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ABSTRACT

Within an n-dimensional unit cube, a number of k-dimensional simplices can be
formed whose vertices are the vertices of the n-cube. In this thesis, we analyze the
average measure of a k-simplex in the n-cube. We develop exact equations for the
average measure when k = 1, 2, and 3. Then we generate data for these cases and
conjecture that their averages appear to approach nk/2 times some constant. Using
the convergence of Bernstein polynomials and a k-simplex Bernstein generalization,
we prove the conjecture is true for the 1-simplex and 2-simplex cases. We then de-
velop a generalized formula for the average measure of the k-simplex in the n-cube
and prove the average is asymptotic to nk/2 ·

√
k+1
2kk!

.
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1. INTRODUCTION

A unit n-cube is the convex hull of 2n points of the form (x1, . . . , xn), where

xi ∈ {0, 1}. A k-simplex is defined to be the convex hull of k + 1 points. This pa-

per will discuss the average measure of a k-dimensional simplex in an n-cube, and

will show that the average measure approaches nk/2 · C for some constant C as n

approaches infinity. The value of this constant is in fact the measure of a regular

k-simplex of side length 1√
2
, which will be shown to be

√
k+1
2kk!

.

This research began in the spring of 2016 as part of an undergraduate re-

search project. With a contribution by Dr. Xingping Sun, we were able to use Bern-

stein polynomials to prove the average measure of a 1-simplex approaches
√
n/2 as

n→∞. As the project evolved into a thesis, we developed programs to collect data

for the average measure of the 2-simplex and 3-simplex in the n-cube to support

our conjecture and determine the value of C in each case. We then implemented

the k-simplex Bernstein polynomial and developed a generalized proof for the con-

vergence of the average measure of any k-simplex in the unit n-cube.
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2. 1-SIMPLEX CASE

A 1-simplex is the convex hull of 2 points, or a line segment. We may an-

alyze the total number of line segments in the 2-cube, including degenerate cases,

by fixing a vertex at the origin of a 2-dimensional grid and considering the possible

coordinates for a second vertex. This process is demonstrated in Figure 1.

Figure 1: Forming all 1-simplices, including degenerates, in the 2-cube.

The pair of coordinates ((0, 0), (c1, c2)) consists of the coordinates that com-

prise a line segment, where c1, c2 ∈ {0, 1}. Then {(0, 0), (0, 1), (1, 0), (1, 1)} is the

set of possible choices for (c1, c2). So for c1 and c2, we can choose these possibili-

ties: two 1’s and zero 0’s, a single 1 and a single 0, or zero 1’s and two 0’s. That is,

we’re dealing with the number of ways to partition 2 into two parts.

(0) 2 0 1

(1) 0 2 1

Because there are 22 vertices in a 2-cube, and because there is one coordinate to

choose to complete a 1-simplex, we should expect (22)
1
1-simplices in the 2-cube.

There are 2! ways to assign a particular number of 1’s and 0’s to c1 and c2. There

are 2! · 0! ways to choose two of the same component and zero of the other. Then

we can pick either two 0’s or two 1’s, so in total there are
(

2!
2!0!

· 2
)
ways to pick 1-

simplices of this form. There are 1! · 1! ways to choose one of a single component

and one of the other, and in this situation we can only pick one 1 and one 0. So

2



there are
(

2!
1!1!
· 1
)

ways to pick 1-simplices of this form. In total we have

(
2

2

)
· 2 +

(
2

1

)
· 1 = 4,

confirming that these forms cover all the 1-simplices in the 2-cube. Notice that in

the case of the 1-simplex, the measure will be the length or distance from the fixed

vertex at the origin to the second vertex. This distance will be the square root of

the number of 1’s chosen for c1 and c2. If we denote a to be the number of 0’s and

b to be the number of 1’s chosen at any time, then the average measure can be rep-

resented as

1

22

∑
a+b=2

2!

a!b!

√
b =

1

22

∑
a+b=2

2!

(2− b)!b!
√
b =

1

22

2∑
k=0

(
2

k

)√
k ≈ 0.85355.

In a similar fashion, we can find the average measure of a 1-simplex in a 3-

cube. This time we fix a vertex at the origin and consider the pair ((0, 0, 0), (c1, c2, c3))

of coordinates that comprise a line segment in the 3-cube, where c1, c2, c3 ∈ {0, 1}.

So as before, the number of 0’s and 1’s we choose for c1, c2, and c3 can be repre-

sented as partitions of 3 into two parts:

(0) 3 0 2 1

(1) 0 3 1 2

Because there are 23 vertices in a 3-cube, this time we should expect (23)1 1-simplices.

There are 3! ways to assign a particular number of 0’s and 1’s to c1, c2 and c3. There

are 3! · 0! ways to choose three of the same component and zero of the other. Then

we can pick either three 0’s (a degenerate case) or three 1’s. In total there are
(

3!
3!0!
· 2
)

ways to pick 1-simplices of this form. There are 2! · 1! ways to choose two of the

same component and one of the other. Then one may choose either two 0’s and one

3



1 or two 1’s and one 0. So there are
(

3!
2!1!
· 2
)

ways to pick 1-simplices of this form.

In total we have (
3

3

)
· 2 +

(
3

2

)
· 2 = 8,

confirming that these forms cover all the 1-simplices in the 3-cube. Again we can

easily verify that the average measure is represented as

1

23

3∑
k=0

(
3

k

)√
k ≈ 1.12184.

Similarly, the average measure of a 1-simplex in an n-cube is

1

2n

n∑
k=0

(
n

k

)√
k. (*)

The graph in Figure 2 below represents the frequency of lengths for the 1-

simplices contained in the 15-cube.

Figure 2: Frequency distribution of segment length for 15-dimensional cube.

This distribution is very smooth, as is the case for each graph representing

the length distribution for many higher values of n. By analyzing many of these

4



graphs, we find the peak of each curve is very close to
√
n/2. This leads us to be-

lieve that the average length of a 2-simplex in the n-cube is approaching
√
n/2 as n

grows large.

Figure 3 represents the exact average measure of a 1-simplex in an n-cube

for some values of n, calculated with formula *.

n 20 50 100 200 500

Average 3.14148 4.98726 7.06214 9.99372 15.8074√
n/2 3.16228 5 7.07107 10 15.81139

Figure 3: Average measure of a 1-simplex in the n-cube for several values of n.

The bottom row represents our conjecture for the average. The results com-

pared with the actual averages appear to support our hypothesis. To prove the hy-

pothesis, we will need an implementation of Bernstein polynomials.
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3. BERNSTEIN POLYNOMIALS

The Bernstein polynomial is defined as follows: for any real valued function

f defined and bounded on the interval [0, 1], Bn(f) is the polynomial on [0, 1] given

the value

Bn(f)(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k
n

)
.

This polynomial has a very useful property that we will utilize in showing the con-

vergence of our function for the average measure of a 1-simplex in an n-cube.

Theorem 3.1: If f is a real-valued function defined on the interval [0, 1] and bounded

by M , then for every point x where f is continuous we have Bn(f)limn→∞ = f(x).

Proof. The following proof is from Kadison and Liu [2]. We have that

Bn(f)(x)− f(x) =
n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k
n

)
− f(x)

n∑
k=0

(
n

k

)
xk(1− x)n−k

=
n∑
k=0

(
n

k

)
xk(1− x)n−k

[
f
(
k
n

)
− f(x)

]
.

Thus we can say for each x ∈ [0, 1],

|Bn(f)(x)− f(x)| ≤
n∑
k=0

(
n

k

)
xk(1− x)n−k

∣∣f ( k
n

)
− f(x)

∣∣ .
For any δ > 0 we can consider the above sum in two parts,

∑
1 where

∣∣ k
n
− x
∣∣ < δ,

and
∑

2 where
∣∣ k
n
− x
∣∣ ≥ δ. So long as x is a point of continuity of f , for any ε > 0

there exists a δ > 0 such that |f(x1) − f(x)| < ε
2

whenever |x1 − x| < δ. Now for

6



∑
1,

∑
| kn−x|<δ

(
n

k

)
xk(1− x)n−k|f

(
k
n

)
− f(x)| <

∑
| kn−x|<δ

(
n

k

)
xk(1− x)n−k

ε

2

≤ ε

2

n∑
k=0

(
n

k

)
xk(1− x)n−k

=
ε

2
.

For the sum
∑

2, note that δ2 ≤
∣∣ k
n
− x
∣∣2. Also note,

d

dx

[
n∑
k=0

(
n

k

)
xk(1− x)n−k

]
=

d

dx
[1] ,

1

x

n∑
k=0

(
n

k

)
kxk(1− x)n−k − 1

1− x

n∑
k=0

(
n

k

)
(n− k)xk(1− x)n−k = 0,

1

x

n∑
k=0

(
n

k

)
kxk(1− x)n−k =

1

1− x

[
n−

n∑
k=0

(
n

k

)
kxk(1− x)n−k

]
,

1

x(x− 1)

n∑
k=0

(
n

k

)
kxk(1− x)n−k =

n

1− x
,

n∑
k=0

(
n

k

)
kxk(1− x)n−k = nx,

7



and

d

dx

[
n∑
k=0

(
n

k

)
kxk(1− x)n−k

]
=

d

dx
[xn] ,

1

x

n∑
k=0

(
n

k

)
k2xk(1− x)n−k − 1

1− x

n∑
k=0

(
n

k

)
k(n− k)xk(1− x)n−k = n,

1

x

n∑
k=0

(
n

k

)
k2xk(1− x)n−k − n

1− x

n∑
k=0

(
n

k

)
kxk(1− x)n−k

+
1

1− x

n∑
k=0

(
n

k

)
k2xk(1− x)n−k = n,

1

x(x− 1)

n∑
k=0

(
n

k

)
k2xk(1− x)n−k − n

1− x
(nx) = n,

n∑
k=0

(
n

k

)
k2xk(1− x)n−k =

x2(n− 1)

n
+
x

n
.

Thus we have

n∑
k=0

(
n

k

)(
k

n
− x
)2

xk(1− x)n−k =
n∑
k=0

(
n

k

)
k2

n2
xk(1− x)n−k

−2x
n∑
k=0

(
n

k

)
k

n
xk(1− x)n−k + x2

n∑
k=0

(
n

k

)
xk(1− x)n−k

=
x(1− x)

n
.

8



Define M = maxx∈[0,1] f(x). Now,

δ2
∑
| kn−x|≥δ

(
n

k

)
xk(1− x)n−k

∣∣f ( k
n

)
− f(x)

∣∣
≤

∑
| kn−x|≥δ

(
n

k

)(
k

n
− x
)2

xk(1− x)n−k
∣∣f ( k

n

)
− f(x)

∣∣
≤

∑
| kn−x|≥δ

(
n

k

)(
k

n
− x
)2

xk(1− x)n−k2M

≤ 2M
n∑
k=0

(
n

k

)(
k

n
− x
)2

xk(1− x)n−k

= 2M
x(1− x)

n

≤ 2M

n
.

Ultimately we have

∑
| kn−x|≥δ

(
n

k

)
xk(1− x)n−k

∣∣f ( k
n

)
− f(x)

∣∣ ≤ 2M

nδ2
.

Considering δ, we can pick N large enough so that 2M
δ2n

< ε
2

when n ≥ N . In this

case we have

|Bn(f)(x)− f(x)| ≤
∑
1

+
∑
2

<
ε

2
+
ε

2
= ε,

showing that limn→∞Bn(f)(x) = f(x) for each x ∈ [0, 1] where f is continuous.

9



4. 1-SIMPLEX (CONCLUSION)

To prove the convergence of the average, an implementation of Bernstein

polynomials is used. Let f(x) =
√
x, then f ∈ C[0, 1]. Notice that f(1/2) = 1/

√
2.

We have

Bn(f)(1/2) =
n∑
k=0

(
n

k

)(
1

2

)k (
1− 1

2

)n−k√
k

n

=

∑n
k=0

(
n
k

)√
k

2n
√
n

.

By Theorem 3.1,

lim
n→∞

∑n
k=0

(
n
k

)√
k

2n
√
n

=

√
1

2
.

This means ∑n
k=0

(
n
k

)√
k

2n
∼
√
n

2
,

thus proving our conjecture.

10



5. 2-SIMPLEX CASE

In the non-degenerate case, a 2-simplex is the convex hull of 3 points, or a

triangle. We may analyze the total number of 2-simplices in the 2-cube, including

degenerate cases, by fixing a vertex at the origin of a 2-dimensional grid and con-

sidering the possible coordinates for a second and third vertex that will complete a

2-simplex. That is, ((0, 0), (a1, a2), (b1, b2)) consists of the coordinates that comprise

the 2-simplex, where ai, bi ∈ {0, 1} for i = 1, 2. Similar to the 1-simplex case, we

can consider a certain number of pairs. One pair (a1, b1) will describe the first co-

ordinate value of each vertex, assigning values to a1 and b1. A second pair (a2, b2)

will describe the second coordinate value of each vertex, assigning values to a2 and

b2. So there are 2 pairs in total used to form the two vertices of a 2-simplex that

are not fixed at the origin. Of the choices for (a1, b1) and (a2, b2) we have (0, 0),

(0, 1), (1, 0), and (1, 1). The number of ways to choose two of these, one for (a1, b1)

and one for (a2, b2), is the number of ways to partition 2 into four distinct parts, as

demonstrated below.

(0, 0) 2 0 0 0 1 1 1 0 0 0

(0, 1) 0 2 0 0 1 0 0 1 1 0

(1, 0) 0 0 2 0 0 1 0 1 0 1

(1, 1) 0 0 0 2 0 0 1 0 1 1

Because there are (22) vertices in a 2-cube, and because we need two vertices

to complete a 2-simplex, we should expect (22)2 = 16 2-simplices. There are 2!

ways to assign a particular number of pairs to (a1, b1) and (a2, b2). There are 2! ·

0! · 0! · 0! ways to choose two of the same pair and zero of the rest (which would be

degenerate 2-simplices). Then we can pick two of the same pair out of four possible

11



pairs, so in total there are
(

2!
2!0!0!0!

· 4
)

ways to pick 2-simplices of this form. There

are 1! · 1! · 0! · 0! ways to choose two different pairs and zero of the rest. There are(
4
2

)
ways to choose one pair then another distinct pair out of four possible pairs. So

there are
(

2!
1!1!0!0!

·
(
4
2

))
ways to pick 2-simplices of this form. In total we have

(
2

2, 0, 0

)
· 4 +

(
2

1, 1, 0

)
·
(

4

2

)
= 16.

Recall we are dealing with the number of ways to partition 2 into four parts.

For each of these partitions, we can assign a to represent the number of (0, 0) pairs,

b the number of (0, 1) pairs, c the number of (1, 0) pairs, and d the number of (1, 1)

pairs, where a+ b+ c+ d = 2.

We can invoke Heron’s formula to help create an equation for the average

measure of a 2-simplex in a 2-cube. The length of a side of the 2-simplex will be

the distance between two of the three coordinates that comprise it. For example,

the distance between the origin and the vertex (a1, a2) will be the magnitude
√
a21 + a22.

However, since a1, a2 ∈ {0, 1} this distance is just
√
a1 + a2 and the values a1 and

a2 each only increase this distance beyond zero if they are 1. So if we want to ana-

lyze this distance we should only be concerned with the number of (1, 0) and (1, 1)

pairs chosen for a particular 2-simplex, since each of these would contribute a 1 to

the vertex (a1, a2). So if we call the length of this side x, then x =
√
c+ d. In a

similar manner we can see that if we call y the distance between the origin and the

vertex (b1, b2), then y =
√
b+ d. If we define z to be the distance between the ver-

tices (a1, a2) and (b1, b2), then the values a1 and b1 will only increase the distance

beyond zero if they are each different. The same can be said for a2 and b2. Thus

z =
√
b+ c.

If we define V2 to be the area of a 2-simplex, using Heron’s formula we have

V2 =
1

4

√
2x2y2 + 2x2z2 + 2y2z2 − x4 − y4 − z4.

12



We can write this as an equation where a, b, c, and d are parameters:

g(a, b, c, d) =
1

4

{
2(c+ d)(b+ d) + 2(c+ d)(b+ c) + 2(b+ d)(b+ c)

− (c+ d)2 − (b+ d)2 − (b+ c)2
}1/2

.

So now an equation for the average measure of a 2-simplex in a 2-cube is

1

16

∑
a+b+c+d=2

2!

a!b!c!d!
g(a, b, c, d).

In fact, since d = 2− a− b− c we can define the side lengths by using only a, b, and

c as parameters. We can define a new function for the area using only these three

variables like so,

f(a, b, c) = g(a, b, c, 2− a− b− c)

=
1

4

{
2(2− a− b)(2− a− c) + 2(2− a− b)(b+ c)

+ 2(2− a− c)(b+ c)− (2− a− b)2 − (2− a− c)2 − (b+ c)2
}1/2

.

So the equation for the average can be rewritten as

1

16

∑
a+b+c≤2

(
2

a, b, c

)
f(a, b, c) =

1

2
.

Now let’s find an equation for the average measure of a 2-simplex in a 3-

cube using the same approach. Here we analyze the total number of triangles in the

3-cube, including degenerate cases, by fixing a vertex at the origin of a 3-dimensional

grid and considering the possible coordinates for a second and third vertex that

will complete a 2-simplex. Let ((0, 0, 0), (a1, a2, a3), (b1, b2, b3)) consist of the coor-

dinates that comprise the 2-simplex, where ai, bi ∈ {0, 1} for i = 1, 2, 3. We can

consider a pair (a1, b1) assigning values to the first entry of each vertex, a second

13



(a2, b2) assigning values to the second coordinate value of each vertex, and a third

pair (a3, b3) assigning values to the third coordinate value of each vertex.

There are three pairs in total we may use to form the two vertices of the 2-

simplex aside from the origin. In any given 2-simplex we have a certain number of

(0, 0)’s, (0, 1)’s, (1, 0)’s, and (1, 1)’s pairs. To avoid the trouble of listing all pos-

sibilities, we will go through the number of cases analytically. There are 3! ways to

choose a number of pairs for (a1, b1), (a2, b2), and (a3, b3). There are 3!·0!·0!·0! ways

to choose three of the same pair and zero of the rest (which are degenerate cases).

Then we can pick three of the same pair out of four possible pairs, so in total there

are ( 3!
3!0!0!0!

· 4) ways to pick 2-simplices of this form. There are 2! · 1! · 0! · 0! ways

to choose two of the same pair, one of another pair, and zero of the two remaining

pairs. There are
(
4
2

)
ways to choose zero of two pairs, and we multiply this by two

since from the remaining pairs we can pick two of the first and one of the second,

or one of the first and two of the second. Thus there are
(

3!
2!1!0!0!

· 2
(
4
2

))
ways to pick

2-simplices of this form. Then we can pick three distinct pairs out of four. In total

we have (
3

3, 0, 0

)
· 4 +

(
3

2, 1, 0

)
· 2
(

4

2

)
+

(
3

1, 1, 1

)
· 4 = 64,

which is (23)2, the number of 2-simplices we would expect in the 3-cube. Using the

same approach as before, we find the average to be

1

64

∑
a+b+c≤3

(
3

a, b, c

)
f(a, b, c) ≈ 0.641,

where

f(a, b, c) = g(a, b, c, 3− a− b− c),

again an application of Heron’s formula.

Similarly, the average measure of a 2-simplex in an n-cube is

14



1

4n

∑
a+b+c≤n

(
n

a, b, c

)
f(a, b, c), (**)

where

f(a, b, c) = g(a, b, c, n− a− b− c)

=
1

4

{
2(n− a− b)(n− a− c) + 2(n− a− b)(b+ c)

+ 2(n− a− c)(b+ c)− (n− a− b)2 − (n− a− c)2 − (b+ c)2
}1/2

.

The graph in Figure 4 displays the distribution for the average area of the 2-simplex

in the 15-cube.

Figure 4: Frequency distribution of triangle area for 15-dimensional cube.

This distribution is not as even as the distribution for the 1-simplex case.

It’s not so obvious from the graph that the average is converging to any particular

value. Nonetheless, we conjecture that the average length of the 2-simplex in the

n-cube approaches n · C where C is some constant.

Figure 5 represents the exact average area of a 2-simplex in an n-cube for
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some values of n, derived from formula **.

n 20 50 100 200 500

Average 4.18051 10.67899 21.50532 43.15645 108.10865

Average/n 0.20903 0.21358 0.21505 0.21578 0.21622

Figure 5: Average measure of a 2-simplex in the n-cube for several values of n.

The bottom row represents the average divided by n. The data indicates

this ratio does appear to approach some constant. This encouragement prompts us

to apply a method similar to that used for the 1-simplex case, involving k-simplex

Bernstein polynomials to find the convergence.
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6. k-SIMPLEX BERNSTEIN THEOREM

Let I = [0, 1] and k ∈ N. Define a k-simplex 4k as follows,

4k = {~x = (x1, . . . , xk) ∈ Ik : x1 + · · ·+ xk ≤ 1}.

Define ~v = (v1, . . . , vk) ∈ Nk
0 to be a multi-index such that

|~v| = v1 + · · ·+ vk ∈ {0, 1, . . . , n}.

We then define the following notation for any ~x ∈ 4k,

~x~v =
k∏
i=1

x vii ,

~v ! = v1! · · · vk!,(
n

~v

)
=

n!

~v !(n− |~v|)!
.

Similar to a regular n-th degree Bernstein polynomial, we set

B~v,n(~x) =

(
n

~v

)
~x~v(1− |~x|)n−|~v|.

For any f defined on 4k we define

Bn(f) (~x) =
∑
|~v|≤n

B~v,n(~x)f
(
~v
n

)
.

Theorem 6.1: If f : 4k → R is continuous, then Bn(f) → f uniformly on 4k as

n→∞.

Proof. The structure of the following proof is from A. Bayad, T. Kim and S.-H.

Rim [1] and is very similar to the proof of the regular Bernstein polynomial conver-
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gence. We first note that

∑
|~v|≤n

B~v,n(~x) =
∑
|~v|≤n

(
n

v1v2 · · · vk

)
xv11 x

v2
2 · · · x

vk
k (1− x1 − · · · − xk)n−v1−···−vk

= [x1 + x2 + · · ·+ xk + (1− x1 − x2 − · · · − xk)]n

= 1.

Since f is a continuous function on 4k, for any ε
2
> 0 there exists a δ > 0 such that

for ~x = (x1, . . . , xk) and ~y = (y1, . . . , yk), when |xi − yi| < δ for all i = 1, 2, . . . , k,

then |f(~x) − f(~y)| < ε
2
. To indicate an upper bound for two vectors, we define

a measure on 4k as d(~x, ~y) = max {|x1 − y1|, . . . , |xk − yk|}. Now similar to the

regular Bernstein case, we have

|Bn(f) (~x)− f(~x)| =

∣∣∣∣∣∣
∑
|~v|≤n

B~v,n(~x)f
(
~v
n

)
−
∑
|~v|≤n

B~v,n(~x)f(~x)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|~v|≤n

B~v,n(~x)f
(
~v
n

)
− f(~x)

∣∣∣∣∣∣
≤
∑
|~v|≤n

B~v,n(~x)
∣∣f (~v

n

)
− f(~x)

∣∣ .
We may break the sum into two parts,

∑
|~v|≤n

B~v,n(~x)
∣∣f ( ~v

n

)
− f(~x)

∣∣ =
∑

d( ~v
n
,~x)<δ

B~v,n(~x)
∣∣f (~v

n

)
− f(~x)

∣∣
+

∑
d( ~v

n
,~x)≥δ

B~v,n(~x)
∣∣f (~v

n

)
− f(~x)

∣∣ .
The first summation satisfies

∑
d( ~v

n
,~x)<δ

B~v,n(~x)
∣∣f (~v

n

)
− f(~x)

∣∣ < ∑
|~v|≤n

B~v,n(~x) · ε
2

=
ε

2
.
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Let vk+1 = n− v1 − · · · − vk and note that for any xm,

∂

∂xm

[ ∑
v1+···+vk+1=n

(
n

v1!v2! · · · vk!

)
x1

v1 · · · xmvm · · · xkvk (xk+1)
vkk

]

=
∂

∂xm
[(x1 + · · ·+ xm + · · ·+ xk+1)

n] ,

1

xm

∑
v1+···+vk+1=n

(
n

v1!v2! · · · vk!

)
vmx1

v1 · · · xmvm · · · xkvk (xk+1)
vkk

= n (x1 + · · ·+ xm + · · ·+ xk+1)
n−1 ,∑

v1+···+vk+1=n

(
n

v1!v2! · · · vk!

)
vmx1

v1 · · · xmvm · · · xkvk (xk+1)
vkk

= xmn (x1 + · · ·+ xm + · · ·+ xk+1)
n−1 ,

and

∂

∂xm

[ ∑
v1+···+vk+1=n

(
n

v1!v2! · · · vk!

)
vmx1

v1 · · · xmvm · · · xkvk (xk+1)
vk+1

]

=
∂

∂xm

[
xmn (x1 + · · ·+ xm + · · ·+ xk+1)

n−1] ,
1

xm

∑
v1+···+vk+1=n

(
n

v1!v2! · · · vk!

)
vm

2x1
v1 · · · xmvm · · · xkvk (xk+1)

vk+1

= xmn(n− 1) (x1 + · · ·+ xm + · · ·+ xk+1)
n−2 ,∑

v1+···+vk+1=n

(
n

v1!v2! · · · vk!

)
vm

2x1
v1 · · · xmvm · · · xkvk (xk+1)

vk+1

= xm
2n(n− 1) (x1 + · · ·+ xm + · · ·+ xk+1)

n−2 .
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If we let xk+1 = 1− x1 − · · · − xk, then from the equalities above

∑
v1+···+vk≤n

(
n

v1!v2! · · · vk!

)
vmx1

v1 · · · xmvm · · · xkvk (1− x1 − · · · − xk)n−v1−···−vk

= xmn (x1 + · · ·+ xk + 1− x1 − · · · − xk)n−1

= xmn (1)n−1

= xmn,

and

∑
v1+···+vk≤n

(
n

v1!v2! · · · vk!

)
vm

2x1
v1 · · · xmvm · · · xkvk (1− x1 − · · · − xk)n−v1−···−vk

= xm
2n(n− 1) (x1 + · · ·+ xk + 1− x1 − · · · − xk)n−2

= xm
2n(n− 1) (1)n−2

= xm
2n(n− 1).

Thus we have

∑
|~v|≤n

B~v,n(~x)
(
xm −

vm
n

)2
= x2m

∑
|~v|≤n

(
n

~v

)
~x~v(1− |~x|)n−|~v| − 2xm

∑
|~v|≤n

(
n

~v

)
vm
n
~x~v(1− |~x|)n−|~v|

+
∑
|~v|≤n

(
n

~v

)
vm

2

n2
~x~v(1− |~x|)n−|~v|

=
xm(1− xm)

n
.

Now, to analyze the second summation first note that

δ2 ≤
(
x1 −

v1
n

)2
+
(
x1 −

v1
n

)2
+ · · ·+

(
xk −

vk
n

)2
.
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Define M = maxx∈Ik f(~x) so that for any ~x, ~y ∈ [0, 1],

|f(~x)− f(~y)| ≤ |f(~x)|+ |f(~y)| ≤ 2M.

Then we have

δ2
∑

d( ~v
n
,~x)≥δ

B~v,n (~x)
∣∣f (~v

n

)
− f(~x)

∣∣
≤ 2M

∑
d( ~v

n
,~x)≥δ

B~v,n(~x)

[(
x1 −

v1
n

)2
+
(
x1 −

v1
n

)2
+ · · ·+

(
xk −

vk
n

)2]

≤ 2M
∑
|~v|≤n

B~v,n(~x)

[(
x1 −

v1
n

)2
+
(
x2 −

v2
n

)2
+ · · ·+

(
xk −

vk
n

)2]

= 2M

(
x1(1− x1) + · · ·+ xk(1− xk)

n

)
.

Here we have that xi(1− xi) ≤ 1
4

for all i = 1, . . . , k. Thus

2M

(
x1(1− x1) + · · ·+ xk(1− xk)

n

)
≤ 2M

(
k · 1

4

n

)
=
Mk

2n
.

From the above we have

∑
d( ~v

n
,~x)≥δ

B~v,n(~x)
∣∣f (~v

n

)
− f(~x)

∣∣ ≤ Mk

2nδ2
.

Again by considering δ, we can pick N large enough so that 2M
δ2n

< ε
2

when n ≥ N .

So we have

|Bn(f) (~x)− f(~x)| < ε

2
+
ε

2
= ε.
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7. 2-SIMPLEX (CONCLUSION)

Notice that

f(a, b, c) =
1

4

{
2(n− a− b)(n− a− c) + 2(n− a− b)(b+ c)

+ 2(n− a− c)(b+ c)− (n− a− b)2 − (n− a− c)2 − (b+ c)2
}1/2

is continuous on 4k. Also note that when f is the formula above,

1

n
f(a, b, c) =

1

n
g(a, b, c, n− a− b− c)

=
1

n
· 1

4

{
2(n− a− b)(n− a− c) + 2(n− a− b)(b+ c)

+ 2(n− a− c)(b+ c)− (n− a− b)2 − (n− a− c)2 − (b+ c)2
}1/2

=
1

4

{
1

n2

[
2(n− a− b)(n− a− c) + 2(n− a− b)(b+ c)

+ 2(n− a− c)(b+ c)− (n− a− b)2 − (n− a− c)2 − (b+ c)2
]}1/2

=
1

4

{
2
(

1− a

n
− b

n

)(
1− a

n
− c

n

)
+ 2

(
1− a

n
− b

n

)(
b

n
+

c

n

)
+ 2

(
1− a

n
− c

n

)(
b

n
+

c

n

)
−
(

1− a

n
− b

n

)2
−
(

1− a

n
− c

n

)2
−
(
b

n
+

c

n

)2}1/2

= g
(
a

n
,
b

n
,
c

n
, 1− a

n
− b

n
− c

n

)
= f̄

(
a

n
,
b

n
,
c

n

)
,

where f̄ is a new function that still defines the area of the 2-simplex requiring only

a
n
, b
n
, and c

n
to form the parameters. At this point we can apply the generalization

of Bernstein polynomials on simplices, where

Bn(f)(~x) =
∑
|~v|≤n

(
n

~v

)
~x~v(1− |~x|)n−|~v|f

(
~v
n

)
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and limn→∞Bn(f)(~x) = f(~x). By choosing ~x =
(
1
4
, 1
4
, 1
4

)
we have

Bn

(
f̄
) ((

1
4
, 1
4
, 1
4

))
=

∑
a+b+c≤n

(
n

a, b, c

)(
1

4

)a+b+c(
1

4

)n−a−b−c
f̄
(
a

n
,
b

n
,
c

n

)
=

∑
a+b+c≤n

(
n

a, b, c

)(
1

4

)n
1

n
f (a, b, c)

=
1

n
· 1

4n

∑
a+b+c≤n

(
n

a, b, c

)
f (a, b, c) .

Therefore from Theorem 6.1,

lim
n→∞

1

n
· 1

4n

∑
a+b+c≤n

(
n

a, b, c

)
f (a, b, c) = f̄

(
1
4
, 1
4
, 1
4

)
.

It’s easily found that f̄
(
1
4
, 1
4
, 1
4

)
=
√
3
8

, so ultimately

1

4n

∑
a+b+c≤n

(
n

a, b, c

)
f (a, b, c) ∼ n

√
3

8
.

Note that
√

3/8 ≈ 0.216506 agrees with the collected data from Figure 5 for the

2-simplex case.
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8. CAYLEY-MENGER DETERMINANTS

Let Vk be the measure of a k-simplex. Note that any vertex of the simplex

can be defined by (x1m, x2m, · · · , xkm), where m can be from 1 to k + 1. Every side

length of the k-simplex can be defined by

Sij =
√

(x1i − x1j)2 + (x2i − x2j)2 + · · ·+ (xki − xkj)2,

where (x1i, x2i, · · · , xki) and (x1j, x2j, · · · , xkj) for i, j = 1, 2, . . . , k + 1 are two

vertices of the k-simplex and Sij is the distance between them. Define

|Mk| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 · · · 1

1 0 S12
2 · · · S1(k+1)

2

1 S21
2 0 · · · S2(k+1)

2

...
...

...
. . .

...

1 S(k+1)1
2 S(k+1)2

2 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Theorem 8.1: The measure of a k-dimensional simplex is defined by

(Vk)
2 = −

∣∣Mk
2
∣∣

(−2)k(n!)2
.

Proof. The following proof for this theorem is influenced directly by [3]. Consider

a k-dimensional simplex with k + 1 vertices. Choose any one of these vertices and

regard it as the apex of a k-dimensional pyramid above a (k − 1)-dimensional base.

Then we can call the height of this apex from this base hk and the measure of the

base Vk−1. If we consider a (k−1)-dimensional slice perpendicular to the k-dimensional

plane, when we are a distance of h from the apex, the (k − 1)-dimensional measure

of that slice will be Vk−1

(
h
hk

)k−1
. Thus the measure Vk for the k-dimensional sim-
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plex is

Vk =

∫ hk

h=0

Vk−1

(
h

hk

)k−1
dh = Vk−1

(
hk
k

)
.

We can continue this process by defining hi for i = 1, 2, . . . , k to be the height of

the (i+ 1)th vertex above the plane containing the i-dimensional simplex base. The

measure can then be written as

Vk =
1

k!
hkhk−1hk−2 · · ·h1.

To determine the heights in the above equation, we can rigidly translate the ver-

tices of a k-dimensional simplex without affecting its measure so that the (k + 1)th

vertex is positioned at the origin. We then arrange the following matrix,



x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...

xk1 xk2 . . . xkk


Where (xi1, xi2, . . . , xik) with i = 1, 2, . . . , k are the coordinates of each vertex

not positioned at the origin. Any rigid rotation of the vertices about the origin

will not affect the determinant of the matrix. Thus we can rotate the simplex in

k-dimensional space in such a way that k − 1 vertices are contained in (k − 1)-

dimensional space, orthogonal to one of the axes. In doing this, we can obtain a

matrix with the same determinant such that the last entry is zero for every coordi-

25



nate except the kth coordinate.

∣∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...

xk1 xk2 . . . xkk

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

x′11 x′12 · · · 0

x′21 x′22 · · · 0

...
...

. . .
...

x′k1 x′k2 . . . x′kk

∣∣∣∣∣∣∣∣∣∣∣∣∣
Above the coordinate x′kk is the height hk of the vertex (x′k1, x

′
k2, . . . , x

′
kk) above the

(k − 1)-dimensional space containing the other k vertices (including the origin). So

by cofactor decomposition of the last column we have

∣∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...

xk1 xk2 . . . xkk

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

x′11 x′12 · · · 0

x′21 x′22 · · · 0

...
...

. . .
...

x′k1 x′k2 . . . x′kk

∣∣∣∣∣∣∣∣∣∣∣∣∣
= hk

∣∣∣∣∣∣∣∣∣∣∣∣∣

x′11 x′12 · · · x′1(k−1)

x′21 x′22 · · · x′2(k−1)
...

...
. . .

...

x′(k−1)1 x′(k−1)2 . . . x′(k−1)(k−1).

∣∣∣∣∣∣∣∣∣∣∣∣∣
We can again rotate the vertices in such a way that the last coordinate in this ma-

trix lies above the (k− 2)-dimensional plane containing the other vertices and apply

the same procedure, i.e.

hkhk−1
∣∣x′′ij∣∣ , i, j = 1, . . . , k − 2.

Ultimately, we have

∣∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...

xk1 xk2 . . . xkk

∣∣∣∣∣∣∣∣∣∣∣∣∣
= hkhk−1hk−2 · · ·h1.

26



Thus,

Vk =
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 · · · x1k

x21 x22 · · · x2k
...

...
. . .

...

xk1 xk2 . . . xkk

∣∣∣∣∣∣∣∣∣∣∣∣∣
We can alter the above equation to consider a simplex with k + 1 arbitrary ver-

tices. If the vertices are located anywhere without requiring one vertex to be at the

origin, we can call the (k + 1)th vertex
(
x(k+1)1, x(k+1)2, . . . , x(k+1)k

)
and write the

content of the k-simplex as

Vk =
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣

(
x11 − x(k+1)1

) (
x12 − x(k+1)2

)
· · ·

(
x1k − x(k+1)k

)
(
x21 − x(k+1)1

) (
x22 − x(k+1)2

)
· · ·

(
x2k − x(k+1)k

)
...

...
. . .

...(
xk1 − x(k+1)1

) (
xk2 − x(k+1)2

)
. . .

(
xkk − x(k+1)k

)

∣∣∣∣∣∣∣∣∣∣∣∣∣
By once again using cofactor decomposition, we can write the above as the determi-

nant of a higher dimensional matrix like so

Vk =
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(
x11 − x(k+1)1

)
· · ·

(
x1k − x(k+1)k

)
1
(
x21 − x(k+1)1

)
· · ·

(
x2k − x(k+1)k

)
...

...
. . .

...

1
(
xk1 − x(k+1)1

)
· · ·

(
xkk − x(k+1)k

)
1 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Since adding a multiple of any row or column to another doesn’t affect determi-

nants, we can add x(k+1)1 times the first column to the second one, x(k+1)2 times the
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first column to the third, and so on to get

Vk =
1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x11 · · · x1k

1 x21 · · · x2k
...

...
. . .

...

1 xk1 · · · xkk

1 x(k+1)1 · · · x(k+1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Now we wish to alter the equation further to write everything in terms of side lengths

instead of single vertices. Note that since the transpose of a matrix has the same

determinant as that matrix, we have

(Vk)
2 =


1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x11 · · · x1k

1 x21 · · · x2k
...

...
. . .

...

1 xk1 · · · xkk

1 x(k+1)1 · · · x(k+1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣




1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

x11 x21 · · · x(k+1)1

...
...

. . .
...

x12 x22 · · · x(k+1)2

x1k x2k · · · x(k+1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



=
1

(k!)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 +m1 ·m1 1 +m1 ·m2 · · · 1 +m1 ·mk+1

1 +m2 ·m1 1 +m2 ·m2 · · · 1 +m2 ·mk+1

...
...

. . .
...

1 +mk ·m1 1 +mk ·m2 · · · 1 +mk ·mk+1

1 +mk+1 ·m1 1 +mk+1 ·m2 · · · 1 +mk+1 ·mk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Where we have mi ·mj = xi1xj1 + xi2xj2 + · · ·+ xikxjk. We can again express this as
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a matrix of one higher dimension,

(Vk)
2 =

1

(k!)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

0 1 +m1 ·m1 · · · 1 +m1 ·mk+1

...
...

. . .
...

0 1 +mk ·m1 · · · 1 +mk ·mk+1

0 1 +mk+1 ·m1 · · · 1 +mk+1 ·mk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We may subtract the first row from every other row without changing the determi-

nant,

(Vk)
2 =

1

(k!)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

−1 m1 ·m1 · · · m1 ·mk+1

...
...

. . .
...

−1 mk ·m1 · · · mk ·mk+1

−1 mk+1 ·m1 · · · mk+1 ·mk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Notice that

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 x11 · · · x1k

0 x21 · · · x2k
...

...
. . .

...

0 xk1 · · · xkk

0 x(k+1)1 · · · x(k+1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0

x11 x21 · · · x(k+1)1

...
...

. . .
...

x12 x22 · · · x(k+1)2

x1k x2k · · · x(k+1)k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1 ·m1 m1 ·m2 · · · m1 ·mk+1

m2 ·m1 m2 ·m2 · · · m2 ·mk+1

...
...

. . .
...

mk ·m1 mk ·m2 · · · mk ·mk+1

mk+1 ·m1 mk+1 ·m2 · · · mk+1 ·mk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Thus the cofactor of the top left-hand element in the determinant for Vk is zero and

this element has no impact on the determinant. So we may set it to zero,

(Vk)
2 =

1

(k!)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 · · · 1

−1 m1 ·m1 · · · m1 ·mk+1

...
...

. . .
...

−1 mk ·m1 · · · mk ·mk+1

−1 mk+1 ·m1 · · · mk+1 ·mk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Because multiplying a single row or a column of a determinant by a constant is the

same as multiplying the whole determinant by that constant, we can multiply the

first column by −1 to get

(Vk)
2 = − 1

(k!)2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 · · · 1

1 m1 ·m1 · · · m1 ·mk+1

...
...

. . .
...

1 mk ·m1 · · · mk ·mk+1

1 mk+1 ·m1 · · · mk+1 ·mk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
We can multiply every column except the first by −2 and multiply the first row by

−1
2

to obtain

(Vk)
2 = − (−2)

(−2)k+1(k!)2

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 · · · 1

1 −2m1 ·m1 · · · −2m1 ·mk+1

...
...

. . .
...

1 −2mk ·m1 · · · −2mk ·mk+1

1 −2mk+1 ·m1 · · · −2mk+1 ·mk+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
From here, for each i = 1, 2, . . . , k + 1 we can add the first column multiplied by

mi ·mi to the (i+ 1)th column. Then we can add the first row multiplied by mi ·mi
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to the (i+ 1)th row, obtaining the result

(Vk)
2 = − 1

(−2)k(k!)2

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 · · · 1

1 m2
1 − 2m1m1 + p21 · · · m2

1 − 2m1mk+1 + p2k+1

...
...

. . .
...

1 m2
k − 2mkm1 + p21 · · · m2

k − 2mkmk+1 + p2k+1

1 m2
k+1 − 2mk+1m1 + p21 · · · m2

k+1 − 2mk+1mk+1 + p2k+1

∣∣∣∣∣∣∣∣∣∣∣∣∣
where p1pj = pi · pj. The square of the distance between these two is

pi · pi − 2pi · pj + pj · pj = (x1i − x1j)2 + (x2i − x2j)2 + · · ·+ (xki − xkj)2 = Sij
2,

where Sij
2 is the square of a side length of the k-simplex. So we ultimately have

(Vk)
2 = − |Mk|

(−2)k(k!)2
.

Thus we can write an equation for the measure of any dimensional simplex using

the side lengths of the simplex as parameters, of which there are
(
k+1
2

)
.
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9. k-SIMPLEX CASE

Figure 6 displays data collected for the average measure of a 3-simplex in an

n-cube for several values of n,

n 20 50 100 200 300 400 500

Average 3.41 14.26 40.90 116.94 215.33 331.92 464.32

(Average/n3/2) 0.0381 0.0403 0.0409 0.04134 0.04144 0.04149 0.04153

Figure 6: Average measure of a 3-simplex in the n-cube for several values of n, with

Monte Carlo approximations.

Since the hypothesis is that the average is approaching n3/2 · C for some

constant C, the bottom row lists the average divided by n3/2. If there is any con-

vergence here, for the first four values of n in the figure it is quite slow. Also, com-

putationally these exact values are time-consuming to derive. Thus the last three

columns of the figure, divided by a double bar, represent a utilization of the Monte

Carlo method implemented to reduce the number of computations needed and ap-

proximate values for these higher dimensions. The approximated data does seem to

indicate a convergence. Now we apply general methods for determining the average

measure of any k-simplex in the n-cube.

In any n-cube, we can consider the coordinates that define each vertex of

a particular k-dimensional simplex in that n-cube by fixing the first vertex at the

origin and choosing the remaining k vertices that form it. To create the vertices

aside from the origin, we can consider n seperate k-tuples. One k-tuple will assign

values for the first coordinate value of each vertex. Another k-tuple will assign val-

ues to the second coordinate value of each vertex, and so on. For each k-tuple we

can choose a 0 or 1 for its k values. So we can expect 2k possible k-tuples to choose

from. One side length of the k-simplex can be defined by the first entry in each k-
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tuple, another side length by the second entry in each k-tuple, etc.. For each side

length defined this way there are 2k−1 corresponding k-tuples because if we fix a 1

in a particular position when considering k-tuples, there are 2k−1 ways to position

the other values of the k-tuple.

Another type of side length corresponds to the instance when the ith and

jth entry in the k-tuples differ. For example, consider two different k-tuples where

every entry is zero except the first two.

(1, 0, 0, · · · , 0)

(0, 1, 0, · · · , 0)

The k-tuples above correspond to a distance between the first and second vertices.

For each side length defined this way there are also 2k−1 corresponding k-tuples

since when considering these k-tuples, one may fix a 1 in the ith position and a 0

in the jth position, leaving 2k−2 possible placements for the other entries. Alterna-

tively, one may fix a 0 in the ith position and a 1 in the jth position, also leaving

2k−2 possible arrangements. So there are 2k−2 + 2k−2 = 2k−1 k-tuples corresponding

to the side length.

For every possible form for the k-tuples, let the list P = {a1, a2, . . . , a2k}

contain the number of k-tuples of that form chosen to define any k-simplex, where

a1 + a2 + · · · + a2k = n. From these we can derive any side length of the k-simplex.

For example, the first side length may be of the form S1 =
√
a11 + a12 + · · ·+ a1(2k−1)

where each a1j is a distinct member of the list P .

Note there are
(
k+1
2

)
sides for the k-simplex. We define g(a1, a2, . . . , a2k) to

be the corresponding Cayley-Menger formula for the measure of a k-simplex, taking
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membersofthelistPasparameterstoformthesidelengths,i.e.,

g(a1,a2,...,a2k)=Vk a11+···+a1(2k−1),...,a(k+1
2 )1+···+a(k+1

2 )(2k−1)

=Vk S1
2,...,S(k+1

2 )
2 ,

whereeachsumintheparametersforVcontainsspecificparametersofgandcom-

prisesasidelengthsquared.

NotethatbecauseVkisafunctiondefiningk-dimensionalarea,anyscalar

multipliedwiththesidelengthsusedtocalculateVkwillbeaffectedbyadegreeof

k.Thatis,

g(λa1,λa2,...,λa2k)=Vk(λa11+···+λa1(2k−1),...,λa(k+1
2 )1+···+λa(k+1

2 )(2k−1))

=Vk λS1
2,...,λS(k+1

2 )
2

=Vk

√
λS1

2

,...,
√

λS(k+1
2 )

2

=
√

λ
k

Vk S1
2,...,S(k+1

2 )
2

=λk/2g(a1,a2,...,a2k−1).

Sincea2k =n−a1−···−a2k−1,wecandefineanotherfunction,

f((a1,a2,...,a2k−1))=g(a1,a2,...,a2k−1,n−a1−···−a2k−1),

todescribethemeasure. Note,

1

nk/2
f((a1,a2,...,a2k−1))=

1

n

k/2

g(a1,a2,...,n−a1−···−a2k−1)

=g
a1

n
,

a2

n
,...,1−

a1

n
−···−

a2k 1

n

=f̄
a1

n
,

a2

n
,...,

a2k 1

n
,

wheref̄isanotherfunctiondefiningmeasureusinga1

n
,...,

a
2k−1

n
asparameters.
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If ~v consists of every member of P , we can define the average measure of the

k-simplex in the n-cube with the following equation,

1

(2k)n

∑
|~v|≤n

(
n

~v

)
f (~v) .

Next we will find a convergence for this average. To utilize the k-simplex Bernstein

polynomial convergence, we take ~x =
(

1
2k
, . . . , 1

2k

)
.

Bn(f̄)
((

1
2k
, . . . , 1

2k

))
=
∑
|~v|≤n

(
n

~v

)
~x~v(1− |~x|)n−|~v|f̄

(
~v

n

)
=
∑
|~v|≤n

(
n

~v

)(
1

2k

)a1
. . .
(

1

2k

)a
2k−1

(
1−

(
1

2k

)
− · · · −

(
1

2k

))n−a1−···−a2k−1

f̄
(
~v

n

)
=
∑
|~v|≤n

(
n

~v

)(
1

2k

)a1
· · ·
(

1

2k

)a
2k−1

(
1−

(
1

2k

)
− · · · −

(
1

2k

))n−a1−···−a2k−1 1

(2k)n
f (~v)

=
∑
|~v|≤n

(
n

~v

)(
1

2k

)n 1

nk/2
f (~v)

=
1

nk/2
· 1

(2k)n

∑
|~v|≤n

(
n

~v

)
f (~v) .

Thus by convergence,

lim
n→∞

1

nk/2
· 1

(2k)n

∑
|~v|≤n

(
n

~v

)
f (~v) = f̄

((
1
2k
, . . . , 1

2k

))

and

1

(2k)n

∑
|~v|≤n

(
n

~v

)
f (~v) ∼ nk/2 · f̄

((
1
2k
, . . . , 1

2k

))
.
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To analyze the value of our constant term above, note that

f̄
((

1
2k
, . . . , 1

2k

))
= g

((
1
2k
, . . . , 1− 2k−1

2k

))
= g

((
1
2k
, . . . , 1

2k

))
= Vk

((
2k−1

2k
, . . . , 2

k−1

2k

))
= Vk

(
1
2
, . . . , 1

2

)
= Vk

((
1√
2

)2
, . . . ,

(
1√
2

)2)
.

This is the measure of a regular k-simplex in the unit n-cube
(

of side length 1√
2

)
.

Recall that

Vk =
1

k!
hkhk−1hk−2 · · ·h1.

Any height hi for an i-simplex can be considered as the distance between the (i +

1)th vertex and the centroid of its (i − 1)-simplex base. For a (i − 1)-simplex in n-

dimensional space with coordinates (x11, . . . , x1n), . . . , (xi1, . . . , xin), the centroid is

located at (
x11 + x21 + · · ·+ xi1

i
, . . . ,

x1n + x2n + · · ·+ xin
i

)
.

Consider a regular i-simplex embedded in (i+1)-dimensional space with the vertices

(
1

2
, 0, 0, . . . , 0, 0

)
1(

0,
1

2
, 0, . . . , 0, 0

)
2(

0, 0,
1

2
, . . . , 0, 0

)
3

...(
0, 0, 0, . . . ,

1

2
, 0

)
i(

0, 0, 0, . . . , 0,
1

2

)
i+1
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The sides of this regular i-simplex all clearly have a length of 1√
2
. For the (i − 1)-

simplex base of the (i+ 1)th vertex, its centroid is at

(
1

2i
,

1

2i
,

1

2i
, . . . ,

1

2i
, 0

)
.

The distance between this vertex and the (i+ 1)th vertex is

hi =

√
i

(
1

2i

)2

+

(
1

2

)2

=
1

2

√
1

i
+ 1 =

1

2

√
i+ 1

i
.

So now for a regular k-simplex of side length 1√
2
,

Vk =
1

k!
· 1

2

√
k + 1

k
· 1

2

√
k

k − 1
· 1

2

√
k − 1

k − 2
· · · 1

2

√
2

1

=
1

2kk!

√
(k + 1)!

k!

=
1

2kk!

√
k + 1.

Main Theorem: The average measure of a k-dimensional simplex in an n-dimensional

cube is asymptotically,

1

(2k)n

∑
|~v|≤n

(
n

~v

)
f (~v) ∼ nk/2 ·

√
k + 1

2kk!
.

Note that when k = 3, we have
√
3+1
233!

≈ 0.04167, which correlates with the

collected data from Figure 6 for the 3-simplex case.
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10. CONCLUSION

To begin this research, we developed an equation for the average measure of

a 1-simplex in a unit n-cube. We then analyzed the distribution of the 1-simplex

lengths in the n-cube and noticed the smoothness of this distribution. This allowed

us to form a conjecture for the average measure, that it approaches
√
n/2. Results

from our formula for multiple values of n appeared to coincide with this approxima-

tion and reinforced the conjecture. We then were able to apply Bernstein polynomi-

als to prove the conjecture.

Using Cayley-Menger determinants, we developed equations for the average

measure for higher values of k. The measure distribution for higher-dimensional

simplices in the n-cube appeared less promising in finding a trend for the average

measure. However, we were able to implement the Monte Carlo method in our cal-

culations and collect enough data to determine a generalized conjecture, that the

average measure approaches nk/2 · C for some constant C, did appear to be true.

This conjecture was then proven using the convergence of k-simplex Bernstein poly-

nomials. With this convergence, we were also able to determine the value of the

constant C in the conjecture to be the measure of a regular k-simplex with side

length 1√
2
.
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