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Mathematics 
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Master of Science 

Justin A. Bancroft 

ABSTRACT 

The popular Kaplan-Meir estimator has traditionally been used to great effect as a 

survival function estimator. However, the Kaplan-Meir estimator is dependent upon a 

maximum likelihood parameter estimator which may not be the best estimator in all 

cases. We modify the Kaplan-Meir estimator, based on a Bayes parameter estimation, in 

hopes of providing a more accurate survival estimator for small sample sizes. Core 

elements of survival analysis are presented, acting as a foundation from which to 

construct and compare our modified Kaplan-Meir estimator. It is hypothesized that our 

modified Kaplan-Meir estimator is generally more accurate than the standard Kaplan-

Meir estimator for smaller sample sizes, while the standard Kaplan-Meir estimator 

remains appropriate for larger sample sizes. Both Kaplan-Meir estimators are compared 

to theoretical distributions, with the traditional expectation that theoretical distributions 

will model data best if data can be fitted to a theoretical distribution.  In order to show 

validity for our hypothesis one smaller data set and one larger data set were analyzed. 

The results of the analysis appeared to agree with our hypothesis.  

 

 

KEYWORDS:  survival analysis, Kaplan-Meir estimator, modified Kaplan-Meir 

estimator, censored data, hazard plotting, life table 

 

 

 

 

 

 

 

 

 This abstract is approved as to form and content 

  

  

 _______________________________ 

 Yingcai Su, PhD 

 Chairperson, Advisory Committee 

 Missouri State University 

 



iii 

SURVIVAL ANALYSIS: A MODIFIED KAPLAN-MEIR ESTIMATOR 
 

 

 

 

 

 

By 

Justin A. Bancroft 

 

 

 

A Masters Thesis 

Submitted to the Graduate College 

Of Missouri State University 

In Partial Fulfillment of the Requirements 

For the Degree of Master of Science, Mathematics 

 

 

 

December 2017 

 

 

 Approved: 

   

   

  _______________________________________ 

  Yingcai Su, PhD 

  

 

  _______________________________________ 

  George Mathew, PhD  

   

  

  _______________________________________ 

  Songfeng Zheng, PhD 

 

 

  _______________________________________ 

  Julie Masterson, PhD: Dean, Graduate College 

 

 
In the interest of academic freedom and the principle of free speech, approval of this thesis indicates the 

format is acceptable and meets the academic criteria for the discipline as determined by the faculty that 

constitute the thesis committee. The content and views expressed in this thesis are those of the student-

scholar and are not endorsed by Missouri State University, its Graduate College, or its employees. 



iv 

ACKNOWLEDGEMENTS 

 

 The completion of this work would have not been possible without the guidance 

and support of family, friends and mentors. I am fortune to have received their 

encouragement and contributions. Of the many people who supported me in this process, 

I would like to acknowledge the group who has been the most influential. 

Dr. Yingcai Su's patience and extensive knowledge was invaluable in this process. 

He gave generously of his time and focus. His insight’s served as a core foundation for 

my work. I am sincerely thankful for his role as my advisor.  

I would like to thank all the professors who have made an impact in shaping my 

educational development. My knowledge of statistics and mathematics has grown 

proportional to their passion and dedication in sharing that knowledge.  

Lastly, I would like to thank my family and friends for their unyielding 

encouragement. I would have not come this far without them. Specifically, my parents 

were eternally patient is this process, and continued in their steadfast support.  

 

 

 

 

 

 

 

 

 

 
 



v 

TABLE OF CONTENTS 

 

 

 

Introduction ..........................................................................................................................1 

            Importance of the Kaplan-Meir Estimator ...............................................................1 

Survival Analysis .....................................................................................................1 

            Definitions................................................................................................................2 

            Censoring .................................................................................................................3 

            Survival Time Functions ..........................................................................................5 

 

Estimation of Survival Functions.......................................................................................10 

            Parametric Methods ...............................................................................................11 

Hazard Plotting ......................................................................................................11 

            Maximum Likelihood Estimation for a Parametric Distribution ...........................16 

            Non-Parametric Methods .......................................................................................28 

            Kaplan–Meir Estimator ..........................................................................................29 

            Modified Kaplan-Meir Estimator ..........................................................................41 

            Comparing Survival Estimators .............................................................................59 

            Life Tables .............................................................................................................70 

 

Data Analysis .....................................................................................................................82 

            Overview ................................................................................................................82 

            Acute Leukemia Data Analysis .............................................................................82 

            Angina Pectoris Data Analysis ..............................................................................92 

 

Discussion ........................................................................................................................103 

 

Conclusion .......................................................................................................................109  

 

References ........................................................................................................................110 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 

LIST OF TABLES 

 

 

 

Table 1. Hazard Table Format ...........................................................................................12 

 

Table 2. Theoretical Survival Table Format ......................................................................28 

 

Table 3. Kaplan-Meir Table Format ..................................................................................40 

 

Table 4. Modified Kaplan-Meir Table Format ..................................................................58 

 

Table 5. Estimated i  Table Format ..................................................................................69 

 

Table 6. Life Table Format ................................................................................................72 

 

Table 7. Modified Kaplan-Meir Life Table Format ..........................................................81 

 

Table 8. Hazard Table for Patients with Acute Leukemia .................................................83 

 

Table 9. Theoretical Survival Table for Patients with Acute Leukemia ............................85 

 

Table 10. Kaplan-Meir Table for Patients with Acute Leukemia ......................................87 

 

Table 11. Modified Kaplan-Meir Table for Patients with Acute Leukemia ......................89 

 

Table 12. Comparison of Survival Variances for Patients with Acute Leukemia .............90 

 

Table 13. Estimated i  Table for Patients with Acute Leukemia ......................................91 

 

Table 14. Life Table for Patients with Angina Pectoris.....................................................93 

 

Table 15. Modified Kaplan-Meir Life Table for Patients with Angina Pectoris ...............95 

 

Table 16. Theoretical Survival Table for Patients with Angina Pectoris ..........................99 

 

Table 17. Comparison of Survival Variances for Patients with Angina Pectoris ............101 

 

Table 18. Estimated i  Table for Patients with Angina Pectoris ....................................102 

 

 

 

 

 



vii 

LIST OF FIGURES 

 

 

 

Figure 1. Weibull Cumulative Hazard Functions ..............................................................14 
 

Figure 2. General Shape of MSE i


 ..................................................................................47 
 

Figure 3. Comparison of MSE i
 

 
 

 and MSE Bi
 

 
 

at 5n   and 300n   ....................50 

Figure 4. Comparison of MSE i
 

 
 

 and MSE Bi
 

 
 

at 42n  .......................................50 

Figure 5. Comparison of Var
i

Bi 


 and 

2

Bias
i

Bi 
 

 
 

 at 5n   and 300n   ..................64 

Figure 6. Comparison of MSE Bi


 and MSE i


 without Bias .........................................65 
 

 

Figure 7. A General MSE i


 and MSE Bi


 Comparison .................................................67 

 
 

Figure 8. Hazard Graph for Patients with Acute Leukemia ...............................................84 

 

Figure 9. Theoretical Survival Estimate for Patients with Acute Leukemia .....................86 

 

Figure 10. Kaplan-Meir Estimate for Patients with Acute Leukemia ...............................88 

 

Figure 11. Modified Kaplan-Meir Estimate for Patients with Acute Leukemia ................89 

 

Figure 12. Kaplan-Meir Estimate for Patients with Angina Pectoris ................................94 

 

Figure 13. Modified Kaplan-Meir Estimate for Patients with Angina Pectoris ................96 

 
 

Figure 14. Kaplan-Meir Curve for Patients with Angina Pectoris.....................................97 

 
 

Figure 15. Theoretical Survival Estimate for Patients with Angina Pectoris ..................100 

 

 



1 

INTRODUCTION 

 

 

 

Importance of the Kaplan-Meir Estimator 

 

Assuming no theoretical distribution when modeling data, the Kaplan-Meir 

estimator serves an important role in survival analysis. As outlined by Lee (1992), the 

Kaplan-Meir estimator can be used for a variety of purposes. It serves as a starting point 

from which to choose an appropriate theoretical distribution, and it can be used as a 

predictive distribution when no known theoretical distribution can be modeled.  

Because the Kaplan-Meir estimator is one of the most frequently used methods in 

survival analysis, we seek to improve upon the current model by modifying the estimator.  

Our modification of the Kaplan-Meir estimator makes use of a Bayes parameter 

estimation. Although the Bayes estimation has bias and thus extends that bias to our 

modified Kaplan-Meir estimator, we believe that the estimator is still more accurate in 

certain circumstances, in particular, when the sample size is small.  

To fully understand our modified Kaplan-Meir estimator, a background in 

survival analysis is necessary. We will begin by presenting the core concepts and 

foundations of survival analysis, which will ultimately lead to the presentation of our 

modified Kaplan-Meir estimator. Understanding survival analysis starts with the most 

fundamental of questions, "what is survival analysis?” 

 

 

Survival Analysis  

 

 Survival Analysis is a branch of statistics that attempts to predict the time until 

one or more events takes place. It is an essential part of medical research. It’s statistical 
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methods have been extended to fields such as sociology, industry, economics, and 

ecology. Researchers use survival analysis to answer questions regarding time related 

data. As an example, a medical researcher may be interested in which treatment is most 

effective over a period of time or how long a condition lasts. In order to answer 

researcher questions, data is gathered, statistical methods are employed, and the results 

are analyzed.  

 

Definitions 

In order to establish the fundamentals of survival analysis, we first present some 

essential definitions. In survival analysis, survival data refers to information regarding the 

data set, this includes, survival times, patient characteristics, response to treatments, 

censoring, etc. The most crucial components of survival data are the observed values or 

the survival times.  

Survival time is the measure of how long a subject has “survived” from a starting 

point to an ending point. Survival does not have to be literally interpreted. Here survival 

means a subject is in one state or condition that represents the default condition. The 

subject will remain in that state until an event of interest occurs.    

Failure is the event of interest that marks the end of the survival time. Failure is 

usually death or some negative experience. However in some cases, failure may be 

positive such as disease remission. Failure may also be referred to as “the event”, or 

“death” if death represents the failure.  
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Censoring 

A sometimes challenging aspect of survival analysis is censoring. Censoring 

occurs when the exact survival time of a subject is unknown.  It may happen that a 

subject drops out of a study, survives until the end of the study, or for some other reason 

is not precisely observed at their failure time.   

An observation that does not have an exact survival time is called a censored 

observation. If an observation does have an exact survival time, then it is called an exact 

or uncensored observation. A censored observation’s survival time is measured as the 

time under observation. The censored survival time usually receives a plus next to its 

survival time to indicate that its true survival time may surpass the recorded time. If a 

data set contains censored observations, then it is referred to as censored data. Data that 

has no censored observations is referred to as uncensored data. 

There are several different types of censoring including, right censoring, left 

censoring, and interval censoring. Among these, right censoring is the most common. 

Right censoring occurs when the time of failure is unknown. This may happen if a subject 

experiences failure after the end of the study, a subject is withdrawn from the study, or a 

subject is lost to follow-up. Left censoring takes place if the true beginning of a subject’s 

survival time is unknown. It may be that the subject had a condition that started at an 

unknown time or that it is not known when the subject entered the study.  Interval 

censoring happens when survival data is organized in intervals such that it is impossible 

to determine when in the interval a subject might have failed.  
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Since right censoring is very common, there are methods specifically designed to 

handle right censored data. These methods are Type I, Type II, and Type III censoring. 

Each method is a way of handling right censored data for a specific study format.   

In Type I censoring, a study starts with a fixed number of subjects that each have 

the beginning of the study as the starting point of a subject’s observation period. The 

study lasts for a fixed amount of time and then ends. Any subject that experiences failure 

within the time frame of the study is given an uncensored survival time. If a subject fails 

accidentally, is withdrawn, or is lost to follow up, then that subject’s survival time is 

censored. Any subject that has survived until the end of the study is also given censored 

survival times.  

For Type II censoring, the subjects all start being observed at the beginning of the 

study, but the study ends when a certain amount of subjects experience failure. If a 

subject is not observed for the entire study, aside from the cause of failure, then that 

subject’s survival time is censored. Censoring also occurs for any subject who has 

survived until the end of the study. 

In one of the most common type of studies, the study period starts and ends at a 

specific time, but subjects may enter the study at any time. This means that survival times 

may start at different points in real time. Type III censoring occurs in this study type of 

study. The censoring occurs in the exact same way as in the previous studies presented. 

However, in this study, it is possible that two subjects start the study at different times. If 

they both survive until the end of the study, then their respective censored survival times 

will be different even though the study ended at the same time for both of them. In the 

previous type of studies, this situation would have not occurred since all subjects entered 
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the study at the beginning, and thus would have the exact same survival times if censored 

due to survival until the end of the study.  

Censored data generally complicates survival analysis and needs to be carefully 

addressed. If there exists censored data in a study, then it often will affect how a 

distribution models the data. For the most part censored data only affects a modeled 

function in a very limited fashion. Examples of this will be shown latter. 

 

Survival Time Functions 

The beginning of the survival analysis process starts with survival time functions. 

Although survival time can refer to how long a specific subject has survived, it also can 

refer to how long a random subject might survive. This means that survival time is 

sometimes used to describe a random variable, denoted T . For clarity, we will use the 

term “survival time variable” in reference to T .  

Probability Function. Like any other statistical variable, the survival time 

variable follows a probability distribution. The distribution is the probability that T  will 

occur at a specific time t  or close to a specific time t , for the continuous case.  In 

essence, this distribution measures the probability of failure at any given time. The 

variable T  follows the probability distribution  

  ( )f t P T t  , for the discrete case, 

and  

 
0

( )
lim  
dt

P t T t dt
f t

dt

  
 , for the continuous case. 
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Survival Function. While the probability function serves as a basis for survival 

time functions, the most commonly used and analyzed distribution in survival analysis is 

the survival distribution. The name suggests the meaning. The survival distribution 

measures the probability that a subject survives at a particular time. This is the same as 

the probability a subject will fail at a later time. The survival distribution is 

mathematically defined as 

( ) ( )S t P T t  . 

It can also be defined as 

( ) 1 ( )S t F t  . 

Kleinbaum and Klein (1996) describe several important attributes of the 

theoretical continuous survival distribution.  The theoretical ( )S t  should be a strictly 

decreasing function, with domain (0, ) . At 0t  ,   1S t   and at t   ,   0S t  . This 

would indicate that, at the beginning of the study, no subject has experienced failure. But, 

if the study continued indefinitely every subject will have experienced failure. Note, 

however, that these are the theoretical attributes of a continuous ( )S t .  

In practice,  S t  must be estimated. The estimate of  S t  is referred to as the 

survival estimate, and most survival analysists denote this estimation as  S t


. It is 

possible for  S t


 to be discrete and not strictly abide by its theoretical attributes. 

Examples of  S t


 being a step function rather than a smooth curve will later be see. 

Additionally, since the end of a study is finite, the domain of  S t


 may have a finite right 

end point. Often, t  values beyond the end of the study are not considered.  This means 

that a study may end and some subjects will have never experienced failure.  



7 

Hazard Function. The hazard rate function is another important survival time 

function. For any particular time, the hazard function gives the rate that a failure might 

occur per unit time, given that the subject has survived up until that same time. In essence 

the hazard function measures the likelihood of death at some time, given survival of 

previous times. The hazard function is defined mathematically as  

( ) ( | )h t P T t T t   , for the discrete case, 

 and  

0

( | )
( ) lim

t

P t T t t T t
h t

t 

    



 for the continuous case. 

Sometimes it can be more useful to analyze the cumulative hazard function, 

which is defined as 

0

( ) ( )

t

H t h x dx  . 

It will shortly be shown that the cumulative hazard function can also be written as  

( ) log ( )eH t S t  . 

Thus, at 0t  ,   0H t   and at t   ,  H t   .  

The cumulative hazard function is somewhat difficult to describe and 

comprehend. It is the sum of the risks up to time t . Another way to describe it would be 

to define  H t  as the probability that a subject has survived to time t , by surviving  the 

cumulative risks described by ( )h x  along the way.  

Regardless of the cumbersome interpretation, the cumulative hazard function 

serves a crucial role as an opposite to the survival function. Both are cumulative in 
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nature, but one describes the chance of survival over time, while the other describes the 

chance of death over time. 

Relationship between Survival Functions. As outlined by Lee (1992), there are 

close relationships between all the survival functions presented thus far. If one of the 

survival functions is given, then the others can be derived. These relationships can be 

useful in theoretical analysis and in practice.  

If the definition of  h t  is consider, it can be seen that all of the survival 

functions are mathematically related. Recall that, for the discrete case, 

( ) ( | )h t P T t T t   . 

One can expand ( )h t  so that 

 

 

 

( , ) ( )
( ) ( | )

( )

P T tP T t T t f t
h t P T t T t

P T t P T t S t

 
     

 
. 

(This relationship is also true of the continuous case.) Also, remember that 

( ) 1 ( )S t F t  . Thus,  

                     ( ) 1F t S t   

and 

 ( ) 1 ( ) ( )
d

f t S t S t
dt

    . 

Then ( )h t  can be written as 

( )
( ) ln ( )

( )

S t d
h t S t

S t dt


    . 

Since 

0

( ) ( )

t

H t h x dx  , 
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 
0

( ) ln ( ) ln

t
d

H t S x dx S t
dt

    . 

It is now clearly seen that each survival time function has a mathematical 

equivalency. 

Exponential Survival Time Functions. Suppose, for example, that one wanted 

to find the survival time functions of a survival time T  which followed an exponential 

distribution. For the exponential distribution, it is known that 

( ) tf t e    and ( ) 1 tF t e     

where 0t  and 0  . The survivor function is 

 ( ) 1 ( ) 1 1 t tS t F t e e        . 

Thus,  

( )
( )

( )

t

t

f t e
h t

S t e











    

and 

   ( ) ln ln tH t S t e t      . 

The survival time distributions for every other probability distribution can be 

found in this same manner.  
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ESTIMATION OF SURVIVAL FUNCTIONS 

 

As was mentioned previously, the survival function is the most commonly used of 

the survival time functions. We know that in determining one survival time function, the 

others can be determined. Thus, most of our focus will be spent on the survival function 

estimates.  

There are various methods of estimating survival functions. These methods are 

typically split into two categories, non-parametric and parametric. Parametric methods 

are based on estimating parameters of known distributions such as the exponential, 

Weibull, log-normal, gamma, and normal distributions. The parametric methods assume 

the data follow a known distribution. The non-parametric methods do not assume any 

known distribution. While there are parameters to be estimated, the shape of the 

distribution is not restricted to a predetermined outcome. It only follows the approximate 

trend of the data.  

Both methods are good in particular circumstances. The nonparametric 

distribution always has some value. It will be better than a parametric method if no 

known distribution can be chosen to fit the data or if the fit is not very good. The 

nonparametric method can also be beneficial in choosing an appropriate known 

distribution based on the shape of the nonparametric distribution.   

The parametric method is only useful if the trend of the data roughly matches the 

shape of a known distribution. While this can be limiting in certain circumstances, it is 

also very powerful when a known distribution can be matched. If the data matches well, 
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then a known distribution should be far better at modeling the data than a non-parametric 

distribution.  

 

Parametric Methods  

We first focus on the parametric method. There are two main components of the 

parametric process. The first is finding the appropriate known distribution to model the 

data. The second is choosing an appropriate method to estimate the parameter.  

In order to find an appropriate known distribution, the hazard plot will be 

presented and later it will be shone how to analyze the shape of a non-parametric 

distribution during our data analysis. If censoring was not present, then a probability plot 

could be utilized. However, in most studies, censoring exists. Thus, a probability plot will 

not be presented.  

There is a large collection of methods to choose from in estimating a parameter. 

These include linear regression, logistic regression, poison regression, the method of 

moment estimation, and the maximum likelihood estimation. Each method has its 

respective benefits and value, but our focus will remain on the frequently used maximum 

likelihood estimation (MLE).   

 

Hazard Plotting 

Hazard plotting was first presented by Nelson (1972). A hazard plot is a method 

that compares graphs and functions. An estimated cumulative hazard function is derived 

from the data values. A graph is constructed by plotting data values against an estimated 
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cumulative hazard function. Then the estimated cumulative hazard function and 

corresponding graph can be compared to theoretical functions and their respective graphs.  

Hazard Table. A table can be created to organize the data and find the estimated 

cumulative hazard values. Table 1 is the format of such a table. A description of each 

column is shown below. 

 

 

               Table 1. Hazard Table Format 

 
 

Survival  

Times 

 

Number at 

Risk 

 

Hazard 

Values 

Cumulative 

Hazard 

Values 

 

1t  
 

2t  
 

. 

 

. 

 

. 

 

it  
 

. 
 

. 

 

. 

 

1nt   

 

nt  

1n  
 

2n  
 

. 

 

. 

 

. 

 

in  
 

. 
 

. 

 

. 

 

1nn   

 

nn  

 1h t


 

 

 2h t


 

 

. 

 

. 

 

. 

 

 ih t


 

 

. 

 

. 

 

. 

 

 1nh t


  

 

 nh t


 

 1H t


 

 

 2H t


 

 

. 

 

. 

 

. 

 

 iH t


 

 

. 

 

. 

 

. 

 

 1nH t


  

 

 nH t

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The first column is survival times, including censored times, listed from least to 

greatest. That is, if we let it  be a survival time, then 1 2 .... nt t t  , where n  is the sample 

size.  If two of the survival times are the same, then they are listed in random order 

regardless of censoring. In practice a plus is given to any censored survival time.  

In the second column, in  is the number of subjects alive and at risk of dying at it  

just before it , where 0 in n  . Naturally, in would become smaller with each 

subsequent it  so that 1 2 .... nn n n  . Note that nn n . The value nn  is the number of 

subjects still at risk at the thnt  observation, and would be the smallest of the in . Some 

researchers and authors might use a different notation for in  to avoid this confusion. 

The third column is the percentage of individuals who have failed at time it . 

These percentages are estimations of the hazard values for the data set and are 

designated,   100 /i ih t n


 . For  ih t


, 1/ in  is multiplied  by 100 to convert from a 

decimal to a percentage. The multiplication by 100% is a matter of preference.  Censored 

survival times will not have hazard values. 

The fourth column is the cumulative hazard values. A cumulative hazard value is 

denoted  iH t


, and is the sum of the hazard value at it  and all previous hazard values. 

Censored survival times will not have cumulative hazard values.  

Hazard Graphs. Once all the cumulative hazard values are found, it  can be  

plotted against the  iH t


 values to form one of our graphs. The x-values of the graph are 

the  iH t


 values, while the y-values of the graph are the it  values.  Notice that the x-

values and y-values are switched from what might be expected.  
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The inverse cumulative hazard function of theoretical distributions, denoted 

  T TG H t ,  can be compared with the graph of the estimated cumulative hazard values. 

Researchers should determine if the function    T TG H t  is linear, exponential, 

logarithmic, or some other shape. Similarities between the shape of the estimated 

cumulative hazard graph and   T TG H t  are desired, not specific accuracies.  

The general shape of   T TG H t  can be plotted against H .  The plots of some 

Weibull cumulative hazard distributions are shown in Figure 1.  

 

 

 

Figure 1. Weibull Cumulative Hazard Functions (Lee 1992, pg. 175). Permission was 

given to reproduce this image. 

 

 

 

Weibull distributions are commonly chosen to model survival data. Notice that the 

exponential distribution is a Weibull distribution where 1   and is linear in nature. 

If the general shape of the estimated cumulative hazard distribution and 

theoretical cumulative hazard distributions match in their curvature, then the theoretical 
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distribution analyzed could be chosen. If they do not match, then a different theoretical 

distribution should be analyzed.  

It should be noted that, when comparing the cumulative hazard graphs, some 

cases provide graphs with obvious conclusions about the appropriateness of a 

distribution. Other cases are less clear.  It is up to the researcher to determine if the data 

fits “well enough” to model the data for a particular distribution.  

As an example of determining an appropriate distribution, the shape of a 

cumulative hazard graph for an exponential function is known to be linear. This can be 

seen by analyzing the inverse cumulative hazard function for the exponential distribution  

Suppose we have the exponential distribution   tf t e   .  It has been seen 

previously that  h t  . Thus,  

   
0 0

t t

H t H x dx dx t      

Solving for t , we have 

 
1

t H t


  

Thus,  

    
1

G H t H t


  , which is linear. 

Additionally, it can be seen from Figure 1 that the exponential distribution has a linear 

cumulative hazard graph. In this case, if the cumulative hazard graph estimated from the 

data is linear, then one could choose the exponential distribution to model the data.  

Now that a method to finding an appropriate known distribution has been 

presented, an estimate for a specific parameter can be found.  
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Maximum Likelihood Estimation for a Parametric Distribution 

As stated previously, the maximum likelihood estimation is a method of 

estimating a parameter. The MLE method here is similar to the MLE method presented in 

many statistical courses. The maximum likelihood function must be found which is 

defined as  

1

( | )
n

i

i

L f x 


   

where each ix  is independent and identically distributed (I.I.D) from a distribution  f x  

that belongs to a particular family of distributions, such as the exponentials. A parameter 

estimator is then found through differentiation that maximizes the likelihood function. 

Sometimes the log of the likelihood function is used instead with the same results.  

It would be expedient if this process was all that was needed. However, in 

survival analysis, censoring complicates this process so that some preliminary work must 

be done. 

Parametric Probability Distribution. Before the MLE is applied to determine 

an appropriate estimator, it needs to show what a parametric distribution would look like 

when censoring is considered, and in particular how a study with type III censoring 

would affect that distribution. The set up and construction of the distribution is shown by 

Le (1997). An adaption of this process is shown as follows.   

Assume there is a data set with type III censored data and a sample size of n . If 

death/failure is observed for the thi subject, then the associated time variable is 

designated as iT  for 1, 2,......,i n . It is assumed that 
iT  follows a probability distribution 

of ( )f t  with one or more parameters 1 2, ,....., n    and has a survival function of  S t .   
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If death/failure has not occurred for the thi  survival observation and the data is 

censored, then the associated survival variable is designated as iC , for 1, 2,......,i n . It is 

assumed that 
iC  follows a uniform probability distribution of ( )g t .  

Most studies have an enrollment period of 1(0, )  and a follow up period of  

1 2( , )  . The uniform distribution intervals for ( )g t  are usually 2 1 2( , )   .  It is 

assumed that ( )g t  has a survival function of  R t .  

The survival time functions are mathematically defined as follows: 

( ) ( )S t P T t    

( ) ( )f t dt P t T t dt      

( ) ( )R t P C t    

( ) ( )g t dt P t C t dt     

Let it  be the lifetimes of the data determined either by death/failure or censoring. Define  

i  as a censoring indicator such that  

0     if censored due to study termination

1     if death/failure was observed.
i


 


 

It would follow that if 0i  , then censoring took place for the thi  sample and i it C . If  

1i  , then death/failure was observed for the thi sample and i it T . It is assumed that 

the deaths or censoring for each sample have no relation to one another so that each  iT  

and iC  would be stochastically independent of each other.  

The objective is to determine the probability distribution for both censored and 

uncensored data. To do that, two different probability distributions need to be considered. 
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After that a combination of the two distributions will be shown. The first distribution, 

( , 1)if t   , is designed for uncensored observations, while the second distribution, 

( , 0)if t   , is designed for censored observations.  

Probability Distribution for Uncensored Observations. In order to find

( , 1)if t   , ( , 1)iP t T t dt      needs to be determined. If 1i   is observed for the 

thi  sample, this means that death\failure occurred at time it  or i it T . It also means that 

the maximum observation time C must have occurred later then the death or failure. That 

is i i iC T t  . Thus, the probability that T occurs with a lack of censoring is 

                      ( , 1) ( , )iP t T t dt P t T t dt C t          

        ( ) ( )P t T t dt P C t      

        ( ) ( )f t dt R t  . 

Therefore, 

0

( ) ( )
( , 1) limit ( ) ( )

dt

f t dt R t
f t f t R t

dt





    . 

Probability Distribution for Censored Observations. In order to find 

( , 0)if t   , consider ( , 0)iP t T t dt     . If 0i  is observed for the thi sample, then 

censoring of the study occurred at time it  or i it C . It also means that death\failure , T, 

must have occurred later than the maximum observable time (or end of the study), C. 

That is i i iT C t  . Thus, the probability that T occurs with censoring is 

       ( , 0) ( , )iP t T t dt P t C t dt T t          

                     ( ) ( )P t C t dt P T t      

                                ( ) ( )g t dt S t  . 
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Therefore, 

0

( ) ( )
( , 0) limit ( ) ( )i

dt

g t dt S t
f t g t S t

dt





    .   

  Probability Distribution for All Observations. The distributions for uncensored 

and censored observations can be combined into one function based on whether a 

particular observation is censored or uncensored. The combined probability distribution 

is 

   
1

( , ) ( ) ( ) ( ) ( )i i

if t f t g t R t S t
 




 . 

This probability distribution can be simplified further. Recall that, 
( )

( )
( )

f t
h t

S t
   

and hence ( ) ( ) ( )f t h t S t .  Thus, ( ) ( )h t S t is substituted for ( )f t . (This will later be 

crucial when finding estimators using the MLE.)                

                               
1

( , ) ( ) ( ) ( ) ( )i i

if t f t g t R t S t
 




                

                             
1

( ) ( ) ( ) ( ) ( )i ih t S t g t R t S t
 

      

                                                    
1 1

( ) ( ) ( ) ( ) ( )i i i i ih t S t g t R t S t
     

  

                                         
1 1

( ) ( ) ( ) ( ) ( )i i i i ig t R t h t S t S t
     

  

                                        
1

( ) ( ) ( ) ( )i i ig t R t h t S t
  

 . 

Therefore, 

1
( , ) ( ) ( ) ( ) ( )i i i

if t g t R t h t S t
   

 . 

Since the parameters of ( )g t  and ( )R t  are not the parameters to be estimated, it 

turns out that ( ) ig t


 and 
1

( ) iR t


 will bear no relevance when finding the MLE and thus  

will be dropped. The final simplified version of ( , )if t   is 
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( , ) ( ) ( )i
if t h t S t

  . 

Estimating an Exponential Parameter. Our purpose in finding ( , )if t  , was to 

use the MLE to find estimators for parameters when censoring was considered. In order 

to demonstrate how to find the MLE in practice, the MLE for the exponential distribution 

will be found.  

Suppose that there is a survival time T , which belongs to an exponential 

distribution. Let 1 2, ,......., nt t t  be the censored or uncensored observed lifetimes, with a 

sample size of n . It is known that ( ) tf t e    and from previous work it was found that 

( ) tS t e   and ( )h t  . Thus, we know that the probability distribution which considers 

censoring is  

( , ) ( ) ( )i i t
if t h t S t e

      .                

Now the MLE of the parameter   can be found. The likelihood function of 

( , )i if t   is 

1 1

1 1

( ) ( , )

n n

i i
i i i i

tn n
t

i i
i i

L f t e e
 

      




 

 
    .      

Taking the log of ( )L   results in 

1 1log ( ) log

n n

i i
i i

t

L e
 

   

  
 
 
  

  

                                           1 1log log

n n

i i
i i

t

e
 

  

 
                     

                   1 1log log

n n

i i
i i

t

e
 

  

 
    
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1 1

log
n n

i i

i i

t  
 

   . 

Taking the partial derivative of log ( )L   gives 

1

1 1 1

log ( ) log

n

in n n
i

i i i

i i i

L t t



   
  



  

  
    

   


   .       

Setting log ( )L 





 equal to zero and solving for   we have                            

log ( ) 0L 






 

1

1

0

n

i n
i

i

i

t








 


  

1

1

n

i n
i

i

i

t











  

1

1

n

i

i

n

i

i

t



 








. 

Thus, the MLE estimator for   is 

1

1

n

i

i

n

i

i

t















 

indicating that 

number of deaths observed

Sum of all observed suvival times



 . 
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Note that if all the observations are uncensored, then each 1i  , resulting in  

^

1

n

i

i

n

t








. 

However, if at least one observation is censored then 


 becomes larger since, 
1

n

i

i

n


 . 

Anytime an estimator or estimate is used a   will be placed above the function or 

parameter estimator(estimate). Additionally if any function comes from a theoretical 

distribution a subscript T  will be placed next to the representative letter of the function. 

For example, ( )Tf t


, ( )TS t


, and ( )Th t


 would all be theoretical functions using an 

estimate for  . The subscript T  will be used to differentiate theoretical functions from 

Kaplan-Meir functions, which will be presented latter.  

Variance of the Exponential Survival Estimator The survival function ( )S t  is a 

common function that has many uses. Latter discrete estimates of ( )S t  will be shown and 

compared to theoretical estimators of ( )S t . One useful way to compare estimates of ( )S t  

is by comparing their respective variances. The variance of ( )TS t


can be used to create 

confidence intervals.  

Here Var ( )TS t


 will be determined for the popular exponential distribution.  

First, we need to take a look at the distribution of 
1 1

/
n n

i i

i i

t 


 

  . Bartholomew (1957) 

found that  2

1

, / 1 i

nD
T

i

N e
  






 
  

 
 , where iT  is computed as the time between the 

thi  subject entering  the study until the end of the study. In many instances, this 

information is not available. Sometimes only the survival time since entering the study is 
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recorded. Thus, we will focus on an alternate distribution for 


 that does not require 

knowledge about iT . This alternative is 
2

1

, /
nD

i

i

N   




 
  

 
 . 

The delta method can be used to find the variance of different distributions based 

on the distribution of the parameters or variables. The delta method states 

If 
2( , )

D

nY N   ,   g   exists, and    0g   , then 

                 2 2,
D

ng Y N g g     . 

We proceed to find Var ( ) Var t
TS t e 


 

  
 

 using the delta method. 

Let nY 


  and ( ) t
ng Y e 



 . We know that 
2

1

, /
nD

i

i

N   




 
  

 
 . Thus,  

1 1

/

( )

n n

i i
i i

t t
t

ng Y te te





 

 
 

  
 

     and ( ) tg te    . 

It can clearly be see that g   exists if 
1

0
n

i

i

t


 , and ( ) 0g    if 0t  . In practice, 

1

0
n

i

i

t


  and 0t  . Thus,  

    2 2,
D

te N g g   


     .  

The values for  g   and  
2 2g      are 

  tg e    

and 
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   
 

2 2 2222 2

1 1

t
t

n n

i i

i i

t e
g te


 

 

 




 

    
   
   




  
 

.  

             

Hence,  

 
2 2 2

1

,

tD
t t

n

i

i

t e
e N e


  



 




 
 
 


  
   

  


. 

 

Therefore,  

 
2 2 2

1

Var ( )

t

T
n

i

i

t e
S t










 
 
 


. 

Since i  is unknown, the estimator 
1 1

/
n n

i i i

i i

t 


 

   can be used. In some 

theoretical circumstances, it may not be desirable to estimate i . However, this 

substitution is useful in practice. The variance resulting from the substitution is  

1 1 1 1

2 2 / 2 /
2 2

1 1 1

2

1 1

/

Var ( )

n n n n

i i i i
i i i i

t t t tn n n

i i i

i i i
T

n n

i i
i i

t t e t e

S t

t

 

 



   

   
    

   


  

 

      
   
    

   
   
   

  

 

.      

The Var ( )TS t


 for a different theoretical distribution could be found using the 

same method presented. The variance of the survival estimate can be found once the 

distribution(s) of the parameter(s) are determined and the delta method applied. 
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Confidence Interval for the Exponential Survival Estimator. A 

straightforward confidence interval for the exponential  TS t


 would be 

   0.975VarT TS t z S t
 

 .  

However, this confidence interval could result in impossible values outside of  0,1 . 

Recall that ( )S t  can never be larger than 1 nor can it be less than 0. If  TS t


 is already 

close to 1 or 0, it is possible that adding or subtracting  0.975Var Tz S t


 would result in 

values greater than 1 or less than 0. To avoid these impossible results, a new confidence 

interval needs to be found that will always fit within  0,1 . Xu (2016) shows a method 

for finding a confidence interval that safely lies within  0,1 . A similar approach is 

adopted below.  

First a modification of  TS t


 is made so that the range is between ( , )   

instead of  0,1 .   

 0 1TS t


   

 log 0TS t


    

 0 log TS t


     

 log log TS t
 

     
 

 

If we add or subtract  0.975Var log logTz S t
  

  
  

 to  log log TS t
 

 
 

 we arrive at a 

95% confidence interval between   and  . That is,  
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   0.975log log Var log logT TS t z S t
     

          
    

. 

We now have a confidence interval such that when using exponentials to convert 

back, the confidence limits safely lie in the range  0,1 . The resulting confidence interval 

will not be equivalent to the confidence interval for  S t


, but will still be a fairly good 

representation.  

Let      0.975C.I. log log log log Var log l ogT TS t S t z S t
          

            
        

. 

Working backwards using exponentials we have 

 C.I. log log TS t
  

      
  

 

 C.I. log log

0
TS t

e

  
  
      

 C.I. log log

0
TS t

e

  
  
       

 C.I. log log

0 exp 1
TS t

e

  
  
  

 
   
 
  

. 

Now we can find
 C.I. log log

exp
TS t

e

  
  
  

 
 
 
  

. 

   

 
 0.975 0.975log log Var log log Var log log

exp exp log
T T TS t z S t z S t

Te S t e

          
            
        

   
    
   
      
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  

 Var log log
0.975 Tz S t

T
e

S t

  
   

     

  

Note here that this process is valid for any estimate of  S t . Thus, in the future the above 

confidence interval will be used as our standard confidence interval, where  S t  can be 

replaced by any estimator. 

Now we substitute  TS t


 for te 


 , resulting in 

 

 
Var log log

0.975
Var log log

0.975

t

T

z e
z S t

t
T

e
e

S t e










   
       

               
 

  
 

 

                      

Var log
0.975

z t

t ee









  
   

    . 

The delta method can be applied again to get the distribution of log t
 

 
 

, resulting in 

1

1
Var log n

i
i

t









  
  

   
. 

Thus, a suitable 95% confidence interval for the exponential  TS t


 would be 

1.96 1/ 1.96 1/

1 1
,

n n

i i
i it te ee e

 

 
 

   
    

   
     

 
 

 
 
 
  

. 

Theoretical Survival Table. The theoretical survival table we introduce  

shows information regarding any theoretical survival estimate. Since  TS t


 is continuous, 

it is not ordinary to show the survival function at specific values. However, we show the 

survival function at specific values here because latter we will see discrete estimates of 
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 S t  so that the table will be useful for comparison purposes. Table 2 shows the format 

of our Theoretical Survival Table. 

 

                           Table 2. Theoretical Survival Table Format 

 

Survival  

Times 

 

 TS t


 

 

 Var TS t


 

 

1t  
 

2t  
 
. 

 

. 

 

. 

 

it  
 

. 
 

. 
 

. 

 

1nt   
 

nt  

 1TS t


 
 

 2TS t


 

 

. 

 

. 

 

. 

 

 T iS t


 

 
. 

 

. 

 

. 

 

 1T nS t


  

 

 T nS t


 

 1Var TS t


 

 

 2Var TS t


 

 

. 

 

. 

 

. 

 

 Var T iS t


 

 
. 

 

. 

 

. 

 

 1Var T nS t


  

 

 Var T nS t


 

 

 

 

 

Non-Parametric Methods 

As was discussed previously, the crucial difference between a parametric and 

non-parametric distribution is that the parametric distribution assumes the data follows a 
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specific predetermined shape. A non-parametric distribution assumes no specific shape. 

Because of this, the non-parametric distributions will most often be discrete rather than  

continuous. This more readily allows for the data to match any sort of pattern without 

limitations. Additionally, since non-parametric methods are not limited to known 

distributions, parameter estimation receives exclusive attention. 

There are many non-parametric methods we could present. However our focus 

will remain on two methods, the Kaplan-Meir (KM) estimation, and the modified 

Kaplan-Meir (MKM) estimation. The two distributions are essentially the same, except 

that the parameters are different. We will spend much of our focus on the modified 

Kapan-Meir estimation. In the future, this estimator will be compared to other survival 

estimators. However, we first present the standard Kaplan-Meir estimation 

 

Kaplan-Meir Estimator 

Developed by Kaplan and Meier (1958), the Kaplan-Meier estimator gives a 

discrete step function estimate that attempts to model survival data. It is formed based on 

finding discrete probabilities of survival at each observation, given survival occurred 

previously. These probabilities are basic and do not assume any pattern or shape. The 

product limit variation of the Kaplan Meir method will be presented since it is compatible 

with censored observations. 

In the Kaplan-Meir method, the survival time of each subject is measured as the 

survival time since enrollment, so that each subject starts at 0t  . This avoids problems 

that could arise from patients enrolling at different times. Additionally, subjects who are 

censored for any reason are considered to have survived the study, and thus will not have 
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a measured survival time. The Kaplan-Meir process also has a specific way of handling 

data which is shown below. 

If we let it  be an arbitrary survival time, n  be the total sample size including the 

censored observations, and k  be the number of uncensored observations,  such that 

k n  , then the survival times should be ordered from least to greatest. That is,   

1 2 3 ... kt t t t    . 

Equivalent it s are merged into one, so as to not be redundant, when finding values such 

as ( )if t  and ( )iS t . However, equivalent it s still each count towards totals such as  

k  and n . 

Note again, that the censored it s will not be shown, since they do not have measured 

survival times. However, they are still relevant. In particular, n  represents information 

about all observations.   

Probability Mass Function. Before we present the survival function for the 

Kaplan-Meir process, the origins and definition of the probability mass function will be 

shown. We can determine ( )f t  at each it  by considering the definition of a discrete 

probability distribution function.  

We know that 

Death occ( urs at tim) ( ) ( e )i i if t P T t P t   . 

If death occurs at it , then it is assumed that the subject was alive at all previous times 

since enrollment in the study. That is, 

Death occurs at ti )( me iP t  

1 2 1,  Death does not occu(Death occurs at time r at t , t ,....t )i i itP   . 
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It is assumed that death at it , and survival at 1 2 1t , t ,....ti i   are statistically unrelated 

events, and thus are independent. Hence,  

1 2 1,  Death does not occur(Death occurs at time  at , ,... ) .i i it tP t t   

1

1

)  (Death doe(Death occurs s not occur a tat time  )
i

i j

j

t P tP




  . 

Since (Death occurs at ti )me iP t  is not known, it will be treated it as a parameter, and 

designated i . Since (Death does not occur at ) 1 (Death occurs at t m  )i ej jP t P t  , 

(Death does not occur at 1 )j jP t   . 

Therefore,  

1

1

( ) )  (Death does not occur at (Death occurs at time ) 
i

i i j

j

f t t P tP




   

  
1

1

(1 )
i

i j

j

 




  . 

Survival Function. To find the survival function ( )S t  at each value it  consider 

that ( ) ( )i iS t P T t  . Thus,  

           ( ) (Death occurs after )i iS t P t                          

                           1 1(Death has not occured at , ,.... )i iP t t t   

                           
1

(1 )
i

j

j




  .   

Estimated Survival Function. Our ultimate goal is to estimate ( )S t . One can do 

that by estimating the unknown j  values, and those values can be estimated using the 

MLE method.  However, trying to find the MLE of ( )S t  would not produce any results. 
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Thus, we have to rely upon finding the MLE of a distribution associated with ( )S t  that 

exists in the same parameter space. That distribution is defined as the probability that id  

of in  subjects die at it , given that all of the in  subjects were known to have survived 

previously.  That is, 

1 1( | )i i i i iP D d n D n    . 

The random variable iD  represents the possible number of deaths at it . The expression  

i in D  represents the number of subjects that have survived at it . The observation id  is 

the number of deaths at it , and in  is the number of subjects alive and at risk of dying at  

it  just before it . Note that the closest time before it  would be 1it  . Also note that if a 

subject is censored before the study ends, then the subject is subtracted from the 

appropriate in . 

The distribution 1 1( | )i i i i iP D d n D n    can be simplified down to a form, 

which should be more recognizable.  

 
1 1

1 1
1 1

( , )
( | ) i i i i i

i i i i i
i i i

P D d n D n
P D d n D n

P n D n

 
 

 

  
   

 
. 

If id  deaths are observed at it , then that also means i in d  subjects have survived at it .  

Thus,  

 
1 1

1 1
1 1

( , , )
( | ) i i i i i i i i i

i i i i i
i i i

P D d n D n d n D n
P D d n D n

P n D n

 
 

 

     
   

 
. 

Since the event of dying at it  assumes survival at previous times, and the event of 

surviving at it  also assumes survival at previous times 
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 

 1 1
1 1

,
( | )

i i i i i i
i i i i i

i i i

P D d n D n d
P D d n D n

P n D n
 

 

   
   

 
. 

The numerator follows a binomial distribution. Thus, 

     

 1 1
1 1

( | )

i

i

n
i i i i i id

i i i i i
i i i

P D d P n D n d
P D d n D n

P n D n
 

 

   
   

 
. 

Since (subject dies at ) ( )i iP t f t , (subject survives at ) ( )i iP t S t , and each subject’s 

survival is considered independent from another’s, 

    

 
1 1

1

( ) ( )
( | )

( )

i i ii

i

i

d n dn
i id

i i i i i n

i

f t S t
P D d n D n

S t



 



    . 

Finally, using the definitions of ( )f t  and ( )S t  we have

 
1

1 1

1 1
1

1

(1 ) (1 )

( | )

(1 )

i i i

i i

i

i

d n d
i i

n d
i j jd

j j

i i i i i n
i

j

j

P D d n D n

  






 

 




   
    

         
 

 
  

 



                                 

     
1 1 1

1 1 1

1

1

(1 ) 1 (1 ) 1 (1 )

(1 )

i i i

i ii i

i

i

d n d
i i i

n dn d
i j i j i jd

j j j

n
i

j

j

     




  



  





     
         

          
 

 
  

  



     
1 1

1 1

1 1

1 1

(1 ) 1 (1 ) 1

(1 ) (1 )

i i

i ii i

i

i i

d n
i i

n dn d
i j i j id

j j

n d
i i

j j

j j

    

 

 


 

 

 

   
      

      
   

    
      

 

 

 

           1 1i ii i

i

n dn d
i i id
  


    
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         1 i ii i

i

n dn d
i id
 


  . 

Therefore,    1( | )  1 i ii i

i

n dn d
i i i i i id

P D d D n n  


     . It can clearly be seen that  

1( | )i i i iP D d D n n    is a binomial distribution. Thus, ~ ( , )i i iD B n  . 

Now an estimator for i  can be found using the maximum likelihood method. We 

let 1

1

( | )
k

i i i i i

i

L P D d D n n



     be the likelihood function, and proceed to find a 
i

  

that maximizes iL . This i  we find will also maximum ( )iS t , which is our desired result. 

Taking the log of iL  we have 

   
1

log log  1 i ii i

i

k
n dn d

i i id
i

L  




 
  

 
                                                                                                                                                                                                                  

             
1

log log log 1 i ii i

i

k
n dn d

i id
i

 




    
     

            
1

log log log 1 i ii i

i

k
n dn d

i id
i

 




    
                             

              
1

log log log 1i

i

k
n

i i i i id
i

d n d 


     
                    

                   
1 1 1

log log log 1i

i

k k k
n

i i i i id
i i i

d n d 
  

            . 

We now differentiate iL  with respect to i , noting that the differentiation does not iterate 

with the summation. 

 

 
log

1

i ii
i

i i i

n dd
L

  


 

 
. 
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Setting log i
i

L





 equal to zero and solving for i  we have 

 

 
0

1

i ii

i i

n dd

 


 


. 

 

 1

i i i

i i

n d d

 





 

i i i i i i in d d d       

i
i

i

d

n
  . 

Therefore,  

i
i

i

d

n



 . 

Note that the estimator i


 can be used for any given i .  If we change the subscript from 

i  to another subscript, say j , the estimator does not change. For instance j


 is defined 

as /j j jd n


 . 

Recall that  
1

(1 )
i

i j

j

S t 


  . If we use j


 to estimate j , we arrive at  

 
1

1
i

j
i

jj

d
S t

n





 
  

 
 

 . 

The generalized version of the estimator for any value of t  would be 

( ) 1

i

i

it t

d
S t

n





 
  

 
 . 

This estimator is referred to as the Kaplan-Meier estimator. 
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Variance of the Kaplan-Meier Estimator. Finding the variance of  ( )S t


 directly 

would be challenging.  Instead, we can find the mean and variance of log ( )S t


 first, and 

then proceed to find the variance of ( )S t


. The mean of log ( )S t


 is 

E log ( ) E log 1

i

i

t t

S t 
 



     
     
       

  

               =E log 1

i

i

t t






  
  

   
  

          = E log 1
i

i

t t






  
  

  
 . 

Similarly, the variance of log ( )S t


 is 

Var log ( ) Var log 1

i

i

t t

S t 
 



     
     
       

  

                                                               =Var log 1

i

i

t t






  
  

   
    

                                         = Var log 1

i

i

t t






  
  

  
 .  

The delta method is used below to determine a convergent distribution for 

log 1 i
 

 
 

 which in turn will help us find a convergent distribution for log ( )S t


.  

Let n iY d  and ( ) log 1 log 1n
in

i

Y
g Y

n

   

      
  

. We know that  ~ ,i i iD B n  , and 

that   , 1
D

i i i i i iD N n n    . Thus,  
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1
( )

1

n

i
i

i

g Y
d

n
n







  
 

 and 
 

1 1
( )

1
1 i ii i

i
i

g
nn

n
n




 
  

  
 

 . 

We can clearly see that g  exists if i id n , and ( ) 0g   . If i id n , then 

Var log 1 i
  

  
  

 would be very easy to find. It would be zero for that thi iteration. 

Thus,  

      2 2log 1 ,
D

i N g g       . 

The values for  g   and  
2 2g      are 

   log 1 log 1i i
i

i

n
g

n


 

 
    

 
 

and 

 
 

 

2

2 2 1
1

1
i i i

i i

g n
n

   


 
         

  

 

 
22

1

1

i i i

i i

n

n

 







 

                                 
 1

i

i in







. 

Hence,  

 
 

log 1 log 1 ,
1

D
i

i i
i i

N
n


 



   
         

.     

Since each log 1 i
 

 
 

 would be I.I.D,  

 
 

log ( ) log 1 log 1 log 1 ,
1

i i ii

D
i

i i i
i it t t t t tt t

S t N
n


  



  

  

      
                   

   . 
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We use the delta method again to find Var ( )S t


.  

Let log ( )nY S t


  and ( ) exp log ( ) ( )ng Y S t S t
  

  
 

. We know that 

 
 

log ( ) log 1 ,
1

i i

D
i

i
i it t t t

S t N
n








 

 
  

 
 
   as shown previously. Thus, 

( ) exp log ( ) ( )ng Y S t S t
  

  
 

  and  ( ) exp log 1 ( )

i

i

t t

g S t 


 
   

  

  . 

We see that g   exists, and ( ) 0g   . Thus,  

      2 2,
D

S t N g g  


    . 

The values of  g   and  
2 2g      are 

   exp log 1 ( )

i

i

t t

g S t 


 
   

  
  and    

 

2 22 ( )
1

i

i

i it t

g S t
n


 



   
 . 

It is clear now that,  

   
 

2
Var ( )

1
i

i

i it t

S t S t
n












 .     

Since i  is unknown, an estimate for i  is needed to find the variance in practice. 

The estimator /i i id n


 , which we used before, should be suitable in practical 

applications. The variance resulting from the substitution is 

 
 

2 2

Var ( ) ( )

1i i

i

i i

i i it t t ti
i

i

d

n d
S t S t S t

n n dd
n

n

  

 

   
         

 
 

  .                 

The variance above is known as Greenwood’s formula produced by Greenwood (1926). 
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Confidence Intervals for the Kaplan-Meier Estimator. If we initially look at 

the confidence interval for the Kaplan-Meier estimator it appears straightforward. A 95% 

confidence interval for  S t


 would be 

   0.975VarS t z S t
 

 .  

However, like with the initial confidence interval for  TS t


, this confidence interval 

could also  result in impossible values outside of . Thus we have to use the 

confidence interval formula derived previously shown as 

 
  

 
  Var log log Var log log

0.975 0.975
,

z S t z S t
e e

S t S t

         
 
  

 

Substituting  S t


 for  S t , we have 

 

 

 

 Var log log Var log log
0.975 0.975

,

z S t z S t

e e
S t S t

       
        

             

 
 
 
 
 
  

. 

We can apply the delta method to get the distribution of  log log S t
 

 
 
 

, and as a 

result,  

 
 2

log ( )

1
Var log log

i

i

i i it t
S t

d
S t

n n d


  
 
  

   
  

     
 . 

Thus, a suitable 95% confidence interval for  S t


 would be 

 

 
 

 

 
 2 2

1 1

1.96 1.96

log log

,

i i

i i i i i it ti i

d d

n n d n n d
S t S t

e e
S t S t

  


    

   
    

  
 
 
 
 
 
  

. 

 0,1
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Kaplan-Meir Table. The Kaplan-Meir table shows information regarding the 

Kaplan-Meir estimate for any given set. Table 3 is a format of the Kaplan-Meir table. 

Note that Table 3 is not the same as a general lifetable which will be discussed in the 

future. 

 

Table 3. Kaplan-Meir Table Format 

 

 

Survival  

Times 

 

Number at 

Risk 

 

Number of 

Failures 

 
 

 S t


 

 
 

 Var S t


 

Lower 

95% CI   

Bound 

Upper 

95% CI   

Bound 

 

1t  
 

2t  
 
. 
 

. 
 

. 

 

it  
 
. 
 

. 
 

. 

 

1nt   

 

nt  

1n  
 

2n  
 
. 
 

. 
 

. 

 

in  
 
. 
 

. 
 

. 

 

1nn   

 

nn  

1d  
 

2d  
 

 . 
 

. 
 

. 

 

id  
 
. 
 

. 
 

. 

 

1nd   

 

nd  

 1S t


 
 

 2S t


 
 
. 
 

. 
 

. 

 

 iS t


 
 
. 
 

. 
 

. 
 

 1nS t



 

 

 nS t


 

 1Var S t


 

 

 2Var S t


 

 
. 
 

. 
 

. 

 

 Var iS t


 

 
. 
 

. 
 

. 
 

 1Var nS t


  

 

 Var nS t


 

 1L S t
 
 
 

 

 

 2L S t
 
 
 

 

 
. 

 
. 

 
. 

 

 iL S t
 
 
 

 

 
. 

 
. 

 
. 

 

 1nL S t




 
 
 

 

 nL S t
 
 
 

 

 1U S t
 
 
 

 

 

 2U S t
 
 
 

 

 
. 

 
. 

 
. 

 

 iU S t
 
 
 

 
 
. 

 
. 

 
. 

 

 1nU S t




 
 
 

 
 

 nU S t
 
 
 
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Determining a Theoretical Distribution. Instead of hazard plotting, the Kaplan-

Meir method can be used to determine an appropriate theoretical distribution to model 

data. The Kaplan-Meir method provides an estimated survival function that can be 

analyzed for similarities to theoretical survival function. The graph of the Kaplan-Meir 

estimate can be compared to the graph of theoretical survival estimates.  

The Kaplan-Meir step function may be somewhat difficult to compare to a smooth 

function. Thus, for the Kaplan-Meir graph we can draw lines between each   ,i it S t  for 

a smoother representation. This representation is called a Kaplan-Meir curve. If the 

Kaplan-Meir curve is similar in shape to a theoretical survival function, then one might 

use that theoretical distribution to model the data.  

 

Modified Kaplan-Meir Estimator 

We now turn our attention to the main focus of our work. That is modifying the 

Kaplan-Meir estimator. It was seen previously with the standard Kaplan-Meir estimator 

that  i


 was an estimator of i  based on the MLE. Although the MLE is a relatively 

good method of estimation, there might be other methods of estimation which would 

produce better results under the right circumstances. We explore such a method here. 

The tradition Kaplan-Meier estimator can modified by using a binomial Bayes 

estimator to estimate i  rather than a MLE estimator. We define the modified Kaplan-

Meir estimator as  

( ) 1

i

B Bi

t t

S t 
 



 
  

 
  
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where Bi


 is the Bayes estimation for i . There are many important attributes of this 

estimation, as well as reasons why one might want to use it instead of the standard 

Kaplan Meir estimation in certain circumstances.  

We can investigate this function further by focusing on its parameter Bi


. The 

origins of Bi


 will be shown and eventually defined it in order to have a more complete 

picture of ( )BS t


. In order to do that, we start with a review of Bayes estimators.  

Bayes Estimators. A Bayes estimator is different from most estimation 

techniques in that it assumes there is some prior knowledge about the distribution of the 

unknown parameter. The experimenter may subjectively have some idea or intuition 

about what the distribution for a parameter is before the data is viewed. This prior 

distribution, as it is called, is an important part of constructing a Bayes estimations.  

For a parameter  , ( )   denotes the prior distribution. Once the prior 

distribution is chosen, the data is then observed and fitted to an appropriate distribution 

called the sampling distribution, denoted ( | )f x  . Then, the prior distribution is updated 

to more closely align with the observed data. This updated distribution is called the 

posterior distributed and is denoted ( | )f x . It is the conditional distribution of  , given 

the sample, x . Once the posterior distributed is found, the mean of  ( | )f x  can be 

calculated to determine the Bayes estimator for  , denoted B


.  

If the prior distribution and sampling distribution are known, the posterior 

distribution can be determined by making use of the relationship  

( | ) ( | ) ( ) / ( )f x f x f x    . We can multiply ( | ) f x   and ( )   to get ( , ) f x  . Then 
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we can find the margin distribution ( )f x , and divide ( , ) f x  by ( )f x  to arrive at  

( | )f x .  

The Bayes estimator we are searching for is then found by taking the expected 

value of ( | )f x . That is,  ( | )B E f x 


 . 

Binomial Bayes Estimators. We have interest in finding the Bayes estimator for 

a binomial distribution, since we desire to find an estimator for i , which is a parameter 

of the binomial distribution,    1( | )  1 i ii i

i

n dn d
i i i i i id

P D d D n n  


     . We 

replicate the process of finding a binomial Bayes estimator shown by  

Casella and Berger (2002).  

Using the Bayes estimation method described in the previous section, we first find 

the Bayes estimator of any given parameter p  belonging to an arbitrary binomial 

distribution. Suppose that   has a prior distribution Beta( , )   and the sampling 

distribution is found to be ( , )B n p . Then,  

   
 

   
 

11,
( , ) ( | ) ( ) 1 1

n xn x
xf x f x p p p p

 
   

 

 
 

         
 

                             
 

   
 

11,
1

n xn x
x p p

 

 

   
 

 
.  

 
 

   
 

1 1
11

0 0

,
( ) ( , ) = 1  

n xn x
xf x f x p dp p p dp

 

 

   
 

     

                       
 

   
 

1
11

0

,
= 1

n xn x
x p p dp

 

 

   


    

         
     

     

,
= n

x

x n x

n

   

   

     

    
. 
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Hence,  

 

   
 

11( , )
( | ) 1

( )

n xxnf x p
f p x p p

f x x n x

 

 

     
  

    
. 

Since the expected value of  Beta ,   is 1/ 1




 
 

 
 and ( | )f p x  is  

 Beta ,x n x    , 

 
1

E ( | )

1

f p x
n x

x






 




    

                                                                  
1

n

x

 




 



 

                                                                  
x

n



 




 
. 

Therefore, the binomial Bayes estimator for a parameter   is 

x

n




 

 


 
. 

Bayes Estimator for i . Now that we have seen the definition of a binomial 

Bayes estimator, we can find the Bayes estimator for i . It is known that id  follows the 

binomial distribution,    1( | )  1 i ii i

i

n dn d
i i i i i id

P D d D n n  


     . If we assume the 

prior distribution of i   is Beta( , )B . Then  

i
Bi

d

n




 




 
. 
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Notice that   and   must still be chosen in order to fully identify Bi . If one has 

sufficient knowledge about the prior distribution, one might have prior knowledge of 

what   and   might be. However, if one doesn’t have enough knowledge about the 

prior distribution,   and   must be chosen. An appropriate   and   will be revealed 

as we discuss the comparison between the two estimators, i


 and Bi


. 

Comparing i


 and Bi


. The Bayes estimator can be compared to the tradition 

MLE estimator in order to determine which one might be a better estimator and in what 

circumstances. One way to do this is to compare their mean square errors. 

 The mean square error (MSE) is defined as 

2

E  
 
 

 
, where 



 is an estimator 

for the parameter  .  In general, it is desirable for the MSE to be small. However, 

sometimes determining how small an MSE is can be challenge.  In order to help to make 

this challenge easier and provide more detailed information, the MSE can be split to two 

parts as shown below. 

2 2 2

Var Var BiasE E          
         
          

     
 

The bias of 


 measures how closely the estimator fits the data. The Variance of 


 is the 

variability of the estimator. It is an expression of how spread out each 


 is from E 
 

 
 

. 

If the bias of the MSE is 0, then the estimator is referred to as unbiased. This 

would indicate that the estimator fits the parameter very well and usually means that the 

MSE is small.  However, sometimes if the bias of the MSE is small, the variance 

becomes too large.  In such a case, it can be acceptable to have a larger bias in exchange 

for a smaller variance and an overall smaller MSE.  
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Now let us look at the mean square errors for both estimators.  The MSE of i


 is 

defined as 

2

MSE Var Bias
i ii i i   

   
   

 
.     

This implies,  

2

2( ) Vari i i i i
i i i

E E      
   
    

 
.     

                

2

Var
i i

i i
i

i i

d d
E

n n
  

 
   

 
  

    
2

2

Var
i i

i i

i

d

n


     

                      
 

2

1i i i

i

n
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Thus,  

 1
MSE

i i
i

in

 

 
 . 

The MSE of Bi


 is defined as 

2
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i i

Bi Bi Bi   
   

   
 

. 

This implies, 

          

2 2
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i i i

Bi Bi Bii iE E      
     
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
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Thus,  

 

 

2

2

1
MSE

i i i i i
Bi i

ii

n n

nn

   
 

  

   
   

    
. 

These same results were derived by Casella and Berger (2002) for the mean square 

errors of general proportions. Suppose that we were to graph the MSE of i


 as a function 

of i . There would exist a i -axis, a MSE axis, and the graph would be quadratic as 

shown in Figure 2. 

 

 

Figure 2. General Shape of MSE i


 

 

If on wanted a better estimator than i , one might seek to find a MSE of an estimator 

which has a graph closer to the i -axis. A constant MSE far below the maximum of the 
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quadratic function shown above would indicate a seemingly better estimator. It would 

also produce a consistent MSE for each value of i . 

Casella and Bergers (2002) show a method to arrive at a constant MSE of a 

general Binomial Bayes estimator. We adopt a similar method to arrive at a constant 

MSE Bi


. If there is no good prior information regarding i , choosing and   to both 

be / 2in  would result in 

/ 2i i
Bi

i i

d n

n n

 




 

and thus, 
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 
2

4

i

i i

n

n n





 

We can clearly see that our choice of   and  , resulted in a constant MSE Bi


.  

The two estimators i


 and Bi


 can be compared by analyzing the graphs of their 

mean square errors.  But first, we have to make an observation about the MSEs of our 

two estimators, 

 1
MSE

i i
i

in

 

  

 
 

 and 

 
2

MSE

4

i
Bi

i i

n

n n


 

 
  

. 

Notice that for both of the MSEs there are in  terms. This means that there will be 

different graphs for the functions depending on the in  values.  This will have an effect as  

in  changes. However, for the sake of simplicity, we will analyze in  at just one value, its 

value at n . That is in n . Figure 3 shows graphs of the MSEs with different respective 

values for n. A similar figure was shown by Casella and Berger (2002). 

Without any knowledge of the true i , it turns out that if n  is small, then Bi


 is 

more likely a better estimator.  Most values of MSE Bi
 

 
 

 will be smaller, except for 

values close to 0i   or 1i  . If n  is large, then i


 is a relatively better estimator, 

since most of the values of MSE i
 

 
 

 will be smaller except for values close to 1/ 2i   

. An attempt can be made to determine the true value of i


. This will be discussed in a 

future section. 
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Figure 3. Comparison of MSE i
 

 
 

 and MSE Bi
 

 
 

at 5n   and 300n  .  

 

A large or small value of n  is rather subjective. A more objective way of 

determining size can be seen by observing the graph of the MSEs at 42n   shown in 

Figure 4. 

 

Figure 4. Comparison of MSE i
 

 
 

 and MSE Bi
 

 
 

at 42n   
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At 0.250258 0.749742i  , MSE MSEi Bi 
    

   
   

 and at 

0.250258 and 0.749742i i   , MSE MSEi Bi 
    

   
   

.  About 49.9% of the graph 

shows that the estimator i


 should be favored. At 41n  , about 50.1%  of the 

corresponding graph shows that i


 should be favored. Thus, 42n   marks the turning 

point where more values of the true i  favor i


. Theoretically speaking, either estimator 

should be fine around 42n  if there is no information regarding i .  This is an important 

case, but one should be cautious about what a sample size of 42 represents. The true 

value of i  is not known. In practice, a sample size of 41 or 42 may not be an appropriate 

boundary for a respectively small or large sample size. In practice, certain data sets may 

have other boundaries base on the general trend of i . For instance some data, may favor 

a smaller i , so that the boundary  for a small sample size may be much lower than 41. 

It is important to address the effect of in  on choosing between i


 and Bi


. 

Notice that in n . If n  is small, there is no reason to consider a choice between i


 and 

Bi


 for each in , because Bi


 is the natural choice for smaller sample sizes. If n  starts 

small, each successive in  will naturally be smaller. If n is large, then there is a need to 

see how much smaller each in will be.  If enough subsequent in  values are less than 30,  

then Bi


 may be a better choice even if n  is large.  

Our comparison of i


 and Bi


 shows why we have chosen Bi


 as the estimator 

for i  in our modified Kaplan-Meir estimator. While Bi


 does not universally 
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outperform i


, it does generally do better for smaller sample sizes, theoretically under 

42. This shows the potential value of the modified Kaplan-Meir estimator. If one was 

only considering the parameters, the modified Kaplan-Meir estimator would do best for 

smaller sample sizes compared to the standard Kaplan-Meir estimator. This is not a 

certainty, but the suspicion warrants a further analysis which will be discussed latter.   

A More Detailed Definition of BS t( )


. Now that we have discussed and defined 

Bi


, a more complex and detailed definition of ( )BS t


 can be analyzed. Since it was 

shown that 
/ 2i

Bi

i i

d n

n n

 




, we can now define ( )BS t


 as, 

/ 2
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i i

i
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t t t t i i
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S t

n n


 
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  . 

We reorganize 
/ 2i

i i

d n

n n




 so that Bi



 is a linear combination of i


. 

                            
/ 2 / 2i i ii
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Thus,  

/ 2
( ) 1

i

ii
B i

t t i i i i

nn
S t

n n n n


 



  
    

     
 . 

This version of ( )BS t


 will be used so that our parameter might be /i i id n


 . 
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This gives us a closer association with ( )S t


 in that they have the same parameters. We 

will also use i


 as an estimator for i  when the variance and expectation is computed.  

Variance of the Modified Kaplan-Meir Estimate. The variance for ( )BS t


 can 

be found just as the variance for ( )S t


 was found. First, the variance and expectation of  

log ( )BS t


 are found.  
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and 
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The delta method can now be used to find a convergent distribution for
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log 1
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. Simplifying ( )ng Y  we have 
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Since   , 1
D

i i i i i iD N n n    , and since we are assuming each iD  is identically 

independent, 
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   . We are assuming that 0 1i   so that this 

case will not occur in practice. Thus,   g   exists and    0g    since 1 n . Thus,  
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Hence,  
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We use the delta method again to find Var ( )BS t
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It is clear that  g   exists, and   0g   . Thus,     2 2( ) ,
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t tt t i i i i
i i i i
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n n n n n n n

 
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
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            



  
 . 

Therefore,  
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    

       
 . 

Since i  is unknown, /i i id n


  will be used as the estimator. Like with previous 

estimators, this is useful in practice and may not be desirable for theoretical analysis. The 

variance resulting from the substitution is  
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Confidence Intervals for the Modified Kaplan-Meier Estimator. A 95% 

confidence interval for  BS t


 would be 

   0.975VarB BS t z S t
 

 .  

However, it was seen before that this could lead to results outside of the interval  0,1
.  

Thus, we make use of the formula we derived previously as shown below.
 

 
  

 
  Var log log Var log log

0.975 0.975
,

z S t z S t
e e

S t S t

         
 
  

 

Substituting  BS t


 for  S t , we have 

 

 

 

 Var log log Var log log
0.975 0.975

,

B Bz S t z S t

B B
e e

S t S t

       
        

             

 
 
 
 
 
  

. 

The delta method is applied again to derive the distribution of  log log BS t
 

 
 

, 

resulting in 

 
 

 
2 2

log ( )

1
Var log log

/ 2i
B

i i i
B

t t
S t i i i i

d n d
S t

n n d n


  

 
  

    
  

      
 . 

Thus, a suitable 95% confidence interval for  BS t


 would be 

 

 

 

 

 

 

 

 
2 2 2 2

1.96 1.96

/2 /2
log log

,

i i i i i i

t t t ti ii i i i i i i i
B B

d n d d n d

n n d n n n d n
S t S t

B B
e e

S t S t

  

 


      
   

    

  
 
 
 
 
 
 
 

. 
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Modified Kaplan-Meir Table. A modified Kaplan-Meir table contains 

information regarding the modified Kaplan-Meir estimate. The table is similar to the one 

created for the standard Kaplan-Meir estimate. Table 4 shows the format for a modified 

Kaplan-Meir table. 

 

Table 4. Modified Kaplan-Meir Table Format 

 

Survival  

Times 

 

Number at 

Risk 

 

Number of 

Failures 

 

 BS t


 

 

 Var BS t


 

Lower 

95% CI   

Bound 

Upper 

95% CI   

Bound 

 

1t  
 

2t  
 
. 
 

. 
 

. 

 

it  
 

. 
 

. 
 

. 
 

1nt   
 

nt  

1n  
 

2n  
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. 
 

. 

 

in  
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. 
 

. 
 

1nn   
 

nn  

1d  
 

2d  
  
. 
 

. 
 

. 

 

id  
 
. 
 

. 
 

. 
 

1nd   
 

nd  

 1BS t


 
 

 2BS t


 
 
. 
 

. 
 

. 
 

 B iS t


 
 
. 

 

. 

 

. 
 

 1B nS t




 

 B nS t


 

 1Var BS t


 

 

 2Var BS t


 

 
. 
 

. 
 

. 
 

 Var B iS t


 

 
. 

 

. 

 

. 
 

 1Var B nS t




 

 Var B nS t


 

 1BL S t
 
 
 

 

 

 2BL S t
 
 
 

 

 
. 
 

. 
 

. 
 

 B iL S t
 
 
 

 

 
. 
 
. 
 
. 
 

 1B nL S t




 
 
 

 

 

 B nL S t
 
 
 

 

 1BU S t
 
 
 

  

 

 2BU S t
 
 
 

 

 
. 
 

. 
 

. 
 

 B iU S t
 
 
 

 
 
. 

 
. 

 
. 
 

 1B nU S t




 
 
 

 

 

 B nU S t
 
 
 
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Comparing Survival Estimators 

 

We now have the necessary elements to properly compare the survival estimators 

presented thus far. In order to determine which survival estimate models a given data set 

the best, we can compare the mean square errors of their respective survival estimators. 

The distribution with the smallest MSE survival estimator would be the optimal choice to 

model the data. 

For any given survival estimator, ( )ES t


, its mean square error, is defined as 

           

2

MSE ( ) E ( ) ( )E ES t S t S t
  

  
 

     

     

2

Var ( ) Bias ( )E ES t S t
  

   
 

             

                  

2

Var ( ) E ( ) ( )E ES t S t S t
   

    
  

. 

Here ( )S t  is the true survival function that fits the data. Since we do not know the 

true survival function it is difficult to compute MSE ( )ES t


. We could leave it as a 

constant. However, by doing so, it provides a difficulty in interpreting MSE ( )ES t


.  

Instead, from this point forward, we will assume that the ( )S t  chosen to model the data, 

corresponding to the given ( )ES t


, is the true survival function or acts as an estimator for 

the true survival function. While this sacrifices accuracy, it gives us more to work with in 

understanding MSE ( )ES t


.  

An important part of MSE ( )ES t


 is the bias. For many estimators, 

 E ( )ES t S t
 

 
 

, and thus Bias ( ) 0ES t


 . In these cases, one only needs to evaluate 



60 

Var ( )ES t


. However, if  E ( )ES t S t
 

 
 

, then the bias must be considered. 

There are three survival estimators that are of particular importance and we would 

like to compare their mean square errors. The first survival estimator is the popular 

exponential survival function, denoted ( )TS t


. The mean square error of ( )TS t


 is 

22

MSE ( ) E ( ) ( ) Var ( ) E ( ) ( )T T T TS t S t S t S t S t S t
       

        
    

. 

When the Var ( )TS t


 was determined previously, we also found that  E ( )TS t S t
 

 
 

.  

Thus,  

 
2

MSE ( ) Var ( ) ( ) ( ) Var ( )T T TS t S t S t S t S t
  

    . 

This is an important result. Since there is no bias for MSE ( )TS t


, we only need to find the 

Var ( )TS t


 to determine the effectiveness of the distribution in modeling the data. 

The second survival estimator is the Kaplan-Meir estimator, denoted ( )S t


. The 

mean square error of ( )S t


 is  

22

MSE ( ) E ( ) ( ) Var ( ) E ( ) ( )S t S t S t S t S t S t
       

        
    

. 

When the Var ( )S t


 was determined previously, we also found that  E ( )S t S t
 

 
 

. 

Thus,  

 
2

MSE ( ) Var ( ) ( ) ( ) Var ( )S t S t S t S t S t
  

    . 

Again this is an important result because there is no bias.  
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The third survival estimator is the modified Kaplan-Meir estimator, denoted 

( )BS t


. The mean square error ( )BS t


 is  

22

MSE ( ) E ( ) ( ) Var ( ) E ( ) ( )B B B BS t S t S t S t S t S t
       

        
    

.                          

When the Var ( )BS t


 was determined previously, we also found that 

/ 2
E ( ) 1

i

ii
B i

t t i i i i

nn
S t

n n n n






   
             
 . 

Thus,  

2

/ 2
MSE ( ) Var ( ) 1 ( )

i

ii
B B i

t t i i i i

nn
S t S t S t

n n n n


 



   
       

       
            

                               

2

/ 2
Var ( ) 1 ( )

i

ii
B i

t t i i i i

nn
S t S t

n n n n






   
       

       
            

                    

2

/ 2
Var ( ) 1 1

i i

ii
B i i

t t t ti i i i

nn
S t

n n n n
 



 

   
        

       
  . 

Notice that MSE ( )BS t


 has a bias which is lacking in the other MSE survival 

estimators we have derived. The bias here is of great importance. However, it is quite 

difficult to determine how the bias behaves, because each in  and i  may change within 

the products.  It is not an easy task to interpret the graph of the bias in a theoretical sense.  

The method of trying to evaluate the bias empirically, or by example, is also a 

challenge. The true parameter for i  is not known. The purpose of the bias is to judge 

how close ( )BS t


 is to the true survival function ( )S t . An attempt could be made to 
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estimate i . However, estimating i  for the bias would be hazardous. The choice of an 

estimator for i  would dramatically influence the bias. For instance, if i


 was used as an 

estimator for E ( )BS t
 

 
 

 and Bi


 was used as an estimator for ( )S t , then there would be 

no bias. On the other hand, if i


was used as the estimator for both E ( )BS t
 

 
 

 and ( )S t , 

the bias might be quite large. Because of these dramatically varying outcomes, we make 

no attempt to determine an estimator for i  in trying to determine the bias.  

The question then remains, how do we consider the bias of ( )BS t


? The simple 

answer is that we only have information about the bias of the parameter Bi


. We can try 

to determine how the bias of ( )BS t


 will behave based on how the bias of Bi


 behaves.  

Our overall objective is to determine which survival estimator is the best. Just  

observing the behavior of Bias Bi


 is useful, but it can sometimes be difficult in 

accomplishing our overall objective.  

The accuracy with which one can determine which survival estimate is best 

depends on the survival estimates being compared.  It is often difficult to compare the 

survival estimators of ( )BS t


 and ( )TS t


 with the greatest accuracy. One might be 

tempted to compare their MSE parameters. However, since T


 is a rate and Bi


 is a 

proportion, it is difficult to accurately compare the two.  Thus, we have to rely upon a 

comparison of Var ( )BS t


 and Var ( )TS t


.  If a bias is relevant, then one would have to 

guess how relatively large or small the bias of ( )BS t


 might be according to the parameter 

Bi


.  

 Comparing the survival estimators ( )BS t


 and ( )S t


is easier since their respective 



63 

parameters are both proportions and they come from the same distribution. We have 

knowledge about the i


 and Bi


 comparisons which were shown earlier. We can see 

how the bias affects the estimators, and we can make a fairly good determination about 

how the bias affects the comparison of ( )BS t


 and ( )S t


. 

In practice, for any survival distributions, we can compare their variances. If a 

survival distribution has a bias, then we have to consider the bias separately.  

Analyzing the Bias of Bi


. Since we cannot easily determine the bias of ( )BS t


 

directly, we must instead analyze how Bi  is affected by its bias.  Recall that MSE Bi   

can be written as  

2

MSE Var Bias
i i

Bi Bi Bi   
   

   
 

.  

This implies,  

2 2

Var
i i i

Bi Bi Bii iE E      
     

      
   

 

which simplifies to  

 

 

 

 

2

2 2

1 1/ 2i i i i i

i i i i

n n

n n n n

   


 

. 

Therefore, 

 

 
2

1
Var

i

i i i
Bi

i i

n

n n


 

 





  and 
 

 

22

2

1/ 2
Bias

i

i i
Bi

i i

n

n n




  

 
  

. 

Here the bias and the variances are compared at different sample sizes as shown 

in Figure 5.  We will use two of the sample sizes we used before when comparing the 
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MSEs of i


 and Bi


. 

 

 

Figure 5. Comparison of Var
i

Bi 


 and 

2

Bias
i

Bi 
 

 
 

 at 5n   and 300n   

 

A couple of things can be observed from Figure 5. The first observation is that the 

relationship of the bias and the variance does not appear to change with sample size. 

Another observation is that the rate of increase and decrease for the variance and 

bias are inversely proportional. Note that since the variance is parabolic, this would have 

to be the case in order for the MSE of Bi


 to be constant.  The final observation is that 

the bias is largest near i  values of 1 and 0.  

Unfortunately, these observations do not tell us with precision how the bias would 

influence the effectiveness of ( )BS t


 compared to some arbitrary survival estimation. It 

could be that the bias is enough to make ( )BS t


 not as effective. One cannot ignore the 

fact that when the variance is at its smallest, the bias is at its largest. However, it could 

also be that even when the bias is at its largest, it is still not enough to cause serious issue. 

While these are not definite answers, there is useful information here that should be noted 



65 

and considered in any practical application.  

Another Comparison of i


 and Bi


. We will now turn our attention back to a 

comparison of i


 and Bi


. Two comparisons of i


 and Bi


 will be explored. The first 

delves more deeply into an analysis of the bias while the second leads to a method of 

considering the true value of i , in practice.  

Revisiting the Bias. We desire to see how the bias affects the comparison of i


 

and Bi


 this time by removing the bias from the MSE of Bi


. Figure 6 shows graphs of 

the MSE Bi


 and MSE i


 at different sample sizes, without the Bi


 bias. 

 

 

Figure 6. Comparison of MSE Bi


 and MSE i


 without Bias 

 

 

It turns out that regardless of the sample size and the value of i , MSE Bi


 

outperforms MSE i


 if the bias for Bi


 is not considered. However, we saw previously 

from Figure 6 that the MSE i


 generally outperformed MSE Bi


 when the sample size 

was large if the bias is considered. This might indicate something important about our 
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comparison of ( )S t


 and ( )BS t


. If the sample size is small one might expect ( )BS t


 to be 

a better estimator than ( )S t


. However, if the sample size is large, particular care must be 

taken about how the bias of ( )BS t


 would affect the results.  If it turns out that  

Var ( ) Var ( )BS t S t
 

 , by a relatively small margin, then one must be cautious in believing 

( )BS t


 is the better estimator. It would likely be the case that the bias of ( )BS t


  

would be large enough so that the bias would make MSE ( )BS t


 greater than MSE ( )S t


. 

This might lead us to belief that ( )S t


 would be the better estimator rather than ( )BS t


. 

Estimating the True Value of i . Up until now, we have operated under the 

assumption that the true value of i  is unknown when comparing MSE i


 and MSE Bi


. 

For instance, in Figure 3 and Figure 4 we assumed that the true value of i  was unknown 

and thus could be treated as a variable.  

While our assumption is correct, it fails to offer enough insight into our 

comparison.  In practice it is possible to have some knowledge and understanding about 

the true value of i . Estimators of i  can be used in an attempt to understand the possible 

size of i  and thus help us decide which estimator is a better choice. While the estimators 

cannot be expected to fully represent i , we would like to believe they have some 

measure of accuracy if we will ultimately choose one of the estimators to model the data.   

Since we have interest in comparing i


 and Bi


, i


 and Bi


 can be used to 

estimate i . However, i


 has traditionally suffered from inaccuracy when the sample 

size is small. In particular, the value of i


 is often smaller than it should be. Thus, for 



67 

smaller sample sizes we use a modification of i


, defined as  

~ 2

4

i
i

i

d

n






.  

The above modification seeks to attain more accuracy by increasing the number of 

failures by 2 and the sample size by 4. This also results in a better confidence interval for 

the proportion.  The modification of i


 is based on a general modification of the 

binomial proportion p


 as presented by Agresti and Coull (1998). 

 Now that we have established which estimators to use for i , MSE i


 and 

MSE Bi


 can be graphically compared with more insight. Figure 7 shows the graph of a 

general MSE i


 and MSE Bi


 comparison. 

 

 

Figure 7. A General MSE i


 and MSE Bi


 Comparison 

 

One can determine exactly when the true value of i  favors one estimator over the other 

by finding the i -values where the two MSEs intersect. The points of intersection can be 
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found for any in  by setting the two MSEs equal to each other and solving for i . That is 

we solve 

 

 
2

1
0

4

i i i

i
i i

n

n n n

 
 



 

for i .  

The left intersection point turns out to be  

 
2 1 1

2 1

i i

i

n n

n

  


  

while the right intersection point turns out to be 

 
2 1 1

2 1

i i

i

n n

n

   


 

For a given data set, once the intersection points are determined they can be 

compared to the i  estimates. Table 5 shows a format of presenting the i estimates and 

intersection value comparisons. 

In Table 5, the values of i


and Bi


 can be compared to the  iLI   and  iRI   

values. Each  iDiff   value is the difference between the estimate and the nearest point 

of intersection. If the i  estimate is between its corresponding  iLI   and  iRI  , then 

the difference value is measured as positive, otherwise it is measured as negative. The 

positive and negative signs hold no significance except to judge whether the individual 

value favors MSE i


 or MSE Bi


. The sum of the estimate difference gives an overall 

idea of which parametric estimate might be appropriate for the data. If the sum is 

positive, then there is evidence that the i


 parameter estimate is more accurate, 
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   Table 5. Estimated i  Table Format. Note that i


 is replaced with 
~

i  if the sample    
   size is small. 
 

 

 

Survival 

Times 

 

 
 

i


 

 

 
 

Bi


 

 

Right Point 

of MSE 

Intersection  

 

Left Point 

of MSE 

Intersection 

Difference Between 

Estimator and Nearest  

Intersection Point 

i


 Bi


 
 

1t  1


 1B


 

 

 1LI    

 

 1RI   1Diff 
 
 
 

 1BDiff 
 
 
 

 

       
 

2t  2


 2B


 

 

 2LI   

 

 2RI   2Diff 
 
 
 

 2BDiff 
 
 
 

 

       

. . . . . . . 

       

. . . . . . . 

       

. . . . . . . 

       
 

it  i


 Bi


 

 

 iLI   

 

 iRI   iDiff 
 
 
 

 BiDiff 
 
 
 

 

       

. . . . . . . 

       

. . . . . . . 

       

. . . . . . . 

       
 

1nt    1n


  1Bn


  

 

 1nLI    

 

 1nRI    1nDiff 



 
 
 

 

1BnDiff 



 
 
 

 

       
 

nt   n


 Bn


 

 

 nLI   

 

 nRI   nDiff 
 
 
 

 BnDiff 
 
 
 

 

       
 

Totals 
    

Sum of i


Differences 

Sum of Bi


Differences 
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indicating that the Kaplan-Meir estimate might prove best in modeling the data. If the 

sum is negative, then there is evidence that the Bi


 parameter estimate is more accurate,  

and thus indicates that the modified Kaplan-Meir estimate might be best in modeling the 

data.  

 Before we move on to the next section, we make a note of why a sum of 

differences is used in our comparison of the i estimates and intersection values. The sum 

of the differences is used because the difference values have weighted effects on i . If 

the distance between an estimate and an intersection point is large, then choosing the 

inappropriate estimate between i


 and Bi


 could result in a very inaccurate i  estimate. 

On the other hand, if the distance between an estimate and an intersection point is small, 

the choice between i


 and Bi


 would likely not be as consequential.  

 

Life Tables 

The life table method is a presentation of survival information that is modeled 

using the Kaplan-Meir estimates. It is designed to be used for relatively large sample 

sizes. The larger data sets are organized in intervals rather than considered at specific 

survival times. To accommodate the interval format, certain aspects of the Kaplan-Meir 

process are changed. These changes will be shown latter. There are three types of life 

tables, cohort lifetables, current life tables, and clinical life tables. 

A cohort life table shows statistical information about a population that was born 

at the same time or started a process at the same time. The study follows the subjects 

throughout their survival times until death. Cohort studies are less common due to trouble 

with observation over long time periods.  



71 

A current life table is a life table that shows information about a population over a 

given time period without concern for when the subjects of the population were born or 

started the process. The rates and statistical information gathered are then used to guess 

the behavior of a hypothetical cohort starting at birth or year one and continuing until 

death.  

Unlike the cohort and current life tables, a clinical life table shows statistical 

information about a specific study or experiment, rather than a population. These life 

tables are measured over a fixed amount of time and are usually focused on measuring 

the effects of a stimuli or condition. Clinical life tables are a common tool for researchers 

to analyze the effects of a specific illness or treatment. We will be focusing our attention 

on clinical studies and life tables, rather than cohort or current life tables.  

The clinical life table has many variations. However, most lifetables have 

common elements. We focus on presenting those common elements as well as additional 

information which may be useful to a clinical researcher. Table 6 shows an example of a 

clinical lifetable format. Each column is described as follows. 

The first column gives  1i it t  , where 1,......,i s . These are the intervals in 

which the survival information is distributed. Recall that survival data is analyzed in 

fixed intervals for a life table rather than analyzed as single data values. The intervals 

start at and include it  and continue until 1it   which is not included.  The time st  marks 

the end of the study so that the last interval  1s st t   is infinite.  The last interval is 

excluded in its analysis for some of the remaining columns because of its infinite nature. 

This exclusion is apparent when i  is defined to be 1,......, 1i s  . 
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Table 6. Life Table Format. A similar life table was produced by Lee (1992), pg. 91. 

Permission was granted to use this adaptation. 
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           The second column contains the midpoint of the interval and is denoted mit , 

where  1 / 2mi i it t t    and 1,......, 1i s  . The midpoint is needed for plotting the 

hazard and probability density functions.  

The third column is the width of each interval ib , where 1i i ib t t   and 

1,......, 1i s  . The width is used in finding the hazard and probability density functions 

in subsequent columns.  

The fourth column is the number of individuals lost to follow-up in the thi

interval and is designated il , where 1,....,i s .  

The fifth column is the number of individuals withdrawn alive at the end of the 

study in the thi  interval. It is denoted iw , where 1,....,i s .  In a life table, the time 

intervals are seen as time since entering the study. Thus, subjects that have entered the 

study late may withdraw alive at an earlier interval than others that have entered at a 

previous time.  

The six column represents the number of deaths in the thi  interval, designated id   

where 1,....,i s . 

The seventh column represents the number of subjects at the beginning of the thi  

interval, denoted in  , where 1n n   and 1,....,i s .   One can determine in   by 

determining 1in    and subtracting those that die, are lost to follow up, or that are 

withdrawn alive. That is, 1 1 1 1i i i i in n w dl       .  

The eighth column is the number of subjects that are at risk of death, denoted in   

where 1,....,i s . Since the data is organized in intervals, there is no specific information 

shown regarding when in the interval a subject might withdraw alive or be lost to follow 
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up. The times for loss or withdraw are assumed to be uniformly distribution and thus a 

subject that withdraws or is lost to follow up is considered at risk for only half the 

interval. This results in    1/ 2i i i il wn n   . 

The ninth column shows the estimated probability of death within the thi  

interval, denoted i


 where 1,....,i s , and 1s


 . This is the same i


 found in the 

Kaplan Meir estimator. That is /i i id n


 . However, in this case, id  and in  are defined 

over an interval rather than at a single time.  Note that i


 is the estimated probability of 

death only considering risk within the thi , and not before it.  The terminology rate of 

death within the thi  interval will be used to describe i


, since it is the proportion of 

subjects whom have died in the thi interval. 

The tenth column is the estimated probability of survival within the thi  interval, 

denoted i


 where 1,....,i s , and 0s


 . This is defined as 
^

1i i 


  . The 

terminology used for i


 is rate of survival within the thi  interval. 

The eleventh column is the estimated survival function,  iS t


, where 1,....,i s  

and  1 1S t


 . This is the Kaplan-Meir estimator for ( )iS t  as shown previously. 

However,  iS t


 defined for data values over an interval is different than  iS t


 defined 

for single data values. For single values,    1 ii iS t S t 
  

 , since the probability of 

surviving at it  is equal to the probability of surviving at it  and surviving all previous 

times. However, over an interval,     11 ii iS t S t 
  

 . Here  iS t


 measures the 

probability of survival to the start of the interval  1,i it t  . This is equivalent to surviving 

to the start of  1,i it t  and surviving that interval itself. If  iS t


 was defined as  
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   1 ii iS t S t 
  

  we might assume survival through previous intervals and the entire 

interval  1,i it t   up until 1it  . This would indicate survival past the time it , which would 

not be appropriate for survival at it . 

The twelfth column is an estimation of the probability function at the midpoint, 

denoted ( )mif t


, where 1,...., 1i s  . Recall that i


 denotes the probability of death 

within the thi  interval. However, it is not known where in the interval death might occur. 

We can choose to believe that death is likely to occur in the middle of the interval so that 

our error is never to large with respect to where death actually occurs. Hence, we choose 

to estimate ( )mif t  rather than some arbitrary value ( )hf t , where  1,h i it t t  . However, 

we are assuming that the probability of death at any point in the interval is equal. 

Therefore, there will be no real difference between the estimate of ( )mif t  and the 

estimate of any other ( )hf t , such as ( )if t


. It is known that 
1

1

( ) 1
i

i ji

j

f t  
  



 
  

 
  and 

does not change due to the data being organized in intervals. However, we know that  

( )iS t


 does. We can define ( )iS t


 as  

1

1

( ) 1
i

ji

j

S t 
 



 
  

 
 . 

Thus, 

1

1

( ) ( ) 1 ( )
i

i j imi i i

j

f t f t S t  
     



 
    

 
 . 

It is preferable to divide ( )i iS t
 

 by ib  so that the probability is given per unit width, 

leading to  
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( ) ( ) /imi i if t S t b
  

 . 

The thirteenth column presents an estimate of the hazard function at the midpoint, 

denoted  mih t


 where 1,...., 1i s  . Since      /i i ih t f t S t  we define  mih t


 as 

 
 

 

mi
mi

mi

f t
h t

S t





 . 

We have defined  mif t


 previously, but we still need to derive  miS t


.  Since  iS t  is 

the probability of survival at the beginning of the interval, rather than the midpoint, we 

define  miS t


 as 

     1

1

2
mi i iS t S t S t

  



 
  

 
. 

Thus, 

 
           1 1

( )

2 ( ) 2 ( ) 2

1
2

2

i i

i i ii i i
mi

i ii i i i i i i i i

S t

b S t S t
h t

S t S t b S t S t b S t S t b



  

 

 

    


       

 

   
       

          
       

. 

The fourteenth, fifteenth, and sixteenth columns are the variances of  iS t


,  

 mif t


, and  mih t


 respectively. The equation for  Var iS t


 was presented by 

Greenwood (1926). Gehan (1969) first derived  Var mif t


, and  Var mih t


. The variance 

for  iS t


 with data organized in intervals is the same as the variance of  iS t


 with single 

data values, except that  iS t


 is defined differently.  The variances for  mif t


 and 
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 mih t


 can be found using the delta method. We rederive the three survival time 

functions below.  

As we have seen before,  

 
 

2 1

1

Var ( )
i

j
i i

j j j j

d
S t S t

n n d

 



 
  

 
 . 

Note that  1Var S t


 does not exist since 
 

1

1

i
j

j j j j

d

n n d



 
  can’t be found. When 

substituting i  for 1, there does not exist sjd  and sjn  for j  values less than 1. 

We find  Var mif t


 by first finding 
^

Var log ( )  iiS t 
 

 
 

.  

^ ^

Var log ( )  =Var log ( ) +Var log  i ii iS t S t 
      

     
     

 

By the delta method,  

^
1

Var log  

i

i

i in











 
 

    
 

. 

Thus, 

1^

1

1

Var log ( ) +Var log

1

ii
j

ii

j
ij ij

S t

nn
















 
 

         
    
 

 

 . 

By a second use of the delta method,   

 
2 1^

1

Var ( )  
i

j i
ii mi

j
j ij i

S t f t

n n

 


 

 
 

 


 
     

      
   

  

 . 
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Therefore,  

 
   

 
 

2 2

1 1

2 2
1 1

Var

mi mii i
j i j i i

mi
i ij ji i j j jj ij i

f t f t
d n d

f t
n db b n n d

n n

 

 

 

 
 

 
 

   
               
   

   

  . 

                   

We found previously that   2 / 2i imi ih t b 
   

  
 

. Using the delta method once again, 

we have 

 
 

 
4 42

2

1616
Var

2
2

i i i i i i
mi

i i i
ii i

n d n d
h t

b n d
n b

 



 





 

 
 

 

. 

The seventeenth and eighteenth columns are the upper and lower limits of the 

confidence interval for ( )iS t


. One could also add columns to display the confidence 

intervals for  mif t


 and  mih t


 one so desired.  

The confidence interval for ( )iS t


 here is similar to the confidence interval derived 

previously for ( )iS t


 with single data values. It is 

 

 
 

 

 
 

1 1

2 2
1 1

1.96 1.96

log log

,

i i
j j

j jj j j j j j

i i

d d

n n d n n d
S t S t

i i

e e
S t S t

 

  


    

   
    

  
 
 
 
 
 
 
 

. 

This confidence interval does not exist for  1S t


 since 
 

0

1

j

j j j j

d

n n d 
  does not make 

sense.  
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Life Table for the Modified Kaplan-Meir Estimate. A life table requires a 

relatively large sample size so that the data can be grouped into intervals. The modified 

Kaplan-Meir estimate would likely not be the best estimate for a large sample size. 

However, it is still possible to create a life table using the modified Kaplan-Meir estimate 

for the purpose of comparing the results with the standard life table. Additionally, it is 

possible for the modified Kaplan-Meir estimate to be a more efficient estimator, even 

with a large sample size, if the true values of the i  parameters are close to 0.5. 

The two life tables would be identical in nature except for columns 11 onward. 

Columns 11-13 have estimated survival, probability, and hazard functions similar to the 

standard life table, except that the survival time functions use the modified Kaplan-Meir 

estimators. Those functions are 

1

1

/ 2
( ) 1

i
jj

B i j

j j j j j

nn
S t

n n n n


 



 
   
  
 

 , 

/ 2
( ) ( ) ( )

B

ii
i B i Bmi i iB

i i i i

nn
f t S t S t

n n n n
 

     
   

   

, 

and 

 

/ 2
2

2

/ 22 2

B

B

ii
i

i i i i i
B mi

iiii ii

i i i i

nn

n n n n
h t

nnb b
n n n n




 






 

 
 

   
 

    
      

       

. 

We can make use of the delta method as we did previously to find the variances in 

the final columns. The variances are 



80 

 
 
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2
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  

                                 

   

 

 

 

2

1

2 2 2
1 / 2 / 2
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j j j j j j
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j j j j j i j
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





 
       
 
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16 16 
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i ii i i i i i i i
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 

   
     

  

.                

The final columns show the upper and lower confidence intervals for ( )B iS t


.  

 
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 

 

 
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 

 

1 1
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1 1
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/2 /2
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d n d d n d
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S t S t

B Bi i

e e
S t S t

 

  

 


      
   

    

 
  

 
 
 
 
 
 

. 

Note that the confidence interval for  1BS t


 does not exist. 

Table 7 shows the lifetable format for the modified Kaplan-Meir estimate. 
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Table 7. Modified Kaplan-Meir Life Table Format. Adapted from Lee (1992), pg. 91 
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DATA ANALYSIS 

  

Overview 

It is important to see how the different methods for survival estimation compare 

and function in practice.  For this reason, we will analyze two sets of data. The first data 

set will have a sample size of 21. The first data set has a relatively small sample size and 

is less than 42. Thus, we might expect that the modified Kaplan-Meir estimate would be a 

far better estimate than the standard Kaplan-Meir estimate for that data set.  The second 

data will have a sample size of 2418. Since this data set has a relatively large sample, 

being far greater than 42, it is likely that the standard Kaplan-Meir estimate would be 

better than the modified Kaplan-Meir estimate.  The parametric method may or may not 

be better than both the Kaplan-Meir estimates, and is determined by how well the data 

matches the shape of the known distribution. If the data fits the the general shape well, 

then we might expect the parametric estimations to do best.  

The statistical package R in conjunction with Microsoft Excel was used in the 

analysis of our data sets. 

 

Acute Leukemia Data Analysis 

The first data set is from a study to assess the effectiveness of the drug 6-

mercaptopurine (6-MP) on patients with acute leukemia cancer. The remission times of 

the patients were organized and reported by Freireich et al. (1963). The remissions times 

are considered the “failure times.” The study consists of 42 patients split into two groups 

of 21, and ended after one year. One group was given the drug, and another received a 
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placebo. For our purposes, we will only analyze the group given the drug.  The following 

are the remission times (in weeks) of the patients given 6-MP. 

6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+ 

A plus indicates that the observation was censored.  The subjects were enrolled at 

different times. Study termination is the cause for each censored value.  

Parametric Estimate. First we will use the parametric method to model the data 

set. Recall that the hazard plot will be needed with the estimated hazard values. Table 8 

shows the cumulative hazard calculations.  

  

 
    Table 8. Hazard Table for Patients with  

              Acute Leukemia  

    

 

Survival 

Times 

 

Number at 

Risk 

 

Hazard 

Values 

Cumulative 

Hazard 

Values 

6 

6 

6 

7 

10 

13 

16 

22 

23 

21 

19 

18 

17 

15 

12 

11 

7 

6 

4.76 

5.26 

5.56 

5.88 

6.67 

8.33 

9.09 

14.29 

16.67 

4.76 

10.02 

15.58 

21.46 

28.13 

36.46 

45.55 

59.84 

76.51 
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From Table 8, a hazard graph is created and shown in Figure 8. 

 

 

Figure 8. Hazard Graph for Patients with Acute Leukemia 

 

The data appears to be linear in nature, thus we choose an exponential distribution 

to model the data. It was found previously that a parametric estimate of   for an 

exponential distribution is 
1 1

/
n n

i i

i i

t 


 

  , where 0i   if censored or 1i   if 

uncensored. Thus, we calculate that 9 / 359 0.02507


   and 
0.02507( ) 0.02507 tf t e   

would be a good parametric model for the data set.  

Choosing 
0.02507( ) 0.02507 tf t e  as our parametric distribution, the 
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corresponding survival function would be   0.02507t
TS t e


 . Recall that 

1 1

2 /
2

1

2

1

Var ( )

n n

i i
i i

t tn

i

i
T

n

i

i

t e

S t

t



  

 
  

 






  
 
 

 
 
 





. 

Thus,  

 

 

2 9/3592
2 0.050139

2

9
Var ( ) 0.00007

359

t
t

T
t e

S t t e


  . 

Table 9 displays the theoretical survival table for ( )TS t


. This will be used for 

comparison purposes latter.   

 

 

     Table 9. Theoretical Survival Table for Patients with  

                           Acute Leukemia 

  

Survival  

Times 

 

 TS t


 

 

 Var TS t


 

 

6 

 

7 

 

10 

 

13 

 

16 

 

22 

 

23 

0.8603466 

 

0.839045788 

 

0.778255813 

 

0.721870153 

 

0.669569708 

 

0.576061991 

 

0.561799643 

0.001861 

 

0.002409 

 

0.004230 

 

0.006150 

 

0.008015 

 

0.011216 

 

0.011660 
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Figure 9. Theoretical Survival Estimate for Patients with Acute Leukemia 

 

Recall that the confidence interval for any exponential  TS t


 is  

 

1.96 1/ 1.96 1/

1 1

,

n n

i i
i i

t t

e e

e e

 

 
 

   
    

   
    

 

 
 
    
    
    
 
  

.  

Thus, the confidence interval in this case would be  

 
 

 
 1.96* 1/9 1.96* 1/9

0.02507 0.02507 0.03117 0.020164
, ,

t t t t
e e

e e e e


   

 
   
 

  
. 

A graph of  TS t  and its 95%  confidence interval are shown in Figure 9. 
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Kaplan-Meir Estimate. The data set will now be modeled using the Kaplan-Meir 

process. Recall that the survivor function,  S t , can be estimated as  ( ) 1

i

i

t t

S t 
 



 
  

 
 , 

where /i i id n


 . The computation of each ( )iS t


, along with its variance, confidence 

intervals, and other survivor information is shown in Table 10. 

 

 

Table 10. Kaplan-Meir Table for Patients with Acute Leukemia. A traditional life table is 

not used since the sample size is small. 

 

 

Survival  

Times 

 

 

Number at 

Risk 

 

Number of 

Failures 

 
 

 S t


 

 
 

 Var S t


 

Lower 

95% CI   

Bound 

Upper 

95% CI   

Bound 

6 

 

7 

 

10 

 

13 

 

16 

 

22 

 

23 

 

21 

 

17 

 

15 

 

12 

 

11 

 

7 

 

6 

3 

 

1 

 

1 

 

1 

 

1 

 

1 

 

1 

0.8571 

 

0.8067 

 

0.7529 

 

0.6902 

 

0.6275 

 

0.5378 

 

0.4482 

0.005830 

 

0.007558 

 

0.009281 

 

0.011408 

 

0.013009 

 

0.016442 

 

0.018116 

0.7743 

 

0.7034 

 

0.6553 

 

0.5935 

 

0.5337 

 

0.4367 

 

0.3479 

0.9230 

 

0.8771 

 

0.8265 

 

0.7683 

 

0.7076 

 

0.6286 

 

0.5434 

 

 

 

From Table 10, the graph of ( )S t


 and its 95%  confidence interval is constructed 

in Figure 10. 
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Figure 10. Kaplan-Meir Estimate for Patients with Acute Leukemia 

 

Modified Kaplan-Meir Estimate. Finally, we model the data set using the 

modified Kaplan-Meir process. For the modified Kaplan-Meir process, recall that  S t  is 

estimated as 
/ 2

( ) 1

i

ii
B i

t t i i i i

nn
S t

n n n n


 



  
    

     
 , where /i i id n



 . Table 11 

shows the important survival information, including  Var BS t


 and confidence intervals 

for  BS t


. 
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Table 11. Modified Kaplan-Meir Table for Patients with Acute Leukemia 

Survival  

Times 

Number at 

Risk 

Number of 

Failures 
 BS t



  Var BS t


 

Lower 

95% CI   

Bound 

Upper 

95% CI   

Bound 

6 

7 

10 

13 

16 

22 

23 

21 

17 

15 

12 

11 

7 

6 

3 

1 

1 

1 

1 

1 

1 

0.7932 

0.6782 

0.5727 

0.4715 

0.3840 

0.2915 

0.2148 

0.003929 

0.004200 

0.004200 

0.004104 

0.003708 

0.003495 

0.002889 

0.7475 

0.6458 

0.5465 

0.4486 

0.3642 

0.2726 

0.1979 

0.8316 

0.7083 

0.5980 

0.4940 

0.4037 

0.3107 

0.2322 

 

 

The graph of ( )BS t


 and its 95%  confidence interval are shown in Figure 11.  

 

 

 

 

 

 

Figure 11. Modified Kaplan-Meir Estimate for Patients with Acute Leukemia 
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Comparing Survival Variances.  Here we will compare the variances of the 

three estimates. We will latter consider the bias of the modified Kaplan-Meir estimate in 

a discussion of the results.  

Since there is more than one variance for each estimate, the overall sums of the 

respective survival function variances are compared. That is, we can compare 

^

1

Var S ( )
n

T i

i

t


 , 
1

Var ( )
n

i

i

S t




 , and 
1

Var ( )
n

B i

i

S t




 . We wish to see which summation is 

 smaller. A smaller summation is one indication of a better corresponding survival 

estimate. Table 12 shows the survival function variances at each it  along with their 

summations. 

 

 

            Table 12. Comparison of Survival Variances for Patients with  

            Acute Leukemia 

 

Survival  

Times 

 

 Var TS t


 

 

 Var S t


 

 

 Var BS t


 

 

6 

 

7 

 

10 

 

13 

 

16 

 

22 

 

23 

0.001861 

 

0.002409 

 

0.004230 

 

0.006150 

 

0.008015 

 

0.011216 

 

0.011660 

0.005830 

 

0.007558 

 

0.009281 

 

0.011408 

 

0.013009 

 

0.016442 

 

0.018116 

0.003929 

 

0.004200 

 

0.004200 

 

0.004104 

 

0.003708 

 

0.003495 

 

0.002889 

 

Totals 0.045541 0.081644 0.023825 
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Table 12 shows that 
^

1 1 1

Var ( ) Var S ( ) Var ( )
n n n

B Ti i i

i i i

S t t S t
 

  

    . 

Estimating the True Value of the Kaplan-Meir i .  In order to compare i


 and 

Bi


, a i  estimate table is created. Table 13 shows a comparison between the i  

estimates and the intersection points of MSE i


 and MSE Bi


. 

 

Table 13. Estimated i  Table for Patients with Acute Leukemia. A plus sign is given to 
difference values between the right and left intersection points. A minus sign is given 
to difference values outside of this interval.  

     

 

 

Survival 

Times 

 
 

 
~

i
1 

 
 

 

Bi


 

 

Right Point 

of MSE 

Intersection 

 

Left Point of 

MSE 

Intersection 

 

Difference Between 

Estimator and Nearest 

Intersection Point 
~

i  Bi


 

6 0.2000 0.2068 0.2144 0.7856 -0.0144 -0.0076 

       

7 0.1429 0.1449 0.2032 0.7968 -0.0603 -0.058 

       

10 0.1579 0.1556 0.1966 0.8034 -0.0387 -0.0410 

       

13 0.1875 0.1767 0.1800 0.8200 0.0075 -0.0080 

       

16 0.2000 0.1857 0.1800 0.8200 0.0200 0.0057 

       

22 0.2727 0.2408 0.1560 0.8440 0.1167 0.0848 

       

23 0.3000 0.2633 0.1480 0.8520 0.1520 0.1153 

       

Totals     0.1828 0.0911 

 
 

    
1
  Due to small sample size, 

~

i  is used.   

 

Positive difference summations in table 13 show good evidence that Bi


would be the 

more accurate estimate for i . 
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Angina Pectoris Data Analysis 

The second data set is from a study measuring the time until death of 2418 males 

with angina pectoris. The data was organized and reported by Parker et al. (1946). An 

observation is measured as survival time since diagnosis until death. The data was 

organized in 16 intervals, with each interval being one year. The study ended after 15 

years. Right censoring occurred for some of the observations, due to loss of follow-up. 

The observation of subjects started at different times.  The data will be shown in 

lifetables, due to the quantity of observations.  

For this data set, we will take a different approach in finding an appropriate 

parametric method.  Recall, that one can make a choice concerning which parametric 

function is best based on the shape of the non-parametric graphs. We will use this method 

here. The non-parametric methods will be presented first. Then, the general shape of the 

graph will be observed and compared to the shape of theoretical survival functions. An 

appropriate parametric function will then be found and compared to the Kaplan-Meir 

estimates.  

Kaplan-Meir Estimate. We first model the data using the Kaplan-Meir process 

for life tables. Recall that each  iS t , can be estimated as 
1

1

( ) 1
i

ji

j

S t 
 



 
  

 
  , where 

/j j jd n


 . The lifetable using the Kaplan-Meir process is shown in Table 14. 

For our purposes, the values of  mf t


,  mh t


,  Var mf t


, and  Var mh t


 will not be 

analyzed. 

 



93 

           

Table 14. Life Table for Patients with Angina Pectoris. A similar life table format was produced by Lee (1992), pg. 91. 
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The graph of ( )S t


 is shown in Figure 12. 

 

 

Figure 12. Kaplan-Meir Estimate for Patients with Angina Pectoris. The confidence 

intervals are not included since they are too small to observe. 

 

 

 

Modified Kaplan-Meir Estimate. For the Modified Kaplan-Meir process, recall 

that each  B iS t


 is estimated as 
1

1

/ 2
( ) 1

i
jj

B j

j j j j j

nn
S t

n n n n


 



  
    

   
  

 , where  

/j j jd n


 . The modified Kaplan-Meir life table is shown in Table 15. The 

values of  mBf t


,  B mh t


,  Var mBf t


, and  Var B mh t


 will not be analyzed. 
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Table 15. Modified Kaplan-Meir Life Table for Patients with Angina Pectoris. A similar life table was produced by Lee (1992), 

pg. 91. 
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The graph of ( )BS t


 is shown in Figure 13. 

  

 

Figure 13. Modified Kaplan-Meir Estimate for Patients with Angina Pectoris. The 

confidence intervals are not included since they are too small to observe. 

 

 

 

Parametric Method. In order to model an appropriate parametric model, we 

must choose which non-parametric estimate to analyze. In this case, the modified Kaplan-

Meir estimate and standard Kaplan-Meir estimate are similar enough in shape that either 

would be sufficient to choose. In this case, it turns out that the Kaplan-Meir estimate is 

likely the more accurate estimate. Thus, we will analyze the Kaplan-Meir estimate. A 

smooth representation of  S t


 is shown in Figure 14. 
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Figure 14. Kaplan-Meir Curve for Patients with Angina Pectoris 

 

If we compare the above Kaplan-Meir curve with the graph of survival functions 

from known distributions, it appears that the exponential survival function would fit the 

data well. 

Since an exponential survival function is used for our parametric model, an 

estimation of the parameter   needs to be found.  A suitable modification of  

1 1

/
n n

i i

i i

t 


 

   for a lifetable is used as an estimator for  . The indicator variable, i  

is replaced with 
1

s

i i

i

n l w


  , n  is replaced with s , and each it  is replaced with  

( )mi i i it d l w  . Since a lifetable does not show the exact failure times or times of 
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censoring within the interval, the failures or censorships are estimated as taking place at 

the midpoint in each interval, Thus, 

1

1

0.138587

( )

s

i i

i

s

mi i i i

i

n l w

t d l w








 

 

 




. 

We can conclude that the function 
0.138587( ) 0.138587 tf t e  would be a good parametric 

model for the data set. The exponential survival function is   0.138587t
TS t e


 .  

It is known that 

1 1
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2

1

2

1

Var ( )

n n

i i
i i

t tn

i

i
T

n

i

i

t e

S t

t



  

 
  

 






  
 
 

 
 
 





. 

Making the substitutions given above, we have 

 

1

1

2

( )
2

1

2

1

Var ( )

s

i i
i

s

mi i i i
i

n l w

t

s t d l w

i i

i
T

s

mi i i i

i

n l w t e

S t

t d l w





 



 








 
  

 
 

  
 





  

                                      
 

 

2 2 0.138587

2

1655

11942

tt e

  

                                      2 0.2771740.000012 tt e . 

Table 16 shows ( )TS t


 at each uncensored it , along with the respective variances. This 

will be used for comparison purposes latter. 
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                Table 16. Theoretical Survival Table for Patients with 

                            Angina Pectoris 

 

Survival  

Times 

 

 TS t


 

 

 Var TS t


 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0.870588 

0.757923 

0.659838 

0.574447 

0.500106 

0.435386 

0.379042 

0.329989 

0.287284 

0.250106 

0.217739 

0.189561 

0.165030 

0.143673 

0.125080 

0.000009 

0.000027 

0.000045 

0.000061 

0.000073 

0.000079 

0.000082 

0.000081 

0.000078 

0.000073 

0.000067 

0.000060 

0.000053 

0.000047 

0.000041 

 

 

The confidence intervals for  TS t


 are  

1 1

1.96 1/ 1.96 1/

,

s s

i i i i
i i

n l w n l w

t t

e e

e e 

 
 

   
       

   

 

  
 
    
    
    
 
 

 

                                  
 

 
 1.96 1/1655 1.96 1/1655

0.063892 0.063892
,

t t
e e

e e


 

 
 
  
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         0.13875 0.138422,t te e  
 

 . 

The graph of  TS t


 is shown in Figure 15.   

 

 

Figure 15. Theoretical Survival Estimate for Patients with Angina Pectoris. The 

confidence intervals are left out since they are too small to observe. 

 

 

Comparing Survival Variances.  Here the summation of each estimate variance 

is analyzed. A consideration of the bias of will be addressed in a discussion of the results. 

The variances of the respective survival functions are shown in Table 17. 
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            Table 17. Comparison of Survival Variances for Patients with  

            Angina Pectoris 

 

Survival  

Intervals 

 

 Var TS t


 

 

 Var S t


 

 

 Var BS t


 

      [12) 

      [23) 

      [34) 

      [45) 

      [56) 

      [67) 

      [78) 

      [89) 

      [910) 

[1011) 

[1112) 

[1213) 

[1314) 

[1415) 

[15  ) 

0.000009 

0.000027 

0.000045 

0.000061 

0.000073 

0.000079 

0.000082 

0.000081 

0.000078 

0.000073 

0.000067 

0.000060 

0.000053 

0.000047 

0.000041 

0.000064 

0.000085 

0.000094 

0.000102 

0.000106 

0.000108 

0.000110 

0.000112 

0.000114 

0.000109 

0.000123 

0.000130 

0.000139 

0.000151 

0.000177 

0.000061 

0.000079 

0.000087 

0.000093 

0.000093 

0.000092 

0.000091 

0.000090 

0.000088 

0.000087 

0.000086 

0.000085 

0.000083 

0.000081 

0.000084 

Totals 0.000875 0.001724 0.001280 

 

 

 

Table 17 shows that 
^

1 1 1

Var S ( ) Var ( ) Var ( )
n n n

T Bi i i

i i i

t S t S t
 

  

    . 

Estimating the True Value of the Kaplan-Meir i .  The estimates i


 and Bi


 

are compared by creating and analyzing an estimate i  table. Table 18 shows a 

comparison between the i  estimates and the intersection points of MSE i


 and 

MSE Bi

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Table 18. Estimated i  Table for Patients with Angina Pectoris. A plus sign is given to 

difference values between the right and left intersection points. A minus sign is given 

to difference values outside of this interval. 

 

 

 

Survival 

Times 

 
 

 

i


 

 
 

 

Bi


 

 

Right Point 

of MSE 

Intersection 

 

Left Point 

of MSE 

Intersection 

 

Difference Between 

Estimator and Nearest 

Intersection Point 

i


 Bi


 

 [0-1) 0.1886 0.1948 0.4007 0.5993 -0.2121 -0.2059 

 [1-2) 0.1163 0.1249 0.3953  0.6047 -0.2790 -0.2704 

 [2-3) 0.0902 0.0999 0.3916  0.6083 -0.3014 -0.2917 

 [3-4) 0.1131 0.1228 0.3887 0.6113 -0.2756 -0.2659 

 [4-5) 0.1025 0.1132 0.3850 0.6150 -0.2825 -0.2718 

 [5-6) 0.1120 0.1232 0.3803 0.6197 -0.2683 -0.2571 

 [6-7) 0.0952 0.1085 0.3731  0.6269 -0.2779 -0.2646 

 [7-8) 0.1103 0.1248 0.3649 0.6351 -0.2546 -0.2402 

 [8-9) 0.0996 0.1166 0.3561 0.6439 -0.2565 -0.2395 

 [9-10) 0.1063 0.1252 0.3471 0.6529 -0.2408 -0.2219 

[10-11) 0.1441 0.1635 0.3369 0.6631 -0.1928 -0.1734 

[11-12) 0.1646 0.1865 0.3226 0.6774 -0.1580 -0.1361 

[12-13) 0.1390 0.1682 0.3031 0.3031 -0.1641 -0.1350 

[13-14) 0.1104 0.1493 0.2823 0.7177 -0.1719 -0.1331 

[14-15) 0.1263 0.1737 0.2564 0.7436 -0.1301 -0.0827 

Totals     -3.4656 -3.1893 

 

 

The negative difference summations in Table 18 show good evidence that i


would be 

the more accurate estimate for i .  
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DISCUSSION 

 

The results for the Acute Leukemia data analysis are partially what we expected. 

If we only analyze the variances, the modified Kaplan-Meir estimate appears to be better 

than the standard Kaplan-Meir estimate. Additionally, the modified Kaplan-Meir estimate 

seems to outperform the exponential estimate. However, if we consider the bias, we 

might be able to get a more accurate understanding of which estimation is best.  

In our analysis of the Acute Leukemia data, we don’t know exactly how large the 

bias of  BS t


 is, however an analysis about the overall nature of the parameters, might 

suggest something about the size of the bias. When the true value of i  was estimated 

and compared to the intersection of the i


 and Bi


 MSE, we found that the results 

favored the Bi


 estimate. While this does not directly show that the bias of   BS t


 is 

small, it does show evidence that the bias of Bi


 is small so that MSE Bi


 is less than 

MSE i


. We know that the bias  BS t


 is affected by the bias of  Bi


 so that it is likely 

the bias  BS t


 is also small. Thus, we believe with some confidence that the bias  BS t


 

is small enough to allow MSE  BS t


 to still be less than  MSE S t


. We have less 

knowledge about how an exponential survival estimate compares to a Kaplan-Meir 

estimate, but we know that a theoretical estimate should outperform a non-parametric 

estimate if  the data can be accurately modeled with a theoretical distribution. Thus, we 

might guess that the bias is small, but large enough so that  MSE TS t


 is less than 

 MSE BS t


.  
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After considering the bias in our mean square errors, we make the conclusion that 

the following is likely true. 

     MSE MSE MSET BS t S t S t
  

  . 

This would result in the exponential survival function being the best estimate followed by 

the modified Kaplan-Meir estimate, and the traditional Kaplan-Meir estimate being the 

worst of the three.  

While our conclusion for the Acute Leukemia data analysis is likely true, there are 

a number of possible scenarios that would lead to a conclusion other than the one we 

suggested. The possibilities are discussed as follows.  

The bias of the modified Kaplan-Meir estimate might be smaller or larger than 

expected. The first reason for this might be due to parameter estimation. While using an 

estimate of the Kaplan-Meir i  gave us some understanding of i , the estimate was not 

the true value itself. It could be that our estimate may have been insufficiently. The 

second reason the  bias BS t


might be different than expected is that we only know 

information about the variance of the survival function, not the bias. Since we do not 

know the  bias BS t


, it is possible that the parameter bias affected the corresponding 

survival function bias in ways we did not predict.  Two things could result from a 

 bias BS t


 different than expected. The first is that it could be too small to affect the 

MSE in any way. This would result in the Kaplan-Meir estimate being the most accurate 

survival estimate. Another possibility is that the  bias BS t


is large enough to make the 

modified Kaplan-Meir estimate worse than all the other estimates.  
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It is possible that the data may not sufficiently be modeled by an exponential 

distribution. There does appear to be a slight variation from the exponential curve. This 

might be enough to cause the modified Kaplan-Meir estimate to be more accurate. 

However, we note that this is a difficult option to assess, and it is unlikely that this 

variation from the exponential curve would be enough to affect the results. 

A final possibility is that the approximations used in our methods skew the results 

so that an unexpected outcome arises. Of considerable concern is the use of the delta 

method in the construction of our estimators. The delta method is optimally used with 

large sample sizes. The sample size for the Acute Leukemia data is small. This 

inaccuracy due to sample size is difficult to avoid, because alternatives to the delta 

method are hard to find.  

In our analysis of the angina pectoris data, it appears that the theoretical estimate 

is the most accurate survival function estimate followed by the modified Kaplan-Meir 

estimate, and lastly the standard Kaplan-Meir estimate.  However, this assessment does 

not consider the bias of the modified Kaplan-Meir estimate. In our interpretation of the 

Acute Leukemia data, we discussed that the bias would likely cause the standard Kaplan-

Meir estimate to be better than the modified Kaplan-Meir estimate. This might especially 

be the case here since the difference between the respective variances is very small. In 

our comparison of the estimated i  and MSE points of intersection, we found that the 

results favored the i


 estimate. Thus, there is evidence that the bias for the modified 

Kaplan-Meir would be large enough so that    MSE MSEBS t S t
 

 .  Based on this, we 

make the conclusion that the standard Kaplan-Meir estimate would be more accurate than 
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the modified Kaplan-Meir estimate, while the theoretical estimate would remain the most 

accurate. 

Like with the acute leukemia data set, there are suspicions that our conclusions 

might not be correct. The suspicions are shared for similar reasons except that for this 

data set, the sample size is large enough that we don’t have to worry too much about the 

delta method approximations. One alternative conclusion is that the modified Kaplan- 

Meir bias is smaller than expected so that in fact,    MSE MSE BS t S t
 

 . This would 

lead to the conclusions that the modified Kaplan-Meir estimate is more accurate than the 

standard Kaplan-Meir estimate.  

Our analysis encouraged us to consider a number of different scenarios and 

alternative methods where more certainty in the results might be attained. We first 

discuss some different scenarios followed by two alternative methods that deserve future 

consideration.  

From our analysis of the Acute Leukemia data, we observed that the estimated 

is  were relatively close to the left intersection point. The reason for this lies in the 

nature of the data. Except for the first survival time, there was one observed failure at 

each time. This meant that our estimations of each i , except for values with very small

sin , would be small enough to cause a relative amount of uncertainty. The values were 

closer to zero than was desirable so that choosing between the standard and modified 

Kaplan-Meir estimate was a relatively difficult choice.  
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Data sets with high death rates at each observed time would have less uncertainty 

and would tend to favor the modified Kaplan-Meir estimates. For instance, suppose we 

had a data set with the following survival times.  

6, 6, 6, 6, 6, 6, 6+, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10, 13, 13 

If we did analysis on this data set, then we would find that the estimated i  values would 

be much further away from the intersection points, because there are more observed 

failures at each survival time. In this case, the modified Kaplan-Meir estimate would 

outperform the standard Kaplan-Meir estimate with more certainty. 

Data sets with smaller samples sizes will also tend to favor the modified Kaplan-

Meir estimate. In an earlier analysis we discussed that a sample size less than 42 might be 

considered small. However, that is not a concrete marker. The smaller the sample size, 

the more accurate the modified Kaplan-Meir estimate will usually be. In our Acute 

Leukemia data analysis, it was seen that the latter survival times were more clearly in 

favor of the modified Kaplan-Meir estimates. This is because the sin  became 

increasingly smaller and acted as a local sample size. Based on our analysis, it may be 

that the sample size needs to be significantly smaller than 42, depending on other factors 

such as death rate per survival time. We guess that a sample size of 25 or less may be a 

better marker for favoring the modified Kaplan-Meir estimate.  

A possible alternative method for estimating  S t  for small sample sizes, may be 

to use the standard Kaplan-Meir estimate for some values of it  and the modified Kaplan-

Meir estimate for others. In our Acute Leukemia data analysis, we found that the first 3-4 

comparisons of the estimated is  and the nearest intersection points, favored the 
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parametric estimate i


, while the latter comparisons favored Bi


. This suggests that the 

Kaplan-Meir estimate would likely be more accurate for the first 3-4 survival times, and 

the modified Kaplan-Meir estimate would probably be more accurate for the latter 

survival times. Future researcher might explore estimating each  iS t  with non-uniform 

estimates. For instance, in our Acute Leukemia analysis, it might be beneficial to use 

 S t


 as an estimator for  1S t ,  2S t ,  3S t , and  4S t , while using  BS t


 to 

estimate the rest of the survival functions. The effects and complications of this sort of 

method deserve more scrutiny.  

 Another alternative method for estimating  S t  for small sample sizes might be 

to use 
~

i  as an estimate for i . We discussed previously that 
~

i  is a better estimator 

when the sample size is small, and used it to estimate the true value of i . However, we 

did not explore how a modification of the Kaplan-Meir estimate based on 
~

i  might 

perform. It is reason to believe it might be a good alternative for smaller sample sizes.  
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CONCLUSION 

 

 Evidence was shown, both theoretical and empirical, that suggests our modified 

Kaplan-Meir estimate is likely more accurate than the standard Kaplan-Meir estimate for 

smaller sample sizes. We conclude that our hypothesis is correct, but with some degree of 

uncertainty.  

More analysis should be conducted to verify and confirm our hypothesis. The 

comparison of  MSE S t


 and  MSE BS t


 should be explored in more detail.  It could be 

useful to create a multidimensional graph of  MSE BS t


 or some other mechanism for 

analyzing  MSE BS t


 to determine the effect of the  BS t


bias. Also, alternative 

estimates to the Delta method might be considered to address estimation error for smaller 

sample sizes.  

Assuming that our conclusions are verified and confirmed, our results would help 

alleviate the particularly troublesome problem of inaccuracy due to small sample size. A 

lack of participants in a study may be mitigated by our modified Kaplan-Meir estimate. 

This would prove to be a boon to research when larger sample sizes are sometimes not 

available or even feasible.  
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