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ABSTRACT 

I have investigated the diffusion mechanisms of Li-ion in amorphous lithium phosphite 

(LiPO3) with addition of sulphur. By applying the nudge elastic band (NEB) method in 

crystal LiPO3 and Li3PO4, I confirmed the easing of diffusion pathways for Li ion in 

LiPO3 which is consistent with the previous theoretical finding[1]. From the diffusion 

study in 0.5 Li2O- 0.5 P2O5 and 0.4 Li2SO4 – 0.6 (Li2O-P2O5) melts above 3000K 

performed with ab-initio molecular dynamics (AIMD), produces identical outcome as 

experimental at lower temperatures. I demonstrated the benefit of addition of S in 

increasing Li+ mobility. I also found that the Li2SO4 addition into the glass results in a 

characteristic shift in Li-ion vibration to a lower vibrational frequency. In addition, the 

presence of oxygen surrounding the diffusion pathways appears to be essential in 

assisting the Li+ mobility in both crystalline and amorphous structures. The activation 

energy barrier shows similar pattern as reported in experimental analysis with LiPO3[2]. 
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INTRODUCTION 

 

Li-ion Battery 

Anticipating the decline of conventional fossil fuel reserves and facing the 

discontinuous nature of power generation from alternative renewable energy, storage 

system research is of prime concern [3]–[7]. Numerous work has been done in this field 

to meet ever-growing expectations of reliability, durability, and capacity constraints of 

storage devices.  Over the past few decades, Li-ion batteries have been proven to be 

superior to Lead- or Sodium-ion batteries. Fig 1 clearly shows the superiority of Li-ion 

battery over other conventional ionic battery in terms of energy density. Conventional 

Lead-acid batteries, for example, tends to have a short lifetime, while sodium sulfur and 

sodium-metal halide batteries have safety risk due to the thermal and mechanical stability 

of β00 -alumina tube at battery operating temperature [8], [9]. 

 

 

Fig 1. Comparison of different battery technology with respect to volumetric energy 

density and gravimetric energy density[10]. 
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In every electrochemical cell, there are two electrodes (namely, anode and 

cathode) and an electrolyte separating the electrode from direct contact, as shown in Fig 

2. The anode has an excess of ions, while cathode works as a sink of these excess ions. 

Both the electrodes have to be a good electrical conductor, whereas the electrolyte has to 

be a poor electron conductor but a good conductor of the ion. In the discharge process, 

oxidization reaction occurs in the cathode (Li = Li+ + e-) and generated Li-ions travel 

through the anode to the cathode via the electrolyte. Meanwhile, the electron generated 

from the oxidization reaction travels from the cathode to anode through the external 

circuit supplying the required energy to do the work. During the charging process, this 

cycle is reversed via external potential applied to the electrode, resulting in accumulation 

of Li in the anode. Typically, the cathode consists of ion-rich crystalline material while 

the commercial anodes tend to be carbon- or silicon-based. However, being electrically 

insulating, the electrolyte needs to be a solution or a glass-type material of organic or 

inorganic ion-rich material. Moreover, as Li is the lightest and most electropositive 

element, it can show very high potential in Li/Li+ reaction for different compounds. For 

example, Li-ion in LiMnPO4, LiCoPO4, and LiNiPO4 can deliver 4.1 V, 4.8 V and 5.1 V 

potential, respectively [11]–[13]. This is to be compared with the early introduction from 

Sony, which introduction of LiCoO2 has a limited capacity of ∼140 𝑚𝐴ℎ𝑔−1 at 3.7 V. 

To increase the energy density even further, layered oxides Li [Li, Mn, Ni, Co]O2 have 

been considered for higher capacity values of ∼250 𝑚𝐴ℎ𝑔−1[14] . Along with its high 

potential, Li also shows high diffusivity, thermal stability and low energy barrier which 

make it a superior charge transport medium compared to other existing options.  
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Fig 2. Diagram of a Li-ion battery. Li-ion diffuse from the anode to the cathode in 

discharge process and electron flow through the external circuit[15]. 

 

Solid State Electrolyte 

For achieving higher electro-potential and charge capacity, not only the 

conductor, but also a high-performance electrolyte is essential. However, in developing 

the next generation of Li-ion batteries, electrolyte becomes the main obstacle. Recently, 

most of the works on battery electrolyte are focused on solid-state electrolyte (SSEs), 

which is produced by transforming liquid electrolyte batteries to solid-state lithium 

batteries (SSLiBs). These solid-state lithium electrolyte (SSEs) can solve some age-old 

problem of liquid batteries such as limited operating voltage, physical, thermodynamics, 

electrochemical safety issues, chemical stability with electrode material, poor cycling 

property, poor ion conductivity in room temperature, and low activation energy (Ea) for 

use over a broad range of temperature. On the other hand, they are prone to oxidization 
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combustion, leaking, or internal shorting[16], inexpensive and environmentally friendly 

thin film preparation method and also inert to metallic Li conductor and resist to grow 

dendrite[16]. Along with these, solid electrolytes allow lighter and more flexible design 

criteria in the shape and size. A range of SSEs has been investigated from, among others, 

gelled polymers, solvent-free polymers, inorganic crystalline compounds, and inorganic 

glasses. Some recent examples include: LiBH4 [17]; Li3N; Li4SiO4 [18], [19]; perovskites 

[20], [21]; Garnet-type LixAyB3-yM2O12 (x = 3, 5, 6, 7; y = 0, 1; A=Mg, Ca, Sr,Ba; B = 

La, Y, Pr, Nd, Sm-Lu; M = Nb, Ta, Sb, Zr, Sn, Te) [22]–[24], 

Li7La2.75Ca0.25Zr1.75Nb0.25O12 ( σ = 2.2×10-4 S/cm) [25], Li2SO4-Li2O-P2O5 [26], Na2O-

P2O5 [27], and K2O-P2O5 [2].  

Recently, polyethylene oxide (PEO) and related polymer mixed with Li salt draw 

attention due to its high conductivity in higher temperature. At the same time, these 

materials also show conductivity at a lower temperature as segmental chain motion 

diminishes, which is the dominant factor for high conductivity. However, poly vinylidene 

fluoride (PVDF)-based material shows ionic conductivity up to 0.1 Sm-1 at room 

temperature[28], [29].  

Among these, most of the highly conductive compounds show degrading 

electrochemical stability with electrodes. For example, La(2/3)-xLi(1/3)+xTiO3 (LLT) shows 

high conductivity of 10-3 S/cm, even though it's coupling with Li conductors is poor [20]. 

Their grain boundary offers high resistance to total ionic conductivity at low temperature. 

Another highly conductive material, Li3N electrolyte shows low decomposition voltage 

of 0.44V at room temperature. Similarly, Li-β alumina also shows isotropic conductivity 

but sensitive to moisture and carbon dioxide[18]–[20], [30].  
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These types of fundamental issues underlie the quest to fully understand the 

behavior of solid batteries, especially the area of the electrochemical interface. The 

interaction between solvent and lithium salts during discharge-charge in the cell may 

affect the performance of the batteries. Decomposition of LiPF6 creates a thick layer of 

LiF in the electrode material, creating a barrier to an electrode-electrolyte system which 

serves as an additional internal resistance to Li-ion flow and results in a decrease of 

output voltage[31]. The particular microscopic mechanism on the SEI interface is still not 

resolved because of the difficulty in situ observation in the electrode-electrolyte interface 

in operating time. The composition of the SEI can be a vital factor to interface 

mechanism. For example, about 5-10% presence of vinylene carbonate (VC) in ethylene 

carbonate (EC) solvent improves the irreversibility capacity at the charging cycle in Li-

ion polymer cell[32], [33]. 

There are several attempts reported to engineer SSE material to increase ion 

mobility.  Li-ion doped plastic crystalline matrices are reported stable in 5V and on 

interest due to the plastic crystal matrices vibrational characteristics. LiClO4 doped PEO 

with inorganic hybrid poly(cyclotriphosphazene, 40-sulfonyldiphenol) (PZS) as filter 

shows higher conductivity[34] compared to ceramic fillers like SiO2. Brittle superionic 

glass also shows potential for higher diffusion material candidacy. LiGaS and LiSiS 

known as LISICON are recently discovered with a higher electrochemical stability[35], 

[36]. A lot of research is going on these Li2S-P2S5 type of electrolyte systems. Existing 

solid electrolytes can be divided into 3 groups: (i) inorganic SE (ISEs), (ii) composite 

solid electrolytes (CSEs), and (iii) solid polymer electrolytes (SPEs). This work is based 
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on ISE materials and understands the Li conductivity and influence of Oxygen on the 

diffusion of Li-ion. 

On the other hand, several experimental works have been done on conductivity 

and stability of Li3PO4 [37], LiPO3, and its corresponding glass form Li2O-P2O5 & 

xLi2OP2O5-(1-x) Li2O-SO4 [38] reports activation energy of 1.4 eV for polycrystalline 

LiPO3 with dc conductivity of 2.5 × 10-8 S/cm at 280◦ C, which can be enhanced by four 

orders of magnitude in its corresponding glass form. Li2O-P2O5 is rich on Li and highly 

stable in both crystalline and glass Li2O-P2O5 form. λ-Li3PO4 crystal is also important 

because of its reported stability properties with Li-based compounds [39] with its layered 

order of Li indicating a potential Li+ migration channel. The aim of this study is to 

computationally understand the behavior of Li transport in atomic level for LiPO3 

crystalline media and compare with the glass counterparts. 

 

Theoretical Approaches 

Recently theoretical approaches are used widely to design and understand material 

properties in every aspect of research. Theoretical approaches provide a cost-efficient 

process to understand the atomic mechanism, complement experimental analysis, screen 

and predict properties. Table 1 provides a comparison between the Computational and 

experimental approaches, their aim and analysis technics. The theoretical calculation has 

been recently used to predict Li+ ion conduction process [40]–[43], but most of the 

reports fail to explain the actual mechanism and predict conduction pathway [38]. 

Theoretical analysis has been practiced in every aspect of the battery material to 

understand and link up various aspects like diffusion in electrode or electrolyte, an 
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electrical response, interfacing between electrode and electrolyte, the effect of charge-

discharge process on the battery structure etc. There is mainly two form of theoretical 

approach been practiced on the battery material: interatomic potential based classical 

analysis and electronic structure methods (mainly density functional theory DFT). 

However, also Monte-Carlo simulation is also a subcategory of investigating Li-ion 

battery. A summary of comparison is provided in Table 2. The interatomic potential 

method is based on the potential model developed on the classical understanding of the 

interaction between different atoms and calculating the total energy. For polar models, 

the interaction can be summarised into a long-range order Coulombic interaction, a short-

range order repulsion force between charges and van der walls force due to electron 

charge clouds. A well-known Buckingham potential can be expressed as: 

𝑈𝑖𝑗(𝑟) =
𝑞𝑖𝑞𝑗

𝑟
+ 𝐴𝑖𝑗 exp (−

𝑟

𝜌𝑖𝑗
) −

𝐶𝑖𝑗

𝑟6
 1 

Where 𝑈𝑖𝑗is the potential energy between i & j ions with a separation distance r. q 

is the charge of the ions. This model is effective for calculating different dynamic bulk 

properties and dielectric properties. It might look the potential is suitable for ionic system 

but Catlow et al argued [44], [45] that this can be applied irrespective of the material 

type. However much better type of interatomic potential also depends on the 

characteristics of the structure and there are several of them already developed up to now. 

For example, for Phosphate and Silicates, the pair potential is still provides reasonable 

accuracy also an inclusion of angular dependency can increase the accuracy to a higher 

level[44], [46]. Minimizing of energy can be done by searching to the potential energy 

surface of the structure and using routine steps of reducing tension effect on the particles. 

The total process is done using a periodic boundary condition and with a enclosed 
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simulation box. The periodic boundary condition is applied considering the same activity 

of the box is imaged in every direction of the physical space with a period of the box 

dimension with an infinitely long extension. The MD technique is consist of solving 

Newton’s equation of motion to predict time dependent trajectories and can be employed 

in a large ensembles of particle in a finite temperature and pressure. Employing the 

method on Li ion material we can extract the information of ion mobility in a certain 

environment and compare different characteristics like diffusivity and conductivity and 

closely observe the behaviours which is not yet possible in the most sophisticated 

equipment available up to now. GULP, LAMMPS, DL_POLY is widely used codes for 

classical MD analysis. 

In the case of crystal electrode, because of its periodicity, probable hopping paths 

can be identified by considering the vacancy activation energy of various sites, with the 

lowest activation energy trajectory being the most probable hopping path [47]–[50]. On 

the other hand, because of lack of periodicity and long-range order, it is hard to predict 

probable hopping path, making crystal method unsuitable in the amorphous medium. In 

several studies [51], [52] molecular dynamic approach is used to identify Li+ ion 

diffusivity in amorphous medium but the mechanism is still inconclusive. However, their 

calculation shows an important observation: in between a total site to site migration, Li 

oscillate in localized position. In an early work, bond valence sum (BVS) is used to study 

Li-ion conduction in Li5La3M2O12(M=Nb, Ta). They found, Li-ion conductivity is 

anisotropic and mostly around the MO6 octahedron region[53]. They have also reported 

the unusual behavior of the BVS in Li5La3M2O12 crystal data and optimized Li and O 

position using the global instability index and minimization of energy structure using 
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bond valence mismatch minimization procedure. Also, several ab initio analyses have 

been used to understand Li structural property in a different structure. Xu et al. used 

AIMD to analyze Li3La3Te2O12, Li5La3Nb2O12, and Li7La3Zr2O12 structure and found Li3 

and LI5 phase supports high Li occupancy in the tetrahedral sites[54]. This work is 

focusing on Li+ ion migration analysis in both crystalline Li3PO4 & LiPO3 structure and 

glass Li2O-P2O5 & 0.4 (Li2O-P2O5)- 0.6 (Li2O-SO4) structure-type solid-state electrolyte. 

I have shown the interaction of Li in the structure is predominantly controlled by 

surrounding oxygen environment. I have calculated the activation energy and predicted 

the optimal sulfur composition. 

 

Table 1: Comparison between Experimental and Computational methods[15] 

 Computational Experiment 

Method Potential based method (Monte-Carlo 

method, classical molecular dynamics) 

Electronic Structure method (DFT, 

AIMD) 

Material synthesis 

X-ray diffraction 

Nuclear magnetic resonance 

Neutron diffraction 

Electron microscopy 

Various spectroscopy 

Electrical measurement 

Aims Complement experimental analysis 

Screening and predict properties 

Understand atomic properties 

Elucidate atomic-scale feature difficult 

to understand from experimental 

methods 

Cell voltage and phase changes 

with cycles 

Li diffusion paths 

Defect analysis 

Interface analysis 

Crystal structure and stability 
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Table 2: Comparison between Classical MD and DFT analysis 

Context MD Electronic Structure (DFT, 

AIMD) 

Method Classical Newtonian 

mechanics 

Quantum mechanics 

Accuracy Moderate Highly accurate 

Potential file 

availability 

low Available for all-atom in periodic 

series 

Computational cost Inexpensive Expensive 

Detailed electronic 

structure information 

Not available Available 

Sample size 106 100-200 

 

Over last decade, atomistic modeling to understand and evaluate Li-diffusion in 

the electrolyte in Li-ion batteries are getting popular. In this work, Li+ migration barrier 

in the crystal is analyzed using electronic structure density functional theory model 

(DFT) and ab initio molecular dynamics calculation is used for the case of an amorphous 

structure which is described explicitly in the following section. 

 

Density Functional Theory (DFT) 

Density functional theory (DFT)[55] calculation is getting popular due to its 

highly accurate predictability to the material characterization and modeling of a new type 

of inorganic materials by calculation of ground state structure of the material. DFT works 

as a bridge to explain and understand different experimental results such as geometrical 

properties, electrical characteristics, physical characteristics etc. with the theoretical 
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approach by building up the similar environment of the region of interest with 

appropriate conditions. However, DFT has also been used to model a new type of 

prospective material and understand the behavior of a specific regional characteristic of 

material where experiments cannot be performed[56]. Higher accuracy of DFT method 

opens the opportunity to prediction based material research.  

DFT is based on solving Schrodinger equation. For many electron environments, 

Schrodinger equation became most complex and difficult to solve: 

𝐻 = ∑ (−
ℏ2

2𝑀𝑗
) ∇𝑅𝑗+

2
1

2
∑ ∑ (

𝑍𝑖𝑍𝑗𝑒2

|𝑅𝑖 − 𝑅𝑗|
)

𝑁

𝑖=1

𝑁

𝑗

𝑁

𝑗=1

+ ∑ (−
ℏ2

2𝑚
) ∇𝑟𝑗

2 +
1

2
∑ ∑(

𝑒2

|𝑟𝑖 − 𝑟𝑗|
)

𝑛

𝑖=1

+ ∑ ∑(
𝑍𝑗𝑒2

|𝑟𝑖 − 𝑅𝑗|
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𝑛

𝑖=1

𝑁

𝑗=1

𝑛

𝑗=1

𝑛
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2 

Where Ri is the position of nuclei, rj are the position of electrons, eZ are a charge 

of nuclei and M is the mass of the nuclei. There is no direct solution proposed for this 

many body systems and a generalization is a must. The researcher has been proposed 

several approximations solve this problem and there are three notable approximations 

exists. Born-Oppenheimer considered nuclei’s as stationary and used non-relativistic 

Schrodinger equation to calculated reduced electron wave-function from the system. 

Doing this for all coordinate the minimum energy configuration can be achieved. 

However, in the approximation, the overall wave function is treated as a product of 

single-particle wave-function. Still, it was difficult to solve the wave-function for the nth 

atom. Another approximation was proposed by Hartree and Fock in 1920. They proposed 

an N-atom system can be represented by a Slater determinant of N spin electrons orbitals 

instead of the product of their individual wave-function.  
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Ψ =
1

√𝑁!
|(

Φ1(1) ⋯ Φ𝑁(1)
⋮ ⋱ ⋮

Φ1(𝑁) ⋯ Φ𝑁(𝑁)
)| 3 

Where, Φ1(1), Φ2(2). . . . . Φ𝑁(𝑁) are electron wave-function. This solves the 

problem of antisymmetric since exchanging any two row of the determinant causes 

change in sign where as if the resultant wave-function is a product of all separate electron 

wave-function, they will not yield change in sign when exchanged between each other. 

Also this determinant form holds that two electron can have the same wave-function. 

Upon introducing the Slater determinant, the approximation becomes a single particle 

problem. A very important factor of the Hartree approximation is the probability of 

finding an electron in a particular point is independent of any other electron probability at 

that point. And hence the electrons orbitals are independent of each other. However, this 

is one of the drawback of Hartree method. They fail to incorporate the exchange energy 

in the total energy. The energy will be simply: 

𝐸 =
𝜓∗𝐻𝜓 𝑑𝑟

∫ 𝜓∗𝜓 𝑑𝑟
 

4 

 

In the slater wave-function, the total energy holds below relation: 

⟨𝜓|𝐻|𝜓⟩ = ∑ 𝐸𝑖 + ∑(𝐶𝑖𝑗 − 𝐸𝑖𝑗)

𝑖<𝑗

𝑁

𝑖=1

 

𝐸𝑖 = ⟨𝜑𝑖|ℎ|𝜑𝑖⟩ 

𝐶𝑖𝑗 = ⟨𝜑𝑖𝜑𝑗|𝑉𝑖𝑛𝑡|𝜑𝑖𝜑𝑗⟩ 

𝐸𝑖𝑗 = ⟨𝜑𝑗𝜑𝑖|𝑉𝑖𝑛𝑡|𝜑𝑖𝜑𝑗⟩ 

5 
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Where Cij is the Coulomb integral of I & jth orbital and Eij is the exchange integral 

between I & jth orbital electrons. The aim is to minimize the expected value of the 

Hamiltonian. A typical Hartree energy approximation tree is shown in Fig 3 

 

 

Fig 3. Workflow of energy calculation using Hartree-Fork Method 

 

Another approach is Linear combination of atomic orbitals (LCAO method). In 

LACO method the molecular orbitals are written as a linear weighted summation of 

individual atomic orbitals: 
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𝜙𝑖 = ∑ 𝐶𝑟𝑖𝒳𝑟

𝑖

 6 

An orbital is a one-electron function. Most of the recent code use the AO as atom 

centered Gaussians and some of the older code package use Slater functions. For Stalter 

orbitals: 

𝜙𝑎𝑏𝑐
𝑆𝑇𝑂(𝑥, 𝑦, 𝑧) = 𝑁𝑥𝑎𝑦𝑏𝑧𝑐𝑒−𝜁𝑟 7 

Where a, b, c controls the angular momentum of the orbital, ς controls the width 

of the orbital. N is constant. 

For the case of Gaussian orbitals representation are similar: 

𝜙𝑎𝑏𝑐
𝐺𝑇𝑂(𝑥, 𝑦, 𝑧) = 𝑁𝑥𝑎𝑦𝑏𝑧𝑐𝑒−𝜁𝑟2

 8 

The STO provides more accurate electron orbital than GTO but more 

computationally expensive. People use a combination of n Gaussian to approximate STO 

which is known as “STO-nG”: 

𝜙𝑎𝑏𝑐
𝐶𝐺𝑇𝑂(𝑥, 𝑦, 𝑧) = 𝑁 ∑ 𝑐𝑖

𝑛

𝑖=1

𝑥𝑎𝑦𝑏𝑧𝑐𝑒−𝜁𝑟2
 9 

Density functional theory comes from Hohenberger-Known theorem. Instead of 

focusing on individual electron orbitals as described earlier, DFT focuses on the electron 

density. Hence the many body wave-function methods transformed to solve electron 

density in the stricter. Hohenberg-Kohn theorem suggests the total ground state energy of 

many electron structures is a functional of the electron density (𝜌) of the system. Khon 

also proved the correct ground state energy can be acquired for which the energy is 

minimized. The relation of electron density (p) and Energy (E) is represented as bellow: 

(−∇2 + 𝑉𝐻[𝜌(𝑟)] +  𝑉𝑁(𝑟) + 𝑉𝑋𝐶[𝜌(𝑟)])𝜓𝑖(𝑟) = 𝐸𝑖𝜓𝑖(𝑟) 10 
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Where VH is the Hartree term representing the electrostatic energy of moving 

electron due to the interaction of all another electron in the system. VN is the energy of all 

the nuclei, VXC is the electron exchange-correlation term. Ψ is the wave function of the 

electron density. There is no orbital concept in DFT and the way to solve the Khon-sham 

equation is to represent the wavefunction using a basis set to solve the above equation. A 

plane wave is one of the solutions to keep thinks mathematically simple and it completely 

spans in Hilbert space. However, the plane wave has the characteristics to span in all 

space equally and not localized. This is useful in guessing the first set of wave-function 

without any prior knowledge of the electron wave-function behavior in any structure. The 

equal distribution nature results in lacking electron density whereas there is a high 

electron density and it leads to the cubic scaling of plane wave DFT calculation with 

system size[57], [58]. Hence several work was done to focus on achieving basis set with 

linear to the system size[59]–[61]. 

𝜑𝛼(𝑟) =
1

√Ω
∑ 𝑐𝑖(𝐺1)𝑒𝑖𝐺1.𝑟

𝐺

 
11 

Where G1=G+k is a vector in a reciprocal lattice. For a lattice with basis set a1, 

a2, a3, the G in the reciprocal lattice is: 

𝐺 = 𝑖. 𝑏1 + 𝑗. 𝑏2 + 𝑘. 𝑏3 

𝑏1 = 2𝜋
𝑎2 × 𝑎3

𝑎1. 𝑎2×𝑎3
 

𝑏2 = 2𝜋
𝑎3 × 𝑎1

𝑎1. 𝑎2×𝑎3
 

𝑏3 = 2𝜋
𝑎1 × 𝑎2

𝑎1. 𝑎2×𝑎3
 

12 
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Where b1, b2, b3 are the basis set at reciprocal lattice space. An infinite sum of 

the basis set will result in the correct wave-function. But there is a cut-off we can choose 

to keep the computational cost in a controlled region and controlling parameter is Gmax. 

The kinetic energy of the plane wave is related to the G vector as: 

−
1

2
∇2𝜑𝐺(𝑟) =  

1

2
||𝐺||

2
𝜑𝐺(𝑟)  

𝐸𝑐𝑢𝑡𝑜𝑓𝑓 =
𝐺𝑚𝑎𝑥

2

2
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To choose an Ecutoff for a particular structure, we need to calculate the energy vs 

Ecutoff plot and as soon as the graph flats down (Fig 4), we can use that particular cut-off 

for the calculation. 

 

 

Fig 4. Energy vs Ecutoff curve to estimate favorable Ecutoff for calculation 

 

For bulk calculation, periodic boundary condition is applied. However, for a large 

number of sample, there is an infinite number of electron contributing to the wave-
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function which is not trivial to solve. Bloch theorem suggests we can consider the 

electrons in the unit cell to solve the bulk system. From Bloch's theorem we know 

eigenstate of the periodic potential system can be written as: 

𝜓𝑗,𝑘(𝑟) = 𝑢𝑗(𝑟)𝑒𝑖𝑘.𝑟 14 

Where ui(r) is the periodic potential,𝑢𝑖(𝑟 + 𝑙) = 𝑢𝑖(𝑟); l is period. K is the wave 

vector confined to the first Brillouin Zone. Doing Fourier transformation of u, we get the 

final wave-function: 

𝜓
𝑗,𝑘

(𝑟) = ∑ 𝑐𝑗𝑘+𝐺

𝐺

𝑒𝑖(𝑘+𝐺).𝑟 
15 

This is same as eqn. here also, infinite number electron creates an infinite number 

of k to represent ψ. For each k point, there is a limited number of occupied eigenstates. 

To get the approximate ψ, we can take a finite number of k point with little distortion of 

the ψ and hence energy. On the other hand, wave-function of a reciprocal space can be 

represented by single k-point. 

One of the most challenging parts of solving Khon-sham equation is predicting 

the VXC. There is no exact solution but there are a number of approximation exist. Local 

density approximation (LDA) is one of the widely used one. In this approximation, the 

potential is being calculated assuming a uniform electron gas surrounds each point not 

considering the derivatives of the density of the Kohn-Sham orbitals. A local density 

approximation for the exchange-correlation energy can be written as: 

𝐸𝑋𝐶
𝐿𝐷𝐴|𝜌| =  ∫ 𝜌(𝑟)𝜖𝑥𝑐(𝜌) 𝑑𝑟 16 

Where 𝜖𝑥𝑐 is the exchange-correlation energy per particle corresponds to electron 

density of  𝜌. This method yields best result for the case of metallic type material. 
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However, for the case of non-metallic material for example oxides and salts electrons 

shows localized characteristics. For this kind of material LDA, approximation results in 

several misoutcomes for example overestimation of the binding energy, inaccurate lattice 

constant etc. For these kinds of material generalised gradient approximation (GGA) 

method is developed. In GGA, the gradient of the electron density is expanded to account 

the non-homogeneity of electron in space. This method perform correction to the farther 

away electron density from the coordinate and correct the overestimation of 

delocalization of valance electron and stabilize the ground state for Mott insulators[62] 

and other non-metallic type materials. GGA has below form. 

𝐸𝑋𝐶
𝐺𝐺𝐴[𝑛 ↑, 𝑛 ↓] =  ∫ 𝜖𝑋𝐶(𝑛 ↑, 𝑛 ↓, ∇𝑛↑, ∇𝑛↓)𝑛(𝑟)𝑑3𝑟  17 

Using this approximation, good geometrical and ground state energy results have 

been reported. Over-delocalization of electrons may lead to introduce defective exchange 

and correlation interaction in the XC functional which may include electron self-

interaction Hartree term and result in an overestimation of energy. The extra energy term 

is coming from the electron self-repulsive force of the shared charge from the total 

electron cloud. This effect is far more prominent for the transition state elements. There 

are several methods proposed to fix this problem. Namely, DFT+ Dynamical Mean Field 

Theory (DFT+DMFT)[63] , Reduced Density Matrix Functional Theory (RDMFT)[64] 

are two notable example. Even though this method shows significant correction of the 

addressed problem but computationally they are very expensive. Recently DFT +U 

(LDA+U or GGA+U) is being used to approximate DFT functional for the strongly 

correlated electronic state of systems whereas another valence electron can be 
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approximated by standard approximation. In this method the total energy of the system 

can be written as: 

𝐸𝐿𝐷𝐴+𝑈[𝜌(𝑟)] =  𝐸𝐿𝐷𝐴[𝜌(𝑟)] +  𝐸𝐻𝑢𝑏[{𝑛𝑚𝑚
𝐼𝜎 }] − 𝐸𝑑𝑐[{𝑛𝐼𝜎}] 18 

Here 𝐸𝐿𝐷𝐴 represents the DFT total energy, 𝐸𝐻𝑢𝑏represents term containing the 

Hubbard Hamiltonian to model correlated states. Here the double counting 𝐸𝑑𝑐 is 

substructed to get the corrected term. There are two popular method to calculate 𝐸𝑑𝑐, 

namely Arround mean-field(AMF)[65] and Fully localized limit (FLL). AMF is used to 

treat fluctuation of the local density in system where electron is distributed whereas the 

FLL method is used where the electrons are more localized in specific orbitals. My 

material of concern is an insulator type and hence I have used GGA functional to model 

the system. Self-consistency cycle for the DFT is shown in Fig 5. 

 

Minimum Energy Path (MEP) 

Finding MEP to determining Energy barrier for diffusion in case of periodic 

material is used vastly because of the predictive nature of the reaction path. Energy 

barrier is closely relating to the transition rate as per transition state theory. One of the 

aims of this study is to understand the Li diffusion and energy barrier in LiPO3 and 

Li3PO4 crystal material. To achieve the desired barrier for possible diffusion path, it is 

important to find the minimum energy path (MEP) for the corresponding migration 

process. The potential energy maximum along the MEP is the saddle point and denotes 

the energy barrier for the migration.  There are several methods to find MEP for a 

particular reaction. 
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Fig 5. Energy calculation method using density functional theory 

 

Nudge Elastic Band (NEB) 

 One of the effective ways to find MEP is using Nudge Elastic Band (NEB)[66] 

method. This method is widely used in the various system, for example, diffusion in 

metal surface[67], absorption of the molecule in a surface[68], metal contact formed on a 

surface[69] even cross slip of screw dislocation[70] involving 0.1M atoms in the system 

and 2M atoms in the MEP analysis. In NEB method, a string of intermediate trajectory 

(images) is created and placed in the path between the initial and final position of the 

reaction so that these images from a discrete representation of a path from the reactant 

(R) to the product(P). Then optimization of force is used to shift the images to the desired 

reaction path. In an array of path coordinates the images feel two type of force due to the 

CalculateVN from coordinate 

Initial electron density guess (n(r) 
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positioning. One is a force due to the surrounding atoms and another is the spring force 

on each image due to other images in the reaction path. The force is represented by: 

𝐹𝑖 = ∇𝐸(𝑅𝑖)|⊥ + 𝐹𝑖
𝑠𝜏𝑖𝜏𝑖 19 

Where ∇𝐸(𝑅𝑖) represents energy gradient of ith image and 𝐹𝑖
𝑠is the spring force 

acting on image the the the I and τ is the force on each image. The perpendicular 

component of energy component is obtained by 

∇𝐸(𝑅𝑖)|⊥ = ∇𝐸(𝑅𝑖) − ∇𝐸(𝑅𝑖). 𝜏∥𝜏∥ 20 

To maintain an equal spacing between images, the spring force is evaluated as: 

𝐹𝑖
𝑠|∥ = 𝑘(|𝑅𝑖+1 − 𝑅𝑖| − |𝑅𝑖 − 𝑅𝑖−1|)𝜏𝑖 21 

Where Ri is the coordinate of ith image. For the case of multiple MEP, the force 

optimization leads to closest MEP to the initial guess. For the case of finding the 

optimum between multiple MEP, global minimum on a potential energy surface is 

compared. Another modified version is quite frequently focusing on finding the climbing 

image in the MEP. CI-NEB method is a slightly modified version of NEB method. In CI-

NEB, the image with the highest energy is identified after several relaxation steps and 

move uphill in energy map along the elastic band. This is done by zeroing the acting 

force on the image. The climbing image movement is determined by the location of the 

adjacent images in the path. One sample potential surface with reactant, product, and 

shifting of images toward the MEP is shown in Fig 6. 
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Fig 6. The Nudge Elastic Band method. CI-NEB. An elastic band is formed between the 

five images. The initial images are placed on the interconnected line with an equal 

distance. The images are then moved keeping the spring force parallel to the path and 

component of the true force perpendicular to the path. 

 

Ab-initio Molecular Dynamics (AIMD) 

Classical molecular dynamic (CMD) has been well established in understanding 

many-body condensed matter systems. In CMD the interaction between atoms is 

determined in advance as potentials and are divided into two-body, three-body, and 

many-body contributions. These interactions are approximated using different functional 

forms. However, as these functions are highly type of element-dependent, these make the 

process very selective to the material of interest and hence a myriad of interaction 

combination needs to be parameterized. On the other hand, interaction changes in course 

of the chemical process causing the normal CMD process hard to use. 

Ab initio molecular dynamic has shown potential to solve all the discussed 

problems and made a bridge to the classical MD and electronic structure methods. In the 



23 

ab initio molecular dynamics method, the energy is being calculated by the electronic 

structure calculations on the fly and then the force is being calculated by the derivative of 

the energy. Then the intermediate trajectory between two computational time-step is 

calculated using classical force-velocity method. In this way, it is required to calculate 

the electronic structure in every time step and this method is effective to approach any 

complex system far better than molecular dynamics diminishing dependency on the 

combinational empirical potential. However, in this method, new approximation 

dependency comes up and that is selecting approximation of solving Schrodinger 

equation. 

Several approaches have been taken into account to incorporate a quantum 

approach to implementing AIMD. For example, Ehrenfest Molecular dynamics uses the 

time-dependent Schrodinger equation to predict particle trajectory. In Born-Oppenheimer 

molecular dynamics, the static electronic structure is solved for every time step for a 

given set of fixed nuclear positions at that instance of time. Hence it becomes a time-

independent solution of Schrodinger equation and then classical molecular dynamics 

approach is used to propagate the nuclei. In Born-Oppenheimer approximation the 

Hamiltonian is described in eqn. the total wave-function is: 

𝜙(𝑥, 𝑅) = 𝜓(𝑥, 𝑅)𝜒(𝑅) 22 

Where ψis electronic wave-function and χ is nuclear wave-function. Nucleus 

wave-function is independent of electron orbitals and more localized than ψ. Hence 

Schrodinger equation can be expressed as separated from: 

[𝑇𝑒 + 𝑉𝑒𝑒(𝑟) + 𝑉𝑒𝑁(𝑟, 𝑅)]𝜓𝑛(𝑥, 𝑅) = 𝜀𝑛(𝑅)𝜓𝑛(𝑥, 𝑅)] 

[𝑇𝑁 + 𝑉𝑁𝑁(𝑅) + 𝜀(𝑅)𝜒(𝑅) = 𝐸 𝜒(𝑅) 
23 
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From the Adiabatic approximation, ions move on the potential surface of the 

electronic ground state. So, we can rewrite the equation as: 

[𝑇𝑒 + 𝑉𝑒𝑒(𝑟) + 𝑉𝑒𝑁(𝑟, 𝑅)]𝜓𝑜(𝑥, 𝑅) = 𝜀𝑜(𝑅)𝜓𝑜(𝑥, 𝑅)] 

[𝑇𝑁 + 𝑉𝑁𝑁(𝑅) + 𝜀(𝑅)𝜒(𝑅, 𝑡) = 𝑖ℎ
𝑑

𝑑𝑡
 𝜒(𝑅, 𝑡) 

24 

The time-dependent part is replaced by classical mechanics. The resultant Born-

Oppenheimer molecular dynamics is defined by: 

𝑀𝐼�̈�𝐼(𝑡) =  − ∇𝐼min {< Ψ0|Η𝑒|Ψ0 >} 

Ε0Ψ0 = Η𝑒Ψ0 

𝐸𝑜(𝑅) = 𝜀𝑜(𝑅) + 𝑉𝑁𝑁(𝑅) 

25 

Eo contains both contributions from the ion-ion interaction and gradient of 

electronic energy applicable to the electronic ground state. Where 𝑀𝐼is mass of nuclei 

and Η𝑒is Hamiltonian for electron. So, the nuclear equation of motion can be calculated 

when minimum of < Η𝑒 > is reached. To figure out the ∇𝜀𝑜(𝑅)we have to use 

Hellmann-Feyman theorem: 

∇𝜀𝑜(𝑅) =
𝑑

𝑑𝑅𝐼

⟨𝜓𝑜|𝐻𝑒(𝑅)|𝜓𝑜(𝑅)⟩ 

= ⟨∇𝐼𝜓𝑜|𝐻𝑒(𝑅)|𝜓𝑜(𝑅)⟩ + ⟨𝜓𝑜|∇𝐼𝐻𝑒(𝑅)|𝜓𝑜(𝑅)⟩

+ ⟨𝜓𝑜|𝐻𝑒(𝑅)|∇𝐼𝜓𝑜(𝑅)⟩ 

= ⟨𝜓𝑜(𝑅)|∇𝐼𝐻𝑒(𝑅)|𝜓𝑜(𝑅)⟩ 
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 So the force acting on an ion is the expected value of the gradient of the 

Hamiltonian in the ground state. Another popular approach is Car and Parinello[71]. This 

method relies on the rewriting of the Hamiltonian:  
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𝐻𝐶𝑃 =
1

2
∑ 𝑚𝑖

𝑁

𝑖=1

𝐫𝑖
2 + 𝐸[𝜙(𝐫1, ⋯ , 𝐫𝑁)] +

1

2
∑ 𝜇

𝑗

∫ | �̇�𝑗 (𝐫)|2𝑑𝐫 + 𝐿𝑜𝑟𝑡ℎ𝑜 27 

where 𝜙(𝐫1, ⋯ , 𝐫𝑁) represents the ground state electron wavefunctions. The forth 

term introduces kinetic energy for fictitious mass 𝜇, which represents the electronic 

degree of freedom. The last is to maintain the orthogonality of the system. The resulting 

equation of motion for Car and Parinello model then become: 

{
𝜇 �̈�𝑖 (𝐫) = −𝐻𝐶𝑃𝛹𝑖(𝐫) + ∑ 𝛹𝑗

𝑗

(𝐫)𝛬𝑗,𝑖

𝑚𝑖 �̈�𝑖 = 𝐅𝑖

 28 

With this form, the diagonalization of Kohn-Sham matrix can be put aside in self-

consistent calculation and resulting in the same outcome. The choice between Born 

Oppenheimer and Car-Parrinello is case dependent and subject to a long debate. 

However, one noticeable[72] effort to understand the efficiency and accuracy of the two 

methods was performed by comparing the energy conservation of Econs. The conclusion 

was: “. . . approaches that utilize non–space–fixed bases to describe the electronic wave 

function, Born–Oppenheimer AIMD is the method of choice, both in terms of accuracy 

and speed”[72] 

To transform force into velocity, a number of algorithms exist for example Verlet, 

Leap frog, Velo9city-corrected Verlet Algorithm etc. In Verlet algorithm, position rn+1 

and velocity vn can be predicted from n-1th and nth position information as: 

𝑟𝑛+1 = 2𝑟𝑛 − 𝑟𝑛−1+ (
𝐹𝑛

𝑚
) ∆𝑡2 + 𝑂∆𝑡4 

𝑣𝑛 =
𝑟𝑛+1 − 𝑟𝑛

2∆𝑡
+ 𝑂(∆𝑡2) 

29 
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Where, ∆𝑡 is the time step of the simulation. One thing to notice, the velocity is 

one step behind the real-time trajectory. All common thermal dynamic ensembles (NVE, 

NVT, and NPT) can be applied to AIMD simulation.  

Although both the methods are quite accurate in predicting physical, electrical 

properties of any complex material it involves huge computational cost relative to CMD. 

Also, the dimension of the working sample is a big drawback of AIMD simulations. 

CMD can handle 104-108 atoms whereas a general number of the atom for AIMD is 

~100-200. Also, simulation time period for CMD can be reached up to several hundred of 

Nano-second whereas AIMD can barely hit several hundred of pico-second. Fig 7 shows 

a comparative simulation period and sample size data. Even with all these constraints, 

planned use of AIMD method can lead to outstanding findings in both crystalline and 

amorphous materials. 

 

 
Fig 7. The length and time scales of different simulation and experimental techniques. 

CMD: classical molecular dynamics; AIMD: ab initio molecular dynamics; CDFT: 

classical density functional theory; TDDFT, time-dependent density functional 

theory.[73] 
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Pseudopotentials 

Unlike classical CMD, there is no need of interatomic potential for predicting the 

dynamics of an atomic structure. However, in DFT there is another approximation 

required to reduce the computational cost. In DFT, the calculation is based on plane wave 

basis set and near nuclei, the wave functions are very localized and hard to explain using 

plane wave. However, there is the very little contribution of the core electron (which are 

strongly localized in the closed inner atomic shells) to the chemical properties of the 

atom. Usually, the valance electron wave function realizes the core part effect in a direct 

way and from the orthogonality condition. Pseudopotentials is an attempt to simplify the 

discussed phenomena by replacing the core electrons(non-valance) and the nucleus with 

an effective potential so that the Schrodinger equation contains only an effective energy 

term instead of the Coulombic potential in the equation. The pseudopotential is such a 

way, the core is eliminated, and the valence electrons are described by pseudo-

wavefunctions with fewer nodes. From the  

Fig 8, we can see how a Pseudopotential acts and it shows beyond the cut-off 

point the effect from the pseudopotential is very same[74] as core electron orbitals. 

However, having a lower number of nodes makes the pseudopotential easy to calculate 

rather than using a large number of a plane wave to describe the oscillations in the core 

regions which maintain orthogonality between valance and core electrons.  
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Fig 8. Schematic illustration of the pseudopotential concept. The dash lines show the all-

electron wave-function, Ψ^AE (r) while the solid lines show the corresponding pseudo-

wave-function, Ψ^PS (r) given by the pseudopotential; the cutoff radius rc m 

 

There is a number of pseudopotentials based on their development methods like 

norm-conserving pseudopotentials, ultra-soft pseudopotentials, and PAW potentials. 

In Norm-conserving pseudopotentials, charge within cut-off sphere are 

maintained fixed. Cut-off energies for first-row and transition elements is high. For the 

case of ultra-soft pseudopotentials (US-PP), 2p and 3d states charge have more freedom 

than Norm-conservation method. It also includes the addition of charge inside the cut-off 

sphere to correct charge and multiple reference energies to improve charge transferability 

also lower cut-off energies. PAW potential is more accurate than the US-PP because of 

the lower radial cutoff than the radii used for the US pseudopotentials and PAW 

potentials reconstruct the same valance electron wave-function with all the nodes in the 

core region of the atoms. In this study, I have used PAW potential all way through. 
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Diffusivity in the Amorphous Medium 

 As discussed above, a limited number of possible reaction paths makes Nudge 

elastic band suitable for diffusivity analysis in the crystalline structure. However, for the 

case of amorphous structure, lack of higher order symmetry makes thing hard or 

impossible to predict the possible path of ionic diffusion. Addition to that, for amorphous 

structure, there is no particular defined structure arrangement that makes the system 

random. The Hence prepared sample for each experiment will be unique in long-range 

order but have similar short-range ordering. All in all, there is no way to use NEB method 

to analyze diffusivity in an amorphous structure. There is a solution to this problem 

which makes it possible to calculate diffusivity from the trajectory of molecular dynamics 

calculation. In the following section, I will discuss the method how to derive diffusivity 

and conductivity from the trajectory information. 

 
Mean Square Displacement (MSD) 

 In a diffusive system, a particle might follow a random walk. This is not 

necessarily a straight movement but might follow a zigzag path. It is trivial for a single 

particle to move in one direction and change in trajectory in next time span. So, to 

calculate the total distance the particle travels from a given position, I cannot take the 

vector sum of the displacement but take the absolute value of the displacement. Also, if I 

take the vector displacement, the total effective displacement is zero so there is no 

particular information to use. To consider every distance, I square the displacement and 

add it to previous value so that the summation is always increased and grows larger with 

every time step. This can give a better idea of the diffusivity of the particle. Considering 
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each time step with an equal time interval, in an equilibrated system, Einstein showed 

that square of distance with time grows linearly with time. The process of adding a square 

of the displacements with time is called Mean square displacement (MSD). In molecular 

dynamics, it is easy to calculate the MSD from the trajectory information in an 

equilibrated system. The equation of MSD will be: 

𝑀𝑆𝐷(𝑡) =< 𝛿𝑟2(𝑡) >=
1

𝑁

1

𝑛
∑ ∑[𝑟𝑐(𝑡𝑜𝑗 + 𝑡)−𝑟𝑖(𝑡𝑜𝑗)]2

𝑁

𝑖=0

𝑛

𝑗=0
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Where N is the total number of a particle of interest, n is the number of time 

origin and toj is the initial time at jth step[75], [76]. One thing to note, if the time period is 

not long enough the MSD vs time might not necessarily follow straight line pattern. For a 

small time-frame when the particle does not collide with the adjacent atoms, the 

Newtonian velocity is linear, and the MSD is square of the displacement and hence the 

graph will show a parabolic trend. Over a long period of time with multiple collision, the 

velocity no longer is the same after the inelastic collision and hence the graph gets 

displaced from parabolic to straight line graph. 

Albert Einstein in his thesis in 1905 showed there is a direct relationship between 

the diffusivity constant and MSD of the element as: 

𝑀𝑆𝐷 =< ∆𝑟(𝑡)2 >≡ 𝐴 + 6𝐷𝑡 + 𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛 

𝐷 = lim
𝑡→∞

𝑀𝑆𝐷

6𝑡
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This is an important relationship relating macroscopic transport coefficient D with 

microscopic information on the MSD of molecular migration. This relation shows the 

MSD is linear to time. This is also an indicator for the equilibrated system. The one 

restriction is the time has to be much longer to avoid the fluctuations due to local 
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vibration. In the case of molecular dynamics, the simulation time is limited to ~100 ps for 

AIMD ~100ns for imperial potential based MD. So, it is important to consider the 

feasibility of how many particles might diffuse in the minuscular simulation timeframe. It 

is a common practice to increase the temperature to increase the possibility of a number 

of diffuse particle in the smaller time frame[52], [77]. Also for a finite system, the 

diffusivity will flat and drop to zero when the MSD approaches the size of the system. 

So, it is convenient to run the simulation up to when the MSD hit the saturation point. 

In current research works, ion conductivity is quantified based on Arrhenius and 

Vogel–Tammann–Fulcher ion transport model. The Arrhenius model is suitable for 

inorganic material with a crystal structure and conductivity of the ion can be represented 

as: 

𝜎 =
𝜎𝑜

𝑇
𝑒(

−𝐸𝐴
𝐾𝑇

)
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Where σo is constant dependent on material, EA is the activation energy, T is 

temperature, K is Boltzmann constant and A is constant. Meanwhile, Vogel–Tammann–

Fulcher model can be applied to the polymer based electrolyte. In this model, the 

conductivity is representing as: 

𝜎 = 𝐴𝑇−0.5𝑒(
−𝐵

𝑇−𝑇0
)
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Where B is pseudo-activation energy and T0 is reference temperature. 

𝜎𝑑𝑐 =
𝑐𝑖𝑜𝑛(𝑧𝑒)2𝐷

𝐾𝐵𝑇
 34 

Here cion is the ion concentration, z & e are the valencies of the ion and charge of 

the electron, T is absolute temperature, and KB is the Boltzmann constant. [2] 
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Density of States 

The density of the state is an important parameter to understand the vibrational 

characteristics of the elements in the system. From the computational perspective, the 

DOS is defined as: 

𝐷𝑂𝑆(𝑛. ∆𝜐) =  ∑ 𝜔𝛼𝐶𝜈𝜈;𝛼𝛼(𝑛. ∆𝜈),   𝑛 = 0, … , 𝑁𝑡 − 1 
35 

Where 𝑁𝑡the total number of time step is, ∆𝜈 =
1

2𝑁𝑡∆𝑡
is the frequency step, n is 

axis direction to which DOS will be calculated. 𝐶𝜈𝜈;𝛼𝛼(𝑛. ∆𝜈) is the velocity auto-

correlation function. So, DOS can be calculated for user defined direction or isotropic 

case. The DOS can be calculated from the normalized velocity auto-correlation function 

(VACF) or Gaussian window can be applied in time domain to smoothen the DOS.  

𝐶𝜈𝜈;𝛼𝛼(𝑛. ∆𝜈) is a very important parameter to understand the nature of force on the 

particles vibrating the system. This is defined as the average of the velocity and defined 

as: 

𝐶𝜈𝜈;𝛼𝛼(𝑡) =
1

3
〈𝑣𝑎(𝑡𝑜). 𝑣𝑎(𝑡𝑜 + 𝑡)〉𝑡𝑜
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Where 𝑣𝑎(𝑡𝑜) is the velocity of particle “a” in time to. For the case of non-

interacting particle, there is no change in velocity and hence the VACF is constant over 

time. For the case of gas a particle, the average collision distance is large and the velocity 

of the particle will change gradually due to collision with other particle. In this case the, 

velocity auto-correlation function will decay exponentially. 

For the case of solids, the atomic interaction is very strong, and atom barely 

changes its own space. However, the atoms vibrate locally in an oscillatory motion, 

Because of this back and forth movement, the velocity direction also changes and makes 
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the VACF be harmonic as well. However, the magnitude of the value will decay in time. 

So, all in all, we will have a damping harmonic shape. 

In case of liquid, the interaction is less than the solid but more than gas particles. 

The particle has some diffusive movement and hence the oscillation mean path will 

increase and the VACF will also be a damping but oscillatory shape with longer decay 

time. The decay time will depend on the density of the system. For the case of a non-

isotropic system, VACF in one direction can be defined as: 

𝐶𝜈𝜈;𝛼𝛼(𝑡; 𝑛) = 〈𝑣𝑎(𝑡𝑜; 𝑛). 𝑣𝑎(𝑡𝑜 + 𝑡; 𝑛)〉𝑡𝑜
 37 

n is the direction of concern and 𝑣𝑎(𝑡𝑜 , 𝑛) can be defined as: 

𝑣𝑎(𝑡𝑜; 𝑛) = 𝑛. 𝑣𝑎(𝑡) 38 

The VACF of a particle in many body systems is related to the structural factor as: 

𝐺(𝑤) = lim
𝑞→0

𝑤2

𝑞2
𝑆(𝑞, 𝑤) 39 

𝐺(𝑤) is the Density of state. For the case of isotropic system is frequency domain: 

𝐺(𝑤) =  ∑ 𝑏𝑎,𝑖𝑛𝑐
2 𝐶𝜈𝜈;𝛼𝛼(𝑤)

𝑎
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We can use Fourier transformation to calculate 𝐶𝜈𝜈;𝛼𝛼(𝑤) from time domain 

𝐶𝜈𝜈;𝛼𝛼(𝑡; 𝑛) value as: 

𝐶𝜈𝜈;𝛼𝛼(𝑤) =
1

2𝜋
∫ 𝑑𝑡

∞

−∞

𝑒−𝑖𝜔𝑡𝐶𝜈𝜈;𝛼𝛼(𝑡) 41 

For the case of non-isotropic system, the VACF will be 𝐶𝜈𝜈;𝛼𝛼(𝑡; 𝑛) where n is 

the direction of concern. We have used this relation to compute the Li DOS from the 

AIMD trajectory information. 
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Bader Charge Analysis 

 Bader showed how to define an atom from molecule using the charge density 

map[78]. He showed the topology of electron density p(r) can be used to define molecule, 

the structure of the atom, the strength of bond as well as the stability of structure[79], 

[80]. A distribution of electron density in diborane is shown in Fig 9. The surface of 

minimum electron density perpendicular to the surface denotes the separation of atoms in 

the molecule. In a molecule where the electron is shared to make bond, it is very difficult 

to quantify the charge possession of atom. Bader theorem can be used here to segregate 

the charge corresponds to each atom in a molecule. The integration of charge density in 

the boundary calculated by Bader volume represents the charge of the particular 

atom[81]–[83]. This information can be used to analyze several properties of the material 

like an electronic moment of electron interactive molecule, the hardness of atom even 

energy calculation of removal of an electron from an atom. VASP or Gaussian has inbuilt 

code to analyze electron density file generated from the self-consistency analysis and 

calculate the Bader charge density of each of the element. 

 

 

Fig 9. Electron density map of diborane in the plane of the terminal hydrogen atoms 

  



35 

COMPUTATIONAL DETAILS 

 

Approach  

In order to accurately model the desired structure from experimental data and 

analyze Li mobility in both crystal and amorphous structure, I have chosen the approach 

to study very carefully. Thankfully this is not a new type of study. Several theoretical 

studies in an amorphous structure are already performed using classical molecular 

dynamics (CMD) and quantum chemistry. High level of accuracy and established method 

to predict diffusivity and energy barrier lead us to use electronic structure calculation. As 

of any experimental study, I first prepared the sample closely observing the several 

important parameters like lattice constant, interatomic forces, total structure energy, 

hoping that the sample behavior will be consistent with fundamental literature reported 

parameters (lattice constant, the interatomic distance, diffusivity etc.). I have considered 

reported experimental lattice parameter as a benchmark of the level of accuracy. In this 

section, I will describe the procedure to create my samples of study. 

All calculations in this study are performed using atomic-scale electronic structure 

calculation controlled by density functional theory (DFT) approximation using projector 

augmented wave (PAW) method. The total work is divided into two steps: 1) diffusion 

analysis in crystal and 2) Ab-initio Molecular Dynamics (AIMD) calculation in the 

amorphous system. The first part was performed using plane wave open source package 

Quantum Espresso (QE) [84], while the glass part calculation is done using commercial 

code VASP (version 5:3:5) [85], [86]. As all of this study material is of an insulator type, 

The ultrasoft-type pseudopotential with Perdew Burke Ernzerhof (PBE) GGA [87]–[89] 
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exchange-correlation functional is used to replace the core part of the nuclei and valence 

electron exchange-correlation term calculation. 

 

Li Diffusion in Crystal structure 

In [37], the dimensionality effect on Li diffusion in Li-based compounds have 

been thoroughly discussed. However physical and chemical stability are also critical 

factors to consider for the electrolyte. Having a layered structure has reportedly provided 

a good stability for γ- Li3PO4 structure as confirmed by several physical and 

computational studies [90], [91]. The γ-Li3PO4 unit cell [92] shows an orthorhombic 

(Pnma) space group structure. Fig 10 shows a ball-and-stick model of a 2 × 2 × 2 

supercells of an ideal crystal containing 2 different crystallographic Li sites based on the 

Li chain concentration (4 Li and 2 Li). The chain containing 4 Li will be represented as 

“d” site and the chain contains 2 Li will be represented as “c” site throughout the paper. 

In this structure, nearest neighbor of Li and P is O. 

 

 

Fig 10. 2x2x1 Li3PO4 supercell. Here red atoms are O, violet indicates P and Green atoms 

are Li. 
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I started with reproducing the experimental model of γ- Li3PO4 as reported several 

articles [37], [93], [94]. For theoretical analysis of diffusivity of an ion in a material, it is 

necessary to use a large structure to obtain reliable bulk diffusion properties. In my study, 

I have considered a periodic boundary condition. Hence it is very important to be 

cautious in preparing the study sample. On the other hand, in the DFT process, I cannot 

use a very big supercell due to the high cost related to the calculation. Hence a 

compromise was often made with respect to the size of the simulation box. I need to 

expand the supercell in such a way to keep sufficient distance between migrating ions. 

For LiPO3, its unit cell is already having a large area, so I didn’t increase the dimension 

for this. After choosing the initial atomic structure, I need to process my sample using the 

experimentally reported lattice coordinate configurations (CIF file). As DFT is performed 

for calculation of 00K temperature, I need to optimize the structure to get the total energy 

minimized. To perform this task, there are several built-in codes already available in a 

number of ab-initio packages. One of the processes is the relaxation method where the 

force on each atom is calculated from the derivative of converged energy which is 

calculated using DFT method. Then the atomic position is adapted according to the 

direction of the force acting on each atom. The energy of the atomic structure is 

calculated estimating the electron density of the structure using plane wave method using 

Khon-Sham equation. The self-consistency method is discussed in DFT section. After 

each self-consistency cycle, the atomic position is updated from the derived force. The 

total process is shown in Fig 11. I need to set a cut-off value for force convergence to get 

the desired level of accuracy which can be estimated based on the purpose of study and 

material. A lower cut-off is required for high level of accuracy with much greater 
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computational cost. For this method, the boundary of the structure is not changed in the 

whole process. In the second method, after the end of every relax method, the total 

boundary of the structure is also optimized for the total stress along the axis direction. 

This is called the volume-relax method. 

 

 

Fig 11. Relax method to get optimum energy structure 

 

The total process will give an estimation of atomic position in the structure which 

is highly dependent on several parameters like force constant, energy cut-off, electron 

density cut-off etc. However, the pseudopotential is one of the vital factors and there are 

several of them available for each of the element. The pseudopotentials are classified 

based on several aspects like method of exchange functional used (PBE, PW, BLYP, 

PBESOL, PERDEW-ZUNGER LDA, GGA), type of the pseudopotentials (PAW, 
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ULTRASOFT, NORMCONS etc.). Even though several different types of 

pseudopotential can be mixed with taking extra caution but it is trivial to use the same 

type of function for each element maintaining the same parameter as discussed above. An 

open source software package like Quantum Espresso doesn’t have any controlled 

process to maintain the accuracy of the available pseudopotentials and their development 

process also aimed for a different objective. Some of the pseudopotentials are great to 

calculate the energy of the system but fails for relaxing the structure in 0oK and vice 

versa. So, this is important to choose the right pseudopotential for my purpose and test it 

beforehand. For my case, I need to first estimate the new atomic coordinate as the 

environment of the structure changes. I have checked several available potentials for Li, 

O & P and performed the volume relaxation method to achieve the similar lattice constant 

as reported from the experimental analysis.  I have found PBE type Vanderbilt ultra-soft 

based potential works very well with my sample Li3PO4. After choosing the 

pseudopotential, the next step is to choose the right energy cut-off as discussed in DFT 

section. From the Fig 4, I can estimate h2/2m|K+G|2=30 Ry is reasonably good for the 

calculation. Next, I relax the structure in 0o K using volume relax method embedded in 

Quantum espresso so that the maximum total ionic force is lower than 10-4 Ry / ˚A. The 

calculated structural parameters are listed with experimental data in Table 3Error! 

Reference source not found.. The script used for calculation is available in the 

Appendix. 

Due to its higher Li concentration, its existence in both crystal and glass phases 

and the presence of a long 1-D chain of PO4 arrangement, LiPO3 has attracted a great 

research attention for Li diffusion study [2], [95]. The standard experimental structure 
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[96] for LiPO3 was used in this study to evaluate the Li migration characteristics in the 

crystalline structure, where a long chain of Li is surrounded by PO4 tetrahedral such as 

shown in Fig 12.  

 

Fig 12. LiPO3 supercell showing chain of Li and the arrows shows the sites of interest for 

diffusion calculation 

 

Table 3. Lattice constants for γ-Li3PO4 

 Ref[37] Ref[93] Ref [94] This work 

a (˚ A) 10.58 10.53 10.49 10.52 

b (˚ A) 6.17 6.12 6.12 6.1378 

c (˚ A) 4.99 4.93 4.9266 4.953 

 

The PO4 tetrahedral makes a tunnel where Li is surrounded with the oxygens 

attracted by the electrostatic force. To proceed with the simulation, the initial structure is 

relaxed using the volume relaxation method also so that the maximum total ionic force is 

lower than 10-4 Ry /˚A. The integration over the Brillouin zone is carried out with 2 × 2 
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× 2 Monkhorst-Pack grids for geometry optimization of the supercell. The relaxed 

structure shows a relatively small 3:5% increase in volume compared to the one reported 

in an experimental study [97] which is shown in Table 4. 

 

Table 4. Lattice constants for LiPO3 

 Ref[38], [96] This work 

a (˚ A) 16.45 17.033 

b (˚ A) 5.405 5.56353 

c (˚ A) 13.806 13.43987 

 

Using both of the previously described structures, QE in-built Nudge elastic band 

(NEB) [84] method is used for investigating the energetics of several probable diffusion 

processes. In NEB, it is assumed [98] that the diffusion is slow enough to follow 

Boltzmann statistics and the process consists of transition states which pass through 

harmonic regions of the potential energy surface minima and saddle points. As no special 

image is predicted in the diffusion process, relaxed first and last image coordinate is 

given to the code and combined with 5 intermediate steps so that I can capture the whole 

trajectory. Quasi-Newton Broyden’s method is used for image optimization. The inter-

chain and intra-chain vacancy diffusion energetic profiles are shown in Fig 13 and Fig 

14. From the figures, it can be concluded that the nearest neighbor of Li in the images are 

oxygen. Li migration caused these bonds to break or be created. Even though throughout 

the diffusion process surrounding atoms move for optimum energy structure, the Li-O 

interaction energy plays the most vital role in the energetics of Li movement. In the NEB 

process, the energy profile of intra-chain Li migration energy profile (1d-2c-3d on Fig 

10) and interchain (1d-4d on Fig 10) Li movement energy is investigated. Moving from 
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1d to 2c, the first image shows Li formed a tetrahedral with 1,2,3,4 oxygen, when moving 

to the second image, one bond with oxygen loosens up causing increased energy. In the 

consecutive image, however, the bond breaks down. In the fourth image, the surrounding 

condition remains the same but by the fifth image, the loose 3rd O bond breaks down and 

the Li bonds with 5th oxygen causing a drop in total energy whereas, in the last image, 

the Li reaches the minimum energy condition by making a tetrahedral. A similar 

mechanism can be found in the migration of Li from 2c to the 3d site. For the case of 1d 

to 2c migration, the activation barrier is much lower (0.346 eV) because only one 

effective Li-O bond was broken in the process, in contrast with the 2c-3d migration, 

where 2 Li-O bonds break down in the time when Li reaches the saddle point causing a 

much higher activation energy (0.69eV).  

 

 

Fig 13. Li-ion migration a) total energy profile of supercell in 1d-2c-3d site migration b) 

cross-section of the migration process c) Interaction of Li with oxygen in the migration 

process in a Li3PO4 supercell. Green indicates Li, Red indicates O atom. 
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Fig 14. Li-ion migration a) total energy profile of supercell in 1d-4d site diffusion b) cross-

section of the migration process c) Interaction of Li with oxygen in migration time in 

Li3PO4 supercell  

 

On the other hand, Fig 14 shows a 0.4998 eV energy barrier as this process 

consists of only breaking 1 Li-O bond. These activation energies provide a qualitative 

idea of possible Li migration trajectory in Li3PO4 material. All the calculated migration 

paths are shown in      Fig 15. In [25], Xingfeng et. al. showed a curve path is possible for 

Li diffusion and my achieved paths also followed the same trend. For phosphate type 

material, simulation output [47] shows a wavy diffusion path and proved 

experimentally[99]. The curve nature comes from the associated element that helps the 

ion to jump. For example, Fig 13 c, #1 oxygen is associated with the Li-ion migration 

process and the curvature of the Li-ion is centering the #1 oxygen. For the case of Fig 

14.c, we can see the same trend is applicable. However, for Fig 16.c, the 2-associated 

oxygen is swinging the Li to guide the ion to follow an arc path. In Phosphate type 

material Oxygen always accompany the journey and hence carve will have one or 

multiple bends in its path.      Fig 15 shows an aggregated coordinate of all the atoms in 

the NEB images and their energy profile. We can see from      Fig 15 b that the “c” site 

does possess lower energy than the “d” site Li. This is due to the size effect of P 

compared to Li atom. In both “c” & “d” sites, there are 4 anions packed in the same 
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length of space where “c” site contains four Li-ion and “d” site contains 2 Li and 2 P 

atom. Hence it is obvious the packing concentration inside “d” is higher than the “c” site 

which increases the energy as well. Also, we can notice the wavy pattern of the 

arrangement of Li-P-Li-P due to the relaxation process whereas Li chain in site “d” is 

almost a straight line. 

 

     
Fig 15. a. Possible Li diffusion paths in Li3PO4 crystal supercell. b. absolute energy profile 

for all of them c site in left, d in right. 

 

Fig 16. Li-ion migration a) total energy profile of supercell in Li16-Li14 site diffusion b) 

top view of the migration process c) aggregated snapshots of the migration process 

showing the interaction of Li with oxygen in the interim process in LiPO3 supercell. 
 

Aside from the bond analysis to understand the migration barrier, I have tried to 

understand if the charge distribution is related to the migration barrier as well. To do so, 

Bader charge analysis (check Appendix) is employed to understand the ion transfer effect 
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in term of the change in charge. Bader analysis is performed for each of the images which 

provide the effective charge of each element and also provides the atomic volume. A 

typical charge distribution data is shown in Fig 17. We can observe the charge for Li is 

almost constant in the whole process and some charge of O and P does change. We can 

see for each of P or O element, there are 2 bands of charge in the structure.  

I am also interested to understand why there is a change of charge and what the 

effect of this charge is over the total energy profile of the migration. A comparison of all 

calculated diffusion path along with the previously reported data is shown in Table 5. The 

diffusion study shows a minimum of activation energy on LiPO3 consisting of a long 

chain of Li as shown in Fig 12. Noticeably Li12 occupy out of chain position. So, we 

investigate 3 migration energetics for this structure namely, Li16 to Li14, Li14 to Li12, 

Li14 to Li15. For LiPO3, the Li16-Li14 shows a 0.2936 eV barrier and Fig 16 show the 

trajectory and corresponding energy profile. From the breaking of the Li-O ionic bond as 

of above discussion, I can conclude that the surrounding O atmosphere is controlling the 

Li trajectory and activation energy. In [100], Marc Enger et.al reported the stable <Li-O>  

bond length for Li tetrahedral are 1.96 and Octahedral Li showed a <Li-O>=2.15 A. They 

got distorted by strong oxygen-oxygen edge distortion. From the bond length analysis, for 

site 14, we can find the initial Li from a tetrahedral and Li-O bond lengths are 1.88, 1.86, 

2.11 and 2.18 A with an average of <Li-O> = 2.0075A which shows a large deviation 

from the normal estimated Li-O interaction. For the case of site 16, also we can see the 

bond lengths are 2.09, 2.10, 1.89 & 1.88 A with an average of <Li-O> = 1.99 A and 

hence also a deviation from the standard statistical data. A closer <Li-O> toward stable 

1.96 corresponds to the stable configuration at “16” site. These bond length data give a 
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hint of higher energy for the Li sites and loose bonding of Li-O for the case of Li-O > 2 

A. These explain why the energy at saddle point is still low compared to the initial states 

even when the Li has a coordination number of 2 in the saddle point. To understand the 

effect, several points to notice.  First, for the case of Li around the vacancy defect, the Li-

O bonds that face towards the vacancy, will be less than the opposite site as Li-ion will 

tend to displace to the vacancy due to an imbalance of force. This causes the nearest 

neighbor and some of the next nearest neighbor to displace from the initial position. In 

Fig 18, the picture represents a Li3PO4 structure with vacancy and the center of the Li 

tetrahedral are the vacant Li. The larger atoms represent having a significant force due to 

the vacancy of the Li. We can clearly see the nearest neighbor is having force due to this 

displacement. 

 

Table 5: Comparison of Energy barrier in different path in different crystal structure & 

comparison with reported work 

Crystal Formula Diffusion Path Eb Reported[37](eV) Eb This work(eV) 

L
i 3

P
O

4
 

2c-1d 0.36 0.36 

4d-1d 0.45 0.463 

4d-6c 0.55 0.5309 

7d-6c 0.63 0.618331 

2c-3d 0.69 0.67 

L
iP

O
3
 Li16-Li14 - 0.294 

Li14 to Li12 - 0.31 
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Fig 17. Aggregated change in charge in all the images for 2c-1d diffusion 

 

Fig 18. Center of the tetrahedral Li(cyan, larger atom) indicate vacancy site. The 

surrounding highlighted atoms are experiencing a significant force due to the vacancy 

defect of Li. 

 

I have investigated the effect of compression and expression on the diffusion in 

several possible diffusion paths in Li3PO4 structure to understand the behavioral 

characteristics of Li diffusion and to understand and design a better structure for fast 
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similar effect to the Li migration path and how does the energy barrier change. To 

examine this, I choose 3 different paths (4d1d, 2c1d & 2c3d) and have expanded and 

compressed the structure. The resulting P-O bonds are more resistive to the force than Li-

O bonds. From the Fig 19, we can see that the bond length of P-O and Li-O changes 

linearly with volume and the slope suggest that P-O shows a lower sensitivity to the 

volume change of the total structure. Along the same line, it can be surmised that the 

effect of volume change is only felt by the Li-O bond. A volumetric compression of 

4.4%, 8.7%, 14.3% & 27.1% are performed while the structure is also elongated up to 

4.6, 9.3 & 15.8%.  

The energy profile for each path is shown in Fig 20. It can be seen, the barrier 

increased with the expansion of the structure for 4d1d and 2c3d path. For example, the 

barrier for 2c3d increases from 0.66 to 0.69 eV and decreased to 0.42eV at 9.3% volume 

compression. Particularly interesting is the very deep barrier decrease in the extreme 

15.8% compression. On the other hand, exactly the opposite outcome can be seen as the 

least energy barrier path in the normal 2c1d migration. It can then be concluded that the 

energy barrier does not necessarily follow the structure reformation. This observation can 

be used to decrease the energy barrier for high barrier paths and find an optimum 

condition for fast Li diffusion in SSE.  

In [101], Smekens et.al showed an increase in performance by using higher density Li 

crystal structure. They concluded that higher density electrode shows a higher discharge 

rate at low current rates whereas, for high current density, low-density electrodes show 

better performance. However, as can be seen from Fig 21, the energy of each image of 

each path always increases with both expansion and compression. A linear change in 
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volume changes the average bond length between the elements which leads to increase 

the total energy of the system. This is demonstrated in Fig 22 & Fig 24, where the change 

in energy for an image of a path is plotted against the change of volume. The plotted 

points resemble a curve that can be fitted with a 3rd order polynomial. Thus, the minimum 

energy corresponding to the optimum lattice constant of the structure can be achieved 

with volume relaxation method. Any change in volume either expansion or compression 

gives rise to increase in energy. However, from Fig 21, I can see there is a slight change 

in energy for each of the image maintaining the same volume. In particular, observe that 

a position change of traveling Li has a noticeable change in the Li-O bond in the images 

while other atoms do not experience any significant change.  

 

 

Fig 19. Change of Li-O and P-O bond with respect to the total volume change 

 

One example of this phenomenon can be seen in Fig 19, where the average bond 

lengths for different images of all Li and P atoms in the structure of the 4d1d path are 

plotted. Some big deflection is visible for atom 3, whereas the changes are smaller for Li 

10 & Li 34. These Li 10 & Li 34 atoms are near to the migration path, which adjusts its 
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position with respect to the change in vacancy due to the migration of atom 3. As we 

have already seen the fact that between P-O & Li-O bond length, Li-O is more sensitive 

to volume change, I can assume the contribution of P-O bond to the energy is practically 

negligible, while Li-O bond length has the largest effect. Fig 22 shows that the total 

energy can be fitted to a 3rd order polynomial of Li-O bond length. This has a significant 

importance in understanding how the Li-O barrier changes with the change in volume.  

Let’s consider one particular case and discuss qualitatively how we can understand 

the energy barrier trend on volume change for a particular path. Fig 23 suggests that Li-O 

bond lengths are almost stable for all of the Li atoms except the migrating Li.  

 

 

Fig 20. Energy barrier for different paths 1. 2c1d 2. 1d4d 3. 2c3d  
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Therefore, it is reasonable to assume that the resulting polynomial is a linear 

combination of similar E(<Li-O>) for each Li atom. Even though Li-O bond length 

differs from “d” & “c” sites, each Li-O energy level will follow the similarly reduced 

polynomial. By taking derivative of the polynomial fit, I can find the bond length of 

minimum energy is 1.99557Å. Now, consider Li migration in the 4d1d path with 4.56% 

expansion compared to the relaxed structure. For the 1st image, the <Li-O> is 2.047514Å 

and for the transition state (TS) image the <Li-O> is 2.125831Å with a reduction of 

coordination number (CN) by 1. This reduction of nearest neighbor’s distance is 

applicable for all the compression and expansion in the 4d1d path TS’ migrating Li’s CN. 

Thus, the TS is already having a higher energy than the initial state (IS) by one Li-O 

equivalent energy.  

 

Fig 21. Energy profile of 4d1d and 2c3d paths in different structural volume 
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Fig 22. Energy vs <Li-O> bond length relation for 4d1d & 2c1d path 

 

On the other hand, for the 9.3% volume expansion from the Table 7, it can be seen 

that the energy increase coincides with the average increase of the Li-O bond of 
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Fig 23. Change in O bond distance for each Li and P in Li3PO4 structure 

 

 

Fig 24. Energy vs volume for path 4d1d 
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Table 8, it can be seen that the energy for changing Li-O distance increases with 

compression which adds to the bond energy of Li-O and hence energy increases for the 

2c1d site. To summarize, from this discussion I can conclude several important findings: 

1. The energy and distance of <Li-O> in Li3PO4 follow a 3rd order polynomial 

curve. 

 

2. The relative <Li-O> bond position between TS and IS is an important aspect in 

determining the energy curve. They will determine if the energy increases or 

decreases with respect to the change of volume. 

 

3. Change of CN is important to understand the energy barrier magnitude. A large 

difference of CN will lead to higher EB as some large bond breaking energy 

needs to be overcome 

 

Table 6. Comparison of bond length over different volume 
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Table 7. 4d1d <LiO> distance, CN of migrating Li with structure energy for each image 

Volume 

change(%) 
9.3 4.6 0 -4.4 -8.7 -14.3 

TS<Li-O> 2.125831 2.110097 2.091636 2.073821 2.042078 1.984884 

IS<Li-O> 2.047514 2.009558 1.972395 1.93428 1.898719 1.851412 

Energy at 

TS 
-40395.5 -40396.4 -40397.4 -40398.2 -40399.4 -40400.1 

Energy at 

IS 
-40399.3 -40400.1 -40399.9 -40398.5 -40395.8 -40389.6 

dE/n 3.751 3.726 2.563 0.315 -3.596 -10.513 

 

Table 8. 2c1d <LiO> distance, CN of migrating Li with structure energy for each image 

Volume 

change 

(%) 

9.3 4.6 0 -4.4 -8.7 -14.3 -22.1 

TS 2.007117 1.972489 1.93909 1.907237 1.87531 1.843553 1.749 

IS 1.95618 2.016081 1.974404 1.933186 1.896657 1.848141 1.779 

Energy 

at IS 
-40398.1 -40398.1 -40397.1 -40395.1 -40391.6 -40386.6  

Energy 

at TS 
-40397.7 -40398 -40398.1 -40396.8 -40394.1 -40387.5  

dE/n -0.40324 -0.04534 1.002928 1.76196 2.448547 0.832548 10.84 

 

First, the Li-O bond towards the vacancy will be less than the opposite site as Li-

ion will tend to displace the vacancy due to an imbalance of force. Secondly, we can 

discuss a sample ionic bond characteristic. In Fig 25, a sample ionic interatomic pair 

potential is shown. The potential energy E(r) where r<ro, increases very fast and for the 

case of r>ro, the potential energy change is not that significant. Now, for 16-14 path, in 

the end point of 14, the bond length of 2.11 and 2.18 is getting increased to ~3.4 A and 

the bond length of 1.86 & 1.88 reduced to 1.80 and 1.82 A with a coordination number of 

2, the change in energy is significantly lower in compared to Li3PO4 paths, where the Li-

O bond lengths are closer to ro and changes in exponential part of the carve. For example, 
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for 4d6c diffusion the bond length of 2.02, 2.01, 1.93, 1.92 changes to 3.16, 2.76, 1.77& 

1.76. As the changes are near to the ro(1.96 A), the change is much higher than LiPO3 

paths. However, this situation of higher <Li-O> is another cause of instability of LiPO3 

with the electrolyte interface. Yifei Mo[102] et al showed that LiPO3 reaction energy 

with Li3PS4, LLZO, LCO L0.5CO are -32, -201, -76, -19 meV per atom where Li3PO4 

are 0, 0, 0, 0 respectively. Also, Li3PO4 is also stable with Li3P and Li2O cathode[103]. 

This situation suggests that to compare the energy barrier in between multiple materials, 

we must take account of the initial state not just the intermediate state of the migration 

paths. 

 

 

Fig 25. A sample Ionic bond energy vs inter-atomic distance plot 

 

Fig 16 & Fig 26 show the energy profile for Li5-Li14 and Li 14 to Li12 

migration. We notice here that Li5 to Li14 movement shows a stable point in the 

diffusion process whenever we see no Li occupancy from the x-ray diffraction data. 
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Because the activation energy is as low as 0.094eV, there is a possibility for Li to 

overcome the vibration energy at even at room temperature for Li and cause no 

occupancy in the site. From these activation energy data, we can conclude, LiPO3 offers 

much smoother Li diffusion (0.0648 eV/˚ A) than Li3PO4 (0.1688eV/˚ A) crystal. 

However, Li14- Li12 shows endpoint is not a very stable configuration and there is an 

equivalent stable point in the migration path. This is a strange outcome.  

 

Fig 26. Li-ion migration a) energy profile in Li4-Li12 site migration b) top view of the 

migration process c) energy profile in Li14-Li12 site migration d) top view of the 

migration process in LiPO3 supercell 

 

Li Diffusion in Glass Structure 

According to Zachariasen rule, some oxide (network former) is likely to form 

glass.  Most of the metal oxide generally doesn’t follow Zachariasen rule and are called 

network modifier. Li2O belongs to the latter group because of its highly charged cations 
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oxide, small ionic radii and cations are tetrahedral coordinates to oxygen. Phosphorus 

pentoxide is, however, a network former. The phosphate glass structure is formed by PO4 

tetrahedra connected to each other by corners. Glass P2O5 creates a 3-D network of PO4 

tetrahedra connected by three of the four corner oxygen while the other oxygen shares 

double-bonds with another P. When Li2O is mixed with P2O5, it depolymerizes the 

phosphate chain by breaking some of the P-O-P corner bonds to capture the Li and 

shorten the chains. 

In Fig 27 such a glass structure with 200 atoms is shown forming a small chain of 

PO4 tetrahedral where two of most of the phosphate’s corner oxygen is shared with 

another tetrahedral oxygen while Li ions are floating randomly in the space surrounded 

with oxygen by electrostatic force. We will see that these single bonded oxygens create a 

tunnel for Li to diffuse. In this study, we have considered a molecule of 0.6 Li2O5 - 0.4 

P2O5 glass. The lack of a long-range order makes the Li diffusion path very difficult to 

predict in the glassy material. Several theoretical studies have been done in this field to 

understand the total interaction processes. B.K. Money [38] used a reverse[104] Monte 

Carlo modeling to show the most probable path of Li trajectory and reported a fast ion 

transport in the glass which could have resulted from the hopping of mobile ions between 

various vacant site through these pathways [38]. Other modeling approaches [105] 

reported a similar ion migration to occur through the "interstitial pair formation" 

mechanism. In a couple of recent studies [51], [52], AIMD simulations were employed to 

investigate ion movement in Si2O5 and showed ion trajectories to be divided into several 

modes associated with vibrations at a fixed site and hopping between sites. 
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Fig 27. a) 50%Li2O-50%P2O5 supercell containing interconnecting P-O polyhedral 

cluster containing 24.59% volume of the total space. b) RDF analysis of crystal and 

amorphous structure showing the disappearance of long-range order. 
 

AIMD Simulations 

For glass structure analysis, we have used a plane wave cut-off energy of 275 eV 

and the maximum ionic optimization force is set to ≤ 0:02eV ˚ A-1. A Verlet algorithm is 

used to integrate Newton’s equations of motion with a 1fs time step. For MD calculation, 

Γ-point sampling of Brillouin zone is enough. To create amorphous structure, we 

increased the 1 × 2 × 1 relaxed super-cell temperature to 3000K with the canonical 

ensemble (NVT) in 0.8 ps to melt the structure, allowing volume change due to phase 

transformation. To minimize the transition state raddling and stabilize the structure, we 

run it for 1ps. Fig 27.b shows a comparison of the radial distribution function (RDF) 

analysis how the ordering disappears in the amorphous structure. The initial velocity is 

set randomly according to a Maxwell-Boltzmann distribution. The structure was then 

cooled down with a cooling rate of 2:5 × 1015 K/s and the volume is again optimized to 

prepare a sample for next simulation run. 
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Method Procedure 

For a consistent AIMD simulation under a constant volume condition, the phase 

transition such as melting process needs to be evaluated first so that the characteristic 

change in the simulation structure as depicted by the range of pressure and energy to 

mark the amorphous/molten state can be identified. These two parameters will obviously 

change during melting. The axial pressure indicator is also a good way to detect the 

volumetric change in particular direction for the simulation purpose. An upper bound of 

10 GPa pressure is maintained in all direction and a 5% reduction in volume is required 

to optimize the structure. This same process is used to optimize the structure after any 

temperature change of the structure for calculating the potential energy and free energy. 

Considering the time constraint in AIMD process and to better understand the Li 

diffusion process, we run a number of isothermal processes at higher temperatures to 

assess the diffusion mechanism. The change in the diffusivity with time can provide a 

hint of the inherent mechanisms as associated with the temperature effect. We would 

reasonably expect a linear change of a log of diffusivity with temperature indicative of 

Arrhenius relationship. To obtain diffusivity in a number of targeted temperatures; 3000, 

2500, 2000, 1500 K, AIMD simulation is performed with an NVT ensemble. As 

indicated by the Einstein relation, MSD can be related to the diffusivity D. The MSD of 

particular ion like Li+, P5+, and O2- can be calculated using the relation. For each of the 

isothermal calculation, the diffusion coefficient of Lithium is measured to check the 

variation of diffusivity with temperature. From this information, the Arrhenius plot is 

drawn to find the activation energy of Li-ion diffusion. At the same time, the direct 

current conductivity is also calculated from the random diffusion coefficient (D) using 



61 

the Nernst-Einstein relation which shows the Li+ conductivity can be vastly different for 

Li compositions e.g in Li2O, P2O5.  It also showed the Li conductivity increases along 

with the increasing fraction of Li2SO4 and decreases after a certain limit.  Ref [95] 

predicts the increase in the Li content ratio (1:4 to 1:3.25). It was argued that presence of 

ultramicroscopic cluster-tissue texture is the sole reason for this phenomenon. To test this 

idea, a model of supercell of 60% Li2O-P2O5 40% Li2SO4 is created. This is achieved by 

substituting 40% of P with S atom in the Li2O-P2O5 model amorphous structure. The 

addition of Li2SO4 leads to an increase in the Li ionic concentration. At the same time, 

because S atoms show an increase of the valence state from P5+ to S+6, O and Li are also 

carefully added into the simulation box to maintain the charge balance inside the total 

cell. O atoms are placed in a close proximity to S atoms whereas the Li atoms are placed 

adjacent to the O atoms, maintaining the normal first-order RDF distance (1.45 A and 

1.65 A, respectively). AIMD isothermal approach is applied on this structure for 1ps to 

let the newly added S, O and Li atoms freely roam and to remove an initial bias caused 

by the initial placement of these atoms within the structure. The inclusion of new atoms 

increases the volume and the breakage of the polyhedral chain, which is quite noticeable. 

These characteristic changes can be explained by the valance difference of S6+ and P5+ 

and a higher electron affinity of S relative to that of P. Fig 28.a show the electron density 

of SO4 and PO4 bonds where strong electron correlation of S makes double bond with 2 

O which make these O inert to make another bond with surrounding cations. Letting only 

2 corner oxygen to bond with ether Li or corner O of PO3 tetrahedral and hence creating 

isolated self-centered tetrahedral where 3 of 4 corners of PO3 tetrahedral tends to share O 

with other entity. Fig 28 8 a & b show an average coordination number (CN) analysis 



62 

over the dynamic trajectory steps. This shows for a particular type material; the CN 

maintains an average value of the SD to be 0.02 for P in pure and 0.367 for P in the mix. 

A reduction of CN from 2.79 to 1.267 of P is also noticeable from pure LiPO3 to a mixed 

composition. This reduction can be explained by the fact that the substituting S in the 

initial stage would seek the shared O, initially connected to P and break out from the long 

chain of P polyhedral cluster, making it's own polyhedral leading to the overall breakage 

of the long-chain P–dominated cluster. 

 

 

Fig 28. a) Electron density map around S and P in 60%( Li2O-P2O5) 40% Li2SO4. b) 

Coordination number analysis of P & S c) CN analysis of Li in both structures. 

  

0

1

2

3

0 1 2 3Time (ps)



63 

ANALYSIS 

 

An equilibrated amorphous LiPO3 model is shown in Fig 27 in comparison with 

the crystalline super-cell. The radial distribution (RDF) of crystalline structure at ground 

state and LiPO3 at 3000K indicates the loss of the crystalline state at 3000K. The 

smoothing of total g (r) after 2A in amorphous medium suggests the disappearance of a 

long-range order where the first two peaks if compared to the individual bond RDFs, 

would correspond to the first order peak of P-O & Li-O and O-O first nearest neighbor on 

each case.  It is noticeable that even after shrinking of crystal structure in the glassy state, 

the O-O and Li-O distance would shorten considerably while the P-O tetrahedral 

formation remains relatively unchanged. The chain of tetrahedral clusters breaks into 

smaller clusters of polyhedral connected to each other. The relative space occupation of 

polyhedral calculation shows an increase from 3.09% to 24.59% volume occupation by 

the P-O polyhedron whenever Li-O and O-O bond spacings are reduced. Considering the 

analogous to the Li migration in crystal LiPO3, the surrounding oxygen in tetrahedral is 

the key to achieve a low activation energy of the Li migration. Moreover, from the 

isothermal AIMD simulations, a close observation on the movement of the Li migration 

suggests that the same mechanism can be detected with the exception that the higher 

temperature conditions create a localized vibration and the migration also involves a 

relatively lower frequency vibration. This process is illustrated by the aggregated 

trajectory image in Fig 29 for 2 random diffusive Li-ions. The picture clearly shows the 

Li-O bonding tracks and how the intermediate Li-O bond exchange takes place between 

two site migrations. A successful migration occurs when the Li-O distance from one site 



64 

reaches a critical distance and another Li-O distance from the opposite site shortens to 

generate a new Li-O bond in the interim process. For this specific case, the thermal 

vibration may provide the necessary energy or force to the Li atom to raddle around the 

localized position and the migration process occurs when its trajectory is surrounded by 

oxygen atoms with a sufficient distance so that it can create a new bond with the 

migrating Li-ion. This appears to reduce the migration barrier and helps Li to overcome 

the ionic force and brake the existing Li-O bond. In the AIMD processes that we 

generated, several Li-ions do remain localized in a relatively short 3 ps timeline. This 

doesn’t necessarily prove that those will remain localized for the extended timeframe. 

 

 
Fig 29. Li migration for 2 random Li, with Li-O bond handover process in LiPO3 

amorphous structure. Green indicates Li and red O atom. 

 

In case of Li2O-P2O5- Li2SO4, P2O5 chain breaks down and form several mono-

polyhedral clusters as shown in Fig 30. This leads to an increase in empty space within 

the structure, but calculation shows the fixed tetrahedral occupies only 15.344% of the 

total space. This suggests the creation of enough empty space for Li to diffuse. Moreover, 

S mix sample has Li’s CN 2.87 whereas the Li in pure sample shows a 3.17 coordination 

number. Under Pauling's rule, the effective radius of the cation is larger when the CN is 
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higher. This suggests that the Li-ion is less ionic (with a larger radius) in LiPO3 making 

Li harder to diffuse. However, we will see having only an empty space is not a sufficient 

condition for a higher diffusion. The surrounding condition is also a major factor and can 

play a major role. The RDF analysis on the mix structure shows a right shift (i.e. toward a 

larger distance) of Li-O and O-O bond distances compared to that obtained from the 

Li2O-P2O5 with a magnitude of 0.1 and 0.2 A respectively. 

 

 

Fig 30. LiPO3SO4 supercell showing a cluster of P-O polyhedral (violet) and isolated S-

O tetrahedral (yellow). Theses structure consumes 15.344% of total supercell space. 

 

To understand the effect of this structure on Li diffusion perspective, MSD of an 

individual element is calculated. As the initial random distribution of velocity might 

cause non-physical velocity distributions, the MSD is calculated after 0.5 ps stabilization 

period. Fig 31 shows an average MSD data for Li+, P5+, S6+, O2- over an 11.8ps timeline 

at 3000K. The MSD graph with a steeper slope (blue) suggests rapid movement where a 

horizontal slope suggests no movement at all. From this graph, we see that Li is more 
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diffusive than the surrounding P, S or O. The same approach is applied for Li2O-P2O5 and 

the result is illustrated in Fig 32 showing an increase of Li diffusion over time even 

though the total diffusivity is less than the 60-40 mix. In addition, the diffusivity in 

different temperatures are also measured. From the Arrhenius equation, we know there is 

a direct relationship between an energy barrier and the diffusivity as a function of 

temperate and if we plot Ln(D) vs 1/T graph, the steepness of slope represents the 

magnitude of the energy barrier of the ion transport. One particular analysis had been 

done on LiPO3 & S mix LiPO3 glass material[2]. They showed the energy barrier 

increases with an increase in temperature (Table 9). The study was performed in 250 & 

500K which shows a significant increase in energy barrier. However, this trend is also 

true for the S mix sample. Due to the time limitation in the DFT analysis, I have 

calculated the energy barrier in higher temperatures. As shown in Fig 33, calculation 

shows a 0.62eV energy barrier which is 0.09eV more than that obtained from the 

experimental result[2] but considering the trend of increasing energy barrier, the pattern 

seems the same. 

 

Table 9: Energy barrier comparison with experimental work for pure Li2O-S2O5 and 60-

40 Li2O-P2O5-Li2SO4 amorphous structure 

Temperature(K) Energy barrier of Li2O-

P2O5(eV) 

Energy barrier of S mix 

sample(eV) 

250 0.06[2] 0.02[2] 

500 0.53[2] 0.39[2] 

3000 0.62(this study) 0.41(this study) 
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Fig 31. Average MSD of a different element in Li2P205SO4 at 3000K for 12 ps.  

 

 

Fig 32. Average MSD of different element in Li2P2O5 at 3000K for 3 ps. 
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Fig 33. Diffusivity vs 1/T graph. Showing comparison of energy barrier with 

experimental result 

 

Movements of the Li ions are closely analyzed to check if the Li-O bond 

exchange mechanism is applicable for the mix structure in migration time. Fig 34s [a,b] 

shows the dynamic Li-O bond handover process in the migration time considering 2 

separate conditions: 1) migration aided by multiple oxygens as Li moves through the path 

& 2) migration controlled by a set of the oxygen atom. Fig 34.b  shows how 2 oxygen 

atoms guiding the Li atom to migrate from one site to another site where the other bond 

was broken and re-created after the migration process. The thick two corners show the 

localized vibration of Li atom before the migration and the path become narrow at the 

migration time. This migration however was made easier with the presence of O atoms in 

the intermediate space particularly O128 and O46. Without the presence of these Os, the 

saddle point would show a much higher activation energy as all the bonds between Li-O 

had to completely break before the diffusion process to proceed. In this particular 
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structure, the intermediate O creates a bond with the Li releasing the energy as a 

consequence which helps to keep the activation energy much lower and these 

intermediate O’s keep the bond until the Li gets migrated to the new site. However, the 

presence of only 2 O atoms makes this site a transition site and Li need to diffuse further 

to find a favorable site. 

The vibrational analysis is also a good way to understand the structure and 

migration process. The vibrations in a dense structure supposedly will show a higher 

frequency than its low-density material and when an element gets a favorable condition 

to move from one region to another, the intermediate opening of low potential space 

reduces the obstacle for movement results in a lower down its frequency. Fig 35 shows 

the vibrational frequency of all the elements(Li, O, P, S) in  Li2O-P2O5 - Li2SO4 and in 

Li2O-P2O5 composition.  

 

 

Fig 34. Li migration with Li-O bond handover process in LiPO3SO4. The green mesh 

shows the movement of Li and the red-pink bar showing the dynamic Li-O bond created 

in the intermediate stages. It also shows the O atoms (red mesh) are localized during the 

migration a) a long migration where several O contribute to the migration b) site to site 

migration contributed by only 2 oxygen atom. 
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We can observe, except Li, the vibrational frequency of the other elements does 

not have any significant change of DOS occupancy, whereas, for Li, the peak frequency 

does have a left shift toward a lower frequency. The graphs show a band of the vibration 

frequency of Li for both of the structure with different range and a left shift of the band 

for S mix structure is consistent with the low-frequency prediction. The change in low 

frequency also suggest an increased bond length and lower dense structure[106]. In [106], 

Kitagawa et.al. showed that how the stress shifts the raman band and found out the reason 

is interatomic change of bond. However, a wide peak in my data suggests the amorphous 

of the structure. In [107], David Tuschel has discussed the effect of periodicity over the 

vibrational characteristics of  the material. Also, he suggested the lacking of periodicity is 

causing the long-range smear of the vibrational peak. For LiPO3, after addition of sulfur 

content, Oxygen, Phosphorus, shows some broad peak, this may lead to the trend of 

periodicity due to the addition of sulfur. 

 

 

Fig 35. a) Vibration frequency of Li(green), O(orange), P(gray), S(yellow) in LiPO3 

amorphous medium and b) in Li2P2O5 Li2SO4. Total Li frequency band shifted to the 

left in S mix one. 
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Table 10.  Experimental result of conductivity and energy barrier for different 

composition [2] 
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CONCLUSION 

 

In my study, I have reproduced previously reported energy barriers in different 

paths for Li3PO4 with a significant accuracy using the Nudge elastic band method. I have 

also analyzed the energy barrier of different paths in LiPO3 and found that LiPO3 has a 

suitable environment for Li to diffuse in a much lower barrier (0.36eV vs 0.294 eV in 

LiPO3) in the crystalline material. With these crystalline analyses, I have performed ab-

initio molecular dynamics (AIMD) analysis to calculate the Li diffusivity in amorphous 

LiPO3 structure. The result shows that Li is much mobile than other elements in the 

structure. I have also shown that the addition of Li2SO4 in the LiPO3 amorphous structure 

increases the Li diffusivity in the structure as demonstrated by the increase in MSD value 

which is consistent with the reported experimental results. The AIMD simulation reveals 

the partial breakup of long phosphate polyhedral clusters making more space for Li+ ion 

to diffuse much easier. Along with this analysis, the vibrational analysis on the trajectory 

of Li+ ion shows a lowering of vibrational frequency of Li ion in S mix sample. I have 

also observed the possible role of the nearest neighbor oxygens in assisting the Li+ ion 

hopping from site to site and how it is important to have a higher CN for the lower 

barrier. At last, I analyzed the role of Li-O bond with the energy of the system and 

observed how the Li-O bond length in the TS and IS plays role in the barrier of the Li 

migration. I also have observed that there is no particular pattern of EB with the average 

Li-O bond of the TS migrating atom in Li3PO4 structure and the evaluation of IS and TS 

need to be considered to predict the EB. 
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APPENDIX 

 

Code used in QUANTUM ESPRESSO suite: 

A.1. Li3PO4 Crystal script: 

1. Relax script 

&CONTROL 

  calculation = 'relax', 

!  restart_mode = 'restart', 

  prefix        = 'Li' 

  outdir        = 'temp_new', 

  pseudo_dir    = './', 

/ 

&SYSTEM 

  ibrav         = 0, 

  nat           = 127, 

tot_charge = -1, 

  ntyp          = 3, 

  ecutwfc       = 60.0, 

  occupations   = 'fixed', 

  !nosym         = .TRUE. 

  !smearing      = 'mp', 

  !degauss       = 0.03, 

/ 

&ELECTRONS 

electron_maxstep = 300, 

mixing_mode = 'plain',   

mixing_beta = 0.7, 

mixing_ndim=12, 

diagonalization='cg', 

/ 

&ions 

ion_dynamics = 'bfgs', 

/ 

 &CELL 

   cell_dynamics = 'bfgs' , 

   press = 0,  

   cell_factor = 3, 

 / 

ATOMIC_SPECIES 

  Li 6.941 Li.pbe-s-van_ak.UPF 

  O 15.9994 O.pbe-van_ak.UPF 

  P 30.973762 P.pbe-van_ak.UPF 
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CELL_PARAMETERS { Angstrom} 

      12.29511202 0.002860219 0.004492876 

0.002467399 10.58802771 -0.00773364 

0.003658134 -0.007242615 9.997717773 

 

2 Relax script for LiPO3 

&CONTROL 

  calculation = 'relax', 

  restart_mode='from_scratch', 

  prefix        = 'Li' 

  outdir        = 'temp', 

  pseudo_dir    = './', 

/ 

&SYSTEM 

  ibrav         = 0, 

  nat           = 99, 

tot_charge = -1, 

  ntyp          = 3, 

  ecutwfc       = 30.0, 

  occupations   = 'fixed', 

  !nosym         = .TRUE. 

  !smearing      = 'mp', 

  !degauss       = 0.03, 

/ 

&ELECTRONS 

electron_maxstep = 1000, 

mixing_mode = 'plain',   

mixing_beta = 0.1, 

mixing_ndim=12 

/ 

&ions 

ion_dynamics = 'bfgs', 

/ 

 &CELL 

   cell_dynamics = 'bfgs' , 

   press = 0,  

   cell_factor = 3, 

 / 

ATOMIC_SPECIES 

  Li 6.941 Li.pbe-s-van_ak.UPF 

  O 15.9994 O.pbe-van_ak.UPF 

  P 30.973762 P.pbe-van_ak.UPF 

CELL_PARAMETERS { Angstrom} 

       17.0336723328         0.0000000000         0.0000000000 

        0.0017676182         5.5635315948         0.0000000000 

       -2.3835290088        -0.0315687276        13.2267909119 
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1. Crystal volume relax: 

&CONTROL 

  calculation = 'vc-relax', 

  restart_mode = 'restart', 

  prefix        = 'Li' 

  outdir        = 'temp_new', 

  pseudo_dir    = './', 

/ 

&SYSTEM 

  ibrav         = 0, 

  nat           = 127, 

tot_charge = -1, 

  ntyp          = 3, 

  ecutwfc       = 60.0, 

  occupations   = 'fixed', 

  !nosym         = .TRUE. 

  !smearing      = 'mp', 

  !degauss       = 0.03, 

/ 

&ELECTRONS 

electron_maxstep = 300, 

mixing_mode = 'plain',   

mixing_beta = 0.7, 

mixing_ndim=12, 

diagonalization='cg', 

/ 

&ions 

ion_dynamics = 'bfgs', 

/ 

 &CELL 

   cell_dynamics = 'bfgs' , 

   press = 0,  

   cell_factor = 3, 

 / 

ATOMIC_SPECIES 

  Li 6.941 Li.pbe-s-van_ak.UPF 

  O 15.9994 O.pbe-van_ak.UPF 

  P 30.973762 P.pbe-van_ak.UPF 

CELL_PARAMETERS { Angstrom} 

       12.2756175995         0.0000000000         0.0000000000 

        0.0000000000        10.5211572647         0.0000000000 

        0.0000000000         0.0000527625         9.9059877394 

3. NEB script: 

 

BEGIN 

BEGIN_PATH_INPUT 
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&PATH 

  restart_mode  = 'restart', 

  string_method = 'neb', 

  nstep_path    = 60, 

  opt_scheme    = 'broyden', 

  num_of_images = 7, 

  !CI_scheme = 'auto', 

  !first_last_opt = .TRUE. 

/ 

END_PATH_INPUT 

BEGIN_ENGINE_INPUT 

&CONTROL 

  prefix        = 'LiPO4' 

  outdir        = 'temp', 

  pseudo_dir    = './', 

/ 

&SYSTEM 

  ibrav         = 0, 

  nat           = 127, 

tot_charge=-1, 

  ntyp          = 3, 

  ecutwfc       = 60.0, 

  occupations   = 'fixed', 

  !nosym         = .TRUE. 

  !smearing      = 'mp', 

  !degauss       = 0.03, 

/ 

&ELECTRONS 

  electron_maxstep = 200, 

mixing_mode = 'plain',   

mixing_beta = 0.7, 

mixing_ndim=16 

/ 

ATOMIC_SPECIES 

  Li 6.941 Li.pbe-s-van_ak.UPF 

  O 15.9994 O.pbe-van_ak.UPF 

  P 30.973762 P.pbe-van_ak.UPF 

K_POINTS automatic 

1 1 1 0 0 0 

CELL_PARAMETERS { Angstrom} 

12.29511202 0.002860219 0.004492876 

0.002467399 10.58802771 -0.00773364 

0.003658134 -0.007242615 9.997717773 

BEGIN_POSITIONS 

FIRST_IMAGE 

ATOMIC_POSITIONS { crystal } 
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LAST_IMAGE 

ATOMIC_POSITIONS { crystal } 

END_POSITIONS 

END_ENGINE_INPUT 

END 

 

4. Self-consistancy for charge calculation(VASP): 

 

SYSTEM = Mg_OH_Mg(Cp)2 

  PREC = Med 

   EDIFF= 1E-5 

   ENCUT = 490      # ENMAX in POTCAR 

    NELM = 60       # max number of selfconsistance steps, 40 normally 

  NELMIN = 4        # min number of SC steps 

     NSW = 0    # max number of steps for IOM, # of MD steps 

  NBLOCK = 1 ; KBLOCK = 1000      # default =1 

  IBRION = -1        # -1 if NSW=1,0 ,0 for MD, 1 for newton, 2 for conj-grad 

   POTIM = 0.1  

   ISIF = 2        # 3=full vol relax, 2=no vol or shape change 

  ISMEAR = 0        # default 

   SIGMA = 0.05      # default Check this one! 

 LAECHG=.TRUE.        #Badar charge 

 LELF = .TRUE.      # electron localization function generate 

 LPLANE = .TRUE.   # good for large cells 

   LREAL = Auto   # projection in reciprocal space, good for large cells 

    NPAR = 4        #  

    RWIGS = 1 1 1 1  # wigner seitz radius (need a number for each atom type) 

  VOSKOWN = 0        # default=0, 1 different interpolation formula 

  MAXMIX = 30       #something to do with dielectric function, also for MD 

   SMASS = 0      # 

  LSCALAPACK = .TRUE. 

  IALGO=48 

  LWAVE = .TRUE. # determines if WAVECAR is written 

 

5. Bader charges analysis script: 

 

For charge calculation Bader charge analysis has been used. The charge information is 

already can be found in charge density (CHGCAR) file in VASP code. However the file 

contains only the valance charge density information. To implement Bader analysis, it is 

important to calculate the core region charge as well. Bader analysis assumes the core has 

the most charge. In some pseudopotential, the core charge is replaced by minimizing 
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calculation cost. Recently VASP introduced a module (aedens) which write the core 

charge of the atomic centers to the charge density file. For that one flag: 

LAECHG=.TRUE need to be in the INCAR file. The core charge then is written o the 

AECCAR0 and the valance charge are written to AECCAR2 files. These files can be 

summed together using chgsum.pl script using bellow command. 

  chgsum.pl AECCAR0 AECCAR2 

This command writes the total charge to CHGCAR_sum file which can be used 

by the bader code to generate the cahrge for each atom in the structure using 

the command: 

  bader CHGCAR -ref CHGCAR_sum 

One important thing to notice is to use the proper NG(X,Y,Z). To do so, I have 

run SCF several time to adopt correct NG(X,YZ) for the system. Also a fine fft 

grid is used. 

 

A.2 Amorphous analysis scripts: 

1. NVT script to cooldown temperature: 

SYSTEM = Mg_OH_Mg(Cp)2 

  PREC = Med 

   EDIFF= 1E-2 

   ENCUT = 200      # ENMAX in POTCAR 

    NELM = 15       # max number of selfconsistance steps, 40 normally 

  NELMIN = 4        # min number of SC steps 

     NSW = 1000    # max number of steps for IOM, # of MD steps 

  NBLOCK = 1 ; KBLOCK = 1000      # default =1 

  IBRION = 0        # -1 if NSW=1,0 ,0 for MD, 1 for newton, 2 for conj-grad 

   POTIM = 1.00     #  

    ISIF = 2        # 3=full vol relax, 2=no vol or shape change 

  ISMEAR = 0        # default 

   SIGMA = 0.5      # default Check this one! 
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  LPLANE = .TRUE.   # good for large cells 

   LREAL = .TRUE.   # projection in reciprocal space, good for large cells 

    NPAR = 4        #  

    RWIGS = 1 1 1 1  # wigner seitz radius (need a number for each atom type) 

  VOSKOWN = 0        # default=0, 1 different interpolation formula 

    ALGO = VeryFast    #  

  MAXMIX = 30       #something to do with dielectric function, also for MD 

    ISYM = 0        #switch of symmetry, for MD 

   SMASS = 0      # 

  TEBEG = 3000   #temperature for MD 

  TEEND = 2500 

  LSCALAPACK = .TRUE. 

  IALGO=48 

  LWAVE = .TRUE. # determines if WAVECAR is written 

 

2. NPT script to equilibrate pressure: 

Prec = Med 

LPLANE = .TRUE.   # good for large cells 

LREAL = .TRUE.   # projection in reciprocal space, good for large cells 

RWIGS = 1 1 1 1   # wigner seitz radius (need a number for each atom type) 

LWAVE = .FALSE.  # determines if WAVECAR is written 

LCHARG = .FALSE.  # determines if CHGCAR/CHG are written 

MAXMIX = 30       #something to do with dielectric function, also for MD 

ISYM = 0        #switch of symmetry, for MD 

SMASS = 0      # 

LSCALAPACK = .TRUE. 

ALGO = VeryFast 

IALGO= 48 

NSW = 2000 

ISMEAR = -1;SIGMA = 0.2           # smearing method 

ALGO = Med 

EDIFF = 1E-3 ;  NELMIN=5              # 

LREAL = Auto                          # real space projector 

MAXMIX = 40 ; AMIX = 1.0 ; BMIX = 1.0 # optimize charge mixer for Si 

LCHARG = False 

IALGO=48 

NELMIN=5 

ISYM=0 

NPAR =8 

ADDGRID = TRUE 

ENCUT=440 

##### MD - related ################# 

RANDOM_SEED =         689642361        62398 

IBRION = 0             # MD 

ISIF=3                 # variable lattice parameters 

POTIM=2 
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MDALGO=3               # Langevin dynamics 

TEBEG=3000 

TEEND=3000 

LANGEVIN_GAMMA = 60.0 60.0 60.0 60.0 # friction coef. for atomic DoFs 

LANGEVIN_GAMMA_L=60.0 # friction coef. for lattice DoFs 

PMASS=120 # mass for lattice DoFs 

PSTRESS =0.0001  # 0.001 0.001 0 0 0  Targeted stress tensor values in Kbar 

 

3. NVT to generate trajectrories: 

SYSTEM = Mg_OH_Mg(Cp)2 

  PREC = Med 

   EDIFF= 1E-2 

   ENCUT = 440      # ENMAX in POTCAR 

    NELM = 15       # max number of selfconsistance steps, 40 normally 

  NELMIN = 4        # min number of SC steps 

     NSW = 15000    # max number of steps for IOM, # of MD steps 

  NBLOCK = 1 ; KBLOCK = 1000      # default =1 

  IBRION = 0        # -1 if NSW=1,0 ,0 for MD, 1 for newton, 2 for conj-grad 

   POTIM = 1.00     #  

    ISIF = 2        # 3=full vol relax, 2=no vol or shape change 

  ISMEAR = 0        # default 

   SIGMA = 0.5      # default Check this one! 

  LPLANE = .TRUE.   # good for large cells 

   LREAL = Auto   # projection in reciprocal space, good for large cells 

    NPAR = 8        #  

    RWIGS = 1 1 1 1  # wigner seitz radius (need a number for each atom type) 

  VOSKOWN = 0        # default=0, 1 different interpolation formula 

    ALGO = VeryFast    #  

  MAXMIX = 30       #something to do with dielectric function, also for MD 

    ISYM = 0        #switch of symmetry, for MD 

   SMASS = 0      # 

  TEBEG = 3000   #temperature for MD 

  TEEND = 3000 

  LSCALAPACK = .TRUE. 

  IALGO=48 

  LWAVE = .TRUE. # determines if WAVECAR is written 
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