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1. INTRODUCTION

1.1 The Wave Equation

Consider the motion of a thin, flexible string, stretched taught horizontally.

Suppose that string is displaced or plucked from its resting position and then al-

lowed to vibrate. Classically, this string can be represented by the following equa-

tion with variables in time, t, and position, x:

ρ(x)
∂2u

∂t2
=
∂u

∂x

(
k(x)

∂u

∂x

)
, 0 < x < L, t > 0. (1.1)

In this equation, ρ(x) and k(x) are weight functions, ρ(x) represents the

mass density over the length of the string, k(x) represents tension in the string, and

L is the length of the string. Given appropriate information about the behavior of

the string at the boundries (i.e. at x = 0 and x = L) and the initial state, this

equation can be solved for the solution u(x, t), describing the position of the string

at point x and time t.

Once a solution is found it is also relevant to calculate other physical val-

ues to describe the motion of the string in space-time, namely potential energy and

kinetic energy. These quantities may be expressed using the following integrals:

PE: =
1

2

∫ L

0

u2x(x, t)k(x)dx

KE =
1

2

∫ L

0

u2t (x, t)ρ(x)dx. (1.2)

Motivation for these quantities will be given in Section 4. A focus of this

thesis is their computation through Fourier analysis.
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1.2 The Clamped String

As an example, let us first consider the special case of a string that is clamped

on either end (Dirichlet conditions). Under ideal conditions, tension and density are

presumed to be constant and equal to one. This reduces (1.1) to

utt = uxx. (1.3)

For simplicity’s sake, suppose the length of the string is π. The boundary condi-

tions and initial conditions are as follows:

BC:


u(0, t) = 0

u(π, t) = 0

IC:


u(x, 0) = f(x)

ut(x, 0) = 0.

One form of the solution for such a problem can be found by the method

of separation of variables. For this problem, the solutions are assumed to have the

form u(x, t) = X(x)T (t). From here, by substituting into the differential equation,

the problem can be reduced to the following two problems with one variable with

corresponding boundary conditions:

X ′′ + µX = 0, 0 < x < π

BC:


X(0) = 0

X(π) = 0

and

T ′′ + µT = 0, t > 0

BC:

{
T ′(0) = 0.

2



The solutions of these two equation will then depend on the value of µ, specif-

ically whether µ is positive, negative, or zero. In this problem, µ = n2, for n =

1, 2, 3, . . . (Bray, 2012, p. 130). For the problem in x, the solutions are Xn(x) =

sinnx and for the equation in t, the solutions are Tn(t) = cosnt. So the separated

solutions for the total wave equation are

un(x, t) = cosnt sinnx, for n = 1, 2, 3, . . . (1.4)

This suggests a solution of the form

u(x, t) =
∞∑
n=1

f̂s(n) cosnt sinnx

where f̂s(n) are the Fourier sine coefficients for the initial state f(x), specifically

f̂s(n) =
2

π

∫ π

0

f(x) sinnx dx. (1.5)

Now that we have a form for the solutions of the wave equation, we can continue

learn more about the motion of this vibrating string by calculating its potential and

kinetic energy.

1.3 Energy Calculations for the Clamped String

Since the formulas for the kinetic and potential energies have the form of

the square of the L2-norm of a function, it is natural to employ Parseval’s equality,

described as follows. Let L2([a, b], ρdx) be the vector space of real valued square

integrable functions with respect to ρ = ρ(x) > 0, called the weight function. This

space is an inner product space with inner product

3



(f, g)ρ =

∫ b

a

f(x)g(x)ρ(x)dx (1.6)

and norm

||f ||22,ρ =

∫ π

0

f 2(x)ρ(x)dx = (f, f)ρ. (1.7)

Let {Xn}∞1 be an orthogonal system in L2([a, b], ρdx). If f ∈ L2([a, b], ρdx), the

Fourier series of f has the form

f ∼
∑
n

f̂(n)Xn(x),

where f̂(n) are the Fourier coefficients of f ,

f̂(n) =
1

||Xn||22

∫ b

a

f(x)Xn(x)ρ(x)dx. (1.8)

The orthogonal system {Xn} is complete in L2([a, b], ρdx) if
∫ b
a
f(x)Xn(x)ρ(x)dx =

0 for all n implies that f = 0. For a complete orthogonal system, Parseval’s equal-

ity is then

||f ||22 =
∞∑
n=1

|f̂(n)|2||Xn||22 (1.9)

(Bray, 2012, p. 142). In the setting of the clamped string {sinnx}∞n=1 and

{1
2
, cosnx}∞n=1 form complete orthogonal sets in L2[0, π].

Fourier Coefficients for {sinnx}∞
n=1 and {1

2
, cosnx}∞

n=1. Specifically for

{sinnx}n1 , ∫ π

0

sinnx sinmx =


π
2

n = m

0 n 6= m.
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The Fourier coefficients have form

f̂s(n) =
1

π

∫ π

−π
f(x) sinnxdx, n = 1, 2, . . .

and Parseval (1.9) takes the explicit form

||f ||22 =

∫ π

0

f 2(x)dx =
π

2

∞∑
n=1

f̂s(n)2.

Likewise, for the system {1
2
, cosnx}n1 ,

∫ π

0

cosnx cosmx =


π
2

n = m

0 n 6= m.

The Fourier coefficients have form

f̂c(n) =
1

π

∫ π

−π
f(x) sinnxdx, n = 0, 1, . . .

and Parseval (1.9) takes the form

||f ||22 =
π

2

∞∑
n=0

f̂c(n)2.

Similar explicit formulas hold in the case of Neumann boundary conditions

and mixed boundary conditions (a Dirichlet condition on one end and a Neumann

condition on the other), i.e.,

Neumann BC:


ux(0, t) = 0

ux(π, t) = 0

5



Mixed BC:


ux(0, t) = 0 or u(0, t) = 0

u(π, t) = 0 ux(π, t) = 0

Kinetic and Potential Energy. Using Parseval’s equality (1.9) we can perform

the following formal calculations. Since,

u(x, t) =
∞∑
n=1

f̂s(n) cosnt sinnx,

the derivative with respect to t is

ut(x, t) = −
∞∑
n=1

nf̂s(n) sinnt sinnx.

Hence,

KE(t) =
1

2

∫ π

0

u2t (x, t)dx =
π

2

∞∑
n=1

n2f̂ 2
s (n) sin2 nt. (1.10)

For the potential energy, we take the derivative of u(x, t) with respect to x

and find

ux(x, t) =
∞∑
n=1

nf̂s(n) cosnt cosnx.

Thus,

PE(t) =
1

2

∫ π

0

u2x(x, t)dx =
π

2

∞∑
n=1

n2f̂ 2
s (n) cos2 nt. (1.11)

Note that from these representations of kinetic and potential energy the conserva-

tion law comes immediately. The total energy, E, can written as the sum of KE(t)

and PE(t). Thus,

KE(t) +PE(t) =
π

2

∞∑
n=1

n2f̂ 2
s (n) sin2 nt+

π

2

∞∑
n=1

n2f̂ 2
s (n) cos2 nt =

π

2

∞∑
n=1

n2f̂ 2
s (n) = E.

So the total energy is constant and independent of time.

6



These calculations were easily achievable as both {Xn} and {X ′n} were com-

plete orthogonal sets, which allowed the use of Parseval’s equality to calculate the

integrals. However, this is not always the case. Some boundary conditions will not

provide orthogonality for {X ′n}, which creates difficulty in the calculation for the

potential energy from the string. In these cases, other methods must be found to

calculate the kinetic and potential energies for the solution. One such case will be

illustrated over the next sections.

7



2. WAVE EQUATION WITH ROBIN BOUNDARY CONDITIONS

The wave equation with general Robin boundary conditions on both ends of

the string can be stated as follows:

utt = uxx

BC:


a11ux(0, t) + a12u(0, t) = 0, a11a12 ≤ 0

a21ux(π, t) + a22u(π, t) = 0, a21a22 ≥ 0

(2.12)

IC:


u(x, 0) = f(x)

ut(x, 0) = 0.

It is elementary to transform these boundary conditions into conditions in

which the constants a12 and a22 are −1 and 1, respectively. This can be achieved

by dividing the first equation through by a12 and the second by a22, resulting in

boundary conditions of the form below.

BC:


b1ux(0, t)− u(0, t) = 0,

b2ux(π, t) + u(π, t) = 0, b1, b2 ≥ 0

(2.13)

Proceeding by the method of separation of variables used in Section 1.2, the

wave equation can be reduced to a problem in one variable, x, with boundary con-

ditions derived from the conditions for the original differential equation.

X ′′ + µX = 0, 0 < x < π, (2.14)
b1X

′(0)−X(0) = 0,

b2X
′(π) +X(π) = 0, b1, b2 ≥ 0.

(2.15)

8



The form of a function, X(x), that satisfies equation 2.14 depends on the

value of µ, specifically whether µ is positive, µ is negative, or µ is equal to zero. So,

in seeking the functions X(x) that satisfy 2.14 and the boundary conditions 2.15,

we address three cases based on these values for µ.

1. If µ = −λ2 < 0, 
X(x) = c1 coshλx+ c2 sinhλx

X ′(x) = λc1 sinhλx+ λc2 coshλx

Thus, from the first boundary condition (BC1),

0 = b1λc2 cosh 0− c1 cosh 0

c1 = b1λc2

From the second boundary condition (BC2),

0 = b2λc1 sinhλπ + b2λc2 coshλπ + c1 coshλπ + c2 sinhλπ,

0 = (b2λc1 + c2) sinhλπ + (b2λc2 + c1) coshλπ,

0 = c2[(b1b2λ
2 + 1) sinhλπ + (b2λ+ b1λ) coshλπ].

In general, the expression in brackets is positive, so c2 = 0. This implies that

c1 = 0, so the first case is trivial.

2. If µ = 0, 
X(x) = c1x+ c2

X ′(x) = c1

So from BC1, 0 = b1c1 − c2, implying that c2 = b1c1.

And from BC2, 0 = b2c1 + c1π + c2 = (b2 + π + b1)c1.

9



Clearly, (b2 + π + b1) > 0, so c1 = 0 and thus, c2 = 0. So Case 2 is also trivial.

3. Finally, if µ = λ2 > 0,


X(x) = c1 cosλx+ c2 sinλx

X ′(x) = −λc1 sinλx+ λc2 cosλx

Thus, from BC1, 0 = b1λc2 − c1 → c1 = b1λc2.

From BC2,

0 = −b2λc1 sinλπ + b2λc2 cosλπ + c1 cosλπ + c2 sinλπ

0 = (c2 − b2λc1) sinλπ + (c1 + b2λc2) cosλπ

0 = c2[(1− b1b2λ2) sinλπ + (b1λ+ b2λ) cosλπ]

Now, c2 6= 0, as this would make all solutions trivial. So, the bracketed ex-

pression must be equal to zero. Thus,

(b1b2λ
2 − 1) sinλπ = (b1λ+ b2λ) cosλπ,

or

tanλπ =
(b1λ+ b2λ)

(b1b2λ2 − 1)
.

This equation provides a scenario in which every λn that satisfies the equation

corresponds to a solution, Xn. So solutions take the following form:


Xn(x) = b1λn cosλnx+ sinλnx

tanλπ = (b1λ+b2λ)
(b1b2λ2−1) .

(2.16)

10



2.1 The Tangent Condition

The equation determining the values of the λns is the transcendental equa-

tion tanλπ = (b1λ+b2λ)
(b1b2λ2−1) . Graphically, we can look at the intersections of the graphs

of tanλπ and (b1λ+b2λ)
(b1b2λ2−1) , restricting the domain to λ > 0, to visualize what values

these λns take on and determine if there are patterns in their distribution. Consider

the graphs (Figures 1 and 2) with two different sets of conditions on b1 and b2.

Out[ ]=

π

2

3 π

2

5 π

2

7 π

2

1

2

3

tan(πλ)

b1+b2  λ

b1 b2 λ^2-1

Figure 1: Tangent Condition with b1 = 4, b2 = 2

In both figures, the fractional expression consists of a negative and a positive

portion and intersects with the tangent graph an infinite number of times. These

particular examples demonstrate two possibilities: one in which there are no inter-

sections below the x-axis (Figure 1) and one in which there are one or more inter-

sections below the graph (Figure 2). While this is worth observing, the intersec-

tions of most interest are those that occur as λ approaches infinity. Considering the

positive portion of the rational expression in both figures, we can begin to see some

regularity in how often the intersections occur. As the graph approaches zero, inter-

sections occur once per period relative to the tangent function, and these intersec-

11



Out[ ]=

π

2

3 π

2

5 π

2

7 π

2

1

2

3

4

5

tan(πλ)

b1+b2  λ

b1 b2 λ^2-1

Figure 2: Tangent Condition with b1 = 0.5, b2 = 0.2

tions begin to occur closer and closer to the inflection points of the tangent graph.

In other words, the values of λn approach the integers, which are represented by

grey vertical lines in Figures 1 and 2.

2.2 The Value of λn

Now, through observation, we have seen that the values of the λn’s appears

to approach the integers as n → ∞. This can be demonstrated analytically, as

follows. First, recall:

X ′′ + µX = 0
b1X

′(0)−X(0) = 0

b2X
′(π) +X(π) = 0

12



and


tanλπ = (b1λ+b2λ)

(b1b2λ2−1)

X(x) = b1λ cosλx+ sinλx.

Note that tan λπ from the equation above, has zeros at the integers, n = 1, 2, 3, . . .

Applying Taylor’s theorem at x = n,

tanλπ = tan(n) +
d

dλ
(tannπ)(λ− n) +O((λ− n)2)

= π sec2(nπ)(λ− n) +O((λ− n)2)

= π(λ− n) +O((λ− n)2)

Set εn = λn − n, then the expansion can be rewritten as follows:

π(λ− n) +O((λ− n)2) =
(b1 + b2)λ

(b1b2λ2 − 1)

−π(εn) +O(ε2n) =
(b1 + b2)(εn + n)

(b1b2(εn + n)2 − 1)
= O(

1

n
)

It follows that εn = O( 1
n
) and thus, λn = n+O( 1

n
). Therefore, as n→∞, λn → n.

2.3 Orthogonality of {Xn(x)}

Now, that we have a sense of the type of solutions that this Robin condi-

tioned case produces, let us return to the subject of orthogonality. In order to cal-

culate the potential and kinetic energies using Parseval’s equality, the sets {Xn(x)}

and {X ′n(x)} must both be orthogonal.

Theorem 2.1: Given the boundary conditions from (2.13), {Xn(x)} is an orthogo-

nal set.

Proof. By definition, the set {Xn(x)} from (2.13) is orthogonal if and only if

13



∫ π
0
Xn(x)Xm(x)dx = 0 for all n 6= m. Using the differential equation and then

integrating by parts we get the following:

−µn
∫ π

0

Xn(x)Xm(x)dx =

∫ π

0

X ′′nXmdx (2.17)

= [X ′nXm|π0 −
∫ π

0

X ′nX
′
mdx

= [X ′nXm|π0 − [XnX
′
m|π0 +

∫ π

0

XnX
′′
mdx

= [X ′nXm|π0 − [XnX
′
m|π0 − µm

∫ π

0

XnXmdx,

Then, by collecting the integral terms on the left-hand side and applying the

boundary conditions,

(µm − µn)

∫ π

0

Xn(x)Xm(x)dx = [X ′nXm]π0 − [XnX
′
m]π0

= X ′n(π)Xm(π)−X ′n(0)Xm(0)−Xn(π)X ′m(π) +Xn(0)X ′m(0)

= −b2X ′n(π)X ′m(π)− b1X ′n(0)X ′m(0) + b2X
′
n(π)X ′m(π) + b1X

′
n(0)X ′m(0) = 0

So
∫ π
0
Xn(x)Xm(x)dx = 0, and since n and m are arbitrary, {Xn(x)} is an orthogo-

nal set in L2[0, π].

Remark 2.2: Formula 2.17 may be used to demonstrate orthogonality for any

wave equation with Dirichlet, Neumann, or mixed boundary conditions.

2.4 Non-Orthogonality of {X ′n(x)}

Here we prove the following result:

Theorem 2.3: For (2.13), {X ′n(x)} is not orthogonal for b1, b2 > 0. Furthermore,

{X ′n(x)} can only be an orthogonal set in the case where b1 = b2 = 0.

Proof. {X ′n(x)} not orthogonal means that
∫ π
0
X ′n(x)X ′m(x)dx 6= 0, for some n and

14



m. By integrating by parts we see that,

∫ π

0

X ′n(x)X ′m(x)dx = [X ′nXm]π0 −
∫ π

0

X ′′n(x)Xm(x)dx∫ π

0

X ′n(x)X ′m(x)dx+

∫ π

0

X ′′m(x)Xm(x)dx = X ′n(π)Xm(π)−X ′n(0)Xm(0)∫ π

0

X ′n(x)X ′m(x)dx− µ1

∫ π

0

Xm(x)Xm(x)dx = X ′n(π)Xm(π)−X ′n(0)Xm(0)

But {Xn(x)} is an orthogonal set, so
∫ π
0
Xn(x)Xm(x)dx = 0. Thus,

∫ π

0

X ′n(x)X ′m(x)dx = X ′n(π)Xm(π)−X ′n(0)Xm(0)

= (−b1λ2n sinλnπ + λn cosλnπ)(b1λm cosλmπ + sinλmπ)− b1λnλm

= (−b1λ2n tanλnπ + λn)(b1λm + tanλmπ) cosλnπ cosλmπ − b1λnλm

Recall that tan λπ = (b1+b2)λ
(b1b2λ2−1) . For clarity, let ∆n = b1b2λ

2 − 1. Then, the right

hand side of the above becomes,

(
−b1λ2n(b1 + b2)λn

∆n

+ λn

)(
b1λm +

(b1 + b2)λm
∆m

)
cosλnπ cosλmπ − b1λnλm

= λnλm

(
−b1λ2n(b1 + b2)

∆n

+ 1

)(
b1 +

(b1 + b2)

∆m

)
cosλnπ cosλmπ − b1λnλm

= λnλm

(
−b21λ2n − b1b2λ2n + b1b2λ

2
n − 1

∆n

)(
b21b2λ

2
m − b1 + b1 + b2

∆m

)
cosλnπ cosλmπ

− b1λnλm

= −
[
b2λnλm

(
(b21λ

2
n + 1)(b21λ

2
m + 1)

∆n∆m

)
cosλnπ cosλmπ + b1λnλm

]

Now, λnλm is positive and (b21λ
2
n + 1)(b21λ

2
m + 1) is positive. We can choose cos λnπ

and cosλmπ to have the same sign. We know that such values for λ exist by consid-

ering Figure 3, which displays Figure 1 overlayed with cos λnπ.

Clearly, since the intersections (the desired values of λ) occur once per pe-

riod in the tangent graph and since the cosine graph alternates between positive
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Figure 3: Tangent Condition with b1 = 4, b2 = 2 and cosλnπ

and negative values and has a period twice as long as the tangent graph, there will

exist values for λ such that cosλnπ is positive and values such that cos λnπ is neg-

ative. So, if the values of cos λnπ and cosλmπ have the same sign, and b1, b2 > 0,

this quantity is strictly non-zero. Thus,
∫ π
0
X ′n(x)X ′m(x)dx 6= 0 and {X ′n(x)} is not

an orthogonal set.

If b1 is allowed to equal 0, the expression reduces to

∫ π

0

X ′n(x)X ′m(x)dx = −b2λnλm cosλnπ cosλmπ,

which can only reduced to zero (making {X ′n(x)} orthogonal) if b2 = 0. Likewise, if

b2 is allowed to equal 0, the expression reduces to

∫ π

0

X ′n(x)X ′m(x)dx = −b1λnλm,

again requiring b1 = 0 to produce orthogonality in {X ′n(x)}.
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Because of the above non-orthogonality, direct use of Parseval’s equality in

the case of Robin boundary conditions is impossible.
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3. SOBOLEV SPACE

3.1 General Ideas

In this section, we describe essential ideas behind Sobolev spaces and apply

them to the Fourier expansion. General reference for Sobolev Spaces is from Bray

(2018) and Jost (2013, p. 215). In addition to considering the boundary conditions

surrounding u(x, t) and their affects on our ability to calculate potential and ki-

netic energy, we must also consider the initial state for u(x, t). What conditions on

f(x) must be present in order to have a solution? Clearly from (1.10) and (1.11),∑∞
n=1 n

2f̂ 2
s (n) < ∞, for a solution in the clamped case to make sense. Also, the ini-

tial state f(x) must possess a certain degree of continuity in order for it to have the

required derivatives. These derivatives do not necessarily have to be the “strong”

derivatives from calculus. The calculations can be done as long as a weak derivative

exists. We define a function u ∈ L1
loc(a, b) to have a weak derivative v ∈ L1

loc(a, b) if

for all φ ∈ C∞c (a, b), ∫ b

a

vφ dx = −
∫ b

a

uφ′dx. (3.18)

Keeping this definition in mind, consider the following Sobolev space. De-

fine:

W 1,2[a, b] = {u ∈ L2[a, b] | u′ ∈ L2[a, b]}. (3.19)

In this space suppose the inner product, (u, v)W 1,2 , is

(u, v)W 1,2 =

∫ b

a

uv dx+

∫ b

a

u′v′ dx

and the norm is

||u||W 1,2 = (||u||2L2 + ||u′||2L2)
1
2 .

Given these definitions for norm and inner product W 1,2[a, b] is also a Hilbert space.

18



We begin with two lemmas.

Lemma 3.1: Let v ∈ C[a, b] and let u(x) be any anti-derivative of v (u′ = v). Then,

(i) for a ≤ x, y ≤ b, |u(x)− u(y)| ≤ |x− y| 12 ||u′||L2[a,b]

(ii) for some constant c, ||u||C[a,b] ≤ c||u||W 1,2[a,b].

Proof. (i) Let a ≤ x < y ≤ b. Then, using the Cauchy-Schwarz inequality,

|u(x)− u(y)| = |
∫ y

x

v dx| ≤ |y − x|
1
2 ||v||L2[a,b].

(ii) Let c ∈ [a, b] so that u(c) = 1
b−a

∫ b
a
u(s)ds. Then,

|u(c)| ≤ (b− a)−
1
2 ||u||L2[a,b] and from part (i), |u(x)− u(c)| ≤ |c− x| 12 ||u′||L2 .

So,

|u(x)| ≤ |u(c)|+ |u(x)− u(c)|

≤ (b− a)−
1
2 ||u||L2 + |b− a|

1
2 ||u′||L2

≤ max{(b− a)−
1
2 , (b− a)

1
2}(||u||L2 + ||u′||L2)

≤ max{(b− a)−
1
2 , (b− a)

1
2}(
√

2||u||W 1,2[a,b]).

Note: The last line is due to the following inequality. For s, t ≥ 0,

(s+ t)2 = s2 + 2st+ t2 = s2 + 2
√
s2t2 + t2

≤ s2 + t2 + 2(
s2 + t2

2
) = 2(s2 + t2)

(s+ t) ≤
√

2(s2 + t2).

Lemma 3.2: C1[a, b] is dense in W 1,2[a, b].

Proof. Let u ∈ W 1,2[a, b]. Let {vn} ⊂ C[a, b] such that ||vn − u′||L2[a,b] → 0, as
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n→∞ (i.e. vn → u′).

Set Un(x) =
∫ x
a
vn(s)ds, in other words U ′n = vn.

(a) Using (i) in Lemma 3.1 we have,

|(Un(x)− Um(x))− (Un(a)− Um(a))| ≤ |x− a|
1
2 ||vn − vm||L2[a,b]

but since Un(a) = Um(a) = 0, this simplifies to

|(Un(x)− Um(x))| ≤ |b− a|
1
2 ||vn − vm||L2[a,b].

Hence, {Un(x)} is Cauchy in C[a, b] which means that Un
C[a,b]−→ U ∈ C[a, b].

(b) Claim: U = u. To see this let φ ∈ C∞c [a, b]. Then,

∫ b

a

U ′nφ dx = −
∫ b

a

Unφ
′ dx→ −

∫ b

a

Uφ′ dx =

∫ b

a

U ′φ dx.

Since U ′n = vn, ∫ b

a

U ′nφ dx =

∫ b

a

vnφ dx→
∫ b

a

u′φ dx.

It follows that u = U + k, where k is a constant.

(c) Let un = Un + k. Then un → u in C[a, b] and in L2[a, b]. Furthermore, u′n =

vn → u′ in L2[a, b]. The sequence {un} ⊂ C1[a, b] with un
W [1,2]−→ u.

The fundamental result regarding the structure of Sobolev spaces is as follows:

Theorem 3.3: (Sobolev Embedding Theorem) W 1,2[a, b] ⊂ C[a, b]. Moreover, the

Sobolev inequality holds:

||u||C[a,b] ≤ c||u||W 1,2[a,b]. (3.20)
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Proof. Let {un} ⊂ C1[a, b] such that un
W [1,2]−→ u. Then from Lemma 3.1,

||un||C[a,b] ≤ c||un||W 1,2[a,b].

Let n→∞.

3.2 A Return to the Dirichlet Example

Now, let us return to the clamped string described in Section 1.2 and con-

sider the following two spaces of functions.

C1
dd[0, π] = {f ∈ C1[0, π]|f(0) = f(π) = 0} (3.21)

If a function, f , is in C ′dd[0, π] then the following equality holds concerning the

Fourier cosine and Fourier sine coefficients.

f̂ ′c(n) =
2

π

∫ π

0

f ′(x) cosnx dx

=
2

π

(
[f(x) cosnx]π0 +

2

π

∫ π

0

f(x) sinnx dx

= nf̂s(n)

Define W 1,2
dd [0, π] to be the closure of C1

dd[0, π] in W 1,2[0, π]. By the density argu-

ment in Lemma 3.2, if f ∈ W 1,2
dd [0, π], then f̂ ′c(n) = nf̂s(n). Hence,

∑∞
n=1 n

2f̂ 2
s (n) <

∞, satisfying the requirements discussed at the beginning of Section 3.1. This con-

dition characterizes W 1,2
dd [0, π], making it the right class of functions for performing

the energy calculations in Section 1.3. Furthermore,

u(x, t) =
∑
n

f̂s(n) cosnt sinnx
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gives a distributional (or weak) solution of utt = uxx: for φ = φ(x, t) ∈ C∞c ([0, π] ×

[0, π]), ∫ π

0

∫ π

0

u(x, t)[φtt(x, t)− φxx(x, t)]dxdt = 0.

Details will be seen more generally in a later section.

3.3 Boundary Condition Variation of the Space W 1,2[0, π]

Let k ∈ C1[a, b], and ρ ∈ C[a, b] with k, ρ > 0 on [a, b]. Separation of

variables applied to the general wave equation (1.1) leads us to the boundary value

problem

(kX ′)′ + µρX = 0, a < x < b

BC: D, N, M, or R

where the boundary conditions are D (Dirichlet), N (Neumann), M (mixed Dirich-

let and Neumann), or R (Robin).

Classically, (Birkhoff & Rota, 1989) we know there is a sequence {µn}∞1 of

eigenvalues, µn, increasing to infinity such that the corresponding eigenfunctions

{Xn}∞1 , (⊂ C1[a, b]), form a complete orthogonal system in L2([a, b], ρdx), with the

inner product from (1.6).

Lemma 3.4: If the boundary conditions are D (Dirichlet), N (Neumann), or M

(mixed), then {X ′n(x)}∞1 forms an orthogonal system in L2([a, b], kdx).

Proof. For n 6= m,

∫ b

a

X ′nX
′
mk dx = [XnX

′
mk]ba −

∫ b

a

Xn(kX ′m)′ dx

= µm

∫ b

a

XnXmρ dx.
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The latter integral is zero for n 6= m.

Recall, firstly, if w = w(x) is a positive function, the norm on L2([a, b], wdx)

is denoted || · ||2,w. From the above proof we get:

||X ′n||22,k = µn||Xn||22,ρ. (3.22)

Secondly, a zero eigenvalue occurs only if the boundary conditions are Neumann.

Also, for the Sobolev space W 1,2[a, b], it is useful to use the inner product and norm

(f, g) =

∫ b

a

f(x)g(x)ρ(x)dx+

∫ b

a

f ′(x)g′(x)k′(x)dx, (3.23)

||f ||W 1,2 = [||f ||22,ρ + ||f ′||22,k]
1
2 . (3.24)

As 0 < ρ1 ≤ ρ(x) ≤ ρ2 and 0 < k1 ≤ k(x) ≤ k2, this norm is equivalent to the usual

Sobolev norm.

Given the above framework, we have two orthogonal systems: {Xn(x)}∞1

with respect to ρdx and {X ′n(x)}∞1 with respect to kdx. Given g on [a, b] we write

the Fourier coefficients of g with respect to the two systems as:

(ĝ)ρ(n) =
1

||Xn||22,ρ

∫ b

a

g(x)Xn(x)ρ(x)dx (3.25)

(ĝ)k(n) =
1

||X ′n||22,k

∫ b

a

g(x)X ′n(x)k(x)dx.

If g ∈ C1[a, b], then

(ĝ′)k(n) =
1

||X ′n||22,k

∫ b

a

g′(x)[k(x)X ′n(x)]dx

=
1

||X ′n||22,k
[g(x)X ′n(x)k(x)]ba −

1

||X ′n||22,k

∫ b

a

g(x)[k(x)X ′n(x)]′dx

= boundary terms +
µn

||X ′n||22,k

∫ b

a

g(x)Xn(x)ρ(x)dx
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= boundary terms + (ĝ)ρ(n), (3.26)

from (3.22). In the expression, the boundary terms are:

Boundary Terms =
1

||X ′n||22,k
[g(b)X ′n(b)k(b)− g(a)X ′n(a)k(a)]. (3.27)

To have a useful formula we need the boundary terms to be equal to zero. This

spells out additional conditions on g dependent on the underlying boundary con-

ditions. For now we restrict to boundary conditions of form D, N, or M.

BC C1 -class W 1,2 -completion

dd C1
d,d[a, b] (g(a) = g(b) = 0) W 1,2

d,d [a, b]

nn C1[a, b] W 1,2[a, b]

dn C1
d,[a, b] (g(a) = 0) W 1,2

d, [a, b]

nd C1
,n[a, b] (g(b) = 0) W 1,2

,n [a, b]

If g is in one of the C1-classes of the table, the the boundary terms in (3.27) vanish.

Notation: Given boundary conditions of the type D, N, or M, we let W 1,2
bc [a, b]

be the entry in the right column of the table.

Proposition 3.5: Let f ∈ W 1,2
bc [a, b]. Then

(f̂ ′)k(n) = (f̂)ρ(n). (3.28)

Proof. Let {gm} ⊂ C1
bc[a, b] such that ||gm − f ||W 1,2

bc
→ 0. We know such a function

exists from Lemma 3.2. Then,

(f̂ ′)k(n) = ( ̂f ′ − g′m)k(n) + (ĝ′m)k(n)

= ( ̂f ′ − g′m)k(n) + (ĝm)ρ(n)
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= ( ̂f ′ − g′m)k(n) + (ĝm − f)ρ(n) + (f̂)ρ(n). (3.29)

However, by the Cauchy-Schwartz inequality, for each n ∈ N,

|( ̂f ′ − g′m)k(n)| ≤ ||f ′ − g′m||2,k||X ′n||−12,k → 0,

as m→∞, and

|(ĝm − f)ρ(n)| ≤ ||gm − f ||2,ρ||Xn||−12,ρ → 0,

as m→∞. Then, using these inequalities along with (3.29),

|(f̂ ′)k(n)− (f̂)ρ(n)| ≤ |( ̂f ′ − g′m)k(n)|+ |(ĝm − f)ρ(n)|.

As the quantities on the right hand side approach zero as m→∞,

(f̂ ′)k(n) = (f̂)ρ(n).

Remark 3.6: If k = ρ = 1 with Dirichlet boundary conditions, (3.28) is equivalent

to the desired formula:

f̂ ′c(n) = nf̂s(n),

where f̂ ′c(n) are the Fourier cosine coefficients of f ′.

Proposition 3.7: The collection {Xn} is a complete orthogonal system in W 1,2
bc [a, b].

Proof. Orthogonality is immediate:

(Xn, Xm)W 1,2 = (Xn, Xm)ρ + (X ′n, X
′
m)k = 0
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for n 6= m. To prove completeness, suppose f ∈ W 1,2
bc [a, b] with (f,Xn)W 1,2 = 0 for

all n. We must show f = 0. Now,

(f,Xn)W 1,2 = (f,Xn)ρ + (f ′, X ′n)k

= ||Xn||22,ρ(f̂)ρ(n) + ||X ′n||22,k(f̂ ′)k(n)

= ||Xn||22,ρ(1 + µn)(f̂)ρ(n),

using (3.22) and (3.28). Hence if (f,Xn)1,2W = 0 for all n, then (f̂)ρ(n) = 0 for all n

and f = 0 since {Xn} is complete in L2([a, b], ρdx).

Corollary 3.8: (Parseval) Let f ∈ W 1,2
bc [a, b]. Then,

||f ||2W 1,2 =
∑
n

(f̂)ρ(n)2||Xn||22,ρ +
∑
n

µn(f̂)ρ(n)2||Xn||22,ρ.

Proof. From Lemma (3.4), the set Xn is a complete orthogonal system relative to

the inner product on W 1,2
bc [a, b]. We have

||Xn||2W 1,2 = ||Xn||22,ρ + ||X ′n||22,k

= ||Xn||22,ρ(1 + µn).

The Fourier coefficients of f in W 1,2
bc [a, b] are given by

f̂(n) =
(f,Xn)W 1,2

||Xn||2W 1,2

=
1

||Xn||22,ρ(1 + µn)
[

∫ b

a

f(x)Xn(x)ρ(x)dx+

∫ b

a

f ′(x)X ′n(x)k(x)dx]

=
1

||Xn||22,ρ(1 + µn)
[||Xn||22,ρ(f̂)ρ(n) + ||X ′n||22,k(f̂ ′)k(n)]

=
1

||Xn||22,ρ(1 + µn)
[||Xn||22,ρ(f̂)ρ(n) + µn||Xn||22,ρ(f̂)ρ(n)]

= (f̂)ρ(n)
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using (3.28) and (3.22). Parseval’s equality in W 1,2
bc [a, b] is

||f ||2W 1,2 =
∑
n

(f̂)(n)2||Xn||2W 1,2 .

Using the definition of ||f ||W 1,2 and the above formulas concludes the proof.

Furthermore, since ||f ||2W 1,2 = ||f ||22,ρ + ||f ′||22,k we get

||f ′||22,k =
∑
n

µnf̂ρ(n)2||Xn||22,ρ

=
∑
n

µn(f̂ ′)k(n)2||X ′n||22,k,

using (3.28).

A variation on the above completeness result is as follows.

Proposition 3.9: (1) If the boundary conditions are D, then the collection {X ′n}

is complete in the Hilbert space

L2
0[a, b] = {g ∈ L2([a, b], kdx)|

∫ b

a

gdx = 0}.

(2) If the boundary conditions are N or M, the collection {X ′n} is complete in

L2([a, b], kdx).

Proof. (1) Let g ∈ L2
0 and let G(x) =

∫ x
a
g(s)ds (so G′ = g almost everywhere).

Then

(g,X ′n)k =

∫ b

a

g(x)X ′n(x)k(x)dx

= (G(x)X ′n(x)k(x)|ba + µn

∫ b

a

G(x)Xn(x)ρ(x)dx. (3.30)

Hence, if (g,X ′n)k = 0 for all n, then since G(a) = G(b) = 0, we get (G,Xn)ρ =
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0 for all n. It follows that

0 = G(x) =

∫ x

a

g(s)ds

for almost every x. From the real variables, g(x) = 0 almost everywhere.

(2) The argument based on (3.30) works for boundary conditions of type N and

the mixed case d,n (without the extra condition on g). For boundary condi-

tions of type n,d, replace G(x) with G(x) = −
∫ b
x
g(s)dx.
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4. GENERAL ENERGY CALCULATIONS

4.1 Form for Kinetic and Potential Energy

In an equation representing the transfer of energy through a vibrating string,

one would expect that the equation would obey physical laws of motion, namely

conservation of energy. In order to construct a conservation law for the wave equa-

tion, let us begin by deriving an expression including the terms for kinetic and po-

tential energy. From our approach we will also derive, in general, an energy equipar-

tition principle first noted for the Dirichlet problem earlier (Bray, 2012, p. 201).

Here motivation for the form of kinetic and potential value is derived from the wave

equation, assuming a smooth solution exists.

We begin with the generalized wave equation (1.1) on the interval a < x < b

and multiply both sides by ut.

ρutt = (uxk)x

ut · ρutt = (uxk)x · ut

Now, the left-hand side can be rewritten using the chain rule.

∂

∂t

(
1

2
ρu2t

)
= (uxk)x · ut

Then, we integrate with respect to x, integrating by parts on the right-hand side.

∂

∂t

[
1

2

∫ b

a

ρu2t (x, t)dx

]
=

∫ b

a

(uxk)xutdx

∂

∂t

[
1

2

∫ b

a

ρu2t (x, t)dx

]
= kuxut|ba −

∫ b

a

kuxuxtdx
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The right-hand side can also be rewritten.

∂

∂t

[
1

2

∫ b

a

ρu2t (x, t)dx

]
= kuxut|ba −

∂

∂t

[
1

2

∫ b

a

ku2x(x, t)dx

]

∂

∂t

[
1

2

∫ b

a

ρu2t (x, t)dx+
1

2

∫ b

a

ku2x(x, t)dx

]
= kuxut|ba

∂

∂t
[KE(t) + PEs(t)] = k(b)ux(b, t)ut(b, t)− k(a)ux(a, t)ut(a, t) (4.31)

Conservation with Dirichlet, Neumann, or Mixed Conditions. Consider

the wave equation with Dirichlet boundary conditions at x = a and x = b,

BC:


u(a, t) = 0

u(b, t) = 0.

In this case, the right-hand side of equation 4.31 simplifies to zero. Since this is a

derivative, that means that KE(t) + PEs(t) = E, the total energy, is constant,

giving us conservation of energy for the Dirichlet case.

Similarly in the case with Neumann conditions at x = a and x = b,

BC:


ux(a, t) = 0

ux(b, t) = 0,

or for mixed conditions, conservation of energy is also attained. In all cases apply-

ing the initial conditions gives

E =
1

2

∫ b

a

[f ′(x)]2k(x)dx.
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Conservation with Robin Conditions. Now, consider the case with Robin

boundary conditions at x = a and x = b.

BC:


b1ux(a, t)− u(a, t) = 0,

b2ux(b, t) + u(b, t) = 0, b1, b2 ≥ 0

(4.32)

IC:


u(x, 0) = f(x),

ut(x, 0) = 0

(4.33)

Here, the boundary terms from (4.31) can be rewritten as follows:

ux(b, t)ut(b, t)− ux(a, t)ut(a, t) = −u(b, t)ut(b, t)

b2
− u(a, t)ut(a, t)

b1

= − ∂

∂t

[
u2(b, t)

2b2
+
u2(a, t)

2b1

]
.

Then the conservation law becomes,

∂

∂t
[KE(t) + PEs(t) +

[
k(b)u2(b, t)

2b2
+
k(a)u2(a, t)

2b1

]
] = 0,

or

KE(t) + PEs(t) +

[
k(b)u2(b, t)

2b2
+
k(a)u2(a, t)

2b1

]
= E,

where the potential energy is divided into potential energy originating from the

string, PEs(t), and potential energy from the boundary conditions. Note that if

b1 or b2 is equal to zero, the corresponding term in the conservation law would be

dropped.

By substituting the initial conditions into the conservation law, we can find
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the value of the total energy, E. Since kinetic energy is zero when t = 0,

1

2

∫ b

a

k(x)[f ′(x)]2dx+
k(b)

2b2
f 2(b) +

k(a)

2b1
f 2(a) = E. (4.34)

It is now necessary to compute
∫ b
a
k(x)[f ′(x)]2dx, but as it was shown in Section

2.4, {X ′n(x)} (which includes f ′) is not necessarily orthogonal with respect to L2-

norm. However, physically, f(x) should satisfy the boundary conditions, specifically

suppose f ∈2 [a, b] and satisfies the boundary conditions. Then, through integration

by parts,

∫ b

a

k(x)f ′(x)f ′(x)dx = [k(x)f(x)f ′(x)]ba −
∫ b

a

f(x)(k(x)f ′(x))′dx

= [k(b)f(b)f ′(b)− k(a)f(a)f ′(a)]−
∫ b

a

f(x)(k(x)f ′(x))′dx

= −
[
k(b)f 2(b)

b2
+
k(a)f 2(a)

b1

]
+

∫ b

a

f · Lfρdx,

where the operator L is defined by

Lf =
−1

ρ
(kf ′)′. (4.35)

Noting that LXn = −1
ρ

(kX ′n)′ = −1
ρ

(−µnρXn) = µnXn, f and Lf can be written as:

f ∼
∑
n

(f̂)ρ(n)Xn(x)

Lf ∼
∑
n

(f̂)ρ(n)LXn(x) =
∑
n

µn(f̂)ρ(n)Xn.

Then the integral on the right in the integration by parts can be written as a sum.

∫ b

a

f · Lfρdx =
∑
n

µ2
n(f̂)ρ(n)2||Xn||22,ρ
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Now, we substitute this information into (4.34):

E = −
[
k(b)f 2(b)

2b2
+
k(a)f 2(a)

2b1

]
+

1

2

∞∑
n=1

µ2|(f̂)k(n)|2||Xn||22

+
k(b)

2b2
f 2(b) +

k(a)

2b1
f 2(a)

or,

E =
1

2

∞∑
n=1

µ2(f̂)k(n)2||Xn||22.

So, the total energy, E, in the system is 1
2

∑∞
n=1 µ

2(f̂)k(n)2||Xn||22.

The solution of this problem is

u(x, t) =
∞∑
n=1

f̂(n) cosλntXn(x).

Given this backdrop and similar calculations earlier in this section, Parseval’s Equal-

ity may again be used to calculate the expression for kinetic energy. From (1.2),

KE(t) =
1

2

∫ L

0

u2t (x, t)ρ(x)dx

=
1

2

∞∑
n=1

λ2nf̂
2(n)||Xn||22 sin2 λnt.

Now, the total potential energy is then

PE(t) =
1

2

∫ L

0

u2x(x, t)ρ(x)dx+

[
k(b)u2(b, t)

2b2
+
k(a)u2(a, t)

2b1

]
=

1

2

∞∑
n=1

λ2nf̂
2(n)||Xn||22 cos2 λnt.

This value can be computed by subtracting the kinetic energy from the total en-

ergy.
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4.2 The Wave Equation and Energy in Cases D, N, and M

We consider the following initial boundary value problem:

ρutt = (kux)x, a < x < b, t > 0

BC : D or N or M (4.36)

IC :


u(x, 0) = f(x)

ut(x, 0) = 0.

Here ρ = ρ(x) ∈ C[a, b], k = k(x) ∈ C1[a, b] with ρ > 0 and k > 0 on [a, b].

As before, let {µn}∞0 and {Xn(x)}∞0 be the eigenvalues and eigenfunctions

from the boundary value problem

(kX ′)′ + µρX = 0, a < x < b

with the boundary conditions from the above initial boundary value problem.

Separation of variables suggests a solution:

u(x, t) =
∑
n

(f̂)ρ(n) cos
√
µntXn(x). (4.37)

Proposition 4.1: Let f ∈ W 1,2
bc [a, b]. Then the series (4.37) converges uniformly

on [a, b] × [0,∞), x → u(x, t) is in W 1,2
bc [a, b] for all t > 0, and u(x, t) is a weak

solution to the wave equation, i.e.,

∫ ∞
0

∫ b

a

u(x, t)[ρ(x)φtt(x, t)− (k(x)φx(x, t))x]dxdt = 0 (4.38)

for all φ ∈ C∞c ([a, b]× [0,∞)).
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Proof. Since f ∈ W 1,2
bc [a, b], we know

∑
n(f̂)ρ(n)2||Xn||22,ρ <∞ and

∑
n

(f̂)k(n)2||X ′n||22,k =
∑
n

µn(f̂)ρ(n)2||Xn||22,ρ <∞.

Consequently the series (4.37) converges in L2([a, b], ρdx) as does the series of term

by term derivatives in the x-variables. The latter defines the weak derivative ux(x, t).

Let

uN(x, t) =
N∑
n=0

(f̂)ρ(n) cos
√
µntXn(x).

Then x→ uN(x, t) is in C1
bc[a, b] and ||uN −u||2,ρ → 0, ||uNx −ux||2,k → 0 as N →∞.

Thus, u ∈ W 1,2
bc [a, b]. By the Sobolev inequality (3.20)

sup
x
|uN(x, t)− u(x, t)| ≤ c||uN − u||W 1,2[a,b]. (4.39)

Notice that

||uN − u||2W 1,2 ≤
∞∑

n=N+1

(f̂)ρ(n)2||Xn||22,ρ +
∞∑

n=N+1

(f̂)k(n)2||X ′n||22,k,

a bound independent of t. Returning to (4.39) shows uN → u uniformly on [a, b] ×

[0,∞). Finally, u(x, t) defines a weak solution of the wave equation is proved by

substituting the series (4.37) into (4.38), integrating term by term, and using the

fact that cos
√
µntXn(x) are solutions of the wave equation.

The above proof also shows that the weak derivative ut(x, t) is given by

ut(x, t) =
∑
n

√
µn(f̂)ρ(n) sin

√
µntXn(x),

the series converges in L2([a, b], ρdx) norm for all t > 0. Consequently, if f ∈
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W 1,2
bc [a, b], the kinetic and potential energies are well defined:

KE(t) =
1

2

∫ b

a

u2t (x, t)ρ(x)dx

PE(t) =
1

2

∫ b

a

u2x(x, t)k(x)dx. (4.40)

Corollary 4.2: Let f ∈ W 1,2
bc [a, b]. Then the kinetic and potential energies are

given by

KE(t) =
1

2

∑
n

µn(f̂)ρ(n)2||Xn||22,ρ sin2√µnt

PE(t) =
1

2

∑
n

µn(f̂)ρ(n)2||Xn||22,ρ cos2
√
µnt. (4.41)

Furthermore, conservation law holds:

KE(t) + PE(t) =
1

2

∑
n

µn(f̂)ρ(n)2||Xn||22,ρ = E.

Proof. Follows from x → ux(x, t) ∈ W 1,2
bc [a, b] and the fact that ut ∈ L2([a, b], ρdx)

Physically, the total energy should be balanced, in some sense, between its

kinetic and potential forms. We introduce average kinetic and potential energy as:

AKE = lim
L→∞

1

L

∫ L

0

KE(t)dt

and APE = lim
L→∞

1

L

∫ L

0

PE(t)dt.

Corollary 4.3: Let the boundary conditions be of the type D, N, or M and f ∈

W 1,2
bc [a, b]. Then AKE = 1

2
E = APE, where E is the total energy.

Proof. We use the formulas from Corollary 4.2. Since
∑

n µn(f̂)ρ(n)2||Xn||22,ρ con-
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verges we may integrate term by term.

∫ L

0

KE(t)dt =
1

2

∑
n

µn(f̂)ρ(n)2||Xn||22,ρ
∫ L

0

sin2√µntdt

=
1

2

∑
n

µn(f̂)ρ(n)2||Xn||22,ρ
∫ L

0

1− cos 2
√
µnt

2
dt

=
L

4

∑
n

µn(f̂)ρ(n)2||Xn||22,ρ(1−
sin 2
√
µnL

L
)

We then obtain AKE by dividing by L and taking the limit as L→∞.

lim
L→∞

1

L

∫ L

0

KE(t)dt = lim
L→∞

1

4

∑
n

µn(f̂)ρ(n)2||Xn||22,ρ(1−
sin 2
√
µnL

L
)

=
1

4

∑
n

µn(f̂)ρ(n)2||Xn||22,ρ

Clearly, from the formula given in Corollary 4.2, AKE = 1
2
E. A similar proof ap-

plied to APE yields APE = 1
2
E.

4.3 The Wave Equation and Energy in Case R

We now look at the initial boundary value problem (4.36) where the bound-

ary conditions are from R:

BC:


b1ux(a, t)− u(a, t) = 0,

b2ux(b, t) + u(b, t) = 0, b1, b2 ≥ 0

(4.42)

Returning to (4.34) it is now necessary to compute
∫ b
a
k(x)[f ′(x)]2dx, but as

it was shown in Section 2.4, {X ′n(x)} (which includes f ′) is not necessarily orthogo-

nal with respect to L2-norm. However, physically, f(x) should satisfy the boundary

conditions, specifically suppose f ∈ C2[a, b] and satisfies the boundary conditions.
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Then, through integration by parts,

∫ b

a

k(x)f ′(x)f ′(x)dx = [k(x)f(x)f ′(x)]ba −
∫ b

a

f(x)(k(x)f ′(x))′dx

= [k(b)f(b)f ′(b)− k(a)f(a)f ′(a)]−
∫ b

a

f(x)(k(x)f ′(x))′dx

= −
[
k(b)f 2(b)

b2
+
k(a)f 2(a)

b1

]
+

∫ b

a

f · Lfρdx,

where the operator L is defined by

Lf =
−1

ρ
(kf ′)′. (4.43)

Noting that LXn = −1
ρ

(kX ′n)′ = −1
ρ

(−µnρXn) = µnXn, f and Lf can be written as:

f ∼
∑
n

(f̂)ρ(n)Xn(x)

Lf ∼
∑
n

(f̂)ρ(n)LXn(x) =
∑
n

µn(f̂)ρ(n)Xn.

Then the integral on the right in the integration by parts can be written as a sum.

∫ b

a

f · Lfρdx =
∑
n

µ2
n(f̂)ρ(n)2||Xn||22,ρ

Now, we substitute this information into (4.34):

E = −
[
k(b)f 2(b)

2b2
+
k(a)f 2(a)

2b1

]
+

1

2

∞∑
n=1

µ2|(f̂)k(n)|2||Xn||22

+
k(b)

2b2
f 2(b) +

k(a)

2b1
f 2(a)
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or,

E =
1

2

∞∑
n=1

µ2(f̂)k(n)2||Xn||22.

So, the total energy, E, in the system is 1
2

∑∞
n=1 µ

2(f̂)k(n)2||Xn||22.

The solution of this problem is

u(x, t) =
∞∑
n=1

f̂(n) cosλntXn(x).

Given this backdrop and similar calculations earlier in this section, Parseval’s Equal-

ity may again be used to calculate the expression for kinetic energy. From (1.2),

KE(t) =
1

2

∫ b

a

u2t (x, t)ρ(x)dx

=
1

2

∞∑
n=1

λ2nf̂
2(n)||Xn||22 sin2 λnt.

Now, the total potential energy is then

PE(t) =
1

2

∫ b

a

u2x(x, t)ρ(x)dx+

[
k(b)u2(b, t)

2b2
+
k(a)u2(a, t)

2b1

]
=

1

2

∞∑
n=1

λ2nf̂
2(n)||Xn||22 cos2 λnt.

This value can be computed by subtracting the kinetic energy from the total en-

ergy.

We can now formulate the analog of Proposition (4.1) and its corollaries as

follows. Let C2
rr[a, b] be the class of C2-functions on [a, b] that satisfy the Robin

boundary conditions. Let W 2,2
rr [a, b] be its completion relative to the norm

||f ||2W 2,2 = ||f ||22,ρ + ||f ′||22,k + ||Lf ||22,ρ,
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where L is defined in (4.35).

Proposition 4.4: Let f ∈ W 2,2
rr [a, b]. Then,

u(x, t) =
∑
n

(f̂)ρ(n) cos
√
µntXn(x) (4.44)

is a weak solution of the initial boundary value problem (4.36) with boundary con-

ditions replaced by (2.13). Furthermore the kinetic and potential energies are given

by (4.41) and energy equipartition holds:

AKE =
1

2
E = APE.

Proof. Because
∑

n µn(f̂)ρ(n)2||Xn||22,ρ converges and using the notation from the

proof of Proposition (4.1),

sup
t
||UN(·, t)− u(·, t)||2,ρ → 0

as N → ∞. This suffices to justify term by term integration in (4.38) as in the

proof of Proposition (4.1). The rest of the proof follows from our computations.
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5. CONCLUSION

The energy equipartition principle has now been proven for Dirichlet, Neu-

mann, mixed, and Robin boundary conditions. This principle states that the ki-

netic energy and potential energy, when averaged over time, equally divide the total

energy in the vibrating string. Essential in the proof of this principle is the conver-

gence of the series
∑

n µn(f̂)ρ(n)2||Xn||22,ρ. This result was obtained by placing f

in the Sobolev space W 1,2
bc [a, b], a space that was specifically constructed to ensure

that f would meet the necessary conditions for a solution to exist and for conver-

gence to occur.

In the Robin case, many of the same calculations were completed. An en-

ergy conservation law was found and explicit forms for kinetic and potential energy

were stated. Here, Parseval could not be used directly to calculate the potential en-

ergy, as, while X ′n(x) is always orthogonal, X ′n(x) was shown not to be an orthogo-

nal system with respect to the L2-norm. Remarkably, the values for kinetic and po-

tential energy took the same form for the Robin case as they did for the Dirichlet,

Neumann, and mixed cases. Should we have presumed to use Parseval’s equality for

the Robin case, the same result would have been reached.

To conclude, we defined a space in W 1,2
bc [a, b] for f when the wave equation

has Robin boundary conditions. This case required stricter conditions on f than

the previous cases, but based on the energy forms, an energy equipartition principle

could be established for the Robin case, as well. The calculation was almost iden-

tical to the calculations proving Corollary 4.3. So, despite significantly more com-

plicated boundary terms, the same even separation of average kinetic and potential

energy still holds.
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