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INTRODUCTION

In order to study projective planes, one must first understand the reasoning be-

hind studying the field and the history of it. In most high schools, students learn

about what is called Euclidean geometry. Around 300 B.C., the Greek geometer

Euclid formalized roughly everything known about geometry up to that point in his

book Euclid’s Elements [2]. The ideas in this book are still widely used today and

have inspired other fields of geometry.

Around the nineteenth century, mathematicians started to pull ideas from Eu-

clid’s Elements and apply them to other areas of our world that do not necessarily

fit in with distance and angles [2]. The idea of how to develop other ideas was to

take an axiomatic approach. This is the case in most branches of mathematics in

today’s times, but this process was first applied to projective geometry [6]. Mathe-

maticians such as Pappus of Alexandria, Girard Desargues, Johannes Kepler, Blaise

Pascal, J. V. Poncelet, and Karl von Staudt made large strides in this field and de-

veloped many of the foundations and terminology [9]. Desargues and Pascal’s work

hinted at projective geometry, but Poncelet gave a systematic development in the

early nineteenth century [1].

When beginning to study projective geometry, the questions were “How do we

see things?” and “Do we ever see a thing exactly as it is?” [6]. Consider paintings

or drawings of train tracks continuing into the distance of the picture. We know in-

tuitively that the rails remain parallel and will never cross. However, in paintings

or in real life, our perception is that they do meet at some point. James M. Smart

states that “this concept includes the principle that parallel lines seem to converge

as they recede from the viewer” [8]. Thus, the study of projective geometry came

about by considering these parallel lines meeting an some infinite point. This is of-

ten referred to in art as one-point perspective. Desargues was the first to consider
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these points and Poncelet coined the term “points at infinity” when referring to

these points [1]. The term “line at infinity” refers to the collection of these points

at infinity (the line containing all of these points). Now consider a chair. Depend-

ing on the angle at which we look at the chair, the object looks totally different.

We could view it from the bottom, side, or top and we might see different objects.

One can use these perspectives to create a projective plane consisting of points and

lines.

The study of projective geometry is important because we can use this field to

develop many different non-Euclidean geometries. These geometries are necessary

for ideas in sciences and technology such as relativistic cosmology [2]. While this is

the historical background behind the field, the primary purpose of this particular

study is to generalize the Euclidean and projective geometries in a more abstract

and axiomatic framework. We will then look at general properties of affine and pro-

jective planes as well as to determine the possible orders of finite projective planes.

We will use other abstract models such as Latin Squares, Perfect Difference Sets,

Ternary Rings, and Near-Fields in order to construct affine and projective planes.
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x

INCIDENCE GEOMETRY

Definition 1: An Incidence Geometry is a set of elements we will call points P

and a set of elements we will call lines L where P ∩ L = ∅ and an incidence set

I ⊆ P × L. If (p, L) ∈ I, where p ∈ P and L ∈ L, then p is said to be incident to L.

The geometry must also satisfy the following axioms:

A1. For every p, q ∈ P where p 6= q, there exists a unique L ∈ L such that

(p, L), (q, L) ∈ I. This line is denoted ←→pq .

A2. Given L ∈ L, there exists a p, q ∈ P such that (p, L), (q, L) ∈ I.

A3. There exists p, q, r ∈ P such that there does not exist an L ∈ L where (p, L),

(q, L), (r, L) ∈ I.

Informally, what all of this means is that for an incidence geometry, there are a

set of points P and a set of lines L such that a point can never be a line. But there

are incidence relations among the points and lines and each of the relations are con-

tained in the set I. Used throughout this paper are other common phrases instead

of explicitly saying that a point is incident to a line. For example, a point lies on

a line, a line passes through a point, two lines meet at a point, or a line contains a

certain point.

Continuing to examine the definition, A1 informally states that two distinct

points determine a unique line. A2 states that every line contains at least two

points. A3 states that there exists three non-collinear points.

Note that throughout this paper, we will use the terms “geometry” and “plane”

interchangeably.

Definition 2: For a given line L, the set of points incident to L will be denoted

Lpt, i.e. Lpt = {p | (p, L) ∈ I}.
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We will need the following definition.

Definition 3: Two distinct lines L and M are said to be parallel if there are no

points incident to both, i.e. there does not exist a p such that (p, L), (p,M) ∈ I.

This is denoted L ‖M .

As terminology used throughout this paper, if two lines L and M are parallel,

we will say that they are in the same family and the set of all parallel lines to L

including L will be called a family of parallel lines.

An incidence geometry is one of the most basic types of geometries and most ge-

ometries studied are incidence geometries. For example, Euclidean geometry, which

is studied in most secondary education programs, is an incidence geometry. When

considering other geometries, the following parallel properties are sometimes in-

cluded in their definition:

P1. The Euclidean Property states that for every line L and every point p not inci-

dent to L, there exists a unique line M through p such that L ‖M .

P2. The Elliptic Property states that for every line L and every point p not inci-

dent to L, there does not exist a line M through p such that L ‖ M , i.e. there

are no parallel lines.

P3. The Hyperbolic Property states that for every line L and every point p not

incident to L, there exists more than one line through p that is parallel to L.

The following figures are given as examples of the three parallel properties. Fig-

ure 1 shows a geometry satisfying P1. If you choose any line and a point not lying

on that line, there is only one line through that point parallel to the line. The only

set of parallel lines difficult to see is the diagonal lines which happen to be parallel.

Figure 2 shows a geometry satisfying P2. If you choose any line and a point not

lying on that line, there are no lines through that point that is not incident to the
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Figure 1: Geometry with the Euclidean Parallel Property

original line.

Figure 2: Geometry with the Elliptic Parallel Property

Figure 3 shows a geometry satisfying P3. For example, consider line
←→
RS and

the point Q. The lines
←→
QT and

←→
QP are both parallel to

←→
RS.

However, these three properties are mutually exclusive, i.e. every pair of point

and line in a certain geometry must satisfy the same parallel property. For exam-

ple, consider Figure 4. The point P has only one line through it parallel to the line

L. Thus, this geometry cannot be elliptic nor hyperbolic. Likewise, the point P has

two lines through it parallel to the line L′. Thus, this geometry cannot be euclidean

nor elliptic. Therefore, this geometry does not have a parallel property.

Corollary 1: In an incidence geometry, if two distinct lines meet, they meet at a
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Figure 3: Geometry with the Hyperbolic Parallel Property

Figure 4: Geometry with no Parallel Property

unique point.

Proof. By contradiction, assume two distinct lines L and M do not meet at a unique

point, i.e. they meet at points p and q (p 6= q). By A1, two distinct points deter-

mine a unique line and L and M both pass through p and q. Hence, L = M . Since

this contradicts the assumption that L and M were different lines, then they can-

not meet at more than one point.
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Lemma 1: In an incidence geometry, given any point p, there exists a line L such

that (p, L) /∈ I, i.e. p is not incident to L.

Proof. Let p be a point contained in the plane. By A3, there exists three distinct

non-collinear points a, b, and c. By A1, each pair of points determine a unique

line. In contradiction, assume that p lies on each of the three lines
←→
ab , ←→ac , and

←→
bc . Since p is on

←→
ab and ←→ac , because of Corollary 1, p = a since a is also on both.

Likewise, since p is on ←→ac and
←→
bc , then p = c. Therefore, a = c. This contradicts

the initial statement that they were distinct. Thus, p can’t be on all three lines.

Even if p was on two of the three lines, there still exists one line that does not go

through p.

Theorem 1: Given an incidence geometry, let L and M be two distinct lines and

let p be a point not incident to either line. The cardinality of Lpt − {t ∈ Lpt |
←→
pt ‖

M} is equal to the cardinality of Mpt − {u ∈ Mpt | ←→pu ‖ L}. In other words, if

we remove the number of points x in each line such that ←→xp is parallel to the other

line, then the remaining number of points on each line are equal.

Proof. Given two distinct lines L and M , the claim is that there is a bijection be-

tween the points on “punctured” L and the points on “punctured” M . Given a

point x lying on L, consider ←→xp , which exists by A1. By Corollary 1, if ←→xp meets

M at a unique point y. Define f : Lpt − {t ∈ Lpt |
←→
pt ‖ M} → Mpt − {u ∈ Mpt |

←→pu ‖ L} by f(x) = y.

First, is the function injective? Consider f(x1) = f(x2) where x1, x2 ∈ Lpt − {t ∈

Lpt |
←→
pt ‖ M}. This means that ←→x1p and ←→x2p are incident to M at the same point

y, i.e. ←→x1p = ←→yp = ←→x2p by A1. But ←→x1p meets L at x1 and ←→x2p meets L at x2.

Since ←→x1p = ←→x2p and p is not incident to L, then x1 = x2 by Corollary 1. Thus, the

function is injective.
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Second, is the function surjective? Let y ∈ Mpt − {u ∈ Mpt | ←→pu ‖ L}. Con-

sider ←→py . This line meets L at a unique point x since p is not incident to L and by

Corollary 1. Therefore, by construction, y is on ←→xp . So ←→xp and M meet at y by

Corollary 1 and because p is not incident to M . So f(x) = y and thus the function

is surjective.

Since f is both injective and surjective, then it is a bijective function which

means that there is a one-to-one correspondence between the points on one “punc-

tured” line with another.
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AFFINE GEOMETRY

3.1 Definitions

Definition 4: An Affine Plane is an Incidence Geometry that also satisfies P1.

An example of an Affine Plane is given in Figure 1 above.

Lemma 2: In an affine geometry, given two intersecting lines, there exists a point

not on either of those lines.

Proof. Given two lines, L and M , and an intersection point x, A2 states there are

at least two points on each line, so consider y on L and z on M . By P1, there is a

unique line through z parallel to L. By A2, there is another point on this line, w.

If w was incident to L, then ←→zw would not be parallel to L. If w was incident to M ,

then z = w by A1. Thus, there exists a point w not incident to L and M when L

and M intersect.

Lemma 3: In an affine plane, every line has the same number of points.

Proof. Consider the same set-up given by Theorem 1. There are two cases that

must be considered. Either L and M are parallel or they are not.

If they are not parallel, then by Lemma 2 there will always exist a point p not

incident to L or M . So, consider the set {t ∈ Lpt |
←→
pt ‖ M}. By P1, there is a

unique line through p that is parallel to M . Thus, there is only one t ∈ Lpt such

that
←→
pt ‖ M . Likewise, consider the set {u ∈ Mpt | ←→pu ‖ L}. There is a unique line

through p that is parallel to L. Thus, there is only one u ∈ Mpt such that ←→pu ‖ L.

Since |Lpt| − 1 = |Mpt| − 1, then |Lpt| = |Mpt|.

If L ‖ M , then consider a slightly different set-up that does not require the ex-

tra point p. Consider the line ←→xy where x lies on L and y lies on M , which exists

by A1. Since L intersects with ←→xy , then as previously shown |Lpt| = |←→xy pt|. Like-

wise, since M intersects with ←→xy , then |Mpt| = |←→xy pt|. Therefore, |Lpt| = |Mpt|.
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Definition 5: Define the order of an affine plane to be the number of points on a

line.

For the remainder of this section, n will denote the order of an affine plane.

Lemma 4: The total number of points in an affine plane is n2.

Proof. Consider a line L. By the definition of n, there are n points on L. By Lemma

1, there exists a p that is not incident to L. Given a point x on L, by A1 and since

p is not incident to L, the line ←→xp 6= L. By definition, there are n points on ←→xp as

well. By P1, there is a unique line through each of the n − 1 points on ←→xp that is

parallel to L.

Consider all of the points in the plane. We are claiming that every point is ei-

ther on L or on one of the n − 1 lines parallel to L. If the point is incident to L,

then the claim holds true. If the point y is not incident to L, then there exists a

unique line N through y parallel to L. If N and ←→xp do not meet at any point, then

N ‖ ←→xp . But N ‖ L and therefore L would be parallel to ←→xp which we know that it

cannot be because x is incident to L and ←→xp . Thus, N ∦ ←→xp and so they meet at z.

Since z is on ←→xp , then this line was already considered in our n − 1 parallel lines to

L. Therefore, every point in the plane is either on L or on the n− 1 parallel lines to

L. In other words, a family of parallel lines partitions the number of points in the

plane.

So there are n parallel lines each with n points on them in which no other points

exist in the plane. Hence, there are n · n = n2 points in the plane.

Note that in this paper we are mainly concerned with finite projective planes,

but if n were infinity, this idea still makes sense due to cardinal arithmetic. As well,

note the result that a family of parallel lines partitions the number of points in the

plane will be used throughout this paper.

Lemma 5: In an affine plane, the number of lines in a family of parallel lines is n.

10



Proof. Given a line L, consider L and all of the lines parallel to L. As seen in the

proof for Lemma 4, this family of parallel lines partitions the points in the plane. If

there existed a point x incident to two lines in this family M and N , then M ∦ N

and therefore M = N by definition of the family. Since every line has n points and

since the lines in a family of parallel lines partition the n2 points in a plane, then

there are n2

n
= n lines in each family of parallel lines.

Lemma 6: The number of lines through a point in an affine plane is n+ 1.

Proof. Let p be a point contained in a plane of order n. By Lemma 1, there exists

a line L not incident to p. Since there are n points on L and every pair of distinct

points determine a unique line, there are n lines through p. By P1, there is also a

unique line through p that is parallel to L. Thus, there are n + 1 lines through the

point p.

Lemma 7: The total number of lines in an affine plane is n2 + n.

Proof. Given a line L, there are n points incident to L. By Lemma 6, each of the

points have n + 1 lines through it. If you do not count L, then there are n lines

through each of the points on L. Thus, there are n lines through each of the n

points and L, i.e. n(n) + 1 = n2 + 1 lines considered so far. But, by Lemma 5,

there are n− 1 lines parallel to L. Therefore, there are n2 + 1 + n− 1 = n2 + n lines

in a plane of order n.

Lemma 8: In an affine plane, there are n+ 1 families of parallel lines.

Proof. By Lemma 7, there are n2 + n lines in an affine plane. By Lemma 5, there

are n lines in each family of parallel lines. Thus, there are n2+n
n

= n(n+1)
n

= n + 1

families of parallel lines.
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3.2 Affine Plane From A Field

Definition 6: A field is a commutative ring with multiplicative identity in which

all nonzero elements are units. Furthermore, the multiplicative identity 1 is not

equal to the additive identity 0.

Definition 7 (Affine Plane over a Field): Given a field F, the affine plane over F,

denoted A2
F has points P = F2 = {(x, y) | x, y ∈ F} and lines L = {〈m, b〉 | m, b ∈

F} ∪ {〈c〉 | c ∈ F} where

1. (x, y) is incident to 〈m, b〉 if and only if y = mx+ b

2. (x, y) is incident to 〈c〉 if and only if x = c

Note that A2
R is the usual coordinatized Euclidean Plane.

Lemma 9: For an affine plane, A2
F,

(1) Two lines 〈m, b〉 and 〈n, c〉 are parallel if and only if m = n and b 6= c.

(2) The lines 〈c〉 and 〈d〉 are parallel if and only if c 6= d.

(3) Moreover, 〈m, b〉 is never parallel to 〈c〉.

Proof. (1) First, we want to show that if 〈m, b〉 and 〈n, c〉 are parallel, then m = n

and b 6= c. We can show this using the contrapositive which states that if m 6= n

or b = c, then 〈m, b〉 and 〈n, c〉 are not parallel. So if m 6= n, then the intersection

point is at x = c−b
m−n . Thus 〈m, b〉 and 〈n, c〉 are not parallel. If b = c, then (0, b) is

on both lines and therefore 〈m, b〉 and 〈n, c〉 are not parallel.

Next, we want to show that if m = n and b 6= c, then 〈m, b〉 and 〈n, c〉 are

parallel. By way of contradiction, suppose there exists an (x, y) such that (x, y) is

on both lines. Therefore, y = mx+b and y = nx+c. By elimination, 0 = b−c which

means that b = c. Thus, there cannot exist an (x, y) where the two lines intersect.

This means 〈m, b〉 and 〈n, c〉 are parallel.

12



(2) Now we want to show that if 〈c〉 and 〈d〉 are parallel, then c 6= d. We can

show this using the contrapositive that states if c = d, then 〈c〉 and 〈d〉 are not

parallel. So if c = d, then (c, a) is on both lines are therefore are not parallel for all

a ∈ F. Next, we want to show that if c 6= d, then 〈c〉 and 〈d〉 are parallel. By way of

contradiction, assume there exists a point (x, y) incident to both lines. This means

x = c and x = d which means that c = d. Thus, there cannot exist an (x, y) where

the two lines intersect. This means 〈c〉 and 〈d〉 are parallel.

(3) Lastly, 〈m, b〉 and 〈c〉 meet at the point (c,mc + b) regardless of the values.

Therefore, they can never be parallel.

Theorem 2: A2
F is an affine plane.

Proof. To prove that A2
F is an affine plane, it must satisfy the four axioms of an

affine plane.

A1. Do two distinct points determine a unique line?

Given two points (x1, y1) and (x2, y2), first assume x1 6= x2. Note that both

of these points cannot be on a 〈c〉 because if they were, then c = x1 and c =

x2 which would imply that x1 = x2 which is a contradiction. To find a line

between these two points, let m = y1−y2
x1−x2 and b = y2x1−y1x2

x1−x2 . To verify that

these points are on the line,

mx1 + b =
y1 − y2
x1 − x2

x1 +
y2x1 − y1x2
x1 − x2

=
(y1 − y2)x1 + y2x1 − y1x2

x1 − x2

=
y1x1 − y2x1 + y2x1 − y1x2

x1 − x2

=
y1x1 − y1x2
x1 − x2

=
y1(x1 − x2)
x1 − x2
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= y1

mx2 + b =
y1 − y2
x1 − x2

x2 +
y2x1 − y1x2
x1 − x2

=
(y1 − y2)x2 + y2x1 − y1x2

x1 − x2

=
y1x2 − y2x2 + y2x1 − y1x2

x1 − x2

=
−y2x2 + y2x1
x1 − x2

=
y2(x1 − x2)
x1 − x2

= y2

Thus, there is a line between (x1, y1) and (x2, y2). To show that this line is

unique, assume that 〈m, b〉 and 〈n, c〉 are two lines that go through (x1, y1)

and (x2, y2). Thus we get the following four equations,

y1 = mx1 + b y1 = nx1 + c

y2 = mx2 + b y2 = nx2 + c

Just looking at corresponding equations and using the transitive property,

mx1 + b = nx1 + c mx2 + b = nx2 + c

Using elimination by subtracting the right hand equation from the left hand

equation,

mx1 −mx2 + b− b = nx1 − nx2 + c− c

mx1 −mx2 = nx1 − nx2

Therefore, m(x1 − x2) = n(x1 − x2). Since x1 6= x2 and they are both elements

of a field, m = n. Thus, since m = n, mx1 + b = mx1 + c reduces to b = c.
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Hence, since m = n and b = c, 〈m, b〉 = 〈n, c〉. Therefore the line between

these two points is unique.

Now assume x1 = x2 = c. Note that these lines can’t be on an 〈m, b〉 line. In-

deed, if they were, then y1 = mc + b and y2 = mc + b which would imply that

y1 = y2 which means that the points are not distinct. Thus, the line would

be 〈c〉. To show that this line is unique by way of contradiction, let’s assume

that two lines 〈c1〉 and 〈c2〉 go through these two points. Then by construc-

tion, c = c1 and c = c2. Thus, c1 = c2 and therefore 〈c1〉 = 〈c2〉. Therefore the

line between these two points is unique.

A2. Does every line contain at least 2 points?

Regardless of the field, there always exists 0, the additive identity and 1, the

multiplicative identity where 0 6= 1. Therefore, given the line 〈m, b〉, the

points (0, b) and (1,m + b) are on that line. Likewise, given the line 〈c〉, the

points (c, 0) and (c, 1) are on that line. Thus, every line contains at least 2

points.

A3. Do there exist three non-collinear points?

We have three points (0, 0), (0, 1), and (1, 0). The line through the first two

is 〈0〉. The point (1, 0) is not incident to 〈0〉 because then 1 = 0 which is

certainly not true. Thus, there are 3 non-collinear points.

P1. Does it satisfy the euclidean property?

Given the line 〈m, b〉 and the point (x1, y1) which is not incident to 〈m, b〉, the

parallel line would be 〈m, y1 −mx1〉. This line is parallel because of Lemma 9

(1). To show this line is unique, assume there is another line through (x1, y1),

〈m, b′〉. Since (x1, y1) is incident to both lines,

y1 = mx1 + y1 −mx1 and y1 = mx1 + b′
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Thus,

mx1 + y1 −mx1 = mx1 + b′

y1 −mx1 = b′

Since y1 −mx1 = b′, then these two lines are the same line. Thus, this line is

a unique line.

Now consider the line 〈c〉 and the point (x1, y1) which is not incident to 〈c〉.

The parallel line would be 〈x1〉. This line is parallel because of Lemma 9 (2).

To show this line is unique, assume there is another line through (x1, y1), 〈d〉.

By construction, then d = x1 which would mean that the two lines are the

same. Thus, this line is a unique line.

Since A2
F satisfies all four axioms of an affine plane, then it is an affine plane.

Figure 5 shows an example of an affine plane other than A2
R. This happens to

be the affine plane over the field F2 = {0, 1}. The set of points in F2
2 are P =

{(0, 0), (0, 1), (1, 0), (1, 1)} and the set of lines are L = {〈0, 0〉, 〈0, 1〉, 〈1, 0〉, 〈1, 1〉, 〈0〉, 〈1〉}.

Most of the lines are similar to what you would see in A2
R except the line 〈1, 1〉. Re-

call from the construction that this line corresponds to the equation x + 1 = y.

Therefore (0, 1) is incident to this line because 0 + 1 = 1. As well, (1, 0) is incident

to this line because 1 + 1 = 2 ≡ 0 (mod 2). Note that this geometry is the same one

seen earlier in Figure 1.

Even though this plane came from an intuition of the normal xy-plane, the

points and lines do not have to be in that specific order. For example, Figure 6 is

isomorphic to Figure 5.
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Figure 5: Affine Plane over F2
2

Figure 6: A Graph Isomorphic to Figure 5
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PROJECTIVE GEOMETRY

4.1 Definitions

Definition 8: A Projective Plane is an Incidence Geometry that satisfies P2 as

well as

A2+. Given L ∈ L, there exists distinct p, q, r ∈ P such that (p, L), (q, L), (r, L) ∈ I.

The axiom A2+ informally states that each line now must contain at least three

points instead of two.

The smallest plane is called the Fano Plane seen in Figure 7. The Fano Plane

has 7 points and 7 lines: the six normal lines and the one in the center that looks

like a circle. One can go through each of the axioms to verify that the Fano Plane

is a projective plane.

Figure 7: Fano Plane

Corollary 2: In a projective plane, each pair of lines meet at a unique point.

Proof. By Corollary 1, every pair of lines either meet at one unique point or they

don’t meet at all. But by P2, every pair of lines meet at some point, therefore they

can’t not meet. Thus, every pair of lines meet at a unique point.
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Lemma 10: Given two lines in a projective plane, there exists a point not on either

of those lines.

Proof. By Corollary 2, given two distinct lines, L and M , they meet at a unique

point, p. By A2+, these lines have another point on them, q on L and r on M .

Since these lines only meet at one point, q is not on M and r is not on L. There-

fore, q 6= r. Then by A1, there exists a unique line ←→qr through q and r. A2+ states

there exists another point s on ←→qr . Using Corollary 2, s does not lie on L nor M .

Thus, given two lines, there exists a point not on either of these.

Theorem 3: In a given projective plane, every line contains the same number of

points.

Proof. Let L and M be two distinct lines in the same set-up given by Theorem 1.

By Lemma 10, there exists a point p not incident to either line. Since there are no

parallel lines in a projective plane, |{t ∈ Lpt |
←→
pt ‖ M}| = |{u ∈ Mpt | ←→pu ‖ L}| = 0.

Thus, the function would just map Lpt to Mpt, i.e. f : Lpt →Mpt.

Since f is both injective and surjective, then it is a bijective function which

means that there is a one-to-one correspondence between the points on one line

with another. Thus, every line contains the same number of points.

Definition 9: For a given projective plane, define the order of the plane to be the

number of points on a given line minus 1.

Thus, there are n + 1 points on each line. Note that a projective plane cannot

have order 1, i.e. n ≥ 2. If it was possible, then this would violate A2+ because

there would be 1 + 1 = 2 points on each line.

In the Fano Plane, as mentioned earlier, the order is n = 2. There are 3 points

on each line, which is n + 1. As an example for the following lemmas and theorems,

the Fano Plane is a good way to see what is going on. So by Theorem 4, there are
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n+1 = 3 lines through each point. By Theorem 5, there are n2+n+1 = 22+2+1 = 7

total points and 7 total lines in the plane.

Theorem 4: In a projective plane of order n, every point has n + 1 lines through

it.

Proof. Let p be a point contained in a plane of order n. By Lemma 1, there exists

a line L that does not go through p. Since there are n + 1 points on L and every

pair of distinct points determine a unique line, there are n + 1 lines through p.

Because of P2, there cannot be any other lines through p. If there were another

line through p, then that line would also have to cross L at some point. Since every

point on L was already considered, then this line was already considered. There-

fore, there are n+ 1 points through any given point.

Theorem 5: The total number of points in a projective plane of order n is given

by n2 + n+ 1. The number of lines is also n2 + n+ 1.

Proof. Let p be a point contained in a plane of order n. From Theorems 3 and 4,

there are n + 1 lines that go through p and each of those lines have n + 1 points on

them. Since each line has n + 1 points on it, there are n points remaining on each

line because p is already defined as being on each of those lines. Thus, there are n

points on n + 1 lines and p. Therefore, there are n(n + 1) + 1 = n2 + n + 1 points

total in the plane.

Let L be a line contained in a plane of order n. From Theorems 3 and 4, there

are n + 1 points on L and each of those points have n + 1 lines through them them.

Since each point has n+ 1 lines through it, there are n lines remaining through each

line because L is already defined as going through those points. Thus, there are n

lines going through n+1 points and L. Therefore, there are n(n+1)+1 = n2+n+1

lines total in the plane.
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4.2 Duality

In projective geometry, every dual statement in which the lines and points swap

roles is a theorem. Each of the axioms can be used to prove the dual of each axiom.

The duals of each axiom are as follows:

A1. Two distinct lines determine (intersect at) a unique point.

Proof. This is precisely Corollary 2.

A2+. There are at least three lines through each point.

Proof. By A2+, there are at least three points on each line. Thus, the order

is at least 2. By Theorem 4, there are n + 1 lines through each point. Thus,

there are at least 2 + 1 = 3 lines through every point.

A3. There exist three non-concurrent lines.

Proof. By A3, there exist three non-collinear points p, q, and r. Consider the

lines ←→pq , ←→qr and ←→pr . Since each pair of these lines meet at one of the three

named points, then they cannot meet elsewhere by A1. Therefore, ←→pq , ←→qr

and ←→pr do not all three go through the same point and thus they are non-

concurrent.

P2. Given a point p and all lines L that don’t pass through p, consider a point q

on L. There will always exist a line M through both p and q.

Proof. By A1, two points determine a unique line, thus M will always exist.

Given any projective plane, you can get a “new” plane by taking it’s dual (by

switching the role of the lines and points).
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4.3 Projective Plane From An Affine Plane

Given an affine plane, define a relation on the lines of an affine plane by

l ∼ m ⇐⇒ l ‖ m or l = m

Proposition 1: This relation is an equivalence relation.

Proof. To prove this is an equivalence relation, it must be reflexive, symmetric, and

transitive.

1. Is the relation reflexive? Does l ∼ l? Because l = l, then l ∼ l. Thus, it is

reflexive.

2. Is the relation symmetric? Is l ∼ m imply m ∼ l? Since l ∼ m, then either

l ‖ m or l = m. If l ‖ m, then because parallelism is symmetric, then m ‖ l.

Otherwise, if l = m, then because equality is symmetric, then m = l. Regard-

less of the case, m ∼ l and thus the relation is symmetric.

3. Is the relation transitive? If l ∼ m and m ∼ n, does this imply that l ∼ n?

This must be split into several different cases,

(i) If l = m, then l ∼ n because m ∼ n.

(ii) If l ‖ m and m = n, then l ‖ n and thus l ∼ n.

(iii) If l ‖ m and m ‖ n, then either l = n or l 6= n. If l = n, then l ∼ n.

Otherwise, if l 6= n, we claim that l ‖ n. This is because if l ∦ n, then

there would exist a point p on both l and n. Because they are parallel to

m, p is not incident to m. Thus, by the euclidean property, there must

be a unique line through p parallel to m. But since l and n are distinct

lines through p and we assumed l 6= n, then there can’t exist a point p

and thus they are parallel. Therefore l ‖ n, hence l ∼ n.
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Regardless of the case, we have l ∼ n making the equivalence relation transi-

tive.

The equivalence class [l] is the set of lines that are equivalent to l. As described

in the introduction, Poncelet had these points that he called “points at infinity.”

In this construction, we are going to consider every equivalence class [l] as a point

at infinity. So given any affine plane A, we want to construct the projective plane

from A such that the set of points are the points of A and the points at infinity,

i.e., there are more points in the projective plane than in A. The set of lines in the

projective plane are the lines of A and the line at infinity. This new line is the line

that is incident to all of the points at infinity and none of the originial points of A.

Definition 10: More formally, given an affine plane A, a projective plane con-

structed from A denoted Proj(A) is formed from points being P = {p | p ∈ A}∪{[l] |

l ∈ A} and lines L = {l | l ∈ A} ∪ {l∞} where

1. p is incident to l if and only if p is incident to l in A

2. p is never incident to l∞

3. [l] is incident to m where m ∈ [l] in A

4. [l] is always incident to l∞

Theorem 6: Proj(A) is a projective plane.

Proof. The four axioms of a projective plane:

A1. Do two distinct points determine a unique line?

If given two distinct points p and q, then by A1, they would determine a

unique line because the points are also in A. If given two distinct points [l]

and [m], then by definition they are both on l∞. They cannot be on another
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line n because if [l] and [m] were incident to n, then n ∈ [l] and n ∈ [m]

which would mean that [l] = [m] since equivalence classes are always a dis-

joint partition of a set. If given two distinct points p and [l], the line through

them cannot be l∞ by definition, therefore they must be on a line m. There-

fore, m ∈ [l] and p is incident to m in A. Because m ∈ [l], then either m = l

or m ‖ l. If p is incident to l, then m = l. If p is not incident to l, then by the

euclidean property, there is a unique line through p parallel to l, which is m

in this case.

A2+. Does each line contain at least three points?

Since this plane comes from an affine plane, every line l contains at least two

points. In this construction, we are adding a point at infinity, [l] to each l.

Thus, each line from A has three points incident to it. Are there three points

on l∞? Since there are three non-collinear points a, b, c ∈ A, then there are

three distinct lines
←→
ab ,←→ac ,

←→
bc ∈ A. Thus, [

←→
ab ], [←→ac ], and [

←→
bc ] are all incident

to l∞.

A3. Do there exist three non-collinear points?

By A3, there exists three points in A that are non-collinear. Since all of those

points are still in Proj(A), then they are still non-collinear.

P2. Does every pair of lines meet at some point?

Given two distinct lines, l and m, then either they do meet in A or they don’t

meet. If they do meet in A, then they would still meet in Proj(A). If they did

not meet in A, then they are in the same equivalence class (they were paral-

lel). By part 3 of Definition 10, these lines meet at [l] in Proj(A). If given the

distinct lines l and l∞, then by definition, [l] is incident to l and l∞.

Since Proj(A) satisfies all four axioms of a projective plane, then it is a projective
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plane.

Looking back at the example from above in Figures 5 and 6 with the affine

plane F2
2, we can construct a projective plane using this. First, we need the equiv-

alence classes from F2
2. Thus, which lines never cross at a point? The following

equivalence classes are obtained:

E = [〈0, 0〉] = {〈0, 0〉, 〈0, 1〉}

C = [〈1, 0〉] = {〈1, 0〉, 〈1, 1〉}

B = [〈0〉] = {〈0〉, 〈1〉}

Therefore, in constructing Proj(F2
2), the set of points are P = {p | p ∈ F2

2} ∪

{E,C,B} and the set of lines are L = {l | l ∈ F2
2} ∪ {l∞}. The plane would look

roughly like Figure 8.

Figure 8: Projective Plane from the Affine Plane over F2
2

The dotted lines indicate the extensions of previous lines from Figure 6 and the

25



line at infinity (the circle). Note that this plane is isomorphic to the Fano Plane

first discussed where the original four points are D, G, A, and F , respectively and

E, C, and B from this example correspond to those points in Figure 7.

4.4 Affine Plane From A Projective Plane

One thing that needs to be considered is if we are given a projective plane, can

we return back to an affine plane? In other words, can we take out one line as well

as the points on it and result in an affine plane? So given a projective plane, P ,

let’s take out the line at infinity containing the points at infinity and check the ax-

ioms of an affine plane to see if we get an affine plane.

Definition 11: More formally, given a projective plane P , an affine plane con-

structed from P denoted Aff(P ) is formed from removing one line from the set of

lines in P and all of the points incident to that line.

Lemma 11: Given a line l in a projective plane P , there exists three non-collinear

points that are not incident to l.

Proof. Given a line l, there exists two points incident to l, a and b. Because of P3,

since there are three non-collinear points in P , there exists a point c not incident to

l. By A1, ←→ac and
←→
bc are two distinct lines. A2+ states that there are three points

on each line. So there exists a point d incident to ←→ac and a point e incident to
←→
bc .

Because these two lines are distinct, c, d, and e are non-collinear and are not inci-

dent to l. If they were the same line, then they would be incident to l at a and at b.

Therefore, the two lines are distinct.

Theorem 7: Aff(P ) is an affine plane.

Proof. The four axioms of an affine plane:
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A1. Do two distinct points determine a unique line?

Given two distinct points not on the removed line, p and q, they determined a

unique line in P . Therefore, since we are removing one line and those points

incident to the line, then p and q still determine that one unique line.

A2. Does every line contain at least 2 points?

Recall from projective planes, each line had at least 3 points. So accounting

for each line losing one point (those points at infinity), each line still has at

least two points.

A3. Do there exist 3 non-collinear points?

From Lemma 11, if you remove one line, there are still three non-collinear

points not incident to that line.

P1. Does it satisfy the euclidean property?

Given two lines l and m with intersection at q and a point p not incident to

either of the lines, let n be the unique line through p and q by A1. If l is the

line removed, then q is also removed. Therefore, m and n have no intersec-

tion point. In other words, m and n are parallel to each other. Thus, given a

line m and a point p, there exists a line parallel to m through p. Is this line

unique? Assume there exists another line n′ through p that is also parallel to

m. Through the original construction with P2, n′ and m intersect at a point

r. If r 6= q, then r would still be left in the plane once l is removed. Thus, m

and n′ would still intersect. Therefore, r = q. Since r = q, then n = n′ and

thus the line is unique.

Since Aff(P ) satisfies all four axioms of an affine plane, then it is an affine plane.
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It should be noted that if you begin with an affine plane A of order n and con-

structed P = Proj(A), you would not necessarily end up with A when constructing

Aff(P ). If you took out the same line at infinity that you added to the affine plane,

then you would get the same plane back. But if you take another line out, it is con-

ceivable that this plane might not be isomorphic to the original affine plane.

4.5 Projective Plane Directly From A Field

The plan under this construction from a field is to use equations to obtain our

incidence relations and use three-tuples from elements in our field as points and

lines. We can think about the following construction using Euclidean three-space

for geometric intuition. Consider the plane z = 1 and all of the lines through the

origin. Since z = 1 is the xy-plane shifted up one unit, the points in z = 1 make

up an affine plane because of Theorem 2. There is a one-to-one correspondence be-

tween the points in this plane and some of the lines through the origin in R3. This

correspondence is given by taking the line through the point in the plane z = 1 and

the origin. Note that horizontal lines do not arise in this way. We will identify the

points in the affine plane with non-horizontal lines through the origin in R3. Simi-

larly, every line in z = 1 corresponds to a plane through the origin in R3 (except for

the xy-plane).

Recalling our construction of a projective plane from an affine plane, we need to

add points at infinity and a line at infinity. Given a line in the plane z = 1 and a

sequence of points going toward infinity, the corresponding lines in R3 become more

and more horizontal and the limit will lie in the xy-plane. These will be our points

at infinity and the xy-plane will be the line at infinity.

The equation of a line parametrically in three-space is given by x = αt, y = βt,

and z = γt; so we can represent lines by (α, β, γ). However, noting that multiply-
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ing this triple by a scalar to results in the same line which motivates the need for

Proposition 2.

The equation of a plane in three-space is given by ax + by + cz = d. Since we

want the planes to go through the origin, we instead use ax+ by+ cz = 0; so we can

represent these planes as 〈a, b, c〉. Likewise, noting that multiplying this triple by a

scalar results in the same plane which motivates the need for Proposition 3.

We know that a line is incident to a plane whenever there is equality through

the equation of our plane, i.e. when ax + by + cz = 0. Since we know the equations

of our lines parametrically, ax + by + cz = a(αt) + b(βt) + c(γt) = 0. Since we want

this to be true for all t, then we need to consider t 6= 0 and thus a line is incident to

a plane whenever aα + bβ + cγ = 0.

For a given field, F, define a relation for the points on triples (α, β, γ) 6= (0, 0, 0)

where (α, β, γ) ∈ F3 such that, for some λ 6= 0,

(α, β, γ) ∼ (α′, β′, γ′) ⇐⇒ (α, β, γ) = λ(α′, β′, γ′)

Proposition 2: This relation is an equivalence relation.

Proof. To prove this is an equivalence relation, it must be reflexive, symmetric, and

transitive.

1. Is the relation reflexive? Does (α, β, γ) ∼ (α, β, γ)? Taking λ = 1, then

(α, β, γ) = 1(α, β, γ). Thus, the relation is reflexive.

2. Is the relation symmetric? Does (α, β, γ) ∼ (α′, β′, γ′) imply (α′, β′, γ′) ∼

(α, β, γ)? If (α, β, γ) ∼ (α′, β′, γ′), then there exists a nonzero λ in

the field such that (α, β, γ) = λ(α′, β′, γ′). Since F is a field, then λ−1 ∈ F

and thus by multiplying both sides of the equation by λ−1, λ−1(α, β, γ) =

(α′, β′, γ′). Therefore, (α′, β′, γ′) ∼ (α, β, γ).
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3. Is the relation transitive? If (α, β, γ) ∼ (α′, β′, γ′) and (α′, β′, γ′) ∼

(α′′, β′′, γ′′), does this imply that (α, β, γ) ∼ (α′′, β′′, γ′′)? If (α, β, γ) ∼

(α′, β′, γ′), then there exists a nonzero λ in the field such that (α, β, γ) =

λ(α′, β′, γ′). Likewise, if (α′, β′, γ′) ∼ (α′′, β′′, γ′′), then there exists a nonzero

ε in the field such that (α′, β′, γ′) = ε(α′, β′, γ′′). Therefore,

(α, β, γ) = λ(α′, β′, γ′)

(α, β, γ) = λ

(
ε(α′′, β′′, γ′′)

)
Because we are doing multiplication in a field, then we can re-associate through

scalar multiplication,

(α, β, γ) = (λε)(α′′, β′′, γ′′)

Since λ, ε ∈ F, then Λ = λε ∈ F because of closure. Since λ 6= 0 and

ε 6= 0, then because these are elements in a field, Λ 6= 0. Thus (α, β, γ) =

Λ(α′′, β′′, γ′′) and therefore (α, β, γ) ∼ (α′′, β′′, γ′′).

Likewise, define a relation for the lines on triples 〈a, b, c〉 6= 〈0, 0, 0〉 where

〈a, b, c〉 ∈ F3 such that, for some λ 6= 0,

〈a, b, c〉 ∼ 〈a′, b′, c′〉 ⇐⇒ 〈a, b, c〉 = λ〈a′, b′, c′〉

Proposition 3: This relation is an equivalence relation.

Proof. This proof is identical to the proof for Proposition 2. The only difference is

the grouping symbols around the entries.

Through these two relations, we can construct a projective plane from the field

where the points are lines in the affine three-space through the origin and the lines
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are the planes in affine three-space through the origin.

Definition 12: Given a field, F, the projective plane over F denoted Proj(F) has

points being P = {[(α, β, γ)] | [(α, β, γ)] 6= [(0, 0, 0)]} and lines being L = {[〈a, b, c〉] |

[〈a, b, c〉] 6= [〈0, 0, 0〉]} where a point is incident to a line if aα + bβ + cγ = 0.

To list all of the equivalence classes of points (or lines) in this set-up, we used

the following procedure.

1. If γ 6= 0, then (α, β, γ) ∼ γ−1(α, β, γ) = (αγ−1, βγ−1, 1) = (x, y, 1). Thus,

we can list every triple using every pairing of x and y following a similar set-

up.

2. If γ = 0 and β 6= 0, then (α, β, 0) ∼ β−1(α, β, 0) = (αβ−1, 1, 0) = (x, 1, 0).

Thus, we can list every triple using every value of x.

3. If γ = β = 0 and α 6= 0, then (α, 0, 0) ∼ α−1(α, 0, 0) = (1, 0, 0).

Note that in this procedure, if the field had n elements, Step 1 would result in

n2 different equivalence classes because there are n choices for x and n choices for

y. Step 2 would result in n different equivalence classes because there are n choices

for x. Lastly, Step 3 would only have one equivalence class. Thus, there are n2 +

n+ 1 equivalence classes. Recall from Theorem 5 that there are n2 + n+ 1 lines and

n2 + n+ 1 points in a projective plane of order n.

Figure 9 is a table of the field F3
2 and the points on each line. An “×” implies it

lies on the line. One can quickly check and see that each line (denoted with 〈a, b, c〉)

has 3 points on it (satisfying A2+). As well, it is easy to see that there exists 3

non-collinear points (A3) by looking at the first two points listed and the last point.

Likewise, all lines meet together at some point (P2). Two points determine a unique

line (i.e. two points are not on another line together), satisfying A1. Thus, this set-

up is a projective geometry. We can check the theorems as well and see that every

line contains the same number of points (3 for this case).
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[〈0, 0, 1〉] [〈0, 1, 1〉] [〈1, 0, 1〉] [〈1, 1, 1〉] [〈0, 1, 0〉] [〈1, 1, 0〉] [〈1, 0, 0〉]
[(0,0,1)] × × ×
[(0,1,1)] × × ×
[(1,0,1)] × × ×
[(1,1,1)] × × ×
[(0,1,0)] × × ×
[(1,1,0)] × × ×
[(1,0,0)] × × ×

Figure 9: Incidence Table for F3
2

Using this incidence table, we can construct an incidence matrix taking each of

the blank spaces as zeros and the × as ones, as seen below:



0 0 0 0 1 1 1

0 1 0 1 0 0 1

0 0 1 1 1 0 0

0 1 1 0 0 1 0

1 0 1 0 0 0 1

1 0 0 1 0 1 0

1 1 0 0 1 0 0


Figure 10 is a table of the field F3

3 and the points on each line. An “×” implies

it lies on the line. Just as before, one can check to make sure that it satisfies the

four axioms.

Likewise, an incidence matrix can be made from this set as well. Figure 10 rep-

resents the projective plane of order 3 which is displayed below in Figure 11.
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[〈0
,0
,1
〉]

[〈0
,1
,1
〉]

[〈0
,2
,1
〉]

[〈1
,0
,1
〉]

[〈1
,1
,1
〉]

[〈1
,2
,1
〉]

[〈2
,0
,1
〉]

[〈2
,1
,1
〉]

[〈2
,2
,1
〉]

[〈0
,1
,0
〉]

[〈1
,1
,0
〉]

[〈2
,1
,0
〉]

[〈1
,0
,0
〉]

[(0,0,1)] × × × ×
[(0,1,1)] × × × ×
[(0,2,1)] × × × ×
[(1,0,1)] × × × ×
[(1,1,1)] × × × ×
[(1,2,1)] × × × ×
[(2,0,1)] × × × ×
[(2,1,1)] × × × ×
[(2,2,1)] × × × ×
[(0,1,0)] × × × ×
[(1,1,0)] × × × ×
[(2,1,0)] × × × ×
[(1,0,0)] × × × ×

Figure 10: Incidence Table for F3
3

Figure 11: Projective Plane of Order 3
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OTHER CONSTRUCTIONS

5.1 Affine Plane From Latin Squares

Definition 13: A Latin Square of order n is an n by n table whose entries come

from a set of elements [n] = {1, 2, . . . , n} and no column or row has any repeated

entries.

An example of a Latin Square for [5] can be seen below.

4 3 2 1 5

3 2 1 5 4

2 1 5 4 3

1 5 4 3 2

5 4 3 2 1

Definition 14: Two Latin Squares,

A =

a11 a12 · · · a1n

a21 a22 · · · a2n

· · ·

an1 an2 · · · ann

and B =

b11 b12 · · · b1n

b21 b22 · · · b2n

· · ·

bn1 bn2 · · · bnn

are orthogonal if the product

A × B =

(a11, b11) (a12, b12) · · · (a1n, b1n)

(a21, b21) (a22, b22) · · · (a2n, b2n)

· · ·

(an1, bn1) (an2, bn2) · · · (ann, bnn)

contains every ordered pair in [n]2.

For example, these 2 Latin Squares for [5] are orthogonal.
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A =

4 3 2 1 5

3 2 1 5 4

2 1 5 4 3

1 5 4 3 2

5 4 3 2 1

and B =

5 4 3 2 1

1 5 4 3 2

2 1 5 4 3

3 2 1 5 4

4 3 2 1 5

A × B =

(4,5) (3,4) (2,3) (1,2) (5,1)

(3,1) (2,5) (1,4) (5,3) (4,2)

(2,2) (1,1) (5,5) (4,4) (3,3)

(1,3) (5,2) (4,1) (3,5) (2,4)

(5,4) (4,3) (3,2) (2,1) (1,5)

Note that every solution of the popular number placement puzzle, Sudoku, is a

9 by 9 Latin Square. Sudoku, however, places an extra restriction on the number

placement where each of the nine 3 by 3 grids must contain the numbers 1 through

9.

Theorem 8: There is an affine plane of order n (n ≥ 2) if and only if there are

n− 1 orthogonal n by n Latin Squares.

Proof. (⇒) Given an affine plane of order n, we want to show that there are n − 1

orthogonal Latin Squares. As shown in Lemmas 5 and 8, there are n lines in each

of the n+ 1 families of parallel lines.

Consider two of the families of parallel lines [L] and [M ]. In each of these fam-

ilies, there are n lines each with n points on them. We can number each of these

lines as L1, L2, . . ., Ln and M1, M2, . . ., Mn. The idea is to make a coordinate sys-

tem out of these. Given a point x, x is associated with (i, j) if x is incident to Li

and x is incident to Mj. The point x will be denoted p(i,j).

Consider another family [N ]. We can number these lines as 1, 2, . . . , n. In the n

by n Latin Square we are constructing, we will put k in entry (i, j) when p(i,j) lies
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on Nk. These are n by n because there are n lines in [L] and n lines in [M ] which

would correspond to n rows and n columns. Since there are a total of n + 1 families

of parallel lines and two are used to make the coordinate system, then there are

n− 1 Latin Squares we can construct using this method.

Why are these Latin Squares? In order to be a Latin Square, there must be no

repeated entries in any row or in any column. Let [N ] be one the remaining n − 1

families. Assume k appeared in two entries of the ith row, (i, j) and (i, j′) of the

Latin Square associated with [N ]. Thus, p(i,j) lies on Nk and p(i,j′) lies on Nk. As

well, p(i,j) lies on Li and Mj and p(i,j′) lies on Li and Mj′ . Then Li = Nk by A1.

Since Nk came from [N ] and not [L], then this a contradiction. Thus, there are no

repeated entries in any row. A similar argument can be shown that there are no

repeated entries in any column. Hence, each of these n− 1 tables are Latin Squares.

Are these Latin Squares pairwise orthogonal? Let [N ] and [N ′] ([N ] 6= [N ′]) be

associated with two of the Latin Squares. Assume that the ordered pair (k, k′) ap-

peared in two of the entries (i, j) and (i′, j′) in the product of the two Latin Squares.

Then p(i,j) and p(i′,j′) lie on Nk and p(i,j) and p(i′,j′) lie on N ′k′ . Then Nk = N ′k′ by

A1. Since these lines come from different families, this a contradiction. Thus, since

there are no repeated entries in the product, each of the n − 1 Latin Squares are

pairwise orthogonal.

(⇐) Given n − 1 orthogonal n by n Latin Squares and we want to construct an

affine plane of order n. First, we will define a geometry and then prove that it is an

affine plane. Define the points in our geometry to be as follows

(1, 1) (1, 2) · · · (1, n)

(2, 1) (2, 2) · · · (2, n)

· · ·

(n, 1) (n, 2) · · · (n, n)
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Number each of the Latin Squares as LS1, LS2, . . ., and LSn−1. Define the lines

in our geometry to be as follows

L−1,i = {(p, q) | p = i, 1 ≤ q ≤ n}

L0,i = {(p, q) | q = i, 1 ≤ p ≤ n}

Lh,i = {(p, q) | (p, q) is a position in LSh labeled i}

Note that we now have n2 points. Likewise, we have n L−1,i lines, n L0,i lines,

and n lines for each of the n − 1 Latin Squares. Thus, we have n + n + n(n − 1) =

2n + n2 − n = n2 + n lines. In this geometry, for two lines La,b and Lc,d to be par-

allel means that a = c. The reasoning is that distinct rows are disjoint and there-

fore each of the L−1,i lines are parallel. Similarly, distinct columns are disjoint and

therefore each of the L0,i lines are parallel. Likewise, each of the Lh,i lines are dis-

tinct. This is because if they were not distinct, consider Lh,k and Lh,k′ . In order for

them to not be parallel, then in a k would have to be in the same entry as a k′ in

LSh, which can’t happen. Also note that every point in the plane is on one of these

lines in each family. Clearly every point is in the L−1,i family and likewise every

point is in the L0,i family. Since every number is being represented in one of the

Lh,i’s for a given h, then every point is in these families as well.

To show that this geometry is an affine plane, it must satisfy the four axioms of

an affine plane:

A1. Do two distinct points determine a unique line?

Given two distinct points, (a, b) and (c, d), first assume a = c. The line L−1,a

goes through both of these points. None of the L0,i lines contain this point

because in order for these points to be distinct, b 6= d (if a = c). If one of the

Lh,i lines went through both of these points, then i is represented twice in the

same row of LSh by construction. Since this can’t happen because LSh is a
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Latin Square, then none of the Lh,i lines can go through these points.

Next, assume a 6= c and b = d. The unique line through these two points is

L0,b. A similar argument can be shown here as to why this is the only line.

However, in this case, i would be represented twice in the same column of

LSh.

Next, assume a 6= c and b 6= d. Then none of the L−1,i lines nor the L0,i

lines can pass through these points. Thus, one of the Lh,i lines passes through

these points. Assume there was another line Lh′,i′ that also went through

(a, b) and (c, d). Then, there was an i in the (a, b)th and (c, d)th positions of

LSh and likewise an i′ in the (a, b)th and (c, d)th positions of LSh′ . If this was

the case, then LSh and LSh′ would not be orthogonal because (i, i′) would

appear twice in the product. Thus, Lh,i is the unique line through the two

points.

A2. Does each line contain at least two points?

Since n ≥ 2, then each L−1,i and L0,i has at least two points. As well, each

Lh,i has at least two points because in each LSh, i would appear n times.

A3. Do there exist three non-collinear points?

We have three points (1, 1), (1, 2), and (2, 1) since n ≥ 2. The line through

(1, 1) and (1, 2) is L−1,1 and (2, 1) is not contained in L−1,1. Thus, there are 3

non-collinear points.

P1. Does it satisfy the euclidean property?

First, are two lines from different families parallel? If the first line was L−1,a,

then every L0,b intersects with L−1,a at (a, b). Likewise, every Lh,i intersects

with this line because i appears in the ath row of LSh. Similarly, if the first

line was L0,a, then every L−1,b intersects with L0,a at (b, a). Likewise, every
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Lh,i intersects with this line because i appears in the ath column of LSh. If

the first line was Lh,a, as just shown, this line can’t be parallel to ant L−1,i

line nor any L0,i line. So consider another line Lh′,a′ (h 6= h′). If these two

lines intersected, (a, a′) must be in some position (r, s) of LSh × LSh′ . Since

LSh and LSh′ are orthogonal, then (a, a′) appears in LSh × LSh′ . Hence, they

are not parallel. Therefore, two lines from different families cannot be paral-

lel.

Given a line La,b and a point p not on La,b, this point lies on one of the lines

parallel to La,b since each family partitions the points. Since none of the other

families have lines that are parallel to La,b, then there is a unique line La,b′

through p that is parallel to La,b.

Since the geometry satisfies all four axioms on an affine plane, then an affine plane

can be constructed given n− 1 orthogonal n by n Latin Squares.

For an example of the constructions done in the first case, consider F3. As seen

in Figure 12, the two families chosen are [〈0, 0〉] and [〈0〉]. Following Figure 12 are

the Latin Squares in this construction using the two remaining families [〈1, 0〉] and

[〈2, 0〉] where the number each lines is associated with is b in 〈m, b〉.

Figure 12: Construction of the Coordinate System in F3
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[〈2, 0〉] [〈1, 0〉]

0 1 2

1 2 0

2 0 1

0 2 1

1 0 2

2 1 0

As seen in the product below, these two Latin Squares are orthogonal because

every element in F3 × F3 is represented.

[〈2, 0〉]× [〈1, 0〉] =

(0,0) (1,2) (2,1)

(1,1) (2,0) (0,2)

(2,2) (0,1) (1,0)

Likewise, to understand the Lh,i lines in the second case, consider the Latin

Square above over the family LSh = [〈2, 0〉]. The points incident to the lines in

this family are

Lh,0 = {(1, 1), (3, 2), (2, 3)}

Lh,1 = {(1, 2), (2, 1), (3, 3)}

Lh,2 = {(3, 1), (2, 2), (1, 3)}

5.2 Projective Plane From A Perfect Difference Set

Definition 15: A perfect difference set is a set S ⊆ Zm such that for si, sj ∈ S,

{si − sj | i 6= j} = Zm − {0}. Furthermore, there differences are required to be

unique in the following sense: if si − sj = si′ − sj′ , then si = si′ and sj = sj′ .

As an example, consider the difference set S = {0, 1, 3} as a subset of Z7. The

differences would be,

3− 0 = 3 1− 0 = 1 0− 1 = −1 ≡ 6

3− 1 = 2 1− 3 = −2 ≡ 5 0− 3 = −3 ≡ 4
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As illustrated, every nonzero element of Z7 is obtained by taking a difference of

every distinct element in S.

By defining the cardinality of S to be n + 1, the number of differences can be

found using the cardinality. In taking the differences, you have n + 1 choices for the

first value and then n choices for the second value. So, there are (n + 1) · n nonzero

elements in Zm. Thus, m = (n + 1) · n + 1 = n2 + n + 1 because of the inclusion of

zero. Hopefully this number looks familiar, because in a projective plane there are

n2 + n+ 1 points.

Definition 16: Given a perfect difference set S, a projective plane constructed

from S denoted Proj(S) is formed by points P = {p0, p1, . . . , pn2+n} and lines L =

{L0, L1, . . . , Ln2+n} where pi is incident to Lj if and only if (i+ j) ∈ S.

Using the same example from above with Z7, P = {p0, p1, p2, p3, p4, p5, p6} and

L = {L0, L1, L2, L3, L4, L5, L6}. An incidence table can be formed as seen in Fig-

ure 13 using the definition above. Given p2, it is incident to lines L1, L5, and L6

because 2 + 1 = 3, 2 + 5 = 7 ≡ 0 (mod 7), and 2 + 6 = 8 ≡ 1 (mod 7). We can

then look throughout the table and see the four axioms of a projective plane. Each

pair of lines meet at unique points; between two distinct points, there exists a line

through them; there are three non-collinear points; and each line has at least three

points.

p0 p1 p2 p3 p4 p5 p6
L0 × × ×
L1 × × ×
L2 × × ×
L3 × × ×
L4 × × ×
L5 × × ×
L6 × × ×

Figure 13: Incidence Table for Z7 with difference set S

Note that this plane is also isomorphic to the Fano Plane first discussed. Freder-
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ick W. Stevenson [10] calls these planes cyclic planes of order n generated by S due

to the cyclic nature of the points in the incidence table.

Theorem 9: If |S| ≥ 3, Proj(S) is a projective plane.

Proof. The four axioms of a projective plane:

A1. Do two distinct points determine a unique line?

Given two distinct points, pi and pi′ (i 6= i′), there exists a unique s, s′ ∈ S

such that s− s′ = i− i′ since i 6= i′. Let j = s− i. Are these points incident to

Lj? They are incident because i + j = i + s − i = s which is an element of S

and i′+ j = i′+ s− i = s− (i− i′) = s− (s− s′) = s′ which is an element of S.

To show this line is unique, assume there exists a line Lj′ such that pi and pi′

are incident to it. We know that i + j ∈ S and i′ + j ∈ S, but now i + j′ ∈ S

and i′ + j′ ∈ S. Because S is a perfect difference set, differences of elements of

S are unique. So, (i+ j′)− (i′+ j′) = i− i′ and (i+ j)− (i′+ j) = i− i′ implies

that i + j′ = i + j. Using subtraction, j = j′. Therefore the line between pi

and pi′ is unique.

A2+. Does each line contain at least three points?

|S| is the same as the number of points on each line. So, since |S| ≥ 3, there

are at least three points on each line.

A3. Do there exist three non-collinear points?

Given three points p0, p1, and p2, assume that there exists a line Lj such that

all three points are incident to it. Thus, 0 + j ∈ S, 1 + j ∈ S, and 2 + j ∈

S. Thus, since each of these elements are in S, their differences should result

in a unique nonzero element of Zn2+n+1. Hence, (1 + j) − (0 + j) = 1 and

(2 + j)− (1 + j) = 1. This is a contradiction because the differences should be
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distinct. Thus, there cannot exist a line Lj such that these three points are on

it. Therefore, p0, p1, and p2 are non-collinear.

P2. Does every pair of lines meet at some point?

Given two distinct lines, Lj and Lj′ (j 6= j′), there exists a unique s, s′ ∈ S

such that s − s′ = j − j′ since j 6= j′. Let i = s − j. Is pi incident to these

lines? It is incident because i+ j = s− j + j = s which is an element of S and

i + j′ = s − j + j′ = s − (j − j′) = s − (s − s′) = s′ which is an element of S.

Thus every pair of lines meet at some point.

Since Proj(S) satisfies all four axioms of a projective plane when |S| ≥ 3, then it is

a projective plane

5.3 Affine Plane From Ternary Rings

Definition 17: A ternary ring is a set of elements R and a mapping t : R × R ×

R→ R satisfying the following properties:

T1. There exists 0, 1 ∈ R where 0 6= 1 and for all elements a, b ∈ R,

t(0, a, b) = t(a, 0, b) = b t(1, a, 0) = t(a, 1, 0) = a

T2. For all a, b, c, d ∈ R (a 6= c), there exists a unique x ∈ R such that t(x, a, b) =

t(x, c, d).

T3. For all a, b, c ∈ R, there exists a unique x ∈ R such that t(a, b, x) = c.

T4. For all a, b, c, d ∈ R (a 6= c), there exists a unique (x, y) ∈ R × R such that

t(a, x, y) = b and t(c, x, y) = d.
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An example of a ternary ring is if R is a field under the function t(p, q, r) =

pq + r. One can verify the four axioms to check that this is a ternary ring.

T1. If 1 6= 0, t(0, q, r) = 0 · q + r = r = q · 0 + r = t(q, 0, r)

and t(1, q, 0) = 1 · q + 0 = q = q · 1 + 0 = t(q, 1, 0)

T2. If t(x, a, b) = xa+ b t(x, c, d) = xc+ d ⇒ x = (d− b)(a− c)−1 since

this ring contains inverse elements.

T3. If t(a, b, x) = ab+ x = c ⇒ x = c− ab

T4. If t(a, x, y) = ax+ y = b and t(c, x, y) = cx+ y = d

⇒ x = (a− c)−1(b− d) y = (a− c)−1(da− cb)

Definition 18 (Affine Plane over a Ternary Ring): Given a ternary ring R, the

affine plane over R, denoted Aff(R) has points P = {[x, y]|x, y ∈ R} and lines

L = {〈m, k〉 | m, k ∈ R} ∪ {〈m〉 | m ∈ R} where

1. [x, y] is incident to 〈m, b〉 if and only if t(x,m, k) = y

2. [x, y] is incident to 〈m〉 if and only if x = m

Theorem 10: Aff(R) is an affine plane.

Proof. The four axioms of an affine plane:

A1. Do two distinct points determine a unique line?

Given two distinct points [a, b] and [c, d], first consider a = c. Hence, b 6= d

and both of these points are incident to 〈a〉. There can’t be another line 〈e〉

(a 6= e) incident to both of these by construction. There cannot be a line

〈m, k〉 through these points because t(a,m, k) = b and t(a,m, k) = d yet

b 6= d.
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Next, assume a 6= c. Therefore, none of the 〈m〉 lines go through the two

points. By T4, there exists a unique (m, k) ∈ R × R such that t(a,m, k) = b

and t(c,m, k) = d. Thus, the unique line through these points is 〈m, k〉.

A2. Does every line contain at least 2 points?

Given the line 〈m, k〉, the points [0, k] and [1, t(1,m, k)] are on this line. The

former is because t(0,m, k) = k by T1.

Given the line 〈m〉, the points [m, 0] and [m, 1] are on this line.

A3. Do there exist 3 non-collinear points?

There exists three points [0, 0], [1, 0], and [0, 1]. The line 〈0, 0〉 contains the

points [0, 0] and [1, 0] because t(0, 0, 0) = 0 and t(1, 0, 0) = 0 by T1. However,

[0, 1] is not incident to 〈0, 0〉 because t(0, 0, 0) 6= 1 by T1. Thus, these three

points are non-collinear.

P1. Does it satisfy the euclidean property?

Note that one can do a similar proof for Lemma 9 for ternary rings. The in-

tersection points are different, however, but using the incidence relation for

these ternary rings, one can find the intersection points.

Given a line 〈m, k〉 and a point [x, y] not incident to 〈m, k〉. By Lemma 9,

there is not a line 〈m〉 that is parallel to this line. So any line parallel to 〈m, k〉

must have the same m and a different k. Consider the line 〈m, z〉 (z 6= k). By

T3, there exists a unique z ∈ R such that t(x,m, z) = y. Therefore, this line

is the only line through [x, y] and parallel to 〈m, k〉.

Given a line 〈m〉 and a point [x, y] not incident to 〈m〉, i.e., m 6= x. By Lemma

9, there is not a line 〈m, k〉 that is parallel to this line. Consider the line 〈x〉.

The point [x, y] is incident to this line and since m 6= x, then it is parallel to

〈m〉.
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Since Aff(R) satisfies all four axioms of an affine plane, then it is an affine plane.

Using the field considered above, an affine plane can be made using this con-

struction. This is a result we would hope would happen given that we have already

shown that an affine plane can be constructed using a field.

5.4 Projective Plane Not Constructed From A Field

Definition 19: A near-field is a set N with two binary operations ⊕ and ∗ satis-

fying the following axioms:

Q1. (N , ⊕) is an abelian group.

Q2. For all a, b, c ∈ N , (a ∗ b) ∗ c = a ∗ (b ∗ c).

Q3. For all a, b, c ∈ N , the operation is right distributive, i.e. (a⊕b)∗c = a∗c⊕b∗c.

Q4. There exists a multiplicative identity 1 ∈ N such that for all a ∈ N , a ∗ 1 =

1 ∗ a = a.

Q5. For all nonzero elements a of N , there exists a multiplicative inverse a−1 ∈ N

such that a ∗ a−1 = a−1 ∗ a = 1.

Note that every field is a near field but not every near field is a field.

G. Pilz [5] gives an example of a near-field that is not a field. Consider a field of

order p2 where p is an odd prime under the normal addition + and multiplication

∗. Let Q be the field of order p2, Fp2 , where addition is the same as in the field but

multiplication ⊗ is defined as

a⊗ b = a ∗ b if b ∈ (Fp2)2 and a⊗ b = ap ∗ b if b /∈ (Fp2)2
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where a, b ∈ Q (i.e., b is either a square or not a square).

Lemma 12: In a finite field F , (1) A square times a square is a square. (2) A square

times a non-square is a non-square. (3) A non-square times a non-square is a square.

Proof. Recall that in a finite field F , the nonzero elements form a cyclic group, i.e.

for all f ∈ F (f 6= 0), f = xα for some element x ∈ F and integer power α.

First, we claim that if xk is a square, then k is even and if xk is a non-square,

then k is odd. If a = xk is a square, then a = y2 for some y ∈ F . Since F is cyclic,

y2 = (xm)2 = x2m. Therefore, k = 2m and thus k is even. Next, through the con-

trapositive of the second statement, we want to show that if k is even, then xk is a

square. Note that for any element t ∈ F , t2w = (tw)2 is always a square. Therefore,

if xk is a non-square, then k is odd.

(1) Given two squares a = p2 and b = q2, the product ab = p2q2 = (pq)2 is also a

square. (2) Given a square a = xm and a non-square b = xn, then m is even and n

is odd. Thus, the product, ab = xmxn = xm + n is a non-square since m + n is odd.

(3) Given two non-squares, a = xm and b = xn, then m and n are both odd. Thus,

the product ab = xmxn = xm + n is a square since m+ n is even.

Theorem 11: Q is a near-field.

Proof. In order for Q to be a near-field, it must satisfy the five axioms.

Q1. (Q,+) is an abelian group since addition did not change and the set of ele-

ments are from a field.

Q2. Is ⊗ associative?

Let a, b, c ∈ Q. Since the first element is not affected by our new multiplica-

tion, it does not matter whether or not a is a square. Hence, first assume that

b and c are both squares,

a⊗ (b⊗ c) = a⊗ (b ∗ c) = a ∗ (b ∗ c)
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This used Lemma 12 since b ∗ c is a square. Now, since ∗ is associative,

a ∗ (b ∗ c) = (a ∗ b) ∗ c = (a ∗ b)⊗ c = (a⊗ b)⊗ c

since c is a square.

Next, assume that b is a square and c is not,

a⊗ (b⊗ c) = a⊗ (bp ∗ c)

Since b is a square, bp is also a square and thus by Lemma 12, bp ∗ c is not a

square. Therefore,

a⊗ (bp ∗ c) = ap ∗ (bp × c) = (ap ∗ bp)× c = (a ∗ b)p ∗ c

We can do this since ∗ is an operation under a field, which means that it is

commutative. Now since c is not a square and b is,

(a ∗ b)p ∗ c = (a ∗ b)⊗ c = (a⊗ b)⊗ c

Third, assume that c is a square and b is not,

a⊗ (b⊗ c) = a⊗ (b ∗ c) = ap ∗ (b ∗ c)

since b ∗ c is not a square by Lemma 12. Now by the associativity of ∗,

ap ∗ (b ∗ c) = (ap ∗ b) ∗ c = (ap ∗ b)⊗ c = (a⊗ b)⊗ c

Finally, assume that both b and c are not squares. Recall that in a finite group

of order n, for all nonzero elements x, xn = x. Beginning with the other side
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first in this case,

(a⊗ b)⊗ c = (ap ∗ b)⊗ c = (ap ∗ b)p ∗ c = (ap
2 ∗ bp) ∗ c

Using the fact above, since ap
2

= a,

(ap
2 ∗ bp) ∗ c = (a ∗ bp) ∗ c = a ∗ (bp ∗ c)

Since bp ∗ c is a square by Lemma 12,

a ∗ (bp ∗ c) = a⊗ (bp ∗ c) = a⊗ (b⊗ c)

By looking at the extremes in all cases, a⊗ (b⊗ c) = (a⊗ b)⊗ c and thus ⊗ is

associative.

Q3. Is the operation right distributive?

Let a, b, c ∈ Q. First, assume that c is a square. Recall that × is already right

distributive.

(a+ b)⊗ c = (a+ b) ∗ c = a ∗ c+ b ∗ c = a⊗ c+ b⊗ c

Next, assume that c is not a square. Recall the “Freshman’s Dream” which

states that in a finite field of order n, (x+ y)n = xn + yn.

(a+ b)⊗ c = (a+ b)p ∗ c = (ap + bp) ∗ c = ap ∗ c+ bp ∗ c = a⊗ c+ b⊗ c

Thus the operation is right distributive.

Q4. Does there exist a multiplicative identity?
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Since the elements of Q come from elements in a field, then 1 ∈ Q. Is 1 a

multiplicative identity?

1⊗ a =1 ∗ a = a (if a is a square)

1⊗ a =1p ∗ a = 1 ∗ a = 1 (if a is not a square)

a⊗ 1 =a⊗ 1 = a

Therefore, 1 is a multiplicative identity.

Q5. For each element, does there exist a multiplicative inverse?

Given a nonzero element a ∈ Q, first assume that a is a square. Then, the

multiplicative inverse is a−1 = 1
a

(which exists since a is an element of a field).

Since a is a square, then so is 1
a
. Thus,

a⊗ 1

a
=a ∗ 1

a
= 1

1

a
⊗ a =

1

a
∗ a = 1

Next, assume a is not a square. Then, the multiplicative inverse is a−1 = 1
ap

.

a⊗ 1

ap
=ap ∗ 1

ap
= 1

1

ap
⊗ a =

(
1

ap

)p
∗ a =

1

ap2
∗ a =

1

a
∗ a = 1

This recalls the fact that ap
2

= a. Thus, there is a multiplicative inverse for

each nonzero element in Q.

Since Q satisfies all five axioms of a near-field, then Q is a near-field.

Lemma 13: Q is a ternary ring under the operation t(a, b, c) = a⊗ b+ c.

Proof. In order for Q to be a ternary ring, it must satisfy the four axioms of a ternary
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ring.

T1. Are there elements 0 and 1 such that 0 6= 1 and satisfy the equations?

There are elements 0 and 1 in Q such that 0 6= 1 and, if a is a non-square,

then

t(0, a, b) =0⊗ a+ b = 0 ∗ a+ b = 0 + b = b

t(a, 0, b) =a⊗ 0 + b = a ∗ 0 + b = 0 + b = b

t(1, a, 0) =1⊗ a+ 0 = 1 ∗ a+ 0 = a+ 0 = a

t(a, 1, 0) =a⊗ 1 + 0 = a ∗ 1 + 0 = a+ 0 = a

Likewise, if a is a non-square, then

t(0, a, b) =0⊗ a+ b = 0p ∗ a+ b = 0 ∗ a+ b = 0 + b = b

t(a, 0, b) =a⊗ 0 + b = a ∗ 0 + b = 0 + b = b

t(1, a, 0) =1⊗ a+ 0 = 1p ∗ a+ 0 = 1 ∗ a+ 0 = a+ 0 = a

t(a, 1, 0) =a⊗ 1 + 0 = a ∗ 1 + 0 = a+ 0 = a

T2. Does there exist a unique x ∈ Q such that t(x, a, b) = t(x, c, d) for all a, b, c, d ∈

Q?

If a and c are both squares, let x = (d− b) ∗ (a− c)−1. Then,

t(x, a, b) =x⊗ a+ b = (d− b) ∗ (a− c)−1 ∗ a+ b

=[a ∗ (d− b) + b ∗ (a− c)] ∗ (a− c)−1
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=[a ∗ d− a ∗ b+ b ∗ a− c ∗ b] ∗ (a− c)−1 = [a ∗ d+ c ∗ b] ∗ (a− c)−1

=[a ∗ d− c ∗ d+ c ∗ d− c ∗ b] ∗ (a− c)−1

=[d ∗ (a− c) + c(b− d)] ∗ (a− c)−1

=(d− b) ∗ (a− c)−1 ∗ c+ d = x⊗ c+ d = t(x, c, d)

If a and c are both non-squares, let x = (d− b)p ∗ (a− c)−p. Then,

t(x, a, b) =x⊗ a+ b = [(d− b)p ∗ (a− c)−p]p ∗ a+ b

=(d− b)p2 ∗ (a− c)−p2 ∗ a+ b = (dp
2 − bp2) ∗ (a− c)−p2 ∗ a+ b

=[a ∗ (dp
2 − bp2) + b ∗ (ap

2 − cp2)] ∗ (a− c)−p2

=[a ∗ dp2 − a ∗p2 +b ∗ ap2 − b ∗ cp2 ] ∗ (a− c)−p2

=[a ∗ dp2 − b ∗ cp2 ] ∗ (a− c)−p2

=[a ∗ dp2 − c ∗ dp2 + c ∗ dp2 − b ∗ cp2 ] ∗ (a− c)−p2

=[dp
2 ∗ (a− c) + cp

2 ∗ (d− b)] ∗ (a− c)−p2

=[dp
2 ∗ (a− c)p2 + cp

2 ∗ (d− b)] ∗ (a− c)−p2

=dp
2

+ cp
2 ∗ (d− b) ∗ (a− c)−p2

=d+ c ∗ (d− b) ∗ (a− c)−p2 = d+ (a− c)−p2 ∗ c

=d+ x⊗ c = t(x, c, d)

For the last case, without loss of generality assume a is a square and c is not.

We can define a function φ : Fp2 → Fp2 by φ(x) = xp ∗ c− x ∗ a. To show that

φ is a bijection, it is enough to show that it is injective since Fp2 is finite. To
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show φ is injective, assume f(x) = f(y) for x, y ∈ Fp2 . Therefore,

xp ∗ c− x ∗ a =yp ∗ c− y ∗ a

c ∗ (xp − yp) =a(x− y)

c ∗ (x− y)p =a ∗ (x− y)

If to the contrary we assume that x 6= y, then we conclude that

c ∗ (x− y)p−1 = a

Since p is an odd prime, then p−1 is even so (x−y)p−1 is a square. Therefore,

since c is not a square, the product of c and (x − y)p−1 is not a square by

Lemma 12. However, a is a square. Hence, it can’t be that x 6= y and so x =

y. Thus φ is injective. This means that there exists a unique solution where

xp ∗ c − x ∗ a = b − d for b − d ∈ Fp2 . Thus, there is a unique solution where

x∗a+ b = xp ∗ c+d which is x⊗a+ b = x⊗ c+d. Hence, there exists a unique

x ∈ Q such that t(x, a, b) = t(x, c, d).

T3. Does there exist a unique x ∈ Q such that t(a, b, x) = c for all a, b, c ∈ Q?

Let x = c + (−a ⊗ b) where −a ⊗ b is the additive inverse of a ⊗ b. Since

addition is commutative, then t(a, b, x) = a⊗ b+ c+ (−a⊗ b) = 0 + c = c.

T4. Does there exist a unique (x, y) ∈ Q×Q such that t(a, x, y) = b and t(c, x, y) =

d for all a, b, c, d ∈ Q?

Consider (a− c)−1 ∗ (b− d). If this is a square, then let x = (a− c)−1 ∗ (b− d)

and y = b− a⊗ x. Thus,
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t(a, x, y) =a⊗ x+ y = a⊗ x+ b− a⊗ x

=0 + b = b

t(c, x, y) =c⊗ x+ y = c⊗ x+ b− a⊗ x

=c ∗ (a− c)−1 ∗ (b− d) + b− a ∗ (a− c)−1 ∗ (b− d)

=[c ∗ (b− d) + b ∗ (a− c)− a ∗ (b− d)] ∗ (a− c)−1

=[c ∗ b− c ∗ d+ b ∗ a− b ∗ c− a ∗ b+ a ∗ d] ∗ (a− c)−1

=[a ∗ d− c ∗ d] ∗ (a− c)−1

=d ∗ (a− c) ∗ (a− c)−1 = d

If (a − c)−1 ∗ (b − d) is a non-square, then let x = (ap − cp)−1 ∗ (b − d)

and y = b − a ⊗ x. Therefore by Lemma 12, x = (a − c)−p ∗ (b − d) =

(a− c)−(p−1) ∗ (a− c)−1 ∗ (b− d) is not a square since (a− c)−(p−1) is a square

because p is odd. Thus,

t(a, x, y) =a⊗ x+ y = a⊗ x+ b− a⊗ x

=0 + b = b

t(c, x, y) =c⊗ x+ y = c⊗ x+ b− a⊗ x

=cp ∗ (ap − cp)−1 ∗ (b− d) + b− ap(ap − cp)−1 ∗ (b− d)

=[cp ∗ (b− d) + b(ap − cp)− ap(b− d)] ∗ (ap − cp)−1

=[cp ∗ b− cp ∗ d+ b ∗ ap − b ∗ cp − ap ∗ b+ ap ∗ d] ∗ (ap − cp)−1

=[ap ∗ d− cp ∗ d] ∗ (ap − cp)−1

=d ∗ (ap − cp) ∗ (ap − cp)−1 = d

Since Q satisfies the four properties of a ternary ring, then it is a ternary ring.
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Since Q is a ternary ring, then by Theorem 10, A = Aff(Q) is an affine plane.

As well, by Theorem 6, Proj(A) is a projective plane.
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BRUCK-RYSER THEOREM

To motivate Lemma 14, consider the determinant of this 2 by 2 matrix,

det

1 1

1 a

 = a− 1 = (a− 1)2−1

Likewise, consider the determinant of this 3 by 3 matrix. Since the determinant

is preserved through row operations, subtracting the second row from the first row

results,

det


1 1 1

1 a 1

1 1 a

 = det


0 1− a 0

1 a 1

1 1 a


Using cofactor expansion along the first row,

det


0 1− a 0

1 a 1

1 1 a

 = 0 · det

a 1

1 a

− (1− a) · det

1 1

1 a

+ 0 · det

1 a

1 1



= −(1− a) det

1 1

1 a

 = (a− 1)(a− 1) = (a− 1)3−1

Lemma 14: For a given k by k matrix,

det(Ak) = det



1 1 1 · · · 1

1 a 1 · · · 1

1 1 a · · · 1

· · ·

1 1 1 · · · a


= (a− 1)k−1
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Proof. We will induct on k. When k = 1,

det(A1) = det(1) = 1 = (a− 1)0

By induction, assume this holds for any (k−1) by (k−1) matrix, i.e. det(Ak−1) =

(a− 1)(k−1)−1 = (a− 1)k−2. Since determinants are preserved under row operations,

subtracting the second row from the first row on Ak results,

det(Ak) = det



1 1 1 · · · 1

1 a 1 · · · 1

1 1 a · · · 1

· · ·

1 1 1 · · · a


= det



0 1− a 0 · · · 0

1 a 1 · · · 1

1 1 a · · · 1

· · ·

1 1 1 · · · a


Using cofactor expansion along the first row,

detAk = 0 · det(M1)− (a− 1) det(M2) + 0 · det(M3)− . . .± 0 · det(Mk)

= −(1− a) det



1 1 1 · · · 1

1 a 1 · · · 1

· · ·

1 1 1 · · · a


where each Mi is the matrix obtained from the new Ak by deleting the first row

and the ith column. Therefore,

det(Ak) = (a− 1) det(Ak−1) = (a− 1)(a− 1)k−2 = (a− 1)k−1
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Again to motivate Lemma 15, consider the determinant of this 2 by 2 matrix,

det

a 1

1 a

 = a2 − 1 = (a− 1)(a+ 1) = (a− 1)2−1(a+ 2− 1)

Likewise, consider the determinant of this 3 by 3 matrix. Since the determinant

is preserved through row operations, subtracting the second row from the first row

results,

det


a 1 1

1 a 1

1 1 a

 = det


a− 1 1− a 0

1 a 1

1 1 a


Using cofactor expansion along the first row,

det


a− 1 1− a 0

1 a 1

1 1 a

 = (a− 1) det

a 1

1 a

− (1− a)

1 1

1 a

+ 0

1 a

1 1



= (a− 1)(a2 − 1) + (a− 1)(a− 1) = (a− 1)2(a+ 1) + (a− 1)2 = (a− 1)2(a+ 1 + 1)

= (a− 1)3−1(a+ 3− 1)

Lemma 15: For a given k by k matrix,

det(Bk) = det



a 1 1 · · · 1

1 a 1 · · · 1

1 1 a · · · 1

· · ·

1 1 1 · · · a


= (a− 1)k−1(a+ k − 1)

58



Proof. We will induct on k. When k = 1,

det(B1) = det(a) = a = (a− 1)0(a+ 1− 1)

By induction, assume this holds for any (k−1) by (k−1) matrix, i.e., det(Bk−1) =

(a−1)(k−1)−1(a+(k−1)−1) = (a−1)k−2(a+k−2). Since determinants are preserved

under row operations, subtracting the second row from the first row on Bk results,

det(Bk) = det



a 1 1 · · · 1

1 a 1 · · · 1

1 1 a · · · 1

· · ·

1 1 1 · · · a


= det



a− 1 1− a 0 · · · 0

1 a 1 · · · 1

1 1 a · · · 1

· · ·

1 1 1 · · · a


Using cofactor expansion along the first row,

det(Bk) = (a− 1) det(N1)− (1− a) det(N2) + 0 · det(N3)− . . .± 0 · det(Nk)

= (a− 1) det



a 1 1 · · · 1

1 a 1 · · · 1

· · ·

1 1 1 · · · a


+ (a− 1) det



1 1 1 · · · 1

1 a 1 · · · 1

· · ·

1 1 1 · · · a


where each Ni is the matrix obtained from the new Bk by deleting the first row and

the ith column. By Lemma 14 this results,

det(Bk) = (a− 1) det(Bk−1) + (a− 1) det(Ak−1)

= (a− 1)(a− 1)k−2(a+ k− 2) + (a− 1)(a− 1)k−2 = (a− 1)k−1(a+ k− 2) + (a− 1)k−1

= (a− 1)k−1(a+ k − 2 + 1) = (a− 1)k−1(a+ k − 1)
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Proposition 4: The determinant of an incidence matrix A for a projective plane

of order n is det(A) = n
1
2
n(n+1)(n+ 1).

Proof. Define the matrix A to be an incidence matrix for a projective plane, P .

Note that A is an (n2+n+1) by (n2+n+1) matrix. Recall that an incidence matrix

has the rows (or columns) as points and the other as lines. A one indicates that

a point is incident to the corresponding line and a zero indicates that the point is

not incident to that line. The transpose of A is simply where the rows of A are now

the columns and likewise the columns are now the rows. When computing the dot

product of A and AT ,

AAT =



a11 a12 . . . a1r

a21 a22 . . . a2r

· · ·

ar1 ar2 . . . arr





a11 a21 . . . ar1

a12 a22 . . . ar2

· · ·

a1r a2r . . . arr


=



b11 b21 . . . br1

b12 b22 . . . br2

· · ·

b1r b2r . . . brr


where each bij is computed by multiplying the ith row of A with the jth column of

AT and r = n2 + n + 1. In each of the diagonal entries, bii is taking the ith row of

A and doing the product of that row with itself. In terms of what A is defined as,

since it is only ones and zeros, the dot product of each row multiplied by itself will

simply be however many ones are in the row. For example, given the row (1, 1, 0, 1),

the dot product of the row with itself is

(1, 1, 0, 1) · (1, 1, 0, 1) = (1 · 1) + (1 · 1) + (0 · 0) + (1 · 1) = 3

Thus, since each row in an incidence matrix is the number of points on a line

(or lines through a given point), the number of ones in that row will be n + 1. As

for the other entries, the dot product between two vectors of ones and zeros will
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be the number of times that a one appears in the same entry of both vectors. For

example, given the vectors (1, 1, 1, 0) and (0, 1, 1, 0), the dot product is

(1, 1, 1, 0) · (0, 1, 1, 0) = (1 · 0) + (1 · 1) + (1 · 1) + (0 · 0) = 2

Thus, the dot product in AAT will be taking a row in A times a column in AT

(which is basically a row in A times another row in A). So, how many times do two

rows (lines) have a one in the same entry (cross through the same point) in a pro-

jective plane? Since every pair of lines meet at a unique point, there would only be

one entry in each row of A that has a one in both rows. Thus,

AAT =



n+ 1 1 1 · · · 1

1 n+ 1 1 · · · 1

1 1 n+ 1 · · · 1

· · ·

1 1 1 · · · n+ 1


From Lemma 15, det(AAT ) = [(n + 1) − 1]r−1[(n + 1) + r − 1] = nr−1(n + r).

Since r is the size of the matrix and the size correlates to the number of points (or

lines) in the plane,

det(AAT ) = nr−1(n+ r)

= nn
2+n+1−1(n+ n2 + n+ 1)

= nn
2+n(n2 + 2n+ 1)

= nn(n+1)(n+ 1)2
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Since det(AAT ) = [det(A)]2,

det(A) = ±n
1
2
n(n+1)(n+ 1)

Hence because the determinant is either positive or negative, we can assume

without loss of generality that it is positive. If it were negative, we can switch around

the order of two of the rows. By transposing the rows, the sign of the determinant

changes to positive. Therefore, det(A) = n
1
2
n(n+1)(n+ 1).

Theorem 12: If n = pk where p is prime and k is a non-negative integer, then

there exists a projective plane of order n.

Proof. Since every finite field has n = pk elements, then there we can construct

an affine plane A2
F from this field. Next, construct Proj(A2

F). Thus, there exists a

projective plane with order pk.

The following lemmas and theorems stated below are needed in order to prove

the Bruck-Ryser Theorem. The proofs for these, however, are not included in this

paper.

Lemma 16 (The Four-Squares Identity): If b1, b2, b3, b4, x1, x2, x3, x4 ∈ Z, then (b21 +

b22 + b23 + b24)(x
2
1 + x22 + x23 + x24) = (y21 + y22 + y23 + y24) where



y1

y2

y3

y4


= B



x1

x2

x3

x4


, with B =



b1 b2 b3 b4

−b2 b1 −b4 b3

−b3 b4 b1 −b2

−b4 −b3 b2 b1


and det(B) = (b21 + b22 + b23 + b24)

2 which means that B is invertible.

Theorem 13 (Lagrange [7]): Any positive integer can be written as the sum of

four squares.
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Lemma 17 (Rational Sum of Two Squares [3]): For any integer n, if the equation

x2 + y2 = nz2 has an integer solution with x, y, z not all zero, then n is the sum of

two squares.

Theorem 14 (Bruck-Ryser Theorem [3]): If n ≡ 1 or 2 (mod 4) and n 6= a2 + b2,

then there is no projective plane of order n.

Proof. Let A be an incidence matrix for a projective plane of order n where n ≡ 1

or 2 (mod 4) and n 6= a2 + b2. Let N = n2 + n + 1. In our assumption, n ≡ 1 or 2

(mod 4) and thus, N ≡ 3 (mod 4).

Consider the vector −→x = (x1, x2, . . . , xN)T ∈ QN . Define −→z = A−→x = (z1, z2, . . . , zN)T .

Therefore,

−→z T−→z = (z1, z2, . . . , zN)


z1

· · ·

zN

 = z21 + z22 + . . .+ z2N

As well, −→z T−→z = (A−→x )T (A−→x ) = −→x TATA−→x . Now, since we know what AAT

looks like from Proposition 4, this is the same as −→x T (J + nI)−→x where J is the N

by N matrix of all ones. So,

−→x T (J + nI)−→x =−→x TJ−→x +−→x TnI−→x

=−→x TJ−→x + n−→x T−→x

=−→x TJ−→x + n(x21 + x22 + . . .+ x2N)

=(x1, x2, . . . , xN)


x1 + x2 + . . .+ xN

· · ·

x1 + x2 + . . .+ xN

+ n(x21 + x22 + . . .+ x2N)

=(x1 + x2 + . . .+ xN)2 + n(x21 + x22 + . . .+ x2N)

Let ω = x1+x2+ . . .+xN . Since we now have two results for −→z T−→z , then the results
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are equal. And therefore,

z21 + z22 + . . .+ z2N = ω2 + n(x21 + x22 + . . .+ x2N)

Since N ≡ 3 (mod 4), we will add an nx2N+1 term on both sides so that the

number of xi’s is congruent to 0 (mod 4),

z21 + z22 + . . .+ z2N + nx2N+1 = ω2 + n(x21 + x22 + . . .+ x2N + x2N+1)

By Theorem 13, every non-negative integer can be written as the sum of four

squares, i.e. n = a2 + b2 + c2 +d2. Now because of Lemma 16, (a2 + b2 + c2 +d2)(x21 +

x22 + x23 + x24) = y21 + y22 + y23 + y24. Therefore, since n can be written as the sum

of four squares and we can group our xi’s into groups of four, a group of four nxi’s

will now be written as a group of four yi’s. In other words,

z21 + z22 + . . .+ z2N + nx2N+1 = ω2 + y21 + y22 + . . .+ y2N + y2N+1 (1)

Now, since the matrix B from Lemma 16 is invertible and has integer coeffi-

cients, we can write each of the xi’s as a rational linear combination of the yi’s and

therefore each of the zi’s can be written as a linear combination of the yi’s with ra-

tional coefficients.

Now, since each zi is a linear combination of the yi’s with rational coefficients,

z1 = c11y1 + c12y2 + . . . + c1(N+1)yN+1 with cij ∈ Q. If c11 6= 1, then we can set

y1 = 1
1−c11 (c12y2 + . . .+ c1(N+1)yN+1) which would mean that

z1 =
c11

1− c11
(c12y2 + . . .+ c1(N+1)yN+1) + c12y2 + . . .+ c1(N+1)yN+1 = y1

If c11 = 1, then we can set y1 = −1
2
(c12y2 + . . . + c1(N+1)yN+1) which would mean
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that

z1 = −1

2
(c12y2 + . . .+ c1(N+1)yN+1) + c12y2 + . . .+ c1(N+1)yN+1 = −y1

But regardless of what c11 is, y21 = z21 and y1 is written in terms of the other yi’s.

Thus, we can subtract y21 off of each side in (1). We can continue this process on

each yi (1 ≤ i ≤ N) such that y2i = z2i and yi is written as a linear combination of

yi+1, . . . , yN+1. Therefore, (1) is now reduced to

nx2N+1 = ω2 + y2N+1 (2)

Since each xi is a linear combination of the yi’s, then xN+1 and ω are linear combi-

nations of the yi’s. However, each yi (1 ≤ i ≤ N) was rewritten as a linear com-

bination of yi+1, . . . , yN , and yN+1. Therefore, xN+1 and ω are a linear combination

of yN+1, i.e. xN+1 = kyN+1 and ω = lyN+1 where k and l are rational coefficients.

Hence, (2) is now

nk2y2N+1 = l2y2N+1 + y2N+1

We can choose yN+1 to be the least common multiple of the denominators of k and

l so that each term has integer coefficients that are squares. Thus, n is a sum of

two squares by Lemma 17. This is a contradiction since our initial assumption was

that n 6= a2 + b2. Therefore, a projective plane of order n cannot exist.

As an application of Bruck-Ryser, a projective plane cannot have order n = 6

because 6 ≡ 2 (mod 4) and 6 can not be written as a sum of squares. Likewise,

there cannot exist a projective plane of order n = 14.
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CONCLUSION

Throughout this paper we have examined basic properties of affine and projec-

tive geometries. We constructed a projective plane given an affine plane and made

an affine plane given a projective plane. We took fields and made both affine and

projective geometries. We produced affine planes using n − 1 pairwise orthogonal

Latin Squares. We constructed projective planes using Perfect Difference Sets. As

well, we made affine and projective planes using ternary rings and a near-field.

In conclusion, we have shown that the order of finite projective planes n can be

a power of a prime and it can’t be equivalent to 1 or 2 (mod 4) while n 6= a2 + b2.

For ease, Figure 14 begins a list of orders that projective planes can be or not be

along with the reason why.

n Possible Projective Plane? Reason
1 Not possible violates A2+

2 Possible 2 is prime, Fano Plane
3 Possible 3 is prime
4 Possible Theorem 12
5 Possible 5 is prime
6 Not possible Bruck-Ryser Theorem
7 Possible 7 is prime
8 Possible Theorem 12

9 Possible
Theorem 12,

4 known planes up to isomorphism
10 Not possible (computer) See next paragraph
11 Possible 11 is prime
12 ? ?
13 Possible 13 is prime
14 Not possible Bruck-Ryser Theorem

Figure 14: Possible Projective Planes of Order n

A big question in finite projective geometry is how many planes of order n are

there (up to isomorphism)? There may be more than one plane up to isomorphism.

For example, there are at least four non-isomorphic projective planes of order 9
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[10]. There may be more but there are currently only four known. Another ques-

tion is about projective planes of prime order p and whether or not there is more

than one.

Another big question in finite projective geometry is what the order of a plane

can be. Theorems 12 and 14 produce several questions. Can the order only be a

power of a prime? If n fails to satisfy the restrictions placed by the Bruck-Ryser

Theorem, will there always be a projective plane? We believe that the general con-

sensus is that the answer is somewhere in the middle of these two extremes. In the

last decades of the twentieth century, C.W. H. Lam [4] ran a computer simulation

that apparently proved that a projective plane of order 10 is not possible. However,

computers do make errors and an actual proof has not been given yet. The next

integer which is yet to be shown whether or not it can be the order of a projective

plane is n = 12. There is no known proof whether or not n = 12 can be an order of

a projective plane. For this reason, using Latin Squares, Ternary Rings, and Perfect

Difference Sets are an important topic in projective geometry. If we can find one of

these sets has an order that is not a power of a prime, then we know that we can

make a projective plane of this given order. Determining which orders are possible

for projective planes is one of the great unsolved problems in combinatorics.
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