Missouri State.

u N I VvV E R S I T Y BearWorkS

MSU Graduate Theses

Fall 2017

Survival Analysis: A Modified Kaplan-Meir Estimator

Justin A. Bancroft
Missouri State University, Justin145@live.missouristate.edu

As with any intellectual project, the content and views expressed in this thesis may be
considered objectionable by some readers. However, this student-scholar’s work has been
judged to have academic value by the student’s thesis committee members trained in the
discipline. The content and views expressed in this thesis are those of the student-scholar and
are not endorsed by Missouri State University, its Graduate College, or its employees.

Follow this and additional works at: https://bearworks.missouristate.edu/theses

6‘ Part of the Survival Analysis Commons

Recommended Citation

Bancroft, Justin A., "Survival Analysis: A Modified Kaplan-Meir Estimator" (2017). MSU Graduate Theses.
3218.

https://bearworks.missouristate.edu/theses/3218

This article or document was made available through BearWorks, the institutional repository of Missouri State
University. The work contained in it may be protected by copyright and require permission of the copyright holder
for reuse or redistribution.

For more information, please contact bearworks@missouristate.edu.


https://bearworks.missouristate.edu/
https://bearworks.missouristate.edu/theses
https://bearworks.missouristate.edu/theses?utm_source=bearworks.missouristate.edu%2Ftheses%2F3218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/825?utm_source=bearworks.missouristate.edu%2Ftheses%2F3218&utm_medium=PDF&utm_campaign=PDFCoverPages
https://bearworks.missouristate.edu/theses/3218?utm_source=bearworks.missouristate.edu%2Ftheses%2F3218&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:bearworks@missouristate.edu

SURVIVAL ANALYSIS: A MODIFIED KAPLAN-MEIR ESTIMATOR

A Masters Thesis
Presented to
The Graduate College of

Missouri State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science, Mathematics

By
Justin A. Bancroft

December 2017



SURVIVAL ANALYSIS: A MODIFIED KAPLAN-MEIR ESTIMATOR
Mathematics

Missouri State University, December 2017

Master of Science

Justin A. Bancroft

ABSTRACT

The popular Kaplan-Meir estimator has traditionally been used to great effect as a
survival function estimator. However, the Kaplan-Meir estimator is dependent upon a
maximum likelihood parameter estimator which may not be the best estimator in all
cases. We modify the Kaplan-Meir estimator, based on a Bayes parameter estimation, in
hopes of providing a more accurate survival estimator for small sample sizes. Core
elements of survival analysis are presented, acting as a foundation from which to
construct and compare our modified Kaplan-Meir estimator. It is hypothesized that our
modified Kaplan-Meir estimator is generally more accurate than the standard Kaplan-
Meir estimator for smaller sample sizes, while the standard Kaplan-Meir estimator
remains appropriate for larger sample sizes. Both Kaplan-Meir estimators are compared
to theoretical distributions, with the traditional expectation that theoretical distributions
will model data best if data can be fitted to a theoretical distribution. In order to show
validity for our hypothesis one smaller data set and one larger data set were analyzed.
The results of the analysis appeared to agree with our hypothesis.
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INTRODUCTION

Importance of the Kaplan-Meir Estimator

Assuming no theoretical distribution when modeling data, the Kaplan-Meir
estimator serves an important role in survival analysis. As outlined by Lee (1992), the
Kaplan-Meir estimator can be used for a variety of purposes. It serves as a starting point
from which to choose an appropriate theoretical distribution, and it can be used as a
predictive distribution when no known theoretical distribution can be modeled.

Because the Kaplan-Meir estimator is one of the most frequently used methods in
survival analysis, we seek to improve upon the current model by modifying the estimator.
Our modification of the Kaplan-Meir estimator makes use of a Bayes parameter
estimation. Although the Bayes estimation has bias and thus extends that bias to our
modified Kaplan-Meir estimator, we believe that the estimator is still more accurate in
certain circumstances, in particular, when the sample size is small.

To fully understand our modified Kaplan-Meir estimator, a background in
survival analysis is necessary. We will begin by presenting the core concepts and
foundations of survival analysis, which will ultimately lead to the presentation of our
modified Kaplan-Meir estimator. Understanding survival analysis starts with the most

fundamental of questions, "what is survival analysis?”

Survival Analysis
Survival Analysis is a branch of statistics that attempts to predict the time until

one or more events takes place. It is an essential part of medical research. It’s statistical



methods have been extended to fields such as sociology, industry, economics, and
ecology. Researchers use survival analysis to answer questions regarding time related
data. As an example, a medical researcher may be interested in which treatment is most
effective over a period of time or how long a condition lasts. In order to answer
researcher questions, data is gathered, statistical methods are employed, and the results

are analyzed.

Definitions

In order to establish the fundamentals of survival analysis, we first present some
essential definitions. In survival analysis, survival data refers to information regarding the
data set, this includes, survival times, patient characteristics, response to treatments,
censoring, etc. The most crucial components of survival data are the observed values or
the survival times.

Survival time is the measure of how long a subject has “survived” from a starting
point to an ending point. Survival does not have to be literally interpreted. Here survival
means a subject is in one state or condition that represents the default condition. The
subject will remain in that state until an event of interest occurs.

Failure is the event of interest that marks the end of the survival time. Failure is
usually death or some negative experience. However in some cases, failure may be
positive such as disease remission. Failure may also be referred to as “the event”, or

“death” if death represents the failure.



Censoring

A sometimes challenging aspect of survival analysis is censoring. Censoring
occurs when the exact survival time of a subject is unknown. It may happen that a
subject drops out of a study, survives until the end of the study, or for some other reason
is not precisely observed at their failure time.

An observation that does not have an exact survival time is called a censored
observation. If an observation does have an exact survival time, then it is called an exact
or uncensored observation. A censored observation’s survival time is measured as the
time under observation. The censored survival time usually receives a plus next to its
survival time to indicate that its true survival time may surpass the recorded time. If a
data set contains censored observations, then it is referred to as censored data. Data that
has no censored observations is referred to as uncensored data.

There are several different types of censoring including, right censoring, left
censoring, and interval censoring. Among these, right censoring is the most common.
Right censoring occurs when the time of failure is unknown. This may happen if a subject
experiences failure after the end of the study, a subject is withdrawn from the study, or a
subject is lost to follow-up. Left censoring takes place if the true beginning of a subject’s
survival time is unknown. It may be that the subject had a condition that started at an
unknown time or that it is not known when the subject entered the study. Interval
censoring happens when survival data is organized in intervals such that it is impossible

to determine when in the interval a subject might have failed.



Since right censoring is very common, there are methods specifically designed to
handle right censored data. These methods are Type I, Type II, and Type III censoring.
Each method is a way of handling right censored data for a specific study format.

In Type I censoring, a study starts with a fixed number of subjects that each have
the beginning of the study as the starting point of a subject’s observation period. The
study lasts for a fixed amount of time and then ends. Any subject that experiences failure
within the time frame of the study is given an uncensored survival time. If a subject fails
accidentally, is withdrawn, or is lost to follow up, then that subject’s survival time is
censored. Any subject that has survived until the end of the study is also given censored
survival times.

For Type II censoring, the subjects all start being observed at the beginning of the
study, but the study ends when a certain amount of subjects experience failure. If a
subject is not observed for the entire study, aside from the cause of failure, then that
subject’s survival time is censored. Censoring also occurs for any subject who has
survived until the end of the study.

In one of the most common type of studies, the study period starts and ends at a
specific time, but subjects may enter the study at any time. This means that survival times
may start at different points in real time. Type III censoring occurs in this study type of
study. The censoring occurs in the exact same way as in the previous studies presented.
However, in this study, it is possible that two subjects start the study at different times. If
they both survive until the end of the study, then their respective censored survival times
will be different even though the study ended at the same time for both of them. In the

previous type of studies, this situation would have not occurred since all subjects entered



the study at the beginning, and thus would have the exact same survival times if censored
due to survival until the end of the study.

Censored data generally complicates survival analysis and needs to be carefully
addressed. If there exists censored data in a study, then it often will affect how a
distribution models the data. For the most part censored data only affects a modeled

function in a very limited fashion. Examples of this will be shown latter.

Survival Time Functions

The beginning of the survival analysis process starts with survival time functions.
Although survival time can refer to how long a specific subject has survived, it also can
refer to how long a random subject might survive. This means that survival time is
sometimes used to describe a random variable, denoted T . For clarity, we will use the
term “survival time variable” in reference to T .

Probability Function. Like any other statistical variable, the survival time
variable follows a probability distribution. The distribution is the probability that T will
occur at a specific time ¢ or close to a specific time ¢, for the continuous case. In
essence, this distribution measures the probability of failure at any given time. The

variable T follows the probability distribution

f(t)=P(T =t), for the discrete case,

and

f(t): lim Pt <T<t+dt)

, for the continuous case.
dt—0 dt




Survival Function. While the probability function serves as a basis for survival
time functions, the most commonly used and analyzed distribution in survival analysis is
the survival distribution. The name suggests the meaning. The survival distribution
measures the probability that a subject survives at a particular time. This is the same as
the probability a subject will fail at a later time. The survival distribution is
mathematically defined as

S(@t)=P(T >1).
It can also be defined as
St)=1-F(t).
Kleinbaum and Klein (1996) describe several important attributes of the

theoretical continuous survival distribution. The theoretical S(¢) should be a strictly
decreasing function, with domain (0,0). At t=0, S(¢)=1andat =00, S(¢)=0. This

would indicate that, at the beginning of the study, no subject has experienced failure. But,
if the study continued indefinitely every subject will have experienced failure. Note,
however, that these are the theoretical attributes of a continuous S(¢) .

In practice, S(¢) must be estimated. The estimate of S(¢) is referred to as the
survival estimate, and most survival analysists denote this estimation as 3‘ ( t). Itis
possible for 3‘ (t) to be discrete and not strictly abide by its theoretical attributes.
Examples of 3‘ (t) being a step function rather than a smooth curve will later be see.

Additionally, since the end of a study is finite, the domain of g(t) may have a finite right

end point. Often, ¢ values beyond the end of the study are not considered. This means

that a study may end and some subjects will have never experienced failure.



Hazard Function. The hazard rate function is another important survival time
function. For any particular time, the hazard function gives the rate that a failure might
occur per unit time, given that the subject has survived up until that same time. In essence
the hazard function measures the likelihood of death at some time, given survival of
previous times. The hazard function is defined mathematically as

h(t)=P(T =t|T >t), for the discrete case,
and

. PLT<t+At|T =
Ho) = lim (t t+A|T20)
At—0 At

for the continuous case.

Sometimes it can be more useful to analyze the cumulative hazard function,

which is defined as
t
H(t) = j h(x)dx .
0

It will shortly be shown that the cumulative hazard function can also be written as
H(t)y=-log,S().
Thus, at t=0, H(¢t)=0 andat t=c0, H(t)=o0.
The cumulative hazard function is somewhat difficult to describe and
comprehend. It is the sum of the risks up to time ¢. Another way to describe it would be

to define H () as the probability that a subject has survived to time ¢, by surviving the

cumulative risks described by %(x) along the way.

Regardless of the cumbersome interpretation, the cumulative hazard function

serves a crucial role as an opposite to the survival function. Both are cumulative in



nature, but one describes the chance of survival over time, while the other describes the
chance of death over time.

Relationship between Survival Functions. As outlined by Lee (1992), there are
close relationships between all the survival functions presented thus far. If one of the
survival functions is given, then the others can be derived. These relationships can be

useful in theoretical analysis and in practice.

If the definition of 4 (t) 1s consider, it can be seen that all of the survival

functions are mathematically related. Recall that, for the discrete case,
ht)=P(T=t|T >1).

One can expand A(¢) so that

P(T=1,T>1) _P(T=t)_f(@®

=t
o= PT=t|T21)= P(T=t) P(T=1) S@)

(This relationship is also true of the continuous case.) Also, remember that

S()=1-F(t). Thus,
F(r)=1-S(t)
and

d '
f(t)—E[l—S(t)]——S (1).

Then A(¢) can be written as

Since H(t) = Ih(x)dx ,
0



H(t) = J—%lnS(x)dx =—InS(1).
0

It is now clearly seen that each survival time function has a mathematical
equivalency.

Exponential Survival Time Functions. Suppose, for example, that one wanted
to find the survival time functions of a survival time 7 which followed an exponential

distribution. For the exponential distribution, it is known that
f()=Ae™ and F()=1—e"
where ¢t > 0and A > 0. The survivor function is
S(t)=1-F () =1—(1—e_’1t) —e M,
Thus,

At
h(t)zf(t)_/Ie _

St) e

and
H(t)=-InS(t)=—~In(e™*)=Az.
The survival time distributions for every other probability distribution can be

found in this same manner.



ESTIMATION OF SURVIVAL FUNCTIONS

As was mentioned previously, the survival function is the most commonly used of
the survival time functions. We know that in determining one survival time function, the
others can be determined. Thus, most of our focus will be spent on the survival function
estimates.

There are various methods of estimating survival functions. These methods are
typically split into two categories, non-parametric and parametric. Parametric methods
are based on estimating parameters of known distributions such as the exponential,
Weibull, log-normal, gamma, and normal distributions. The parametric methods assume
the data follow a known distribution. The non-parametric methods do not assume any
known distribution. While there are parameters to be estimated, the shape of the
distribution is not restricted to a predetermined outcome. It only follows the approximate
trend of the data.

Both methods are good in particular circumstances. The nonparametric
distribution always has some value. It will be better than a parametric method if no
known distribution can be chosen to fit the data or if the fit is not very good. The
nonparametric method can also be beneficial in choosing an appropriate known
distribution based on the shape of the nonparametric distribution.

The parametric method is only useful if the trend of the data roughly matches the
shape of a known distribution. While this can be limiting in certain circumstances, it is

also very powerful when a known distribution can be matched. If the data matches well,

10



then a known distribution should be far better at modeling the data than a non-parametric

distribution.

Parametric Methods

We first focus on the parametric method. There are two main components of the
parametric process. The first is finding the appropriate known distribution to model the
data. The second is choosing an appropriate method to estimate the parameter.

In order to find an appropriate known distribution, the hazard plot will be
presented and later it will be shone how to analyze the shape of a non-parametric
distribution during our data analysis. If censoring was not present, then a probability plot
could be utilized. However, in most studies, censoring exists. Thus, a probability plot will
not be presented.

There 1s a large collection of methods to choose from in estimating a parameter.
These include linear regression, logistic regression, poison regression, the method of
moment estimation, and the maximum likelihood estimation. Each method has its
respective benefits and value, but our focus will remain on the frequently used maximum

likelihood estimation (MLE).

Hazard Plotting
Hazard plotting was first presented by Nelson (1972). A hazard plot is a method
that compares graphs and functions. An estimated cumulative hazard function is derived

from the data values. A graph is constructed by plotting data values against an estimated

11



cumulative hazard function. Then the estimated cumulative hazard function and

corresponding graph can be compared to theoretical functions and their respective graphs.
Hazard Table. A table can be created to organize the data and find the estimated

cumulative hazard values. Table 1 is the format of such a table. A description of each

column is shown below.

Table 1. Hazard Table Format

Cumulative
Survival Number at Hazard Hazard
Times Risk Values Values
4 m h(t) H(t)
tz n, h (12 ) H (t2 )
t n, h(r,) H(t)
tn—l nnfl h (tn—l) H(tn—l)
: n, h(r,) H{(1,)

12



The first column is survival times, including censored times, listed from least to
greatest. That is, if we let #; be a survival time, then ¢, <¢, <....f, , where n is the sample

size. If two of the survival times are the same, then they are listed in random order

regardless of censoring. In practice a plus is given to any censored survival time.

In the second column, #; is the number of subjects alive and at risk of dying at ¢,
just before ¢;, where 0 <n; <n . Naturally, n, would become smaller with each
subsequent ¢#; so that n; 2 n, 2....n,. Note that n, # n. The value n, is the number of
subjects still at risk at the #,th observation, and would be the smallest of the #;. Some
researchers and authors might use a different notation for #, to avoid this confusion.

The third column is the percentage of individuals who have failed at time ¢;.

These percentages are estimations of the hazard values for the data set and are

designated, /(z;)=100/n;. For h(t;), 1/n; is multiplied by 100 to convert from a

decimal to a percentage. The multiplication by 100% is a matter of preference. Censored
survival times will not have hazard values.

The fourth column is the cumulative hazard values. A cumulative hazard value is

denoted H (f;), and is the sum of the hazard value at ¢, and all previous hazard values.

Censored survival times will not have cumulative hazard values.

Hazard Graphs. Once all the cumulative hazard values are found, ¢, can be
plotted against the H (tl.) values to form one of our graphs. The x-values of the graph are

the H (¢;) values, while the y-values of the graph are the ; values. Notice that the x-

values and y-values are switched from what might be expected.

13



The inverse cumulative hazard function of theoretical distributions, denoted
Gp (H T (t)) , can be compared with the graph of the estimated cumulative hazard values.
Researchers should determine if the function Gy (Hy (¢)) is linear, exponential,
logarithmic, or some other shape. Similarities between the shape of the estimated
cumulative hazard graph and G, (H T (t)) are desired, not specific accuracies.

The general shape of G (H T (t)) can be plotted against /. The plots of some

Weibull cumulative hazard distributions are shown in Figure 1.

1, Exponential

3/i

2/2

1/A

1 A

1
0 100 200 300 400 H
Percent

Figure 1. Weibull Cumulative Hazard Functions (Lee 1992, pg. 175). Permission was
given to reproduce this image.

Weibull distributions are commonly chosen to model survival data. Notice that the
exponential distribution is a Weibull distribution where y =1 and is linear in nature.

If the general shape of the estimated cumulative hazard distribution and

theoretical cumulative hazard distributions match in their curvature, then the theoretical

14



distribution analyzed could be chosen. If they do not match, then a different theoretical
distribution should be analyzed.

It should be noted that, when comparing the cumulative hazard graphs, some
cases provide graphs with obvious conclusions about the appropriateness of a
distribution. Other cases are less clear. It is up to the researcher to determine if the data
fits “well enough” to model the data for a particular distribution.

As an example of determining an appropriate distribution, the shape of a
cumulative hazard graph for an exponential function is known to be linear. This can be
seen by analyzing the inverse cumulative hazard function for the exponential distribution

e—/lt

Suppose we have the exponential distribution f (t) = Ae ™. It has been seen

previously that /(7)= A . Thus,

H(t)=[H (x)dx= jidx = Xt

Solving for ¢, we have

Thus,
G(H(t)) = %H(t) , Which is linear.

Additionally, it can be seen from Figure 1 that the exponential distribution has a linear

cumulative hazard graph. In this case, if the cumulative hazard graph estimated from the

data is linear, then one could choose the exponential distribution to model the data.
Now that a method to finding an appropriate known distribution has been

presented, an estimate for a specific parameter can be found.

15



Maximum Likelihood Estimation for a Parametric Distribution

As stated previously, the maximum likelihood estimation is a method of
estimating a parameter. The MLE method here is similar to the MLE method presented in

many statistical courses. The maximum likelihood function must be found which is

defined as
L= Hf (x;10)
i=1

where each x; is independent and identically distributed (I.1.D) from a distribution f (x)

that belongs to a particular family of distributions, such as the exponentials. A parameter
estimator is then found through differentiation that maximizes the likelihood function.
Sometimes the log of the likelihood function is used instead with the same results.

It would be expedient if this process was all that was needed. However, in
survival analysis, censoring complicates this process so that some preliminary work must
be done.

Parametric Probability Distribution. Before the MLE is applied to determine
an appropriate estimator, it needs to show what a parametric distribution would look like
when censoring is considered, and in particular how a study with type III censoring
would affect that distribution. The set up and construction of the distribution is shown by
Le (1997). An adaption of this process is shown as follows.

Assume there is a data set with type III censored data and a sample size of n . If

death/failure is observed for the ith subject, then the associated time variable is

designated as T; for i =1,2,......,n. It is assumed that 7, follows a probability distribution

of f(¢) with one or more parameters 6,,6,,.....,6, and has a survival function of S (t) )
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If death/failure has not occurred for the ith survival observation and the data is

censored, then the associated survival variable is designated as C;, for i=1,2,......,n. It is
assumed that C, follows a uniform probability distribution of g(z).

Most studies have an enrollment period of (0,7;) and a follow up period of
(7, ) . The uniform distribution intervals for g(¢) are usually (7, —7,7,). Itis
assumed that g() has a survival function of R(1).

The survival time functions are mathematically defined as follows:
S(@t)=P(T >1)
f()dt=P(t<T<t+dt)
R(t)=P(C>1)
gt)dt=P(t<C<t+dt)
Let ¢; be the lifetimes of the data determined either by death/failure or censoring. Define

0; as a censoring indicator such that

{0 if censored due to study termination
l. p—y

1  if death/failure was observed.
It would follow that if §; =0, then censoring took place for the ith sample and ¢, = C;. If
0; =1, then death/failure was observed for the ith sample and ¢, =T;. It is assumed that
the deaths or censoring for each sample have no relation to one another so that each 7;

and C; would be stochastically independent of each other.

The objective is to determine the probability distribution for both censored and

uncensored data. To do that, two different probability distributions need to be considered.
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After that a combination of the two distributions will be shown. The first distribution,
f(t,6; =1), is designed for uncensored observations, while the second distribution,
f(t,0,=0), is designed for censored observations.

Probability Distribution for Uncensored Observations. In order to find
f(t,6;=1), P(t<T <t+dt,5; =1) needs to be determined. If §; =1 is observed for the
ith sample, this means that death\failure occurred at time ¢; or ¢, =T;. It also means that
the maximum observation time C must have occurred later then the death or failure. That
is C; > T, =t;. Thus, the probability that T occurs with a lack of censoring is

P<T<t+dt,6;,=1)=P(t<T<t+dt,C>1t)
=Pt<T<t+dt)P(C>1)
= f(t)dt-R(1).

Therefore,

1.5 =1y =limit £ = 1(1)-R(2).

(t)dt-R(t)

dt—0 dt
Probability Distribution for Censored Observations. In order to find
f(t,6;,=0), consider P(t <T <t +dt,5; =0). If 6, =0is observed for the ith sample, then
censoring of the study occurred at time ¢; or #; = C;. It also means that death\failure , T,
must have occurred later than the maximum observable time (or end of the study), C.
That is 7; > C; =¢; . Thus, the probability that T occurs with censoring is
Pt<T<t+dt,o,=0)=Pt<C<t+dtT>1t)

=Pt<C<Lt+dt)P(T >1)

= g(t)dt-S(@t).
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Therefore,

£(2.5,=0) = limit W =9(t)-S(1) .

1
dt—0
Probability Distribution for All Observations. The distributions for uncensored
and censored observations can be combined into one function based on whether a
particular observation is censored or uncensored. The combined probability distribution
is
5 15,
f@&.6)=[fO®O]" [ROS®] ™.

This probability distribution can be simplified further. Recall that, A(¢) = AU}

S(1)
and hence f(¢) =h(¢)S(t). Thus, h(2)S(¢)is substituted for f(¢). (This will later be

crucial when finding estimators using the MLE.)
1.8)=[fOg®] [ROS®)] ™
=[h®S©Og®]" [ROSD] "
= (1) S()” g()" R(1) ™ S(1)'™"
=" RO h(t)* S(6)~* ()"
= (1) R(t) ™ h(®)* S(1) .
Therefore,

f(,5)=g)" RO h(®)" ().

Since the parameters of g(¢) and R(¢) are not the parameters to be estimated, it

turns out that g(t)‘?" and R(t)l_‘s" will bear no relevance when finding the MLE and thus

will be dropped. The final simplified version of f(¢,9;) is
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[(6.6)=h(n)" 5(0).
Estimating an Exponential Parameter. Our purpose in finding f(¢,5;), was to

use the MLE to find estimators for parameters when censoring was considered. In order
to demonstrate how to find the MLE in practice, the MLE for the exponential distribution

will be found.
Suppose that there is a survival time T , which belongs to an exponential

distribution. Let?,,f,,....... ,1, be the censored or uncensored observed lifetimes, with a

sample size of ». It is known that f(¢) = Ae™* and from previous work it was found that

S(t)=e* and h(t) = 1. Thus, we know that the probability distribution which considers
censoring is
F(t,8)=h()’ S(t) =A%
Now the MLE of the parameter 4 can be found. The likelihood function of

1.3 is

LA =TI/ (t,8)=T[A% " =A7 e =
i=1 i=1

Taking the log of L(A) results in

n

Yo A%
log L(A)=log| A= e

n

Zn‘ﬁi —AY
=logA= +loge

n

i&, A2t
=logA= +loge
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=Y 8logA-2) 1;.
i=1 i=1
Taking the partial derivative of log L(1) gives

n

S,
0 z’

a n n = n
—log L(A)=—=| Y S, logA—A> t, |=E—-D 4.
o7 8 LA az[g’ ¢ ;) A §
.0 .
Setting alog L(A) equal to zero and solving for 4 we have

0
~ log L(A)=0
57 8 (A)

e,
=1 _ =
: Z:tl 0

Thus, the MLE estimator for A is

NN
I
i

indicating that

2 _ number of deaths observed
Sum of all observed suvival times




Note that if all the observations are uncensored, then each J; =1, resulting in

A

A

n

S
N
i=1

A n
However, if at least one observation is censored then A becomes larger since, z 0,<n.

i=l

Anytime an estimator or estimate is used a » will be placed above the function or
parameter estimator(estimate). Additionally if any function comes from a theoretical

distribution a subscript 7 will be placed next to the representative letter of the function.

For example, f (), Sr(t),and hr(¢t) would all be theoretical functions using an

estimate for 4. The subscript 7 will be used to differentiate theoretical functions from
Kaplan-Meir functions, which will be presented latter.

Variance of the Exponential Survival Estimator The survival function S(¢) is a
common function that has many uses. Latter discrete estimates of S(¢) will be shown and
compared to theoretical estimators of S(¢). One useful way to compare estimates of S(¢)

N
is by comparing their respective variances. The variance of S7(¢) can be used to create

confidence intervals.

Here Var Sr(¢) will be determined for the popular exponential distribution.
A n n
First, we need to take a look at the distribution of A= Z o;/ zti . Bartholomew (1957)
i=1 i=1

AN D n
found that A >N (/1, A% Z(l —e M )J , where T; is computed as the time between the
i=1

ith subject entering the study until the end of the study. In many instances, this

information is not available. Sometimes only the survival time since entering the study is
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AN
recorded. Thus, we will focus on an alternate distribution for A that does not require

A D n
knowledge about T;. This alternative is A >N [/1,/12 / 251]

i=1
The delta method can be used to find the variance of different distributions based

on the distribution of the parameters or variables. The delta method states
b 2
If Y, >N(u,07), g'(u) exists, and g’'(u)#0, then

o) 55 {so [ T )

A

We proceed to find Var Sr(¢) = Var (e_ﬂ ’j using the delta method.

A A AN D n
Let Y, =4 and g(¥),) = e *'. We know that l—)N[l,}tz /2511 Thus,
i=1

A [i@/ig}

g(¥)=—te M =o' A

and g'(u)=—te

n
It can clearly be see that g’ exists if Zti #0,and g'(u)#0 if t # 0. In practice,
i=1

D 4;#0 and ¢ #0. Thus,

Y (g(ﬂ)s[g’(ﬂ)]2 02)-

The values for g(x) and [g’(,u)]z o’ are
and
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Hence,
2.2 20t
5, D A)'t
M N el’,( )n € .
i=1
Therefore,
Ao AV e
VarSr(t)=~———=—

)

A n n
Since 4, is unknown, the estimator A; = 251 / Zti can be used. In some
i=l =l

theoretical circumstances, it may not be desirable to estimate A.. However, this

substitution is useful in practice. The variance resulting from the substitution is
2

2 " n n
n n — .
(Zé‘i/ztl) tze =l =l J LLé‘ier sl sl
o i=1

VarSr(f) ==L 1 - S -
I
i=l i=1

The VarS7(¢) for a different theoretical distribution could be found using the

same method presented. The variance of the survival estimate can be found once the

distribution(s) of the parameter(s) are determined and the delta method applied.
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Confidence Interval for the Exponential Survival Estimator. A

straightforward confidence interval for the exponential § T (t) would be

Sr ()£ 2475 Var St (7).

However, this confidence interval could result in impossible values outside of [0, 1] .
Recall that S(¢) can never be larger than 1 nor can it be less than 0. If S r(¢) is already

AN

close to 1 or 0, it is possible that adding or subtracting z, ;s Var St () would result in

values greater than 1 or less than 0. To avoid these impossible results, a new confidence

interval needs to be found that will always fit within [0,1] . Xu (2016) shows a method

for finding a confidence interval that safely lies within [O,l] . A similar approach is

adopted below.

AN
First a modification of S7 (t) is made so that the range is between (—o0, )

instead of [0,1].
0<Sr(r)<1
—00 < logg‘r(t) <0
OS—logg”T (1)<
—o0 < log(—log §T (z)} < o0

If we add or subtract 20.975Var[10g£—10gT S(Z)H to log(—log St (t)j we arrive at a

95% confidence interval between —0 and co. That is,
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—o0< log[—log St (t)j + 2 g5 Var {log(—log St (t)ﬂ <o,

We now have a confidence interval such that when using exponentials to convert

back, the confidence limits safely lie in the range [0, 1] . The resulting confidence interval

will not be equivalent to the confidence interval for S (t), but will still be a fairly good

representation.

Let C.I.{log(—logg(t)ﬂ - 10g(—10g Sr (r)] + 20.975Va{10g(—10g Sr (r)ﬂ .

Working backwards using exponentials we have

—0 < C.I.{log[—log Sr (z)ﬂ <o

o< eC.I{log[—loggr(t)ﬂ <o

e _eC.I.[log[—logg‘r(t)H

IN

0

C.I{log[—logg'r(t)ﬂ
0<exp|—e <1.

C.I{log(—loggr(t)ﬂ

Now we can findexp| —e

log(—log g‘r(t)JizOWSVar[log(—loggr(t)ﬂ i204975Var|:10g[—10g§T(l)ji|

exp| —e = exp logg':r (1)e
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izol975Var{log[—log gr(t)ﬂ
=87 (t)e

Note here that this process is valid for any estimate of S(¢). Thus, in the future the above

confidence interval will be used as our standard confidence interval, where S (t) can be

replaced by any estimator.

A

N
Now we substitute St (¢) for e”*, resulting in

A tz ar| log| —lo eiﬁt
. iz0.975Var[10g[logST(t)H A e+ 0,975 [ g[ g[ ]ﬂ
ST (Z)e :{e—/ltj

. 120.975Var{10g(itﬂ
_ e—ﬂt'e

The delta method can be applied again to get the distribution of log( ,Ai tj , resulting in

Va{log(ﬁtﬂz ,,1 .
2.9

Thus, a suitable 95% confidence interval for the exponential Sr (t) would be

n n
196/ 1/%. &; -1.96/ 1/ 3 5,
o i=1 . i=1
o Are e ire

Theoretical Survival Table. The theoretical survival table we introduce
shows information regarding any theoretical survival estimate. Since S7 () is continuous,
it is not ordinary to show the survival function at specific values. However, we show the

survival function at specific values here because latter we will see discrete estimates of
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S(¢) so that the table will be useful for comparison purposes. Table 2 shows the format

of our Theoretical Survival Table.

Table 2. Theoretical Survival Table Format

Survival . .
Times St (Z) Var St (t)
tl St (1) Varg'r (#)

t Sr(1,) Var S7(1,)

L Sr () Var S7(1,)
tn—l ‘gT (tn—l) VargT (tnfl)
L, Sr(t,) VarSr (t,)

Non-Parametric Methods

As was discussed previously, the crucial difference between a parametric and

non-parametric distribution is that the parametric distribution assumes the data follows a
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specific predetermined shape. A non-parametric distribution assumes no specific shape.
Because of this, the non-parametric distributions will most often be discrete rather than
continuous. This more readily allows for the data to match any sort of pattern without
limitations. Additionally, since non-parametric methods are not limited to known
distributions, parameter estimation receives exclusive attention.

There are many non-parametric methods we could present. However our focus
will remain on two methods, the Kaplan-Meir (KM) estimation, and the modified
Kaplan-Meir (MKM) estimation. The two distributions are essentially the same, except
that the parameters are different. We will spend much of our focus on the modified
Kapan-Meir estimation. In the future, this estimator will be compared to other survival

estimators. However, we first present the standard Kaplan-Meir estimation

Kaplan-Meir Estimator

Developed by Kaplan and Meier (1958), the Kaplan-Meier estimator gives a
discrete step function estimate that attempts to model survival data. It is formed based on
finding discrete probabilities of survival at each observation, given survival occurred
previously. These probabilities are basic and do not assume any pattern or shape. The
product limit variation of the Kaplan Meir method will be presented since it is compatible
with censored observations.

In the Kaplan-Meir method, the survival time of each subject is measured as the
survival time since enrollment, so that each subject starts at # = 0. This avoids problems
that could arise from patients enrolling at different times. Additionally, subjects who are

censored for any reason are considered to have survived the study, and thus will not have
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a measured survival time. The Kaplan-Meir process also has a specific way of handling

data which is shown below.
If we let ¢; be an arbitrary survival time, n be the total sample size including the
censored observations, and & be the number of uncensored observations, such that
k <n , then the survival times should be ordered from least to greatest. That is,
H<ty<ty<..<t.
Equivalent ¢;s are merged into one, so as to not be redundant, when finding values such

as f(¢;,) and S(t;). However, equivalent ;s still each count towards totals such as

k and n.

Note again, that the censored ¢;s will not be shown, since they do not have measured
survival times. However, they are still relevant. In particular, n represents information
about all observations.

Probability Mass Function. Before we present the survival function for the

Kaplan-Meir process, the origins and definition of the probability mass function will be
shown. We can determine f(¢) at each f; by considering the definition of a discrete

probability distribution function.

We know that
f(t;) = P(T =t,) = P(Death occurs at time ¢,)..
If death occurs at #;, then it is assumed that the subject was alive at all previous times

since enrollment in the study. That is,

P(Death occurs at time #,)

= P(Death occurs at time ¢;, Death does not occur at t;_j,t, ,,...t;).
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It is assumed that death at ¢, and survival at t,_|,t;,_,,....t; are statistically unrelated
events, and thus are independent. Hence,

P(Death occurs at time ¢;, Death does not occur at ¢,_,t,_,,....t;)

= P(Death occurs at time ¢,) e xath does not occur at 7).
j=1

Since P(Death occurs at time ;) is not known, it will be treated it as a parameter, and
designated 4;. Since P(Death does not occur at ;) =1- P(Death occurs at time ),
P(Death does not occurat ;) =1—4; .

Therefore,

i—1
f(¢;,) = P(Death occurs at time ¢,) ¢ :ath does not occur at ¢ )
j=1

i—1
=4[ Ja-4).
Jj=1

Survival Function. To find the survival function S(¢) at each value f; consider
that S(¢,) = P(T >t;). Thus,
S(t;) = P(Death occurs after ¢,)

= P(Death has not occured at ¢,,¢,_,,....t;)

=T]a-4).
Jj=1

Estimated Survival Function. Our ultimate goal is to estimate S(¢) . One can do
that by estimating the unknown 4, values, and those values can be estimated using the

MLE method. However, trying to find the MLE of S(¢#) would not produce any results.
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Thus, we have to rely upon finding the MLE of a distribution associated with S(¢) that
exists in the same parameter space. That distribution is defined as the probability that d;
of n; subjects die at f;, given that all of the n; subjects were known to have survived
previously. That is,
P(D; =d;|n_ =D, =n;).

The random variable D, represents the possible number of deaths at ¢;. The expression
n; — D; represents the number of subjects that have survived at ¢;. The observation d, is
the number of deaths at 7;, and n, is the number of subjects alive and at risk of dying at
t; just before f;. Note that the closest time before #; would be #,_;. Also note that if a
subject is censored before the study ends, then the subject is subtracted from the
appropriate 7, .

The distribution P(D; =d; |n;,_, —D,_; = n;) can be simplified down to a form,

which should be more recognizable.

P(D,=d;,n; | —D; | =n;)
P(n—Diy=n)

P(D;=d;|m_—D,=n;)=

If d; deaths are observed at ¢;, then that also means »; —d; subjects have survived at ;.

Thus,

—D,=n—d;,n_—D;,_ =n;)
P(”' 1 — Dy :ni)

i—

P(D;=d;|n_—Di_=n;)=

Since the event of dying at ¢, assumes survival at previous times, and the event of

surviving at #; also assumes survival at previous times
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P(D,=d;,n,—D;=n,~d,)
P(n_ =Dy =n;) .

1

P(D;=d;|n_—D, y=n)=

The numerator follows a binomial distribution. Thus,

(4)P(D;=d,)P(n,~D, =n,~d,)
P(n_ —D,_ =n;)

P(D d|”11 1—”)

Since P(subject dies at ¢,) = f(¢;), P(subject survives at #;) = S(¢,) , and each subject’s

survival is considered independent from another’s,

(2 )lr@r say
[SG-)]"

P(D; =d;|n_—D;y=n;)=

Finally, using the definitions of f(¢#) and S(¢) we have

i1 ar ni=d;
()2 {Ha—ﬂ»} {Ha—ﬂ»]
j=1 j=1
i-1 i
j=1

P(D;=d;|n,_y—D;_y =n;) =

—_

i—

i-1 a4 " i1 ~di
peto srffies Tooar o
j=1 J= j=1

—_

i-1 &
[
j=1
AEs d = i »
(;’i)/li[n(l—i } [1-4] { (1- J)] [1-4]"
_ j=1 j=1
i—1 - a
s || Hos]
j=l j=l

(44 -AT" -4
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Therefore, P(D, =d; | D, =n—n;)= (3 )ll-d" . % It can clearly be seen that

P(D; =d; | D,_; =n—n;) is a binomial distribution. Thus, D, ~ B(n;,4;).
Now an estimator for 4; can be found using the maximum likelihood method. We

k
let L, = HP(DI. =d; | D,_; =n—n;) be the likelihood function, and proceed to finda 4,

i=1

that maximizes L;. This 4, we find will also maximum S(¢;), which is our desired result.

Taking the log of L; we have

logL; = log{ﬁ(;’i )}Ll.df. _d’}

i=1

= log( "% +log A% +log 1-4 i
d (4

i

=

—

k d
= Z[log(g )+logil_d,- +10g[1_/1i]ni* i:|

i
i=1

i

-

Il
—_

[10g<2{)+di log 4; +(n; —d[)log[l—liﬂ

1

Sl b i

We now differentiate L; with respect to A, noting that the differentiation does not iterate

with the summation.
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0
Setting a710g L; equal to zero and solving for 4; we have

1

n;
Therefore,
A d
Ai=—1
n

A
Note that the estimator A4; can be used for any given A,. If we change the subscript from

N
i to another subscript, say j, the estimator does not change. For instance A; is defined
N
as Aj=d;/n;.
i

Recall that S(z;)=]J(1-4,). If weuse 4; to estimate 1, we arrive at
=1

§(t,.)=f[£1_ﬁ].

AN

The generalized version of the estimator for any value of ¢ would be

:S\'(t):H(l—%].

1<t i

This estimator is referred to as the Kaplan-Meier estimator.
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N
Variance of the Kaplan-Meier Estimator. Finding the variance of S(¢) directly
N
would be challenging. Instead, we can find the mean and variance of log S(¢) first, and

then proceed to find the variance of S(¢). The mean of log S(7) is

E[mg&(f}} —E[logb:[(l— d”

=E {Z log(l — /Allj
1<t

=ZE{log(1—/A1,-j .

<t

Similarly, the variance of log S(¢) is

Val{log 3@} - Varllog [H(l _ﬁijﬂ

=Va{210g(l —/A’L,-J

1<t

-y Var[log [1—21} .

4<t

The delta method is used below to determine a convergent distribution for

log (1 - lij which in turn will help us find a convergent distribution for log S(7) .

Let ¥, =d; and g(Yn)=log[l—£]=10g(l—/1ij. We know that D, ~ B(n;, 4;), and
n.

1

D
that D, —>N(ni/1. A (l—ll-)). Thus,

1271771
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1
g,)=—7—~ and gW) = = .
We can clearly see that g’ exists if d; #n,;, and g'(x)#0.1If d;, =n,, then

Var(log (1 —Ai D would be very easy to find. It would be zero for that ith iteration.
Thus,
log(l A —)N( [g ]20'2).

The values for g(x) and [g’(,u)]2 o’ are

g(y)zlog(l—’—i’jzlog(l )
and
] o* <[y w04
n2,(1=4)

‘nﬁ( &)

_ ﬂ“i

o (1-4)
Hence,

log| 1 2 DNI 1-2 4
Og( - ZJ_) Og( - i)’ni(l—/li) :

Since each log(l —/11) would be I.LI.D,

logg'(t)zlog{ (1 /Allﬂ Zlog(l ,J—)N{Zlogl /I)z (lﬂii)}.
1<t Lt f<t r<t i\ =4
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N
We use the delta method again to find Var S(¢).

Let Y, =logS(¢) and g(¥,)= exp(log S(t)j =S5(¢). We know that

A D A
log S(t)—> N [Z log(1-24,),> —ZA} as shown previously. Thus,

1<t t<t ni( - i)

g'(Y,) =exp (log s (t)j = 5(t) and (1) = GXP{Zlog(l -4 )} =S(1).

1<t

We see that g’ exists, and g'(x¢) #0. Thus,

A

50>V ()L ()] )

The values of g(x) and [g’(u)]z o’ are

A
U exp{zlog(l_i")} =50 and [¢ ()] 0" <[00 T
It is clear now that,
A 2 A
Var S(1)=[S(1)] E—n, =

Since 4; is unknown, an estimate for 4, is needed to find the variance in practice.

The estimator A; =d; / n;, which we used before, should be suitable in practical

applications. The variance resulting from the substitution is
A A 2 n N 2 d

VarS(t)~| S(t — =S5 —

0=}30] 2 [1 J 0] Zoeias

The variance above is known as Greenwood’s formula produced by Greenwood (1926).
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Confidence Intervals for the Kaplan-Meier Estimator. If we initially look at

the confidence interval for the Kaplan-Meier estimator it appears straightforward. A 95%

confidence interval for S (t) would be
S(t)*zgg75VarS(r).
However, like with the initial confidence interval for St (t) , this confidence interval

could also result in impossible values outside of [O,l] . Thus we have to use the
confidence interval formula derived previously shown as

z Var| log(—1lo S(t)
[S(t)e 0.975Var log(~log )],S(t)

e—20'975Var[log(—10g5(’))} :|

Substituting S (¢) for S(z), we have

A A
20_975Var{log{—log S(Z)H —20_975Va{10g(—10g S(I)H
e o(\€

S(7) S(1)

N
We can apply the delta method to get the distribution of log(—log S (t)], and as a

result,

Var[log[—logiS'\(t)J]z Al Zzn, d;

Thus, a suitable 95% confidence interval for S(¢) would be

1.96 d; 1.96 d;
A zt’,zslni(nifdi) A zt’,zglni(nifdi)
log S(¢) log S(¢)
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Kaplan-Meir Table. The Kaplan-Meir table shows information regarding the
Kaplan-Meir estimate for any given set. Table 3 is a format of the Kaplan-Meir table.
Note that Table 3 is not the same as a general lifetable which will be discussed in the

future.

Table 3. Kaplan-Meir Table Format

Lower Upper

Survival Number at Number of R . 95% CI 95% CI
Times Risk Failures S(t) Var S(¢) Bound Bound
f n, d, S(4)  varS(y) L{g'(tl )} U{g(tl)}

l 1 d, §(¢2) Varg(tz) L{g(t2 )} U{g(zz)}

l; n; d; g(tz) Varg'(ti) LP(E‘)} U{g(t:):|

tn—l nn—l dn—l S(tn—l ) Varg’(tn_l ) L|:§(tn1 )i| U|:‘§(tnl )j|

t, n, d, S(t,) Var§(tn) {&(tn)} U{§(t,, )}
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Determining a Theoretical Distribution. Instead of hazard plotting, the Kaplan-
Meir method can be used to determine an appropriate theoretical distribution to model
data. The Kaplan-Meir method provides an estimated survival function that can be
analyzed for similarities to theoretical survival function. The graph of the Kaplan-Meir
estimate can be compared to the graph of theoretical survival estimates.

The Kaplan-Meir step function may be somewhat difficult to compare to a smooth
function. Thus, for the Kaplan-Meir graph we can draw lines between each (t,-’S (tl- )) for

a smoother representation. This representation is called a Kaplan-Meir curve. If the
Kaplan-Meir curve is similar in shape to a theoretical survival function, then one might

use that theoretical distribution to model the data.

Modified Kaplan-Meir Estimator
We now turn our attention to the main focus of our work. That is modifying the

Kaplan-Meir estimator. It was seen previously with the standard Kaplan-Meir estimator
N
that A; was an estimator of 4, based on the MLE. Although the MLE is a relatively

good method of estimation, there might be other methods of estimation which would
produce better results under the right circumstances. We explore such a method here.

The tradition Kaplan-Meier estimator can modified by using a binomial Bayes
estimator to estimate /4; rather than a MLE estimator. We define the modified Kaplan-

Meir estimator as

gB(f):H[l—iBij

t<t
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AN
where Ap; is the Bayes estimation for 4. There are many important attributes of this

estimation, as well as reasons why one might want to use it instead of the standard

Kaplan Meir estimation in certain circumstances.

N
We can investigate this function further by focusing on its parameter Ap;. The

N
origins of Ap; will be shown and eventually defined it in order to have a more complete

picture of g’ g(2). In order to do that, we start with a review of Bayes estimators.

Bayes Estimators. A Bayes estimator is different from most estimation
techniques in that it assumes there is some prior knowledge about the distribution of the
unknown parameter. The experimenter may subjectively have some idea or intuition
about what the distribution for a parameter is before the data is viewed. This prior
distribution, as it is called, is an important part of constructing a Bayes estimations.

For a parameter €, 7(0) denotes the prior distribution. Once the prior
distribution is chosen, the data is then observed and fitted to an appropriate distribution
called the sampling distribution, denoted f(x|€). Then, the prior distribution is updated
to more closely align with the observed data. This updated distribution is called the
posterior distributed and is denoted (& |x). It is the conditional distribution of @, given

the sample, x . Once the posterior distributed is found, the mean of f(€]x) can be

N
calculated to determine the Bayes estimator for &, denoted €5 .
If the prior distribution and sampling distribution are known, the posterior
distribution can be determined by making use of the relationship

f(@x)=f(x|)x(0)/ f(x). We can multiply f(x|8) and 7(8) to get f(x,0) . Then
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we can find the margin distribution f(x), and divide f(x,8) by f(x) to arrive at
f(@1x).

The Bayes estimator we are searching for is then found by taking the expected
value of f(€]x). That is, g’g :E[f(mx)].

Binomial Bayes Estimators. We have interest in finding the Bayes estimator for
a binomial distribution, since we desire to find an estimator for 4,, which is a parameter
of the binomial distribution, P(D, =d, | Dy =n—n)=(1¥ ) 4% i We
replicate the process of finding a binomial Bayes estimator shown by
Casella and Berger (2002).

Using the Bayes estimation method described in the previous section, we first find
the Bayes estimator of any given parameter p belonging to an arbitrary binomial
distribution. Suppose that 6 has a prior distribution Beta(«,£) and the sampling

distribution is found to be B(n, p) . Then,

f(x,0) =f(x]|0)7(0) = [(z)px (1_p)n—x:|{%pa—l (l_p)ﬂ—l

—1 —1 n F(a’ﬂ) x+a-1 n—x+p-1
f(x)—_([f(xap)dp—.([(x)mp (1-p)" ™" dp
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Hence,

f(x’ p) — F(n ta +ﬂ) x+a-1 (l_p)n—x+ﬁ—1 .

Hplx)= f(x) B F(x+a)r(n—x+,8)p

Since the expected value of Beta («, ) is l/(l + ﬁj and f(p|x) is
a

Beta(x+a,n—x+ ),

1

| Xt B

E[f(p|x)]=

X+ao

1
n+a+pf
X+a

x+a
n+va+p

Therefore, the binomial Bayes estimator for a parameter 6 is

X+a

o=t
n+oa+p

Bayes Estimator for 4;. Now that we have seen the definition of a binomial

Bayes estimator, we can find the Bayes estimator for 4;. It is known that d; follows the

binomial distribution, P(D; =d, | D,_, =n—n.) = (d )ﬂ’f . % If we assume the

1

prior distribution of A, is Beta(a, B). Then

d+a

Ag; =——.
B nta+p
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Notice that @ and £ must still be chosen in order to fully identify Ag, . If one has

sufficient knowledge about the prior distribution, one might have prior knowledge of

what « and £ might be. However, if one doesn’t have enough knowledge about the

prior distribution, & and £ must be chosen. An appropriate « and £ will be revealed

A A
as we discuss the comparison between the two estimators, 4; and A;.

A A
Comparing A; and A . The Bayes estimator can be compared to the tradition

MLE estimator in order to determine which one might be a better estimator and in what
circumstances. One way to do this is to compare their mean square errors.
N 2 N

The mean square error (MSE) is defined as E,| 6—6 | , where € is an estimator
for the parameter €. In general, it is desirable for the MSE to be small. However,
sometimes determining how small an MSE is can be challenge. In order to help to make
this challenge easier and provide more detailed information, the MSE can be split to two
parts as shown below.

2 2
E‘g (0— gj = Varg 9+ (Eg 9_ Hj

A A 2
= Var, 0+ (Biasg 0]
The bias of g’ measures how closely the estimator fits the data. The Variance of g is the
variability of the estimator. It is an expression of how spread out each g is from E (2’} .
If the bias of the MSE is 0, then the estimator is referred to as unbiased. This
would indicate that the estimator fits the parameter very well and usually means that the
MSE is small. However, sometimes if the bias of the MSE is small, the variance

becomes too large. In such a case, it can be acceptable to have a larger bias in exchange

for a smaller variance and an overall smaller MSE.
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Now let us look at the mean square errors for both estimators. The MSE of 4; is

defined as
N N N 2
MSE /4, = Var; A+ (Biasl. /11-) .
This implies,

1 1

2
E, (A=) = Var, &+(EL ﬂ,.—l.j .

Thus,

mse 4, <2 0=4)

The MSE of A3 is defined as
N N AN 2
MSE Ap; = Var, lBi+(BiaSi_ /131) .
This implies,

2 2
Eﬂ (Z/Bi_ﬂ/l') = Val‘i lBl_'_(Ei //lBi_/lij
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Var, d, : +(E(di)+a _/11.]2

Thus,

2
A A (1= A
MSE A = 24 ’)2{ i+ —ﬂ,,.] .
(a+pB+n) \a+p+n

These same results were derived by Casella and Berger (2002) for the mean square

AN
errors of general proportions. Suppose that we were to graph the MSE of /4, as a function

of ;. There would exist a A, -axis, a MSE axis, and the graph would be quadratic as

shown in Figure 2.

MSE A

M
W
o

Figure 2. General Shape of MSE A;

If on wanted a better estimator than 4, one might seek to find a MSE of an estimator

which has a graph closer to the A;-axis. A constant MSE far below the maximum of the
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quadratic function shown above would indicate a seemingly better estimator. It would

also produce a consistent MSE for each value of 4,.

Casella and Bergers (2002) show a method to arrive at a constant MSE of a

general Binomial Bayes estimator. We adopt a similar method to arrive at a constant

MSE A ;. If there is no good prior information regarding 4,, choosing @ and £ to both

be \/Z /2 would result in

2
nd —nA’ | mA +n; 12— n; —An.

1 1 1 171

5+
( nl-+nl-) n; +n

A (1= &) (1/2- 4 )

(o en)

2 2
_ A —mAT A n T4 + A7y

)
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n;

T = 2
4 (\/Z +n, )
We can clearly see that our choice of & and £, resulted in a constant MSE A, .

A AN
The two estimators A, and Ap; can be compared by analyzing the graphs of their

mean square errors. But first, we have to make an observation about the MSEs of our

two estimators,

MSE(ﬁij=M and MSE[/EB,} S B

>
n; 4(\/2 + ni)

Notice that for both of the MSEs there are n; terms. This means that there will be
different graphs for the functions depending on the n; values. This will have an effect as

n; changes. However, for the sake of simplicity, we will analyze n; at just one value, its

value at n. That is n; =n. Figure 3 shows graphs of the MSEs with different respective

values for n. A similar figure was shown by Casella and Berger (2002).

Without any knowledge of the true 4,, it turns out that if » is small, then 2 Bi 18
more likely a better estimator. Most values of MSE(/Al Bij will be smaller, except for
values closeto 4, =0 or 4, =1.If n is large, then /All- is a relatively better estimator,

since most of the values of MSE(/L} will be smaller except for values close to 4, =1/2

N
. An attempt can be made to determine the true value of A;. This will be discussed in a

future section.
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. 0.0006
0m MSE(Az)
0.0004
002
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n=>3 n=2300

A

Figure 3. Comparison of MSE(&) and MSE(ZB,} at n=5 and n=300.

A large or small value of » is rather subjective. A more objective way of

determining size can be seen by observing the graph of the MSEs at n =42 shown in

Figure 4.
A
MSE MSE (1)
0006 —
M
0005 MSE (435:)
0.004
0.003
0.002
0.001
0 01 02 03 04 05 06 07 08 09 1 27
n=42

Figure 4. Comparison of MSE(&) and MSE(AB,} at n=42
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At 0.250258 < 4, <0.749742 , MSE(/L) > MSE[&BI-J and at
A;£0.250258 and 0.749742< 4, MSE(/I,) < MSE(&B,}. About 49.9% of the graph

shows that the estimator /A1 i should be favored. At n =41, about 50.1% of the
corresponding graph shows that ;\1,- should be favored. Thus, n =42 marks the turning
point where more values of the true A, favor /AL- . Theoretically speaking, either estimator
should be fine around » = 42 if there is no information regarding 4,. This is an important

case, but one should be cautious about what a sample size of 42 represents. The true

value of A, is not known. In practice, a sample size of 41 or 42 may not be an appropriate

boundary for a respectively small or large sample size. In practice, certain data sets may

have other boundaries base on the general trend of A;. For instance some data, may favor
a smaller A, so that the boundary for a small sample size may be much lower than 41.

AN AN
It is important to address the effect of n; on choosing between A4, and Ag;.

A
Notice that n; <n.If »n is small, there is no reason to consider a choice between 4; and
AN AN
Asi for each n;, because As; is the natural choice for smaller sample sizes. If 7 starts
small, each successive n; will naturally be smaller. If 7 is large, then there is a need to

see how much smaller each n; will be. If enough subsequent n, values are less than 30,

N
then Ap; may be a better choice even if n is large.

N A A
Our comparison of A4; and A; shows why we have chosen A; as the estimator

A
for A; in our modified Kaplan-Meir estimator. While A3; does not universally
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outperform /A?, i, it does generally do better for smaller sample sizes, theoretically under
42. This shows the potential value of the modified Kaplan-Meir estimator. If one was
only considering the parameters, the modified Kaplan-Meir estimator would do best for
smaller sample sizes compared to the standard Kaplan-Meir estimator. This is not a

certainty, but the suspicion warrants a further analysis which will be discussed latter.

N
A More Detailed Definition of S p(7). Now that we have discussed and defined

A i, a more complex and detailed definition of S5 (#) can be analyzed. Since it was

shown that Ag; = M
\/”_i +n;

§B(t)=H[123ij=H{l(d"\/%—\/_i/.2ﬂ.

d.+~n/2 N ) . A
L so that Ap; is a linear combination of A;.
w/ni +n

di+ym 12 d; 12
Jtn Jnn Jnvn

n 7\ /2/2

i . i
ﬂl’li TR oy ) an- +n;

2

N
, we can now define S3(¢) as,

We reorganize

Thus,

S50 =[] 1-| —~— o
B = — ° R .
1<t \/”_i+”i Ny T

AN N

This version of Sg(¢) will be used so that our parameter might be 4, =d, / n;.
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AN
This gives us a closer association with S(¢) in that they have the same parameters. We
AN
will also use 4, as an estimator for A, when the variance and expectation is computed.
A\
Variance of the Modified Kaplan-Meir Estimate. The variance for Sz (¢) can

AN
be found just as the variance for S(#) was found. First, the variance and expectation of

log S5 (¢) are found.

E{log’(z‘)}—ZE og 1= 2
828 _tiSt s \/I’l_l--i-l’li an--i-l’li

and

A no - T
Va{logSB(t)}ZZVar log| 1- L. — 1l
L<t \/n_i+ni it

The delta method can now be used to find a convergent distribution for

R —
) /2
log{l[ - —ﬂ
,H’li +n; N +n;
—
n.

A : /2
Let Y, =A; and g(¥,) logll ! —H Simplifying g(¥,) we have

,[nl-+ni N +n;

g =log|1-| e 2
\/I’Ti-l-l’ll- Vni+nl-

:10g_\/’7i+”z‘_[ n, /_/_2J]

_JTZ-FI’Zi \/I’Ti-i-l’li \/ni-i-l’ll-
J;i/2+ni—nijii

=1

S o)
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D
Since D, >N (n./l- mA; (1= 24 )), and since we are assuming each D; is identically

[l

independent,
D _
Yn:i—>N[ﬂi,&(l ll)]
n; n;
Thus,
1 —N.
g(r,)= 5= —
S 2 A W) 2 A
(o]
and

g('u)_\/n—i/2+nl.—nili .

If n, + \/n7i/2 -mA; =0, then A = +1. We are assuming that 0 < 4, <1 so that this

1
2o

case will not occur in practice. Thus, g’(x) exists and g'(u)#0 since 1<n. Thus,

log[l—[\/n—_";nf - %NiN(g(u)a[g’(u)T"Z)-

The values of g(x) and [g’(u)]z o’ are

\/n_l./2+nl-—nl-ﬂ,i
=1
g(w) og{ (\/17,~+ni)

and

Hence,
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1 [

log(l— A b2 ]iN log n 2+ —nid; _ n(1-4)
’ 2
\/>+n NIZRa ( n,~+ni) ( nl./2+n.—nﬂ,.)

) n /12 .
Since each log| 1- L—. — | is LLD,

log Sz(f) =1 T
ogSs :og —
1<t \/_+I’Z \/nl-+nl-

_ZIOg(l— | ,_/—2]

t;<t

B)N zlog[ nl.(/2+l’linlﬂvi}z niﬂ“i(l_li) 5
tigz(\/;i/2+ni —nill-)

A
We use the delta method again to find VarSg(?).

Let Y, =logS5(¢) and g(¥,)= exp[log SB(t)] = S5(t). We know that

Jni 1 2+n—n mi2y (1-4)
log S5(1) > N| 31
b | g Bt | )

Thus,
g(,)= exp(logf%(r)j = S5(1)

and

J;i/2+ni—niﬂi
(u) = I
g'(w) expL;[ og[ (o)

Zlo I_/—Z
1<t 8 \/_z+ni N +n; ‘



A D
It is clear that g'(,u) exists, and g’(u) #0. Thus, SB(t)—>N(g(,u),[g’(,u)]2 0'2).

The values of g () and [g’(u)]z o’ are

—a\1 14 A\

n.
glu)=exp log| 1 -—————- .
( ) [Z‘; ( \/Z-F}’Zl \l’li Tlll' }J tigl\ »\/Ill- Tlti »\I’li Tll,l'}

and

O e Pverrvess

NCERC AR, (\/n7i/2+ni — A )2 |

Therefore,

3 - 2\ 2 (1=,
VarSB(t)z[H(l—\/f’ . /_J] Z n; z( ) _
1<t n; +n; Nl t"gt(\/”—i/z"'”i_”i/li)

AN
Since 4; is unknown, A; =d, /n; will be used as the estimator. Like with previous

estimators, this is useful in practice and may not be desirable for theoretical analysis. The

variance resulting from the substitution is

R . 2 }’li 21' [l—ﬁij
Var S (t)~ {SB (r)} >
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Confidence Intervals for the Modified Kaplan-Meier Estimator. A 95%

confidence interval for 3‘ B (t) would be
S5 (t)£zy975VarSg(1).

However, it was seen before that this could lead to results outside of the interval [O, 1]

Thus, we make use of the formula we derived previously as shown below.

[S (t)ezo'975\/ar[log(log S(t))} | g (t)ezo.975Var[log(logS(t))J :|

Substituting S () for S(t), we have

Zo.97sva{l"g[‘1°g Sale )H ‘20.975\’21{1‘%[—10%g s(t )ﬂ
Se(1)° Ss(1)°

The delta method is applied again to derive the distribution of log (—log Sa (t)} ,

resulting in

Varl:log(—log Sz (t)J] N 1 . z dz (7’1; dz) . .
{loggw)} h<t (\/n_l./2+nl. —d,-) n

Thus, a suitable 95% confidence interval for 3’ B (t) would be

1.96 di(n—d;) 1.96 d;(n;—d;)

2 2
{loggg(l)} it (\/n_"/2+n"_d") &

e

Sz(1)
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Modified Kaplan-Meir Table. A modified Kaplan-Meir table contains
information regarding the modified Kaplan-Meir estimate. The table is similar to the one
created for the standard Kaplan-Meir estimate. Table 4 shows the format for a modified

Kaplan-Meir table.

Table 4. Modified Kaplan-Meir Table Format

Lower Upper
Survival Number at Number of ~ v g 95% CI 95% CI
Times Risk Failures 5(1) ar S5 (1) Bound Bound
gl n d, gB(tl) VarSs (1) L|:§B(l‘1)j| U|:§B(tl):|
5 ) d, §B(t2) Vargg(tz) LFB (12)} UPB(Q)}
t n; d; gg(t[) Varg‘g (l;) L{g'g(t[)} U|:§B (t,-)}
tn—l My dn—l gB (tn—l ) Var 3’3 (tn—l ) L |:§B (tn—l ):| U |:§B (tn—l ):|
t, n, d, S&(1,) Var Ss (,) L|:§B (tn)} U{S‘B (tn)}
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Comparing Survival Estimators

We now have the necessary elements to properly compare the survival estimators
presented thus far. In order to determine which survival estimate models a given data set
the best, we can compare the mean square errors of their respective survival estimators.
The distribution with the smallest MSE survival estimator would be the optimal choice to

model the data.

N
For any given survival estimator, Sg(?), its mean square error, is defined as

2
MSE Se(t) = E(SE(t)—S(t)j
N AN 2
=VarSEe(¢) +(Bias SE(I)J

2
_ VarSs(0)+ (E (S*E(r)j - S(t)} .

Here S(¢) is the true survival function that fits the data. Since we do not know the
N
true survival function it is difficult to compute MSE S£(¢). We could leave it as a

N
constant. However, by doing so, it provides a difficulty in interpreting MSE Sg(¢).

Instead, from this point forward, we will assume that the S(¢) chosen to model the data,

AN
corresponding to the given SEg(¢), is the true survival function or acts as an estimator for
the true survival function. While this sacrifices accuracy, it gives us more to work with in

AN
understanding MSE S (¢).
AN
An important part of MSE Sg(#) is the bias. For many estimators,

E (S E (t)j =S (t) , and thus Bias S£(¢) = 0. In these cases, one only needs to evaluate
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Var Sg(¢) . However, if E (S E (t)j #S(t), then the bias must be considered.

There are three survival estimators that are of particular importance and we would

like to compare their mean square errors. The first survival estimator is the popular

N A
exponential survival function, denoted S7(¢). The mean square error of S7(?) is

2

2
MSE S7(¢) =E(Sr(z)—5(z)j =VarST(t)v{E(ST(t)J—S(t)j .

When the Var S7(¢) was determined previously, we also found that E(S T (t)j =5(1).

Thus,

MSE S7(t)=Var Sr(t)+ (S(t) - S(t))2 =VarSr(?).
This is an important result. Since there is no bias for MSE S7(¢) , we only need to find the
Var Sr(¢) to determine the effectiveness of the distribution in modeling the data.

N
The second survival estimator is the Kaplan-Meir estimator, denoted S(¢). The

A
mean square error of S(¢) is

2

2
MSE S(?) :E(S(t)—S(t)j :VarS(t)+£E(S(t)]—S(1)J .

When the Var S(¢) was determined previously, we also found that EES (t)j =5(1).

Thus,

MSE S(1) = Var S(t) +(S(t) - S())} = Var S(t) .

Again this is an important result because there is no bias.
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The third survival estimator is the modified Kaplan-Meir estimator, denoted

N N

S5(t). The mean square error S (¢) is

2 2
MSE S5(t) :E(SB(t)—S(t)j :VarSB(t)+(E(SB(t)j—S(t)J .

When the Var Sz(#) was determined previously, we also found that

E(ﬁ (z))—]‘[ 1| M T2
g - 1<t Jnj+ni N +n; .

Thus,

A A i I_/ ?
MSESB(t)=VarSB(t)+[ 1—( i, _Hsa)]

t;<t

i

_ — 2
Var Sp(1)+ 11 ki /2 S(t)
= ar —_ ° - _
' 1<t \/Z +n; NI T

/2 2
A n; — | I-T1
= - l * - _ﬂl '
VarSB(f)J{gll [ In. +n, NCRal j] <t ¢ l)}

Notice that MSE S3(¢) has a bias which is lacking in the other MSE survival

estimators we have derived. The bias here is of great importance. However, it is quite

difficult to determine how the bias behaves, because each n; and 4; may change within

the products. It is not an easy task to interpret the graph of the bias in a theoretical sense.

The method of trying to evaluate the bias empirically, or by example, is also a

challenge. The true parameter for A, is not known. The purpose of the bias is to judge

how close Sz (?) is to the true survival function S(#). An attempt could be made to
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estimate A,. However, estimating A, for the bias would be hazardous. The choice of an
A
estimator for A, would dramatically influence the bias. For instance, if A; was used as an

estimator for E (S B (t)j and Ap; was used as an estimator for S(¢), then there would be

no bias. On the other hand, if 4; was used as the estimator for both E(S B(t)j and S(¢),

the bias might be quite large. Because of these dramatically varying outcomes, we make

no attempt to determine an estimator for 4, in trying to determine the bias.

The question then remains, how do we consider the bias of Sz(¢)? The simple

A
answer is that we only have information about the bias of the parameter A5;. We can try

A N
to determine how the bias of Sz(¢) will behave based on how the bias of A5 behaves.
Our overall objective is to determine which survival estimator is the best. Just
N
observing the behavior of Bias Ap; is useful, but it can sometimes be difficult in
accomplishing our overall objective.
The accuracy with which one can determine which survival estimate is best

depends on the survival estimates being compared. It is often difficult to compare the

AN N
survival estimators of Sz (¢) and S7(¢) with the greatest accuracy. One might be

N A
tempted to compare their MSE parameters. However, since Ar is arate and Ap; is a
proportion, it is difficult to accurately compare the two. Thus, we have to rely upon a

AN N

comparison of Var Sz(¢) and VarSr(¢). If a bias is relevant, then one would have to

guess how relatively large or small the bias of S5 (¢#) might be according to the parameter
ABi.

N AN

Comparing the survival estimators S(¢) and S(¢)is easier since their respective
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parameters are both proportions and they come from the same distribution. We have
AN N
knowledge about the A; and A; comparisons which were shown earlier. We can see
how the bias affects the estimators, and we can make a fairly good determination about
N N
how the bias affects the comparison of Sz(¢) and S(¢).

In practice, for any survival distributions, we can compare their variances. If a

survival distribution has a bias, then we have to consider the bias separately.
A A
Analyzing the Bias of A3;. Since we cannot easily determine the bias of Sz(¢)

directly, we must instead analyze how Ay, is affected by its bias. Recall that MSE A,

can be written as
A A A 2
MSE A = Var; Api+| Bias; Az | .

This implies,
2

2
Eﬂi (Z«Bi_ﬂ«ij :Varii 281+£Eﬂ71 /lBi_/Iij

which simplifies to

niﬂi(l—/li)+ni(1/2—ii)2

e (on)

Therefore,

Var, Asi = Bias, Agi | =

(ren)

Here the bias and the variances are compared at different sample sizes as shown

N mA(1-4) and( A jz 11,-(1/2—/1i)2

2
\/”_i + ”i)
in Figure 5. We will use two of the sample sizes we used before when comparing the
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MSEs of A; and As;.

AN s
—— Var, Az —— Var, A

2 2

) 2
0.001 . [Biasé:;&]

0.03

[Bias;___ ;VB,-]
, \ )

0.0003

n=>5 n=2300

2
A AN
Figure 5. Comparison of Var; Ap; and (Bias/l_ igij at n=5 and n =300

A couple of things can be observed from Figure 5. The first observation is that the
relationship of the bias and the variance does not appear to change with sample size.
Another observation is that the rate of increase and decrease for the variance and

bias are inversely proportional. Note that since the variance is parabolic, this would have
to be the case in order for the MSE of /A1 i to be constant. The final observation is that
the bias is largest near 4; values of 1 and 0.

Unfortunately, these observations do not tell us with precision how the bias would

influence the effectiveness of g B (¢) compared to some arbitrary survival estimation. It
could be that the bias is enough to make g g(t) not as effective. One cannot ignore the
fact that when the variance is at its smallest, the bias is at its largest. However, it could
also be that even when the bias is at its largest, it is still not enough to cause serious issue.

While these are not definite answers, there is useful information here that should be noted
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and considered in any practical application.
A A
Another Comparison of 4; and Ag;. We will now turn our attention back to a
N AN AN N
comparison of A; and Az;. Two comparisons of 4; and Ap; will be explored. The first
delves more deeply into an analysis of the bias while the second leads to a method of

considering the true value of 4;, in practice.

N
Revisiting the Bias. We desire to see how the bias affects the comparison of A;

and Ap; this time by removing the bias from the MSE of A;. Figure 6 shows graphs of

the MSE A5; and MSE A; at different sample sizes, without the Ap; bias.

MSE A MSE A
) — MSE 4 — MSE 4
0.03 4
0.0008 {
0.04 |
0.0006 {
0.03
0.0004 {
0.02 {
1] 01 02 03 04 05 06 07 08 09 1/17. 0 01 02 03 04 05 06 07 08 09 1 27
n=>5 n=300

A\ AN
Figure 6. Comparison of MSE A5, and MSE A; without Bias

AN
It turns out that regardless of the sample size and the value of 4,, MSE A3;

AN AN
outperforms MSE A, if the bias for Ap; is not considered. However, we saw previously

from Figure 6 that the MSE A; generally outperformed MSE A when the sample size

was large if the bias is considered. This might indicate something important about our
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comparison of 3” (t) and 3’ g(2). If the sample size is small one might expect g B(t) to be
a better estimator than g (1) . However, if the sample size is large, particular care must be
taken about how the bias of g’ g(¢) would affect the results. If it turns out that

Var 3’ g(t) < Var 3” (7), by a relatively small margin, then one must be cautious in believing
g g(t) is the better estimator. It would likely be the case that the bias of g B(1)

would be large enough so that the bias would make MSE 3’ B(t) greater than MSE g ().

This might lead us to belief that S(¢) would be the better estimator rather than S (7).

Estimating the True Value of A,. Up until now, we have operated under the

A N
assumption that the true value of 4; is unknown when comparing MSE A; and MSE A3;.

For instance, in Figure 3 and Figure 4 we assumed that the true value of 4, was unknown

and thus could be treated as a variable.
While our assumption is correct, it fails to offer enough insight into our

comparison. In practice it is possible to have some knowledge and understanding about
the true value of A,. Estimators of 4; can be used in an attempt to understand the possible
size of A; and thus help us decide which estimator is a better choice. While the estimators
cannot be expected to fully represent 4;, we would like to believe they have some
measure of accuracy if we will ultimately choose one of the estimators to model the data.
N AN AN N
Since we have interest in comparing A; and Ag;, 4; and A; can be used to

A
estimate A,. However, A; has traditionally suffered from inaccuracy when the sample

size is small. In particular, the value of A; is often smaller than it should be. Thus, for
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N
smaller sample sizes we use a modification of A;, defined as

!

;Il—d'+2.
n+4

The above modification seeks to attain more accuracy by increasing the number of

failures by 2 and the sample size by 4. This also results in a better confidence interval for

the proportion. The modification of A; is based on a general modification of the
binomial proportion p as presented by Agresti and Coull (1998).
Now that we have established which estimators to use for 4,, MSE 4; and

MSE A; can be graphically compared with more insight. Figure 7 shows the graph of a

general MSE A; and MSE A; comparison.

MSE MSE (/)

/_\ MSE (231)

Figure 7. A General MSE A; and MSE A 3; Comparison

One can determine exactly when the true value of A, favors one estimator over the other

by finding the 4,-values where the two MSEs intersect. The points of intersection can be
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found for any n, by setting the two MSEs equal to each other and solving for A;. That is

we solve

for 4,.

The left intersection point turns out to be

De

while the right intersection point turns out to be

_\/2.7 \/’7,-—1
Qe

For a given data set, once the intersection points are determined they can be

compared to the 4, estimates. Table 5 shows a format of presenting the A, estimates and

intersection value comparisons.

In Table 5, the values of A;and A; can be compared to the L/ [Al-] and R/ [/11-]
values. Each Diff [/Ii] value is the difference between the estimate and the nearest point

of intersection. If the 4; estimate is between its corresponding L/[4; ] and RI[4 ], then

the difference value is measured as positive, otherwise it is measured as negative. The

positive and negative signs hold no significance except to judge whether the individual
N N

value favors MSE A; or MSE A3;. The sum of the estimate difference gives an overall

idea of which parametric estimate might be appropriate for the data. If the sum is

N
positive, then there is evidence that the A; parameter estimate is more accurate,
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Table 5. Estimated A; Table Format. Note that A; is replaced with ;Ii if the sample

size 1s small.

Difference Between

Right Point ~ Left Point Estimator and Nearest
Survival . . of MSE of MSE Intersection Point
Times Ai ABi Intersection  Intersection A A
A i /1Bi
4 At Am LI[4] RI[A] Diﬁ{ﬁ] Diff {/131
t, Ar Am LI[A,] RI[4,] Diﬁ{iz Diﬁ{lgz
t Ai ABi LI[4] RI[ 2] Diﬁ”{ﬁ,} Diﬁ{zm}
b An1 ABn- LI[2,] RI[2,,] Diff [ﬂn—l} Diff {/13"—1}
t, An ABn LI[4,] RI[Z,] Diﬁ{/’tn} Diﬁ’[lgn}

Totals

A

Sumof A;  Sum of Ap;
Differences Differences




indicating that the Kaplan-Meir estimate might prove best in modeling the data. If the
AN
sum is negative, then there is evidence that the Ap; parameter estimate is more accurate,
and thus indicates that the modified Kaplan-Meir estimate might be best in modeling the
data.
Before we move on to the next section, we make a note of why a sum of

differences is used in our comparison of the 4, estimates and intersection values. The sum

of the differences is used because the difference values have weighted effects on 4,. If
the distance between an estimate and an intersection point is large, then choosing the

AN N
inappropriate estimate between A; and Az could result in a very inaccurate 4; estimate.

On the other hand, if the distance between an estimate and an intersection point is small,

AN AN
the choice between A; and A; would likely not be as consequential.

Life Tables

The life table method is a presentation of survival information that is modeled
using the Kaplan-Meir estimates. It is designed to be used for relatively large sample
sizes. The larger data sets are organized in intervals rather than considered at specific
survival times. To accommodate the interval format, certain aspects of the Kaplan-Meir
process are changed. These changes will be shown latter. There are three types of life
tables, cohort lifetables, current life tables, and clinical life tables.

A cohort life table shows statistical information about a population that was born
at the same time or started a process at the same time. The study follows the subjects
throughout their survival times until death. Cohort studies are less common due to trouble

with observation over long time periods.
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A current life table is a life table that shows information about a population over a
given time period without concern for when the subjects of the population were born or
started the process. The rates and statistical information gathered are then used to guess
the behavior of a hypothetical cohort starting at birth or year one and continuing until
death.

Unlike the cohort and current life tables, a clinical life table shows statistical
information about a specific study or experiment, rather than a population. These life
tables are measured over a fixed amount of time and are usually focused on measuring
the effects of a stimuli or condition. Clinical life tables are a common tool for researchers
to analyze the effects of a specific illness or treatment. We will be focusing our attention
on clinical studies and life tables, rather than cohort or current life tables.

The clinical life table has many variations. However, most lifetables have
common elements. We focus on presenting those common elements as well as additional
information which may be useful to a clinical researcher. Table 6 shows an example of a
clinical lifetable format. Each column is described as follows.

The first column gives [#, —#,,,), where i =1,......,s . These are the intervals in
which the survival information is distributed. Recall that survival data is analyzed in
fixed intervals for a life table rather than analyzed as single data values. The intervals
start at and include f; and continue until #;,; which is not included. The time 7, marks

the end of the study so that the last interval [ts —t,,,) is infinite. The last interval is

excluded in its analysis for some of the remaining columns because of its infinite nature.

This exclusion is apparent when i is defined tobe i =1,......,s —1.
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Life Table Format. A similar life table was pd

lon was granted to use this adaptation.
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The second column contains the midpoint of the interval and is denoted ¢, ,
where ¢,; = (¢, +1;,,)/2 and i=1,.....,s —1. The midpoint is needed for plotting the
hazard and probability density functions.

The third column is the width of each interval b,, where b, =t, ., —t;, and
i=1,....,s—1. The width is used in finding the hazard and probability density functions
in subsequent columns.

The fourth column is the number of individuals lost to follow-up in the ith
interval and is designated /;, where i =1,....,s.

The fifth column is the number of individuals withdrawn alive at the end of the
study in the ith interval. It is denoted w;, where i =1,....,s. In a life table, the time
intervals are seen as time since entering the study. Thus, subjects that have entered the

study late may withdraw alive at an earlier interval than others that have entered at a

previous time.

The six column represents the number of deaths in the ith interval, designated d;
where i =1,....,5.

The seventh column represents the number of subjects at the beginning of the ith

interval, denoted n,’, where n'=n and i=1,....,s. One can determine n," by
determining n,_," and subtracting those that die, are lost to follow up, or that are

withdrawn alive. Thatis, n;,"=n; '~/

i Wi —d .

The eighth column is the number of subjects that are at risk of death, denoted #;

where 7 =1,....,s . Since the data is organized in intervals, there is no specific information

shown regarding when in the interval a subject might withdraw alive or be lost to follow
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up. The times for loss or withdraw are assumed to be uniformly distribution and thus a

subject that withdraws or is lost to follow up is considered at risk for only half the

interval. This results in n, =n,'—(1/2)

The ninth column shows the estimated probability of death within the ith

A A A
interval, denoted A; where i =1,....,s, and As; =1. This is the same A; found in the
AN
Kaplan Meir estimator. That is A; =d; / n;. However, in this case, d; and n; are defined

over an interval rather than at a single time. Note that 2,- is the estimated probability of
death only considering risk within the ith , and not before it. The terminology rate of
death within the ith interval will be used to describe 2 i, since it is the proportion of
subjects whom have died in the ith interval.

The tenth column is the estimated probability of survival within the ith interval,

A A A A
denoted w; where i =1,....,s, and ws; =0. This is defined as w; =1—A;. The

N
terminology used for @; is rate of survival within the ith interval.

The eleventh column is the estimated survival function, S(¢;), where i=1,....,s
AN
and S (tl) =1. This is the Kaplan-Meir estimator for S(#;) as shown previously.

However, S(7;) defined for data values over an interval is different than S(7,) defined

for single data values. For single values, S(z;)=S (., )@, since the probability of

surviving at #; 1s equal to the probability of surviving at ; and surviving all previous
N N N N

times. However, over an interval, S(7,)=S(t,_,)®i-1. Here S(¢;) measures the

probability of survival to the start of the interval [tl-,tl- +1)- This is equivalent to surviving

to the start of [t-fl ,1;) and surviving that interval itself. If S (tl-) was defined as

1
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A N AN
S(#)=S(t,_,)w: we might assume survival through previous intervals and the entire

interval [#;,7,,) up until ¢,;. This would indicate survival past the time ¢;, which would

not be appropriate for survival at ;.
The twelfth column is an estimation of the probability function at the midpoint,
AN A
denoted f(¢,,;), where i =1,....,s —1. Recall that 4; denotes the probability of death

within the ith interval. However, it is not known where in the interval death might occur.
We can choose to believe that death is likely to occur in the middle of the interval so that

our error is never to large with respect to where death actually occurs. Hence, we choose

to estimate f(t,;) rather than some arbitrary value f(t,), where #, €[z,,t;,,). However,

we are assuming that the probability of death at any point in the interval is equal.

Therefore, there will be no real difference between the estimate of f(#,,) and the

A A A il A
estimate of any other f(f,), suchas f(¢;). It is known that f(z,) =4, H(l - ﬂ.jj and
j=1
does not change due to the data being organized in intervals. However, we know that

S(t;) does. We can define S(¢;) as
A i-1 A
S(ti)=H[1—/1]}.
j=1
Thus,

A A A il A AA
f(zm,-)=f(zi>=ziH(1—ﬁj}=ﬂi 5.

J=1

It is preferable to divide A; S(¢;) by b; so that the probability is given per unit width,

leading to
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f(t,)=AiS()/b.
The thirteenth column presents an estimate of the hazard function at the midpoint,

denoted 2(%1‘) where i =1,....,s—1. Since (#;)= 1 (¢;)/S(z;) we define ;z(tmi) as

We have defined f'(%,,) previously, but we still need to derive S(#,,). Since S(z) is

the probability of survival at the beginning of the interval, rather than the midpoint, we

define 3‘ (tml-) as

Thus,
ﬂi S(t’) A A A A A
A b 20:8¢) 248¢) 24

The fourteenth, fifteenth, and sixteenth columns are the variances of S (ti ) ,
f(t,:),and h(t,;) respectively. The equation for VarS(z;) was presented by
Greenwood (1926). Gehan (1969) first derived Var f(t,,;), and Var k(). The variance

AN A
for § (tl.) with data organized in intervals is the same as the variance of S (ti) with single

data values, except that S(¢;) is defined differently. The variances for f(z,,;) and

76



h(t,;) can be found using the delta method. We rederive the three survival time

functions below.

As we have seen before,

—_—

A A 2i- d.
VarS(ti)z[S(ti)} —t
;n./<nj ~d;)

i-1 .
d;

Note that VarS(#,) does not exist since ). ———— can’t be found. When
j=1" (”1 - dj)

substituting i for 1, there does not exist d;s and n;s for j values less than 1.
We find Var f (tmi) by first finding Var {log S (ti)/li} .
Va{log S(¢,) /Ll} =Va{log S(ti)} +Var{log A,}

By the delta method,

Var [log Ai } ~

Thus,

Var {log S(t,.)} +Var [log 111 ~

By a second use of the delta method,

A A ~ 2| i1 /A11 i
Var| S(¢,)Ai | = f(tmi) Z Tt

j=1 .
Hnwp Ain
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Therefore,

A

We found previously that 4 (tml.) =22i/b {2 - ﬂ,} . Using the delta method once again,

we have

A 163«1 CAOi 16md; (n; —d;)
Varh(tn) > Y b (n-d)
nb? (2_;“] i\ 21 —a;

The seventeenth and eighteenth columns are the upper and lower limits of the
confidence interval for S(¢;). One could also add columns to display the confidence

intervals for ]A‘(tmi) and 2(t ) one so desired.

mi

AN
The confidence interval for S(¢#;) here is similar to the confidence interval derived

previously for S(#,) with single data values. It is

196 & d; 196 & d;
2 2
{mgg(ﬁ)} =i (n=;) |:10g§(ti)} =)
S(1,)° S(4)°
0 d.

N
This confidence interval does not exist for S (tl) since Z / does not make

=11 (”j _dj)

sense.
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Life Table for the Modified Kaplan-Meir Estimate. A life table requires a
relatively large sample size so that the data can be grouped into intervals. The modified
Kaplan-Meir estimate would likely not be the best estimate for a large sample size.
However, it is still possible to create a life table using the modified Kaplan-Meir estimate
for the purpose of comparing the results with the standard life table. Additionally, it is

possible for the modified Kaplan-Meir estimate to be a more efficient estimator, even

with a large sample size, if the true values of the A; parameters are close to 0.5.

The two life tables would be identical in nature except for columns 11 onward.
Columns 11-13 have estimated survival, probability, and hazard functions similar to the
standard life table, except that the survival time functions use the modified Kaplan-Meir

estimators. Those functions are

: S W)

t D

B( ) H \/74-1’1 N +7’lj
F72

fB(tmz) ZIBSB(Z‘) |:\/7+n A ;]3’3(1}),
V' i

and

) n, . /_/72
A B 2215‘ B \/}’l_l.+l’ll- N Y +n;
hp (tmi)_ N = — .
bi|:2—/1i } blo— n; ,A /i
’ ll: \/Z-i-l’ll- N Y +n

We can make use of the delta method as we did previously to find the variances in

the final columns. The variances are
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2, An.—d.
Var Sz ([i)z|:§3(tl.)j| 1 d] (nj dj) 5 5
(g 124m,-d; ) n

2
A
f t . A A AN A
|: B(ml) i—1 n]ﬂ]a)] n, Ai i

Var}B (tml-) ~

[}B(fmi)T o dy(n-d)) d;(n;-d,) |

= b? jzlnj( n‘./2+n.—dj)2+nj( n,-/2+dj)2_

and

Var;zg(tml.)z 16nl-/A1iaA)i(\/n_i+ni)2 :l6di(nl-—dl-)( ni+n,-)2.

4 4
b’ 6\/77,.+2n,. —n, /1,-) nb;} (;ﬁ+2ni —dl.j

The final columns show the upper and lower confidence intervals for Sp(;).

1.96 ’i d;(n;~d;) 1.96 ’i d;(n;=d;)
2 2 2 2
[1og§3(t,.)} 771 (Jny 120m,=d; ) {loggg(ti)} 771 (Jny 124m,=d; )
N
50 (1) Sal0)°

N
Note that the confidence interval for S5 (#) does not exist.

Table 7 shows the lifetable format for the modified Kaplan-Meir estimate.
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DATA ANALYSIS

Overview

It is important to see how the different methods for survival estimation compare
and function in practice. For this reason, we will analyze two sets of data. The first data
set will have a sample size of 21. The first data set has a relatively small sample size and
is less than 42. Thus, we might expect that the modified Kaplan-Meir estimate would be a
far better estimate than the standard Kaplan-Meir estimate for that data set. The second
data will have a sample size of 2418. Since this data set has a relatively large sample,
being far greater than 42, it is likely that the standard Kaplan-Meir estimate would be
better than the modified Kaplan-Meir estimate. The parametric method may or may not
be better than both the Kaplan-Meir estimates, and is determined by how well the data
matches the shape of the known distribution. If the data fits the the general shape well,
then we might expect the parametric estimations to do best.

The statistical package R in conjunction with Microsoft Excel was used in the

analysis of our data sets.

Acute Leukemia Data Analysis

The first data set is from a study to assess the effectiveness of the drug 6-
mercaptopurine (6-MP) on patients with acute leukemia cancer. The remission times of
the patients were organized and reported by Freireich et al. (1963). The remissions times
are considered the “failure times.” The study consists of 42 patients split into two groups

of 21, and ended after one year. One group was given the drug, and another received a
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placebo. For our purposes, we will only analyze the group given the drug. The following
are the remission times (in weeks) of the patients given 6-MP.
6,6,6,7,10,13, 16, 22,23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+
A plus indicates that the observation was censored. The subjects were enrolled at
different times. Study termination is the cause for each censored value.

Parametric Estimate. First we will use the parametric method to model the data
set. Recall that the hazard plot will be needed with the estimated hazard values. Table 8

shows the cumulative hazard calculations.

Table 8. Hazard Table for Patients with
Acute Leukemia

Cumulative
Survival Number at Hazard Hazard
Times Risk Values Values
6 21 4.76 4.76
6 19 5.26 10.02
6 18 5.56 15.58
7 17 5.88 21.46
10 15 6.67 28.13
13 12 8.33 36.46
16 11 9.09 45.55
22 7 14.29 59.84
23 6 16.67 76.51
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From Table 8, a hazard graph is created and shown in Figure 8.

40

Survival Time

(=
I I I I

0 20 40 &0 80 100

Cumulative Hazard Percentage

Figure 8. Hazard Graph for Patients with Acute Leukemia

The data appears to be linear in nature, thus we choose an exponential distribution

to model the data. It was found previously that a parametric estimate of 4 for an

exponential distribution is A = Zé‘l / Ztl- , where 6; =0 if censored or o; =1 if
i=1 i=1
uncensored. Thus, we calculate that A =9/359 =0.02507 and f(¢) = 0.02507¢ 02307

would be a good parametric model for the data set.

Choosing f(t) =0.02507¢ %% as our parametric distribution, the
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N
corresponding survival function would be Sr (t) = ¢ 00297 Recall that

Thus,

912

(359)

VarSr(1) = = 0.00007¢%¢ 03013

2

Table 9 displays the theoretical survival table for S7(¢). This will be used for

comparison purposes latter.

Table 9. Theoretical Survival Table for Patients with
Acute Leukemia

Survival . .

Times St (1) Var St (t)
6 0.8603466 0.001861
7 0.839045788 0.002409
10 0.778255813 0.004230
13 0.721870153 0.006150
16 0.669569708 0.008015
22 0.576061991 0.011216
23 0.561799643 0.011660
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N
Recall that the confidence interval for any exponential Sr (t) is

n n
1.96| 1/ 3 51' -1.96/ 1/ X 61'
e l=1 e l=l

e—it ’ e—lt

Thus, the confidence interval in this case would be

el.96*(1/9) e—1.96*(1/9)
( e—o.ozson) ( e_0'02507’) _ [ e—0.03117t’ 6—0.0201641]'

A graph of S, (t) and its 95% confidence interval are shown in Figure 9.

— —— Theoretical Swrvival Estimate
s ---- T&8E Confidence Interval

1.0

0.6
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0.0

Theoretical Survival Time (Weeks)

Figure 9. Theoretical Survival Estimate for Patients with Acute Leukemia
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Kaplan-Meir Estimate. The data set will now be modeled using the Kaplan-Meir

process. Recall that the survivor function, S(7), can be estimated as S(7) = H[l - /L-j,

t<t

AN AN
where A; =d; /n;. The computation of each S(¢;), along with its variance, confidence

intervals, and other survivor information is shown in Table 10.

Table 10. Kaplan-Meir Table for Patients with Acute Leukemia. A traditional life table is
not used since the sample size is small.

Lower Upper

Survival Number at Number of . 95% CI 95% CI
Times Risk Failures S(1) Var S(t) Bound Bound
6 21 3 0.8571 0.005830 0.7743 0.9230

7 17 1 0.8067 0.007558 0.7034 0.8771

10 15 1 0.7529 0.009281 0.6553 0.8265

13 12 1 0.6902 0.011408 0.5935 0.7683

16 11 1 0.6275 0.013009 0.5337 0.7076
22 7 1 0.5378 0.016442 0.4367 0.6286
23 6 1 0.4482 0.018116 0.3479 0.5434

From Table 10, the graph of S(¢) and its 95% confidence interval is constructed

in Figure 10.
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Figure 10. Kaplan-Meir Estimate for Patients with Acute Leukemia

Modified Kaplan-Meir Estimate. Finally, we model the data set using the

modified Kaplan-Meir process. For the modified Kaplan-Meir process, recall that S (t) 1s

. —
A , /2 "
estimated as Sp(t) = H{l —[ & —H , where A; =d; /n;. Table 11

L]
1<t 1/7’11- + 1 N1 Tn;

N
shows the important survival information, including Var Sz () and confidence intervals

for §B (1)-
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Table 11. Modified Kaplan-Meir Table for Patients with Acute Leukemia

Survival Number at Number of A

A Lower Upper
Times Risk Failures Ss(1)  Var Sz(2)

95% CI 95% CI
Bound Bound

6 21 3 0.7932 0.003929 0.7475 0.8316
7 17 1 0.6782 0.004200 0.6458 0.7083
10 15 1 0.5727 0.004200 0.5465 0.5980
13 12 1 0.4715 0.004104 0.4486 0.4940
16 11 1 0.3840 0.003708 0.3642 0.4037
22 7 1 0.2915 0.003495 0.2726 0.3107
23 6 1 0.2148 0.002889 0.1979 0.2322

The graph of Sz(¢) and its 95% confidence interval are shown in Figure 11.

—— MKM Estimate
---- MEKM Confidence Interval
£
=
el
g
o
=
=
[
=
w
(o)
= [ I I
0 10 20 30 40

Survival Time (Weeks)

Figure 11. Modified Kaplan-Meir Estimate for Patients with Acute Leukemia
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Comparing Survival Variances. Here we will compare the variances of the
three estimates. We will latter consider the bias of the modified Kaplan-Meir estimate in
a discussion of the results.

Since there is more than one variance for each estimate, the overall sums of the

respective survival function variances are compared. That is, we can compare

n A n A n A

ZVar Sr(¢,), ZVar S(¢,), and ZVar Sr(t;) . We wish to see which summation is
i=1 i=1 i=1

smaller. A smaller summation is one indication of a better corresponding survival

estimate. Table 12 shows the survival function variances at each ¢#; along with their

summations.

Table 12. Comparison of Survival Variances for Patients with
Acute Leukemia

Survival A A A
Times Var St (1) Var S(t) Var Sp(1)
6 0.001861 0.005830 0.003929
7 0.002409 0.007558 0.004200
10 0.004230 0.009281 0.004200
13 0.006150 0.011408 0.004104
16 0.008015 0.013009 0.003708
22 0.011216 0.016442 0.003495
23 0.011660 0.018116 0.002889
Totals 0.045541 0.081644 0.023825

90



Table 12 shows that ) Var Sp(1;,) <> Var Sr(1,)< > Var S(z,).
i=1 i=1 i=1

Estimating the True Value of the Kaplan-Meir ;. In order to compare A; and
N
Ai,a A; estimate table is created. Table 13 shows a comparison between the 4,
estimates and the intersection points of MSE A4; and MSE A3;.

Table 13. Estimated 4, Table for Patients with Acute Leukemia. A plus sign is given to

difference values between the right and left intersection points. A minus sign is given
to difference values outside of this interval.

Difference Between
Right Point  Left Point of  Estimator and Nearest

Survival - A of MSE MSE Intersection Point
Times At ABi Intersection  Intersection ~ A
Ai ABi
6 0.2000 0.2068 0.2144 0.7856 -0.0144 -0.0076
7 0.1429 0.1449 0.2032 0.7968 -0.0603 -0.058
10 0.1579 0.1556 0.1966 0.8034 -0.0387 -0.0410
13 0.1875 0.1767 0.1800 0.8200 0.0075 -0.0080
16 0.2000 0.1857 0.1800 0.8200 0.0200 0.0057
22 0.2727 0.2408 0.1560 0.8440 0.1167 0.0848
23 0.3000 0.2633 0.1480 0.8520 0.1520 0.1153
Totals 0.1828 0.0911

' Due to small sample size, A; is used.
AN

Positive difference summations in table 13 show good evidence that A; would be the

more accurate estimate for 4;.
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Angina Pectoris Data Analysis

The second data set is from a study measuring the time until death of 2418 males
with angina pectoris. The data was organized and reported by Parker et al. (1946). An
observation is measured as survival time since diagnosis until death. The data was
organized in 16 intervals, with each interval being one year. The study ended after 15
years. Right censoring occurred for some of the observations, due to loss of follow-up.
The observation of subjects started at different times. The data will be shown in
lifetables, due to the quantity of observations.

For this data set, we will take a different approach in finding an appropriate
parametric method. Recall, that one can make a choice concerning which parametric
function is best based on the shape of the non-parametric graphs. We will use this method
here. The non-parametric methods will be presented first. Then, the general shape of the
graph will be observed and compared to the shape of theoretical survival functions. An
appropriate parametric function will then be found and compared to the Kaplan-Meir
estimates.

Kaplan-Meir Estimate. We first model the data using the Kaplan-Meir process
A i-1 A
for life tables. Recall that each S (¢, ), can be estimated as S(z;) = H(l -2 jj , where
j=1

Aj=d;/n;. The lifetable using the Kaplan-Meir process is shown in Table 14.

For our purposes, the values of ]A‘(tm ) iAz(tm ), Var }(tm ), and Var }Az(tm) will not be

analyzed.
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The graph of S(¢) is shown in Figure 12.
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Figure 12. Kaplan-Meir Estimate for Patients with Angina Pectoris. The confidence
intervals are not included since they are too small to observe.

Modified Kaplan-Meir Estimate. For the Modified Kaplan-Meir process, recall

L.=/2
—J , where

(& o

Aj=d;/n;. The modified Kaplan-Meir life table is shown in Table 15. The

A i—1
that each S (7)) is estimated as S B(t) = H

values of jA’B (1) hs (¢,), Var jA’B (t,,),and Var hs (,,) will not be analyzed.
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The graph of Sz (¢) is shown in Figure 13.
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Figure 13. Modified Kaplan-Meir Estimate for Patients with Angina Pectoris. The
confidence intervals are not included since they are too small to observe.

Parametric Method. In order to model an appropriate parametric model, we
must choose which non-parametric estimate to analyze. In this case, the modified Kaplan-
Meir estimate and standard Kaplan-Meir estimate are similar enough in shape that either
would be sufficient to choose. In this case, it turns out that the Kaplan-Meir estimate is
likely the more accurate estimate. Thus, we will analyze the Kaplan-Meir estimate. A

AN
smooth representation of S (t) is shown in Figure 14.
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Figure 14. Kaplan-Meir Curve for Patients with Angina Pectoris

If we compare the above Kaplan-Meir curve with the graph of survival functions
from known distributions, it appears that the exponential survival function would fit the
data well.

Since an exponential survival function is used for our parametric model, an

estimation of the parameter 4 needs to be found. A suitable modification of

A n n
A= Z o; / zf,- for a lifetable is used as an estimator for A . The indicator variable, J;
i=1 i=1
N
is replaced with n— Zli +w;, n is replaced with s, and each ¢; is replaced with
i=1

ti® w;). Since a lifetable does not show the exact failure times or times of
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censoring within the interval, the failures or censorships are estimated as taking place at

the midpoint in each interval, Thus,

. n—ZZi+Wi
A= =l =0.138587.

We can conclude that the function f(¢) =0.138587¢ *1**%"" would be a good parametric

N
model for the data set. The exponential survival function is S7 (t) = o 01385871

It is known that

Making the substitutions given above, we have

M ..
n—Zli +w,}tze =t

Var S7(¢) = [ =l

ER

(1655)t°e™ !
[11942]°

=0.000012¢%~ 02771741

N
Table 16 shows S7(¢) at each uncensored ¢#;, along with the respective variances. This

will be used for comparison purposes latter.
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Table 16. Theoretical Survival Table for Patients with
Angina Pectoris

Survival . R

Times Sr (1) Var St (1)
1 0.870588 0.000009
2 0.757923 0.000027
3 0.659838 0.000045
4 0.574447 0.000061
5 0.500106 0.000073
6 0.435386 0.000079
7 0.379042 0.000082
8 0.329989 0.000081
9 0.287284 0.000078
10 0.250106 0.000073
11 0.217739 0.000067
12 0.189561 0.000060
13 0.165030 0.000053
14 0.143673 0.000047
15 0.125080 0.000041

The confidence intervals for 3‘ T (t) are
1.96[1/n—ill-+wi] —1.96[1/n—i1i+wi]
A e = A e =
(e—/ltj ’[e_;“j

1.96(1/1655) o 1196(1/1655) ]

e
—{(e 0.063892t) ’(e 0.063892t)
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9

_|:e—0.13875t e—0.138422tj| '

The graph of S (¢) is shown in Figure 15.

1.0

0.6

Theoretical Survival Probability
0.4

0.2
|

0.0

I I I I
0 2 4 6 8 10 12 14

Theoretical Survival Time (Years)

Figure 15. Theoretical Survival Estimate for Patients with Angina Pectoris. The
confidence intervals are left out since they are too small to observe.

Comparing Survival Variances. Here the summation of each estimate variance

is analyzed. A consideration of the bias of will be addressed in a discussion of the results.

The variances of the respective survival functions are shown in Table 17.
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Table 17. Comparison of Survival Variances for Patients with
Angina Pectoris

Survival R R R
Intervals Var Sr(¢) Var S(1) Var Sp(1)
[1-2) 0.000009 0.000064 0.000061
[2-3) 0.000027 0.000085 0.000079
[3—4) 0.000045 0.000094 0.000087
[4-5) 0.000061 0.000102 0.000093
[5-6) 0.000073 0.000106 0.000093
[6—7) 0.000079 0.000108 0.000092
[7-28) 0.000082 0.000110 0.000091
[8—9) 0.000081 0.000112 0.000090
[9—10) 0.000078 0.000114 0.000088
[10—11) 0.000073 0.000109 0.000087
[11-12) 0.000067 0.000123 0.000086
[12-13) 0.000060 0.000130 0.000085
[13—14) 0.000053 0.000139 0.000083
[14—15) 0.000047 0.000151 0.000081
[15— ) 0.000041 0.000177 0.000084
Totals 0.000875 0.001724 0.001280

n A n A n A
Table 17 shows that ) Var Sr(;) <) Var Sp(1;)< Y Var S(z,).
i=1 i=1 i=1
Estimating the True Value of the Kaplan-Meir A;. The estimates A; and A3;
are compared by creating and analyzing an estimate 4, table. Table 18 shows a

AN
comparison between the A; estimates and the intersection points of MSE A; and

MSE A;

101



Table 18. Estimated A, Table for Patients with Angina Pectoris. A plus sign is given to
difference values between the right and left intersection points. A minus sign is given
to difference values outside of this interval.

Difference Between
Right Point  Left Point Estimator and Nearest

Survival A A of MSE of MSE Intersection Point
Times Ai Api  Intersection Intersection 21‘ 231‘
[0-1) 0.1886 0.1948 0.4007 0.5993 -0.2121 -0.2059
[1-2) 0.1163 0.1249 0.3953 0.6047 -0.2790 -0.2704
[2-3) 0.0902 0.0999 0.3916 0.6083 -0.3014 -0.2917
[3-4) 0.1131 0.1228 0.3887 0.6113 -0.2756 -0.2659
[4-5) 0.1025 0.1132 0.3850 0.6150 -0.2825 -0.2718
[5-6) 0.1120 0.1232 0.3803 0.6197 -0.2683 -0.2571
[6-7) 0.0952 0.1085 0.3731 0.6269 -0.2779 -0.2646
[7-8) 0.1103 0.1248 0.3649 0.6351 -0.2546 -0.2402
[8-9) 0.0996 0.1166 0.3561 0.6439 -0.2565 -0.2395
[9-10) 0.1063 0.1252 0.3471 0.6529 -0.2408 -0.2219
[10-11) 0.1441 0.1635 0.3369 0.6631 -0.1928 -0.1734
[11-12) 0.1646 0.1865 0.3226 0.6774 -0.1580 -0.1361
[12-13) 0.1390 0.1682 0.3031 0.3031 -0.1641 -0.1350
[13-14) 0.1104 0.1493 0.2823 0.7177 -0.1719 -0.1331
[14-15) 0.1263 0.1737 0.2564 0.7436 -0.1301 -0.0827
Totals -3.4656 -3.1893

The negative difference summations in Table 18 show good evidence that A; would be

the more accurate estimate for /4.
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DISCUSSION

The results for the Acute Leukemia data analysis are partially what we expected.
If we only analyze the variances, the modified Kaplan-Meir estimate appears to be better
than the standard Kaplan-Meir estimate. Additionally, the modified Kaplan-Meir estimate
seems to outperform the exponential estimate. However, if we consider the bias, we
might be able to get a more accurate understanding of which estimation is best.

In our analysis of the Acute Leukemia data, we don’t know exactly how large the

AN
bias of Sz (t) is, however an analysis about the overall nature of the parameters, might
suggest something about the size of the bias. When the true value of 4, was estimated

AN AN
and compared to the intersection of the 4; and Az MSE, we found that the results

favored the Ap; estimate. While this does not directly show that the bias of S5 (t) is

small, it does show evidence that the bias of Ap; is small so that MSE Ap; is less than
MSE A;. We know that the bias S5 (¢) is affected by the bias of A so that it is likely
the bias S5 (¢) is also small. Thus, we believe with some confidence that the bias S5 (¢)

A AN
is small enough to allow MSE S5 (t) to still be less than MSE S(t) . We have less
knowledge about how an exponential survival estimate compares to a Kaplan-Meir
estimate, but we know that a theoretical estimate should outperform a non-parametric

estimate if the data can be accurately modeled with a theoretical distribution. Thus, we
AN
might guess that the bias is small, but large enough so that MSE Sr (t) is less than

MSE S5 (7).
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After considering the bias in our mean square errors, we make the conclusion that

the following is likely true.

MSE S7 (1) < MSE S (¢) < MSES ¢).

This would result in the exponential survival function being the best estimate followed by
the modified Kaplan-Meir estimate, and the traditional Kaplan-Meir estimate being the
worst of the three.

While our conclusion for the Acute Leukemia data analysis is likely true, there are
a number of possible scenarios that would lead to a conclusion other than the one we
suggested. The possibilities are discussed as follows.

The bias of the modified Kaplan-Meir estimate might be smaller or larger than

expected. The first reason for this might be due to parameter estimation. While using an

estimate of the Kaplan-Meir 4; gave us some understanding of A, the estimate was not

the true value itself. It could be that our estimate may have been insufficiently. The

second reason the biasSp (t) might be different than expected is that we only know

information about the variance of the survival function, not the bias. Since we do not

know the bias S g (t) , it 1s possible that the parameter bias affected the corresponding

survival function bias in ways we did not predict. Two things could result from a

bias Sz (t) different than expected. The first is that it could be too small to affect the

MSE in any way. This would result in the Kaplan-Meir estimate being the most accurate

survival estimate. Another possibility is that the bias Sz (t) is large enough to make the

modified Kaplan-Meir estimate worse than all the other estimates.
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It is possible that the data may not sufficiently be modeled by an exponential
distribution. There does appear to be a slight variation from the exponential curve. This
might be enough to cause the modified Kaplan-Meir estimate to be more accurate.
However, we note that this is a difficult option to assess, and it is unlikely that this
variation from the exponential curve would be enough to affect the results.

A final possibility is that the approximations used in our methods skew the results
so that an unexpected outcome arises. Of considerable concern is the use of the delta
method in the construction of our estimators. The delta method is optimally used with
large sample sizes. The sample size for the Acute Leukemia data is small. This
inaccuracy due to sample size is difficult to avoid, because alternatives to the delta
method are hard to find.

In our analysis of the angina pectoris data, it appears that the theoretical estimate
is the most accurate survival function estimate followed by the modified Kaplan-Meir
estimate, and lastly the standard Kaplan-Meir estimate. However, this assessment does
not consider the bias of the modified Kaplan-Meir estimate. In our interpretation of the
Acute Leukemia data, we discussed that the bias would likely cause the standard Kaplan-
Meir estimate to be better than the modified Kaplan-Meir estimate. This might especially
be the case here since the difference between the respective variances is very small. In

our comparison of the estimated 4, and MSE points of intersection, we found that the

results favored the A; estimate. Thus, there is evidence that the bias for the modified
Kaplan-Meir would be large enough so that MSE Sz (t) <MSES (t) . Based on this, we

make the conclusion that the standard Kaplan-Meir estimate would be more accurate than
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the modified Kaplan-Meir estimate, while the theoretical estimate would remain the most
accurate.

Like with the acute leukemia data set, there are suspicions that our conclusions
might not be correct. The suspicions are shared for similar reasons except that for this
data set, the sample size is large enough that we don’t have to worry too much about the
delta method approximations. One alternative conclusion is that the modified Kaplan-

A A
Meir bias is smaller than expected so that in fact, MSE S (¢) < MSE S (¢). This would
lead to the conclusions that the modified Kaplan-Meir estimate is more accurate than the
standard Kaplan-Meir estimate.

Our analysis encouraged us to consider a number of different scenarios and
alternative methods where more certainty in the results might be attained. We first
discuss some different scenarios followed by two alternative methods that deserve future
consideration.

From our analysis of the Acute Leukemia data, we observed that the estimated
A;s were relatively close to the left intersection point. The reason for this lies in the
nature of the data. Except for the first survival time, there was one observed failure at

each time. This meant that our estimations of each A;, except for values with very small

n;s , would be small enough to cause a relative amount of uncertainty. The values were

closer to zero than was desirable so that choosing between the standard and modified

Kaplan-Meir estimate was a relatively difficult choice.
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Data sets with high death rates at each observed time would have less uncertainty
and would tend to favor the modified Kaplan-Meir estimates. For instance, suppose we
had a data set with the following survival times.

6,6,6,6,6,6,6+,7,7,7,7,7,7,10, 10, 10, 10, 10, 13, 13
If we did analysis on this data set, then we would find that the estimated A, values would

be much further away from the intersection points, because there are more observed
failures at each survival time. In this case, the modified Kaplan-Meir estimate would
outperform the standard Kaplan-Meir estimate with more certainty.

Data sets with smaller samples sizes will also tend to favor the modified Kaplan-
Meir estimate. In an earlier analysis we discussed that a sample size less than 42 might be
considered small. However, that is not a concrete marker. The smaller the sample size,
the more accurate the modified Kaplan-Meir estimate will usually be. In our Acute

Leukemia data analysis, it was seen that the latter survival times were more clearly in

favor of the modified Kaplan-Meir estimates. This is because the ;s became

increasingly smaller and acted as a local sample size. Based on our analysis, it may be
that the sample size needs to be significantly smaller than 42, depending on other factors
such as death rate per survival time. We guess that a sample size of 25 or less may be a

better marker for favoring the modified Kaplan-Meir estimate.

A possible alternative method for estimating S (t) for small sample sizes, may be

to use the standard Kaplan-Meir estimate for some values of #; and the modified Kaplan-

Meir estimate for others. In our Acute Leukemia data analysis, we found that the first 3-4

comparisons of the estimated A;s and the nearest intersection points, favored the

107



AN AN
parametric estimate 4, , while the latter comparisons favored Ag;. This suggests that the

Kaplan-Meir estimate would likely be more accurate for the first 3-4 survival times, and
the modified Kaplan-Meir estimate would probably be more accurate for the latter

survival times. Future researcher might explore estimating each § (tl-) with non-uniform

estimates. For instance, in our Acute Leukemia analysis, it might be beneficial to use
N N
S(t) as an estimator for S(#,), S(#,), S(#;),and S(z,), while using S5 (7) to
estimate the rest of the survival functions. The effects and complications of this sort of
method deserve more scrutiny.

Another alternative method for estimating S (t) for small sample sizes might be
to use A; as an estimate for A,. We discussed previously that A; is a better estimator
when the sample size is small, and used it to estimate the true value of A.. However, we

did not explore how a modification of the Kaplan-Meir estimate based on A; might

perform. It is reason to believe it might be a good alternative for smaller sample sizes.
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CONCLUSION

Evidence was shown, both theoretical and empirical, that suggests our modified
Kaplan-Meir estimate is likely more accurate than the standard Kaplan-Meir estimate for
smaller sample sizes. We conclude that our hypothesis is correct, but with some degree of
uncertainty.

More analysis should be conducted to verify and confirm our hypothesis. The
comparison of MSE S (¢) and MSE S 5 (t) should be explored in more detail. It could be
useful to create a multidimensional graph of MSE 3’ B (t) or some other mechanism for

analyzing MSE S (¢) to determine the effect of the S5 () bias. Also, alternative

estimates to the Delta method might be considered to address estimation error for smaller
sample sizes.

Assuming that our conclusions are verified and confirmed, our results would help
alleviate the particularly troublesome problem of inaccuracy due to small sample size. A
lack of participants in a study may be mitigated by our modified Kaplan-Meir estimate.
This would prove to be a boon to research when larger sample sizes are sometimes not

available or even feasible.

109



REFERENCES

Agresti, A. and Coull, B. A. (1998) Approximate Is Better than "Exact" for Interval
Estimation of Binomial Proportions. The American Statistician, 52(2), 119-126.

Bartholomew, D. J. (1957). A Problem in Life Testing. Journal of the American
Statistical Association, 52, 350-355.

Casella, G. and Berger, R. (2002). Statistical Inference (2nd ed.). Brooks/Cole
Cengage Learning.

Freireich E. J., Gehan, E. A., Frei, E., et al. (1963). The Effect of 6-Mercap-topurine on
the Duration of Steroid-Induced Remissions in Acute Leukemia: A Model for
Evaluation of Other Potential Useful Therapy. Blood, 21(6), 699-716.

Gehan, E. A. (1969). Estimating Survival Function from the Life Table. Journal of
Chronic Diseases, 21, 629-644.

Greenwood, M. (1926). The Natural Duration of Caner. Reports on Public Health and
Medical subjects, Her Majesty’s Stationery Olffice, London, 33, 1-26.

Kaplan, E. L., and Meier, P. (1958). Nonparametric Estimation from Incomplete
Observations. Journal of the American Statistical Association, 53, 457-481.

Kleinbaum, D. G. and Klein, M. (1996). Survival Analysis: A Self-Learning Text
(3rd ed.). Springer.

Le, C. T. (1997). Applied Survival Analysis. Wiley-Interscience, Inc.

Lee, E. T. (1992). Statistical Methods for Survival Data Analysis (2nd ed.).
Wiley-Interscience, Inc.

Nelson, W. (1972). Theory and Applications of Hazard Plotting for Censored Failure
Data. Technometrics, 14, 945-966.

Parker, R. L., Dry, T.J., Willius, F. A., and Gage, R. P. (1946). Life Expectancy in
Angina Pectoris. Journal of the American Medical Association, 131, 95-100.

Xu, R. (2016). Lecture 2 Estimating the Survival Function. UCSD, La Jolla, CA.
Retrieved from http://www.math.ucsd.edu/~rxu/math284/slect2.pdf

110



	Survival Analysis: A Modified Kaplan-Meir Estimator
	Recommended Citation

	tmp.1516061350.pdf.GuMdJ

