructured BCP films leads to 

formation of similar morphology of inorganic nanostructures. By varying parameters like 
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molecular ratio and volume fraction of BCP during synthesis, the shape and size of 

nanopattern can be tuned [6,10].  

             Titanium dioxide (TiO2) is a highly promising semiconductor material because of 

its large band gap, high refractive index, high dielectric constant and high surface-activity 

[11]. The unique structural and functional properties of TiO2 is very attractive in the area 

like photo catalysis, water splitting, solar cells, super capacitors and lithium-ion batteries 

[12–14]. Controlled nanostructures of TiO2 is even more attractive because of their 

improved optical and electrical properties such as high surface to volume ratio and 

conductivity compared to bulk [13,15,16]. In this regard highly ordered, and superior 

quality TiO2 materials are important criteria for the future optoelectronics and energy 

industry to thrive. 

In this paper, a novel approach to fabricate aligned TiO2 nanodots using BCP 

cylindrical nanostructures as template is presented. The PLD method at room temperature 

has been used as inorganic deposition method to fabricate the TiO2 nanodots. The PLD 

technique provides deposition of high quality films and coating of TiO2 with excellent 

adhesive strength [17]. Although a high temperature PLD deposition method is usually 

used for depositing crystalline TiO2 films [17] in this work we have adopted room 

temperature PLD method to avoid any degradation of BCP template. The PLD deposited 

TiO2 on BCP was further annealed in high temperature to remove the sacrificial polymers 

and make the as deposited amorphous TiO2 crystalline. To our knowledge, there are 

reports on fabrication of different TiO2 nanostructures using other inorganic oxide 

deposition methods in conjunction with BCP template [18,19]; and only one report on 

BCP assisted PLD method for fabrication of lead titanate (PbTiO3) nanostructures [20]. 
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This unique method of BCP assisted PLD grown TiO2 nanodots will open up new 

avenues of fabrication using many other morphologies available from BCPs and other 

inorganic materials possible to deposit by PLD method. Field emission scanning electron 

microscopy (FESEM) and atomic force microscopy (AFM) were used for microscopic 

imaging of the nanostructures, energy dispersive x-ray spectroscopy (EDX) and x-ray 

diffraction (XRD) data were used to evaluate the TiO2 nanodots structural property, and 

photoluminescence (PL) spectroscopy was done for investigating the optical property of 

these nanodots.  

 

Experiments 

BCP nanostructures fabrication. Si wafers with thin layer of native oxide were 

used as substrates in this work. The substrates were cleaned to remove any organic 

residue on the native oxide layer using hydrogen peroxide (H2O2), ammonium hydroxide 

(NH4OH) and DI water (H2O) at 65 oC for 2.5 hrs. In this work, to achieve perpendicular 

orientation of the BCP domains, a brush layer was deposited on the cleaned Si substrate. 

The orientation of BCP nanostructures leads by the surface energy of the substrate [21]. 

polystyrene-random-polymethylmethacrylate (PS-r-PMMA) with total molecular weight 

156000 and 55 mole% PS was used as brush layer. The brush layer was deposited from 

1wt. % toluene solution using spin casting. The layer was annealed at 240oC on a hot 

plate inside a nitrogen atmosphere glove box for 40 minutes to graft the brush layer 

polymer on the substrate surface. The brush layer was then toluene rinsed three times to 

remove the unreacted layer from the substrate. The BCP used in this study was 

polystyrene-block-polymethylmethacrylate (PS-b-PMMA) of molecular weight Mw 
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52000 (PS) and 142000 (PMMA); named here as PS52. The BCP layer was deposited on 

the bush layer grafted substrate from 1 wt.% toluene solution using a spin coater. The 

samples, were then annealed in a muffle furnace (MTI Corporation KSL1100X) situated 

inside the glove box at 180 oC for 24 hrs to facilitate microphase separation of PS and 

PMMA domains; which formed PS cylinders in PMMA matrix for this polymer with the 

above mentioned experimental conditions. All the chemicals were purchased from Sigma 

Aldrich and the polymers were purchased from Polymer Source Inc. 

TiO2 nanostructures deposition. For depositing ordered TiO2 nanostructures, 

first PMMA domain was etched selectively from the BCP nanostructured film. It is 

already shown that PMMA preferably etched compared to PS polymer during oxygen 

(O2) plasma etching [22]. In this work, controlled O2 plasma etching with power 50 W, 

flow rate 5.68 Sccm and 400 mTorr pressure for 5 Sec was used to etch the PMMA 

domain selectively. The PLD TiO2 was expected to get deposited as a thin layer in the 

etched PMMA domain, as well as on the PS cylinder surface. TiO2 sputtering target (Kurt 

J. Lesker) was used for the PLD deposition. At 2×10-5 mbar PLD chamber pressure a 

beam of nanosecond pulse laser using a 248 nm UV excimer laser was focused onto the 

target; the laser beam used in this work, with 1.2 J/cm2 energy density and 1mm spot 

diameter was fallen on the TiO2 target and the evaporated plasma plume deposited on the 

surface of the PMMA etched BCP nanostructures sample placed at room temperature. 

The TiO2 target was fixed with an electric motor inside the PLD chamber to avoid the 

deposition of material only at particular spot on substrate. The distance between samples 

to target was 4.5 cm. A range of laser pulse shots were used in this work such as 3000, 

6000, 9000 and 12000 to observe any difference in nanostructure formation; in this paper 
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all the data shown are for samples deposited with 6000 laser pulse shots only.  The PLD 

deposition conditions are summarized below. 

 

PLD deposition parameters Value used 

Chamber pressure 2×10-5 

Growth temperature 220C 

Laser energy density 1.2j/cm2 

Sample-target distance 45mm 

Pulse shots used 3000,6000,9000,12000 

Laser wavelength 266nm 

Spot size 1mm diameter 

 

Following the deposition, the samples were annealed into a furnace (MTI 

corporation MTI 11000 X) at 500 oC for 7hrs in air; to remove any remaining polymers 

and to transform the amorphous TiO2 into crystal. This high temperature annealing step 

also promotes the formation of TiO2 nanodots around the PS cylinders from the thin 

continuous layer of TiO2.  

 

Characterizations 

Field Emission Scanning Electron Microscope (FESEM-Quanta 200) was used to 

do the imaging of BCP and TiO2 nanostructures samples. The elemental analysis of the 

TiO2 nanostructures samples were done with the help of SEM energy dispersive X-ray 

spectroscopy (EDX) by using a field emission gun (Oxford Instruments) attached to the 

FESEM system. Surface morphology of the nanodot films were investigated using an 
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atomic force microscope (Bruker-Dimension Icon). The AFM done using 8 nm TESP Si 

tip in tapping mode. The AFM data were processed using Bruker NanoScope Analysis 

Suite 1.30 software. X-ray diffraction (XRD) measurements were done using a Bruker 

D8 Discover instrument operating at 40 kV and 40 mA. The XRD instrument with a 

characteristic X-ray source of Cu tube (Cu Kα, λ= 1.54184 Å) was used. The PL 

measurements were done with a Horiba Labram HR Raman-PL system using 325 nm He-

Cd laser.  

 

Results and Discussion 

The schematic diagram for the whole procedure to fabricate TiO2 nanodots using 

BCP lithography and PLD method is shown in figure 13. The diagram shows the 

procedure steps which are briefly- (i) BCP nanostructures fabrication steps, (ii) BCP 

template formation, (iii) PLD deposition and (iv) polymer removal to obtain the TiO2 

only nanodot structures.  

Figure 14 (a) shows the SEM image of the as grown microphase separated PS52 

without any further treatment for imaging. A brush layer of PS-r-PMMA was used to 

facilitate the growth of vertical cylinder formation; a well-known fact in the BCP 

research[21]. Following the BCP film casting on brush layered substrate temperature 

annealing was done to promote the microphase separation of the domains; which gives a 

periodic arrangement of vertical cylindrical nanostructures in this case. The cylinder 

diameter and the domain size/cylinder to cylinder distance are shown in figure 14(b) ad 

(c) using the histogram plots. It is noted from the Gaussian curve fitting (figure 14 (b) & 
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(c) red curves) that, the average diameter of the cylinders is ~58 nm, and the average 

domain size of the cylinders are ~80 nm. 

In this work, the BCP cylindrical nanostructures were used as a template for TiO2 

nanostructure fabrication. To this end, O2 plasma etching was performed on the as grown 

BCP samples to etch one domain selectively; which is PMMA in this case. Although it is 

expected that PMMA preferentially etches to PS, but there might be some residual 

PMMA and some of the PS polymer may get etched in the process due to the proximity 

of the etching rate for these two polymers. Figure 15 shows SEM images at different  

 

 

 

 

Figure 13. Schematic Diagram of the TiO2 nanodots fabrication procedure using BCP 

template assisted PLD deposition method 

 

stages of fabrication. Figure 15(a) and (b) show the SEM images of as grown PS-b-

PMMA nanocylinder sample and the same sample after PMMA etching, respectively. 

The PMMA etched sample was used as BCP template for PLD deposition of TiO2 

nanostructures.  The substrate was held in room temperature to avoid any degradation of 

polymer template; which leads to formation of amorphous TiO2 thin layer. The 

amorphous TiO2 deposited sample was then annealed at 500 oC for 7 hrs in air for the 

formation of crystalline TiO2 and etching the polymers in the same step. Figure 15 (c) 
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shows the SEM image of the same sample used in Figure 15(a) & (b) after PLD 

deposition and temperature annealing. As mentioned in abo, no. of pulse shots which 

deposits different thicknesses of thin films were varied (3000, 6000, 9000 &12000) to 

observe any difference in the TiO2 nanodot formation. No significant difference was 

observed in the nanodot formation due to the variation of pulse shots in that range (data 

not shown). In this report, all the data shown were measured on samples made with 6000 

PLD pulse shots.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. a) SEM image of as grown PS-b-PMMA BCP (PS52). Histogram plots for PS 

cylinder (a) diameter (average ~58 nm) and (b) domain distance (average ~80 nm). 

 

 

Figure 16 shows the SEM and AFM images of the TiO2 nanodots only sample 

and corresponding nanodot size and domain calculation from these images. From the low 

magnification image shown in figure 16 (a) it is observed that, the nanodot formation is 

very uniform throughout the sample and it was consistent for all the samples grown in 

this study. Figure 16 (b) & (c) show the histogram plots for the nanodot diameter and 

domain size, respectively derived from the SEM image. From the Gaussian fitting of the 



   

44 

plot (Fig. 16(b) & (c) red curves) the average diameter and domain size was noted as ~75 

nm and ~40 nm, respectively. Figure 16(d) is the AFM topographical image of the same 

sample and Figure 16(e) is the 3D projection of image 16(d). The average height of the 

nanodots are ~10 nm, calculated from depth histogram of the topographical image (Fig. 

16(d)) using Bruker NanoScope Analysis Suite 1.30 (plot not shown). The average 

 

Figure 15. SEM images at different stage of fabrication of TiO2 Nanodots a) as-grown 

PS-b-PMMA nanostructures after phase separation, (b) PS cylinders after selective 

PMMA etching from the casted BCP nanostructured film, and (c) TiO2 only nanodots 

after polymer etching. 

 

diameter of the nanodots calculated from the depth histogram of the AFM image is ~70 

nm, which is almost similar to the average diameter value calculated from the SEM. TiO2 

nanodots it is noted that, TiO2 nanodot diameter was almost same as the PMMA domain 

size in between the PS cylinders. From this information, the idea behind the TiO2 nanodot 

formation was interpreted as- during PLD deposition, small TiO2 nanoparticles in the 

form of continuous thin film get deposited on the PMMA etched BCP template; 

afterwards during high temperature annealing (500 oC) and PS cylinder evaporation these 

TiO2 nanoparticles nucleated in the void PMMA domain space in between PS cylinders, 

breaking up the TiO2 thin layer; resulting in formation of TiO2 nanodots.  
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Figure 16.(a) Low magnification SEM image of TiO2 nanodot only sample after polymer 

removal. (b) and (c) are the histogram plots for the diameter and interdomain distance of 

the nanodots calculated from the SEM image shown in (a). (d) is the AFM topographical 

image of the same sample and (e) is the 3D projection of (d) 

 

The elemental analysis was done using EDX spectroscopy attached to the SEM 

system on the TiO2 only nanodots to investigate and confirm the TiO2 deposition. From 

EDX study, the presence of Ti and O was confirmed as shown in figure 17 (b) & (c). The 

EDX spectrum is analyzed by the INCA software that runs the EDX detector and 

determines the atomic percentage of the elements present in the scanned area. Multiple 
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spots were taken to get an average over the sample for elemental composition. Here one 

spectrum and corresponding point in the SEM image are shown in figure 17. Figure 17 

(b) is the EDX spectrum recorded from the point of interest (indicated as spectrum 1) 

shown in figure 17 (a). The point of interest was taken exactly on a TiO2 nanoisland as 

shown in figure 17(a). The x-ray emission peaks at 0.452 (Ti L line), 4.512 (Ti Kα line), 

and 0.525 (O Kα line) are shown in the spectrum using corresponding Ti and O balloons 

(Fig 17 (b)). The most intense x-ray emission ~1.74 KeV (Si Kα line) is from the 

substrate, and the peak is not shown here to focus the Ti and O peaks in the spectrum.  

The atomic % for Ti and O are ~15% and ~85%, as shown below figure 17 (b). Please 

note, the atomic % contribution from Si substrate and carbon was excluded from the 

calculation; the O contribution in the measurement as shown in the atomic % was coming 

not only from TiO2, but also from the substrate native oxide and from the surrounding. 

 

 

 

Figure 17. Elemental analysis of TiO2 nanodots using EDX spectrum as shown in (b) and 

the corresponding SEM image is shown in (a). The point of interest in the SEM image 

where spectrum was recorded is shown as spectrum 1. The element percentages are 

shown in (c) 
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XRD of the TiO2 nanodot only sample after annealing was done to investigate the 

structural development of the material. As mentioned before, due to room temperature 

PLD deposition the as deposited TiO2 was amorphous in nature. However, after 

annealing at 500 oC for 7hrs the resultant TiO2 nanodots were expected to become 

crystalline in nature. Figure 18 shows the XRD 2 plot for the TiO2 nanodot sample; 

measurements were done using CuKα5 radiation on x-ray diffractometer. The intensity of 

TiO2 peak were very low in comparison to the peak coming from Si substrate. To 

eliminate the Si peak, the sample was tilted 7.8o using chi rotation. The Bragg’s 

diffraction peaks observed at 27.44o, 44.97o, 54.77o and 56.77o are correspond to TiO2 

rutile phase with hkl plane of (110), (210), (211) and (220), respectively [23–25].  The 

peak at Bragg’s angle 38.67o is corresponds to TiO2 anatase (112) hkl plane[23]. It is 

noted from the XRD data that, the rutile phase of TiO2 was observed at relatively low 

annealing temperature of 500 oC compared to the usual high temperature for stable rutile 

phase formation[26]. This can be attributed to oxygen deficiency during PLD deposition, 

which was performed at room temperature under vacuum. Our observation is in 

agreement with Ishii et. al. who has also obtained rutile phase for PLD grown TiO2 at 

relatively low annealing temperature [27]. This rutile TiO2 formation at relatively low 

annealing temperature will be very attractive for optical applications [28,29]. 

Finally, PL spectroscopy was performed to study the optical properties of these TiO2 

nanodots. The sample used for this study was the same sample shown in figure 15 (c), 

figure 16 and figure 18. As seen from figure 19  the PL spectrum of the TiO2 sample is 

dominated by a broad peak in the visible and near infrared (NIR) region (~1.5-2.6 eV), 

which consists of the characteristic peaks of TiO2 anatase phase in the visible region and 
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TiO2 rutile phase in the NIR region, as reported by many others [24,30–40]. The broad 

PL spectrum of anatase TiO2 in the visible region is attributed to combination of different 

reasons such as self-trapped excitons, oxygen vacancies and defect sites, impurities or 

reduced metal ions, etc. [32–37]. The PL spectrum of rutile phase is more difficult to 

interpret, however there are several reports attributing the NIR region broad peak to 

interstitial Ti3+ ions, trapped holes and free holes etc. in the rutile phase [24, 37–40]. The 

lack of oxygen during PLD growth in the chamber can be identified as one of the reason 

in the exhibition of the broad peak seen in Figure 19 due to the formation of oxygen 

vacancies and Ti interstitials. In addition, this PL spectrum also confirms that the 

fabricated nanostructures are mixture of two TiO2 crystalline phases; which is in 

agreement with the XRD data.                           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. XRD 2θ plot of the TiO2 nanodot only sample as shown in the SEM and AFM 

image of Fig. 15(c) and Fig. 16 after annealing at 500oC for 7 hrs. The nanodots exhibit 

mostly TiO2 rutile phase peaks and one TiO2 anatase phase peak 
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Figure 19. Room temperature PL spectrum of TiO2 nanodot sample showing a broad 

peak in the visible and NIR region (~1.5-2.6 eV) of the spectrum. 

 

 

 

Conclusion 

In conclusion, this paper shows a successful demonstration of the fabrication of 

TiO2 nanodots using BCP as template and room temperature PLD. High temperature 

annealing of the samples after deposition not only promoted crystallinity of the as-

deposited amorphous TiO2 material, it also helped in the formation of these 

nanostructures from its thin film form. The proposed hypothesis behind the nanodot 

formation is, the deposited TiO2 nanoparticles nucleated in the void PMMA domain 

space in between PS cylinders during high temperature (500 oC) annealing and polymer 

evaporation, breaking up the TiO2 layer. The EDX elemental analysis shows the presence 

of Ti and O atoms. Further the XRD and PL data confirm the presence of mixed phase 

crystalline TiO2 material. In addition, the information about TiO2 crystal planes were 

obtained from the XRD 2 scan. The broad PL spectrum shows a broad peak in the 
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visible and NIR spectral region for the anatase and rutile phase, respectively. The 

fabrication procedure depicted in this paper will open up new avenue for inorganic 

nanostructures deposition method with different BCP morphologies and with other 

inorganic materials possible by PLD method. Apart from demonstrating a novel 

fabrication method, this paper also shows the formation of stable TiO2 rutile phase at 

relatively low temperature, which will be very attractive for many optical applications 

[28,29].  
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BLOCK COPOLYMER TEMPLATED TIO2 NANODOTS USING SOLUTION 

METHOD 

 

Abstract 

Block copolymer (BCP) lithography has received extensive attraction for the 

inorganic and metallic nanopatterning because of its self-assembled behavior, which 

offers different morphology of nanostructures. The BCP lithography method which is a 

combination of self-assembled BCP nanostructures fabrication and inorganic material 

deposition requires a low temperature inorganic deposition process to avoid polymer 

degradation. There are only few methods to synthesize the metal oxide and metals at low 

temperature. But in this paper, we are reporting solution method combining BCP 

template to synthesize TiO2 nanostructures. A comparative study in between selective 

solution method and mask method will be presented. This BCP templated TiO2 nanodots 

maintain the morphology of the template; which is a promising result for using this 

method to explore other self-assembled morphologies. Energy dispersive x-ray 

spectroscopy (EDX) confirms the presence of Ti and O2 in the nanodot films, and x-ray 

diffraction (XRD) data shows mixture of both anatase and rutile TiO2 crystalline phase. 

The photoluminescence (PL) spectrum for the synthesize TiO2 is dominated by a broad 

peak extending from visible to near infrared (NIR), which consists of characteristic peaks 

for TiO2 anatase (visible) and rutile phase (NIR). The fabricated closely-packed well-

ordered TiO2 nanodot films will be attractive for different optoelectronics, sensing and 

catalysis applications. 
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Introduction 

Uniform periodic nanoscopic structures are getting significant attention because 

of their unique optical, electrical, magnetic and chemical properties in advanced 

technological field [1].  The properties of such a structure is determined by their shape, 

size, arrangements and materials.  Several bottom up approaches such as various vapor 

deposition methods (e.g. atomic layer deposition (ALD), pulsed laser deposition (PLD) & 

chemical vapor deposition (CVD)), and chemical solution process etc. have been used for 

the synthesis of structures at the atomic or molecular level [2-5]. However, these methods 

are not yet self-sufficient enough for reproducibility, uniformity and large area patterns 

for devices. For the direct synthesis of nanostructure such a self-assembled materials-

block copolymer (BCP) has received significant attention in different field of 

microelectronics and optoelectronic industry with  low dimension and well-ordered 

patterning technology [6,7]. Different morphologies like lamellar, cylindrical and 

spherical which makes it suitable candidates for two and three dimensional lithographic 

processes [7-9]. Inorganic materials deposition in these BCP nanostructures leads to the 

formation of similar morphology of inorganic nanostructures. The shape and size of 

inorganic nanostructure can be tuned by varying the parameters like molecular ratio and 

volume fraction of BCP during synthesis [6,10]. 

The materials-with large band gap, high refractive index, high dielectric constant 

and high surface-activity is highly promising for semiconducting devices [11]. Titanium 

dioxide (TiO2) is a highly promising semiconductor material with such unique structural 

and functional properties  and very attractive in the area like photo catalysis, water 

splitting, solar cells, super capacitors and lithium-ion batteries [12–14]. Uniform ordered  
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TiO2 nanostructure is even more attractive because of its improved optical and electrical 

properties such as high surface to volume ratio and conductivity compared to bulk [13-

16]. So, a highly ordered, and superior quality TiO2 materials are important criteria for 

the future optoelectronics and energy industry to thrive. 

Herein, we are presenting an approach to fabricate well-ordered TiO2 nanodots 

using BCP cylindrical nanostructures as templates. Solution method with two different 

condition at room temperature has been used as inorganic deposition method to fabricate 

the TiO2 nanodots. In selective deposition method, the TiO2 materials follow the pattern 

of PMMA cylindrical structures while in mask method it just deposited in the void space 

of PMMA after PMMA is etched out. Field emission scanning electron microscopy 

(FESEM) and Atomic force microscopy (AFM) were used for microscopic imaging of 

the nanostructures, Energy dispersive x-ray spectroscopy (EDX) and x-ray diffraction 

(XRD) data were used to evaluate the TiO2 nanodots structural property, and 

photoluminescence (PL) spectroscopy was done for investigating the optical property of 

these nanodots. 

 

Experiments 

BCP nanostructures fabrication. The substrates-Si wafer with thin layer of 

native oxide were cleaned by using mixture of   hydrogen peroxide (H2O2), ammonium 

hydroxide (NH4OH) and DI water (H2O) at 65oC for 2.5 hrs.  A brush layer was 

deposited on the cleaned Si substrate to achieve perpendicular orientation of the BCP 

domains. The surface energy of the substrate plays vital role for the orientation of domain 

with substrate [17]. Polystyrene-random-polymethylmethacrylate (PS-r-PMMA) with 
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total molecular weight 156000 and 55 mole% PS with 1 wt.% toluene solution was 

deposited using spin casting method on cleaned Si-substrate as a brush layer. To graft 

properly the brush layer on the substrate surface, the layer was annealed at 240oC on a 

hot plate inside a nitrogen atmosphere glove box for 40 minutes and then rinsed three 

times using toluene to remove the unreacted layer from the substrate. The BCP used in 

this study was polystyrene-block-polymethylmethacrylate (PS-b-PMMA) of molecular 

weight Mw 52000 (PS) and 142000 (PMMA); named here as PS52. The BCP layer was 

deposited on the brush layer grafted substrate from 1 wt% toluene solution using a spin 

coater. The samples, were then annealed in a muffle furnace (MTI Corporation 

KSL1100X) situated inside the glove box at 180 oC for 24 hrs to facilitate microphase 

separation of PS and PMMA domains; which formed PS cylinders in PMMA matrix for 

this polymer with the above mentioned experimental conditions. All the chemicals were 

purchased from Sigma Aldrich and the polymers were purchased from Polymer Source 

Inc. 

TiO2 nanostructures deposition. In selective deposition method titanium (IV) 

bis (ammonium lactate) dihydroxide (TALH) from Sigma Aldrich was used as a titanium 

precursor to fabricate TiO2 nanodots. A solution of titanium precursors TALH was made 

in such a way that aqueous solution of 0.20M TALH adjusted to pH 2.0 via addition of 

1.0 M HCl. The sample with PS templates was immersed in to the solutions for different 

time interval: 12-18 hrs at room temperature.  TALH was expected to interact only with 

PMMA which has active functional groups. The oxygen plasma with power 50Watt, flow 

rate 5.68Sccm and pressure 400mTorr for 60 Sec was used to remove the PS from the 
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sample. The samples were annealed into a furnace (MTI Corporation MTI 11000 X) at 

500oC for 7hrs in air; to remove any remaining polymers and to transform the amorphous  

TiO2 into crystal. 

In the masked method, first PMMA domain was etched out selectively from the 

BCP nanostructured film. It is already well established that PMMA preferably etched 

compared to PS polymer during oxygen (O2) plasma etching[18]. Here, controlled O2 

plasma etching with power 50W, flow rate 5.68 Sccm and 400mTorr pressure for 5 Sec 

was used to etch the PMMA domain selectively. The TiO2 was deposited using same 

recipe and same procedure as the selective deposition method experiments decribed 

above. TiO2 was expected to deposit as a thin layer in the etched PMMA domain, as well 

on the PS cylinder surface. 

 

Characterizations 

Field emission scanning electron microscope (FESEM-Quanta 200) was used for 

the imaging of BCP and TiO2 nanostructures samples. The elemental analysis of the TiO2 

nanostructures samples were done with the help of SEM energy dispersive x-ray 

spectroscopy (EDX) by using a field emission gun (Oxford Instruments) attached to the 

FESEM system. Surface morphology of the nanodot films were investigated using an 

atomic force microscope (Bruker-Dimension Icon). The AFM was done using 8 nm 

TESP Si tip in tapping mode. The AFM data were processed using Bruker NanoScope 

Analysis Suite 1.30 software. x-ray diffraction (XRD) measurements were done using a 

Bruker D8 Discover instrument operating at 40 kV and 40 mA. The XRD instrument 

with a characteristic x-ray source of Cu tube (Cu Kα, λ= 1.54184 Å) was used. The PL 
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measurements were done with a Horiba Labram HR Raman-PL system using 325 nm He-

Cd laser. 

 

Results and Discussion 

The SEM image of the as grown microphase separated PS52 without any further 

treatment for imaging is shown in fig 20(a). A brush layer of PS-r-PMMA was used to 

promote the growth of vertical cylinder formation [17]. Following the BCP film casting 

on brush layered substrate annealing was done to promote the microphase separation of 

the domains; which leads a periodic arrangement of vertical cylindrical nanostructures. 

The diameter of cylinder and the domain size/cylinder to cylinder distance are presented 

in figure 20(b) and (c) as histogram plots. From the Gaussian curve fitting (figure 20(b) 

& (c) red curves) that, the average diameter of the cylinders is ~58 nm, and the average 

domain size of the cylinders are ~80 nm. 

We were using the BCP cylindrical nanostructures as a template for TiO2 

nanostructure fabrication. In masked method, O2 plasma etching was performed on the as 

grown BCP samples to etch PMMA domain and result a thin porous PS as mask. While 

in selective deposition method, BCP templates without etching was used. The different 

stages of fabrication are shown in Figure 21.  Figure 21(a) and (b) show the SEM images 

of as grown PS-b-PMMA nanocylinder sample and the same sample after PMMA 

etching, respectively. The samples with PS templates (masked-method) and with PS-b-

PMMA templates (selective deposition) were dipped in Titanium precursor solution at 

room temperature; which leads to formation of amorphous TiO2 thin layer. In masked 

method, the TiO2 deposited at the hole of porous PS templates while in selective 
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deposition method, the titania solution selectively interact with the PMMA templates of 

the PS-b-PMMA template samples. The PMMA molecule gas active functional groups 

carbonyl (C=O) and esters (C-O-H), which helps in the interactions with titania 

precursor, whereas PS is a hydrocarbon based polymer without any active functional 

group.  For both methods, oxygen plasma etching was done to etch out the polymer and 

then annealed for 7 hrs at 500oC in air for the formation of crystalline TiO2. Figure 21 

shows the different stages of fabrication of TiO2 nanodots. Figure 21(c) shows the SEM 

image of the same sample used in figure 21(a) & (b) after TiO2 deposition and polymer 

etching for mask method and figure 21(d) shows the SEM image of same sample used in 

Figure 21(a) & 21(b) after TiO2 deposition and polymer etching for selective deposition 

method.  

 

 

 

 

 

 

 

 

 

 

Figure 20. a) SEM image of as grown PS-b-PMMA BCP (PS52). Histogram plots for PS 

cylinder (a) diameter (average ~58nm) and (b) domain distance (average ~80nm)   



   

61 

Figure 22 shows the SEM and AFM images of the TiO2 nanodots only sample and 

corresponding nanodot size and domain calculation from these images for mask method 

deposited sample. The structural properties of the masked deposited sample only are 

discussed here as it was difficult to characterize the selective deposition TiO2 sample due 

to less deposition of TiO2 materials by that method. Figure 22(c) & (e) show the 

histogram plots for the nanodot diameter and domain size, respectively derived from the 

SEM image 22(a). From the Gaussian fitting of the plot (figure 22 (c) & (e) red curves) 

the average diameter and domain size of TiO2 nanodots only after annealing was noted as 

~80 nm and ~40 nm, respectively. .Figure 22 (b) is the AFM topographical image of the 

same sample and figure 22(d) is the 3D projection of image 22(b). The average height of 

the nanodots are ~8 nm, calculated from depth histogram of the topographical image 

(figure 22(d)) using Bruker NanoScope Analysis Suite 1.30 (plot not shown). The 

average diameter of the nanodots calculated from the depth histogram of the AFM image 

is ~41 nm which is close to the average diameter calculated from the SEM image.  

EDX spectroscopy attached to the SEM system was used to do elemental analysis of TiO2 

only nanodots to investigate and confirm the TiO2 deposition. From EDX study, the 

presence of Ti and O was confirmed as shown in figure 23. The EDX spectrum is 

analyzed by the INCA software that runs the EDX detector and determines the atomic 

percentage of the elements present in the scanned area. The EDX spectrum recorded from 

the point of interest of TiO2 nanodots deposited by mask method (indicated as spectrum 

1) shown in figure 23. The x-ray emission peaks at 0.452 (Ti L line), and 0.525 (O Kα 

line) are shown in the spectrum using corresponding Ti and O balloons. The most intense  

x-ray emission ~1.74 KeV (Si Kα line) is from the substrate, and the peak is not shown  
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here to focus the Ti and O peaks in the spectrum. 

XRD was done to investigate the structural development of the TiO2 nanodot only 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. SEM images at different stage of fabrication of TiO2 Nanodots a) as-grown 

PS-b-PMMA nanostructures after phase separation, (b) PS cylinders after selective 

PMMA etching from the casted BCP nanostructured film, and (c) TiO2 only nanodots 

after removing polymer by oxygen plasma etching.         

       

sample after annealing the material. Figure 24 shows the XRD 2 plot for the TiO2 

nanodot sample; measurements were done using CuKα5 radiation on x-ray diffractometer. 

The intensity of TiO2 peak were very low in comparison to the peak coming from Si 

substrate. To eliminate the Si peak, the sample was tilted 7.8o using chi rotation. The 

Bragg’s diffraction peaks observed at 38. 67o is corresponds to TiO2 anatase (112) hkl 

plane and 44.97o correspond to TiO2 rutile phase with hkl plane of  (210) respectively 
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[19–21]. The peak at Bragg’s angle It is noted from the XRD data that, the rutile phase of 

TiO2 was observed at relatively low annealing temperature of 500oC compared to the 

usual high temperature for stable rutile phase formation [22,23]. 

In our case, TiO2 nanodots fabricated by selective deposition method, we could 

not have observed any corresponding EDX and XRD spectrum. This could be because of 

less amount of TiO2 deposition on the samples. Increasing the concentration of titanium 

precursor solution or tuning the time of deposition could be the way to increase the 

amount of TiO2 deposition.  

 

Figure 22. a) SEM image of TiO2 nanodots by masked method after polymer etching. (c) 

and (e) are the histogram plots for the diameter and interdomain distance of the nanodots 

calculated from the SEM image shown in (a). (d) is the 3D projection of (b).  
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Figure 23. Elemental analysis of TiO2 nanodots fabricated by masked method using EDX 

spectrum. 

 

Figure 24. XRD 2θ plot of the TiO2 only nanodots fabricated by masked method as 

shown in the SEM and AFM image of figure 22. 
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Finally, the optical properties of these TiO2 nanodots was performed on TiO2 

nanodots fabricated by both method using PL spectroscopy. The sample used for this 

study was the same sample shown in figure 21(c) and 21(d). The PL spectrum of the TiO2 

on both sample is dominated by a broad peak in the visible and near infrared (NIR) 

region (~1.5-2.6 eV) as shown in figure 25 (a) and (b) Which shows the characteristic 

peaks of TiO2 anatase phase in the visible region and TiO2 rutile phase in the NIR region 

[20,24–33]. The broad PL spectrum of anatase TiO2 in the visible region is attributed to 

combination of different reasons such as self-trapped excitons, oxygen vacancies and 

defect sites, impurities or reduced metal ions, etc. [26–31]. The PL spectrum of rutile 

phase at  NIR region broad peak is because of  interstitial Ti3+ ions, trapped holes and 

free holes etc.[20,31–34] . Moreover, this PL spectrum also exhibits that the TiO2 

nanodots attributes with two TiO2 crystalline phases; which agrees with the XRD data. 

But the PL intensity of mask deposited TiO2 nanodots is more than the selective 

deposition. Which shows the mask deposition method is more effective in comparison to 

the selective deposition method 

 

Figure 25. Room temperature PL spectrum of TiO2 nanodot sample showing a broad 

peak in the visible and NIR region (~1.5-2.6 eV) of the spectrum (a) for Mask method 

deposited TiO2 nanodots (b) for selective deposition method deposited TiO2 nanodots. 



   

66 

Conclusion 

               In summary, we successfully fabricated TiO2 nanodots using BCP as template 

and solution method. High temperature annealing of the samples after deposition 

facilities crystallinity of the amorphous TiO2 material, it also helped in the formation of 

these nanostructures from its thin film form. The deposited TiO2 nanoparticles nucleated 

in the void PMMA domain space in between PS cylinders during high temperature (500 

oC) annealing. The EDX elemental analysis confirms the presence of Ti and O atoms. 

The XRD and PL data shown the presence of mixed phase crystalline TiO2 material. The 

broad PL spectrum in the visible and NIR spectral region supports the evidence of the 

anatase and rutile phase as shown by XRD. 
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CONCLUSION 

 

A study of BCP nanostructure morphological evolution along with fabrication of 

TiO2 nanodots were performed. In first study, PMMA cylinder in PS matrix forming PS-

b-PMMA BCP (PMMA22) was used to see the variation in BCP morphology and 

orientation by changing different parameters.  It is shown that the perpendicular 

orientation of BCP domains largely depend on preferential wetting layer between 

substrate and BCP interface, the nature and solution concentration of brush polymer. It is 

also shown that the perpendicular orientation is observed when thickness of BCP thin 

film is within the range of domain size multiples. The annealing time and temperature 

studies shows that the time and temperature need to be optimized for obtaining 

perpendicular orientation.  

In the second and third works, TiO2 nanodots were successfully fabricated at 

room temperature using perpendicularly oriented BCP nanostructure as templates. Two 

novel approaches - PLD and Solution method were used separately to deposit the TiO2 

nanodots. The nanostructure analysis using SEM, PL, XRD and EDX justified the 

presence of TiO2 on the sample. Presence of different TiO2 hkl planes belongs to different 

Braggs diffraction angle shows the nucleation of both rutile and anatase phase of TiO2. 

The broad PL peak in the visible and NIR spectral region provides extra supports to the 

information presented by XRD regarding TiO2 dual phases. Large XRD and PL intensity 

for PLD deposited TiO2 compared to solution deposited method show that PLD method 

is more effective in depositing better quality of material. Basically, this approach 

combining PLD method with BCP as templates open a new door to fabricate inorganic 
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nanostructures; moreover we have shown formation of rutile phase of TiO2 at relatively 

low temperature. 
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