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ABSTRACT 

Using their entire Kepler data sets, I performed asteroseismic analyses and comparisons 

of three gravity (g-) mode pulsating subdwarf B (sdB) stars in the open cluster NGC 

6791. I constructed light curves with a combination of long and short cadence data to 

span quarters 1 (Q01) through Q17 of KIC 2569576 (B3), KIC 2438324 (B4), and KIC 

2437937 (B5). Rotationally induced g-mode frequency splittings were observed in each 

star allowing us to calculate rotation periods of 64.5 ± 8.2, 9.21 ± 0.18, and 91.3 ± 14.1 

days for B3, B4, and B5, respectively. Using the observed ratio of the azimuthal multiplet 

components, I also constrained the inclination of the pulsation axis of each star and found 

that while B4 (76° < i < 84°) has an inclination close to equator-on, B3 (i < 62°) and B5 

(8° < i < 30°) have inclinations which overlap with the preferred inclination of the cluster 

(20° < i < 30°). Asymptotic period spacings were determined in each star, and mode 

trapping was observed in one region of B3's asymptotic l = 1 sequence. From the full 

data sets of all three sdB stars, I detected a combined total of 65 pulsation frequencies of 

which I was able to identify 88% as l ≤ 2 modes. Using these results and the cluster 

characteristics which include a common age, progenitor mass, and preferred inclinations 

for the sdB stars in NGC 6791, I discuss the comparison of B3, B4, and B5 to the known 

population of pulsating sdBs in order to give insight into their possible formation 

mechanisms and evolution. 
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INTRODUCTION 

 

Stars form inside molecular clouds which can create tens to thousands of stars in 

what are called clusters. There are many types of clusters, however, open clusters are an 

example of a single population star cluster (Salaris, 2015). All of the stars in an open 

cluster form as the molecular cloud contracts, and are the same age and have the same 

initial metallicity. The cloud's angular momentum can also be transferred to the 

individual stars, establishing a preferred inclination (Corsaro et al., 2017).   

 SdB stars have been found in these types of clusters, including the old, metal-

rich, open cluster NGC6791. There are 5 known sdB stars in the cluster including some 

pulsators (Kałuźny & Udalski, 1992; Liebert, Saffer, & Green, 1994; Pablo, Kawaler, & 

Green, 2011; Reed, Baran, Østensen, Telting, & O'Toole, 2012). Three of the pulsating 

sdB stars were observed during the main mission of the Kepler space telescope; KIC 

2569576 (B3), KIC 2438324 (B4), and KIC 2437937 (B5) (Pablo et al., 2011; Reed et al., 

2012). Since the lifetime of a star is directly tied to its mass, it implies that the progenitor 

mass of any sdB star in NGC 6791 must be the same. This means that B3, B4, and B5 

give us the unique opportunity to compare three pulsating sdB stars which have roughly 

the same age, progenitor mass, initial metallicity, and preferred inclination. Any 

differences in their current asteroseismic and atmospheric properties are indicators of 

possible differing formation mechanisms or bulk properties such as core or envelope 

mass. 

The following sections include a description of sdB stars, stellar evolution, 

asteroseismology, and the Kepler mission. I then present our data processing, analyses, 
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and the results of applying known asteroseismological tools to the entire Kepler data sets 

of B3, B4, and B5. Finally, I discuss the similarities and differences between the three 

stars, and how they compare to the properties of other known Kepler sdB stars, as well as 

our knowledge of sdB evolution in general.  

 

Subdwarf B Stars 

Subdwarf B stars were discovered by Humason and Zwicky (1947) during a 

photometric survey of the North Galactic pole. With a focus strictly on blue objects in the 

northern galactic hemisphere, the Palomar-Green (PG) survey was the first large 

discovery of sdB stars (Green, Schmidt, & Liebert, 1986). Many surveys followed, 

including the Kitt Peak-Downes survey of the galactic plane (Downes, 1986), the 

Edinburgh-Cape and the Hamburg European Space Organization surveys of the southern 

sky (Stobie et al., 1997; Wisotzki, Koehler, Groote, & Reimers, 1996), and the all sky 

Sloan Digital Sky survey (SDSS), which have aided in the discovery of sdB stars. 

Spectroscopically, a typical sdB or sdO star’s spectrum is dominated by strong 

hydrogen lines and weak helium lines. The weak helium lines are due to a helium 

deficient envelope which is caused by diffusive processes (Greenstein, 1967).  The 

envelope contains primarily hydrogen, however, at 10-4 M⊙ it is too thin to sustain 

hydrogen shell fusion. Nearly 10% of sdB/sdO stars have strong helium lines in their 

spectra, and are thus referred to as He-sdBs and He-sdOs (Green et al., 1986).  

The effective temperatures of sdB stars range from 20,000 to 40,000 Kelvin (K) 

with log g (cgs) values ranging from 4.8 to 6.0 dex (Greenstein & Sargent, 1974). These 

stars are on the HR-diagram below the upper main sequence and above the white dwarf 
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cooling track (WDCT); an example showing where these stars fall on an HR-diagram is 

shown in Figure 1.  Heber et al. (Heber, Hunger, Jonas, & Kudritzki 1984; Heber, 1986) 

showed these stars to be extreme horizontal branch (EHB) stars and thus core helium-

fusing stars. 

 

 

Figure 1: HR-Diagram depicting the position of sdB stars on the EHB. Credit: Heber, 2009 

 

 

Importantly, the helium flash, which is the onset of helium fusion, generally 

happens at the same core mass (Mc ≈ 0.47 M⊙) for low-mass stars, which in this thesis is 

defined as stars with masses less than about 2 M⊙. Based on the masses of 22 stars 

derived from asteroseismology and eclipsing binary systems, an empirical distribution of 

sdB masses was determined by Fontaine et al. (2012) and Van Grootel, Charpinet, 

Fontaine, Brassard, and Green (2014). Their results agree with the predictions from 
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stellar evolution where the average sdB mass from this small sample was found to be 

0.470 M⊙ (Fontaine et al., 2012; Van Grootel, Charpinet, Fontaine, Brassard, & Green, 

2014). The mass range from 0.439 to 0.501 M⊙ contains 68.3% of the stars with a 

histogram of the data presented in Figure 2. Since sdB stars are EHB stars and thus 

undergo helium fusion, this shows that sdB stars are the remnant cores of red giant (RG) 

stars that have almost completely lost their envelope. The envelope ejection and the onset 

of helium fusion must be nearly simultaneous as the envelope is necessary for helium 

ignition, yet mass loss is not observed on the horizontal branch (HB). The cores of sdB 

stars do not get hot enough to do carbon fusion, so the sdB star will evolve into a carbon 

oxygen-white dwarf (CO-WD) and end its life on the WDCT. 

 

Figure 2: The empirical mass distribution of 22 sdB stars as determined by Fontaine et al. 

2012. The blue hatched area represents the entire set of stars, whereas the red hatched 

area indicates only the pulsators. Credit: Fontaine et al., 2012 
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In general, sdB stars are post-main sequence, helium fusing stars which are 

characteristic of the late evolutionary stages of low-mass progenitor stars. Next, I will 

explore the details of where sdB stars fit into stellar evolution by discussing the evolution 

of a 1 M⊙ star.  

 

Stellar Evolution 

In this section I describe the evolution of a 1 M⊙ star with a solar-like chemical 

abundance (i.e. X = 0.7, Y = 0.28, Z = 0.02) based on Heber (2016) and Prialnik (2010) 

along with a discussion of sdB formation channels due to binary interactions.    

Main Sequence. A 1 M⊙ star on the main sequence fuses hydrogen into helium. 

As gravity attempts to contract the star, the gas pressure caused by hydrogen fusion and 

smaller thermal energies counterbalance the inward force. The star is in a state of 

hydrostatic and thermal equilibrium due to the stable, sustained hydrogen fusion in the 

core.  Hydrogen fusion is sustained in two ways via the proton-proton (p-p) chain or the 

carbon-nitrogen-oxygen (CNO) cycle. 

For low-mass stars, the primary form of energy generation is through the p-p 

chain. In general, the p-p chain fuses four protons through a series of steps into a helium 

nucleus. This produces a sufficient amount of energy that a 1 M⊙ star would have a main 

sequence lifetime of roughly 9 billion years. The star leaves the main sequence after the 

central hydrogen is used up, and observationally, the star's envelope cools slightly. 

Post-Main Sequence. As the star enters the subgiant phase the core contracts, the 

envelope expands, and the shell of hydrogen fusion gradually thins. As the envelope 

expands, it cools and becomes more opaque to radiation generated in the core. As the 
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core continues to contract, it reaches a state where electron degeneracy begins to 

counterbalance gravity of the inert helium core. At this point, the star is at the base of the 

RGB and the outer envelope becomes convective. 

As the star proceeds up the RGB, the convection zone in the envelope reaches 

deeper toward the core, eventually bringing up by-products from the hydrogen shell 

fusion in an event known as the first dredge-up. The envelope continues to expand as the 

star traverses up the RGB where it reaches a point that it becomes nearly detached from 

the core. Since the envelope is very loosely bound, stellar winds can cause mass loss 

which increases as the star reaches the tip of the RGB. 

Helium Flash. It is near the tip of the RGB when the core of the star has 

contracted enough that temperatures reach nearly 108 K and helium fusion ignites. For 

low-mass stars, the helium fusion ignition happens at a common core mass of Mc ≈ 0.47 

M⊙ and under degenerate conditions in which pressure and temperature are decoupled. 

Since energy generation rates are very temperature dependent, helium fusion that takes 

place in a degenerate core is unstable. Helium fusion causes an increase in temperature 

which allows even more helium to fuse. The increase in temperature does not create an 

increase in pressure, so the core does not expand as it gets hotter. This creates a 

thermonuclear runaway in the core which produces excessive amounts of energy that are 

absorbed by the outer portion of the core and the non-degenerate layers around the core 

in an event known as the helium flash. Almost all of the energy produced from the 

helium flash is absorbed by the opaque outer layers, effectively hiding the event from 

observers. 
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Horizontal Branch and Beyond. After the helium flash the core is undergoing 

stable helium fusion and moves to the HB. Since most stars on the HB have a constant 

core mass of ~0.47 M⊙, the distribution of stars on the HB can be explained by varying 

envelope masses which decrease as you move to higher temperatures.  For some stars 

with increased mass loss on the RGB, they lose nearly their entire envelopes and end up 

being very hot, extreme horizontal branch (EHB) stars; an example of which is an sdB 

star. 

For sdB star formation, the progenitor must lose nearly its entire envelope mass 

near the tip of the RGB in simultaneity with helium-fusion ignition. Possible mechanisms 

for single sdB star formation include enhanced stellar wind mass loss (D'Cruz, Dorman, 

Rood, & O'Connell, 1996), envelope stripping in dense clusters (Marietta et al. 2000), 

and white dwarf mergers. Other methods of mass loss involve binary systems which are 

discussed in the next section. 

The lifetime of any star on the HB is on the order of 108 years and ends once 

helium fusion has been exhausted. For typical stellar evolution of a 1 M⊙ star, the inert 

CO core begins to contract, helium fusion is pushed into a shell surrounded by the thin 

hydrogen fusing shell and the outer envelope. As the core contracts, the envelope 

expands and the star traverses the AGB. Over the course of roughly 10,000 years, stellar 

winds and thermal pulses on the AGB can completely strip the envelope, creating a  

planetary nebula, and leaving only the degenerate CO core; a CO-WD. 

However, EHB stars (e.g. sdB stars) have too thin of envelopes to have H-shell 

nuclear fusion. When these stars run out of He in the core, fusion gets pushed into a shell 

causing the layers on top of this shell to heat and expand. If any remaining H is in the 
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envelope, the star could undergo H-shell fusion for a very short time. These stars end 

their lives as CO-WDs on the WDCT. 

 

Subdwarf B Formation 

 Binary Stars. Other than enhanced mass loss at the tip of the RGB, binary-

interaction processes can also explain the formation of sdB stars. Many sdB stars reside 

in short-period (0.5 to 30 day) binary systems with white-dwarfs or main sequence M-

type stars, as well as long-period (700 to 1200 day) binaries with main sequence F-, G-or 

K-type stars (Copperwheat, Morales-Reda, Marsh, Maxted, & Heber, 2011; Vos et al., 

2013). In fact, half to two-thirds of sdB stars are in binary systems meaning that the 

majority of sdBs form due to binary-interaction processes (Reed & Stiening, 2004; 

Copperwheat et al., 2011; Maxted, Heber, Marsh, & North, 2001). A combination of 

common envelope (CE) evolution and Roche Lobe overflow (RLOF) can explain the 

formation of sdBs in both short and long-period binaries. 

Formation Channels. In a binary star system, a Roche lobe is the tear-drop 

shaped, equipotential surface surrounding either star within which matter is 

gravitationally bound to the star. If a star expands to fill this Roche lobe, then its mass 

can be transferred to the companion. 

Consider a close binary system consisting of two main sequence stars (middle 

panels of Figure 3). As one of the stars leaves the MS and moves to the RGB, the star 

begins to swell. It expands to a point where it fills its Roche lobe near the tip of the RGB, 

and mass transfer begins. If the mass transfer rate is too high, then the companion cannot 

accrete the material and the RLOF is unstable. The excess material fills the Roche lobe of 
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the companion, and a common envelope can form. The common envelope exerts a 

frictional drag on the orbiting stars causing the envelope to heat up, consequently ejecting 

the material, and the two stars re-emerge in a short-period binary. Since the CE phase is 

short lived and the companion cannot accrete much of the envelope mass, the companion 

remains relatively unchanged and what is left behind is an sdB + M binary. 

Now, consider a wide binary system consisting of two main sequence stars (right 

panels of Figure 3). The difference between this formation channel and the previous 

scenario is that a dual-MS wide binary system can sustain stable RLOF as one of the 

partners expands on the RGB. From this, the resultant system would be a long-period sdB 

+ MS binary. 

 

 

Figure 3: A schematic of sdB formation through three binary-interaction scenarios 

(Stable RLOF + CE, CE-only, and Stable RLOF only). Note that either channel with a 

CE phase results in a short-period sdB binary system. Credit: Heber, 2009 
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However, this system could continue evolving (left panels of Figure 3). The sdB 

exhausts its core helium much faster than the hydrogen in the core of the MS star 

becoming a WD.   If the WD + MS binary now goes through a second RLOF phase, 

albeit unstable, the system could enter a subsequent CE phase. The outcome of this CE 

phase is a short-period sdB + WD binary system. 

 

Subdwarf B Evolution 

All the previously discussed formation mechanisms create sdB stars that have 

very low density hydrogen envelopes which are doing core helium fusion as they appear 

on the zero-age extreme horizontal branch (ZAEHB, shown in Figure 4). The sdB star 

will spend its life on the EHB doing core helium fusion (roughly 108 years depending on 

core overshooting; Schindler, Green, & Arnett, 2014).  

 

Figure 4: Evolutionary tracks of sdB stars plotted on a distribution of sdB stars in close 

binaries from Kupfer et al. 2015. Filled points are pulsators, eclipsing systems are red 

squares, and non-eclipsing systems are blue triangles. Credit: Heber, 2016 
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After the core helium is exhausted, the star will begin a phase of shell helium 

fusion, which will make the star expand slightly and, consequently, create lower surface 

gravities. Shell helium exhaustion occurs when the star has reached the terminal-age 

extreme horizontal branch (TAEHB, shown in Figure 4). After total helium exhaustion, 

sdBs do not have sufficient temperatures to ignite carbon fusion, so the star evolves off 

the TAEHB and ends its life on the WDCT.  

 

Pulsating Subdwarf B Stars 

Low-amplitude, short-period (a few minutes) pulsations in sdB stars were 

discovered by Kilkenny, Koen, O'Donoghue, and Stobie in 1997. Long-period (45 

minutes to 2 hours) pulsations were discovered in sdB stars by Green et al. in 2003. Both 

types were predicted in theory to be non-radial pulsations driven by an iron opacity bump 

(Charpinet, Fontaine, Brassard, & Dorman, 1996; Charpinet et al., 1997; Fontaine et al., 

2003). Stars with short-period pulsations are pressure (p-) mode pulsators, whereas stars 

with long-period pulsations are gravity (g-) mode pulsators.  These two types of pulsators 

led to the distinction of two sdBV types: V361 Hya stars (p-mode pulsators) and V1093 

Her stars (g-mode pulsators). 

As seen in Figure 5, V361 Hya stars (p modes) are hotter (28,000 < Teff < 35,000 

K) and have slightly higher surface gravities (log g > 5.55 dex) compared to V1093 Her 

stars (g modes). The distinction between p- and g-mode pulsations is that p modes are 

acoustic waves that propagate predominantly in the envelope of the star, whereas gravity 

waves (g modes) penetrate all the way to the convective core. As expected, so-called 

hybrid pulsators, exhibit both p- and g-mode pulsations (Schuh et al., 2006). Hybrid stars 
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allow for a unique opportunity to use asteroseismology to probe the core and the 

envelope of the star simultaneously. 

 

 

Figure 5: 61 SdB pulsators plotted on a log g/effective temperature graph; 28 p modes, 30 

g modes, and 3 hybrid pulsators. Notice the dichotomy of p- to g-mode pulsators with 

three hybrids lying on the boundary at ~30,000 K. Credit: Green et al., 2011 

 

 

Asteroseismology 

In general, asteroseismology uses the propagation of waves throughout a star to 

determine its structure. The tools of asteroseismology are used to determine pulsation 

mode identifications, which can be used to derive rotation periods and discern structural 

boundaries. An illustration depicting these pulsations and their propagation through a 

solar-like interior is shown in Figure 6. 
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Figure 6: Propagation of pressure (interior a) and gravity (interior b) mode waves 

throughout a cross-sectional solar interior. The pressure waves represent a pulsation 

frequency of 3000 μHz with degrees l = 2, 20, 25, and 75 which correspond to the rays of 

decreasing penetration depth. Similarly for interior b, the gravity mode illustrated is of 

degree l = 5 with pulsation frequency of 190 μHz. For completeness, a radial pulsation is 

plotted as the line passing through the center of interior a. Credit: Cunha et al., 2007 

 

 

Pulsation modes can be characterized by three quantum numbers: n, l, and m. The 

radial nodes are denoted by n, the total surface nodes are given by l, and the surface 

nodes passing through the pulsation axis of the star are denoted by m. Where l and m are 

observable quantities, the exact value of n is not explicitly identifiable due to the 

observational uncertainty in the position of the radial fundamental node (n = 0; marks the 

transition from g- to p-mode pulsations).   

Asymptotic Period Spacing. In the case of a completely homogeneous stellar 

interior and in the asymptotic limit of n >> l, g-mode pulsations exhibit even period 

spacings with sequences given by 

 

                                                                                      ,                                                         1 
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where Πo is the fundamental radial period and є is a constant encompassing details of 

stellar structure (Unno, Osaki, Ando, & Shibahashi, 1979; Aerts, Christensen-Dalsgaard, 

& Kurtz, 2010). The spacing between consecutive n-overtones for a given l-value is 

 

                                                                                 . 

                          

Predominantly, l = 1 and 2 pulsation modes are observed, because of geometric 

cancellation (Pesnell, 1985), which is caused by viewing nearly-equal areas of brighter 

and dimmer regions. The explicit relationship between l = 1 and 2 modes is 

   

                                                                                 . 

 

Kolmogorov-Smirnov Test. Reed et al. (2011) determined asymptotic period 

spacing relationships for 13 sdB stars observed by the Kepler spacecraft. They used 

period transforms (PTs), the Kolmogorov-Smirnov (KS) test, and linear least squares 

fitting to determine the period sequences. The sequences were determined to be 

significant based on Monte Carlo testing. In all 13 sdB stars they detected the l = 1 period 

spacing near 250 seconds, while the l = 2 period spacing near 145 seconds was detected 

in roughly half of the stars; a subsample of these is shown in Figure 7. 

Échelle Diagrams and Mode Trapping. The tools used to reveal period spacings 

do not discern which pulsations belong to a specific sequence. To do so, échelle diagrams 

are used which plot the period modulo against period where pulsations intrinsic to a 

sequence align vertically on the plot. An example of an échelle diagram for the l = 1 and 

2 

3 
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Figure 7: The PTs (left panels) and KS tests (right panels) of 7 sdB pulsators. Blue, 

green, and red arrows in the PTs indicate the l = 1 spacings, l = 2 spacings, and their 

aliases, respectively. The various dotted, short dashed, long dashed, and dot-dashed lines 

in the KS plots indicate confidence intervals of 90%, 95%, 99%, and 99.9%, respectively. 

Credit: Reed et al., 2011 

 

 

2 pulsations in KIC 10670103 is presented in Figure 8. Échelle diagrams and linear 

regression fittings have been used to determine pulsation sequences (Reed et al., 2011).  

If the star were completely homogeneous, these pulsations would have a very 

well-defined period spacing, and the sequence would align exactly vertically on the 

échelle diagram. However, slight deviations from the sequence and trapped modes have  
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Figure 8: An échelle diagram for KIC 10670103 plotting the l = 1 (right panel) and  

l = 2 (left panel) period modulo for only the identified modes of the corresponding degree 

l. The solid lines indicate the calculated position of the m = ±1 components based on the 

frequency splitting of KIC 10670103. The dashed lines correspond to the m = ±2 

components. Credit: Reed et al., 2014 

 

 

been observed (Østensen et al., 2014; Foster, Reed, Telting, Østensen, & Baran, 2015; 

Kern, Reed, Baran, Østensen, & Telting, 2017). These smaller deviations from the 

asymptotic period spacing are indicative of changes in the chemical composition of the 

star (Charpinet, Fontaine, Brassard, & Dorman, 2002). Trapped modes may occur at the 

C-O/He transition layer as the result of convective overshoot (Constantino, Campbell, 

Christensen-Dalsgaard, Lattanzio, & Stello, 2015; Ghasemi, Moravveji, Aerts, Safari, & 

Vuckovic, 2017). If mode trapping occurs at a specific radial node (n), then it will affect 

all pulsation modes regardless of their degree l. Conversion to reduced period, Π, by 

multiplying by (l (l + 1))1/2, makes the degrees degenerate. In this modified échelle 

diagram, the degenerate degrees align with a common spacing (~350 seconds) and 
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trapped modes stand out as deep troughs in the plot; an example of which is given in 

Figure 9. 

 

Figure 9: Reduced period plot of KIC 11558725 indicating trapped modes at ~n = 12 and 

17. The blue and red points/lines represent the l = 1 and 2 sequences, respectively. Solid 

lines correspond to consecutive radial nodes, whereas the dashed lines represent missing 

nodes. Credit: Kern, Reed, Baran, Telting, and Østensen, 2018 

 

 

 

Rotationally Induced Frequency Splittings. If a star completes multiple 

rotations during observations with a rotation frequency Ω, then frequency multiplets may 

form; examples of l = 2 multiplets from the sdB star KIC 10670103 are given in Figure 

10 (Reed et al., 2014). When all of the components in the multiplet are driven, it will 

have 2l + 1 peaks separated with a frequency splitting given by 

  

                                                                              , 
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where Δm is the difference in azimuthal order. The Ledoux constant, Cn, l, for p modes in 

sdB stars is effectively zero (Charpinet et al., 2002), however, for g modes it is given by 

                                                                            

 

 

(Ledoux et al., 1951; Aerts et al., 2010). 

Thus, the characteristic even splittings of pulsation multiplets allows for the 

derivation of rotation rates for the location in the star in which the pulsation occurs. Since 

p and g modes propagate from different, but overlapping, regions of the stellar interior, 

hybrid pulsators allow for the determination of solid-body or radial differential rotation 

which has been done for sdB stars KIC 2697388 (solid-body; Kern et al., 2017), KIC 

11558725 (solid-body; Kern, Reed, Baran, Telting, & Østensen, 2018), KIC 3527751 

(radial differential; Foster et al., 2015), and EPIC 211779126 (radial differential; Baran, 

Reed, Østensen, Telting, & Jeffery, 2017). Typical rotation periods for sdB stars are in 

the range of 10 to 100 days (Reed et al., 2014). Tidal synchronization can now be 

determined by directly comparing the rotation period with the binary period.  

From theory, tidal synchronization timescales depend upon the gravitational 

interaction of the two bodies from which you would expect higher probabilities of 

synchronization in binaries with short orbital periods (Pablo et al. 2011). Tidal 

synchronization has been determined in short-period sdB binaries using ground-based 

observations of the p-mode pulsators NY Vir (orbital period P = 2.42 hours; Charpinet et 

al., 2008) and Feige 48 (P = 8.25 hours; Latour et al., 2014). Both of which were found 

to have solid-body rotation at least for the outer portion of the star. Synchronization has 

5 



 

19 

also been seen in a short-period binary observed using Kepler (Østensen et al., 2010a). 

However, the Kepler spacecraft has revealed numerous sub-synchronous binaries with 

orbital periods greater than 8 hours (Pablo et al., 2011; Kawaler et al., 2010; Telting et 

al., 2010; Reed et al., 2016). 

 

 

Figure 10:  Examples of l = 2 multiplets from KIC 10670103 with frequency splittings 

~0.110 μHz. Credit: Reed et al., 2014 

 



 

20 

Kepler Space Telescope: Science Goals and Mission Design 

Tremendous progress in the field of asteroseismology is due to the Kepler space 

mission and its ability to obtain precise photometric light curves over extended periods of 

time. Kepler data are unique in their duration (~1500 days), duty cycle (~85%), and lack 

of atmospheric obscuration. This precision translates to a frequency resolution roughly an 

order of magnitude better than its French predecessor, CoRoT: COnvection ROtation et 

Transits planétaires (Bordé, Rouan, & Leger, 2003). Similar to CoRoT, Kepler's main 

focus is the detection of exoplanets (specifically Earth-sized) with a lesser emphasis on 

stellar astrophysics. However, compared to CoRoT, the Kepler spacecraft's collecting 

area is 9.25 times greater (Koch et al., 2010). Even with a lesser emphasis on stellar 

astrophysics, because the spacecraft observed such a wide variety of stars, Kepler data 

has greatly benefited a swath of fields outside of exoplanet research including 

asteroseismology. A thorough overview of the Kepler spacecraft's mission design is 

presented by Koch et al. (2010) and are summarized in the following subsections. 

Duration. The Kepler spacecraft observes exoplanets via transit photometry 

(Kasting, Whitmire, & Reynolds, 1993). The transit method of detecting exoplanets 

allows for the determination of radii relative to its host star and orbital period. A 

minimum of three transits with consistent depth, duration, and period must be observed in 

order to have confidence that the signal is indeed a planet. For Earth-Sun analogs the 

orbital period is one year, therefore the duration of the mission was designed to last a 

minimum of three years. The original Kepler mission observed from May 12, 2009 to 

May 11, 2013. Each year is broken up into four quarters. With every solstice and 

equinox, the spacecraft rotates 90º along its focal plane accumulating four rotations every 
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year which are necessary to orient the sunshade (shown in Figure 11) and solar arrays 

toward the Sun.   

Photometry. To detect transits from Earth-Sun analogs, the photometric precision 

must be able to detect a change in luminosity proportional to the ratio of their areas; 84 

parts-per-million (ppm). If an Earth-Sun analog's orbital plane is completely 

perpendicular to our line of sight, its transit will last 13 hours. Thus, the Kepler mission 

was designed to detect a signal of 84 ppm with a transit duration half of that of the Earth-

Sun system. 

The level of precision needed to complete Kepler's science goals are achieved 

with a ~1 m Schmidt telescope (0.95 m aperture), ~105 degree2  field-of-view (FOV), and 

a 55° solar avoidance angle in an Earth-trailing heliocentric orbit (ETHO). An ETHO has 

many advantages compared to a low-Earth orbit, mainly due to the lack of disturbing 

torques which allows for stable, precise photometry. A non-Earth orbit space-based 

telescope has the advantages of being able to observe continuously, as there is no 

daytime, requires no atmospheric corrections, and has a large zone available for 

continuous viewing. A Schmidt telescope allows for a large FOV, and creates a curved 

focal surface. Therefore the 42 thin, back-illuminated charge-coupled device (CCD) 

modules (from e2v Technologies) are mounted on a curved surface, with sapphire field-

flattening lenses (FFLs) and four guidance sensor CCDs; these are shown in Figure 11, as 

well as a cross-sectional view of the photometer. To maximize the signal-to-noise (S/N), 

the spectral bandpass spans from 423 nm (blue cutoff; chosen to avoid Ca II H and K 

lines) to 897 nm (red cutoff; chosen to avoid fringing due to internal reflection in the 

CCDs). 
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Figure 11: Cross-sectional view of the Kepler spacecraft photometer, as well as a picture 

of the focal plane which holds the 42 CCDs. Credit: Koch et al., 2010 

 

 

 

To reduce photometric noise the CCDs are operated below -85°C and integration 

times are 6.02 seconds. Readouts from the CCDs are stacked into varying data cadences. 

Long cadence (LC) data sums 270 readouts for an integration time of ~30 minutes, 

whereas short cadence (SC) data sums 9 readouts for an integration time of ~1 minute. 

After the readouts are stacked for either cadence, only the pixels of interest are extracted 

from the full-field images (which are also recorded, calibrated, and archived once per 

month). Where LC data are used to detect planetary transits, SC data are used to improve 

transit timing and have also allowed for precision asteroseismology of sdB stars 

(Østensen et al., 2010b). 
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Star Field.  The Kepler star field is 13.5° above the galactic plane in the 

constellations Cygnus and Lyra. It is centered on right ascension (R. A.) = 19h 22m 40s 

and declination (Dec.) = 44° 30' 00'', and was chosen due to its rich star field. The field-

of-view is roughly 10 degrees on each side and is shown in Figure 12. The orientation of 

the focal plane minimizes the number of bright stars on the CCDs which cause over-

saturation and loss of usable pixels. Only 12 stars with a V = 6 or brighter were directly 

on the CCDs, and the majority of the stars observed have V > 10.  Each observed star is 

given a Kepler Input Catalog (KIC) number for distinction. 

Four gyroscopic reaction wheels on board are responsible for stabilizing the 

spacecraft's pointing. However, in May 2013 the spacecraft lost a second reaction wheel 

and was unable to continuously monitor the field (Van Cleve et al., 2016). This led to a 

secondary mission, the K2 mission, which observes a star field for ~80 days continuously 

before it must change direction due to limiting solar angle constraints. The remainder of 

this thesis will focus on the open cluster NGC 6791 which was observed by Kepler 

during its main mission (shown in Figure 12), and three sdBV stars which reside in it;  

KIC 2569576 (B3), KIC 2438324 (B4), and KIC 2437937 (B5). 
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Figure 12: Illustration of Kepler's FOV in the constellations Cygnus and Lyra. Note the 

position of NGC 6791 as the blue oval in the bottom right corner of the CCD array. 

Credit: NASA 

  

NGC 6791 
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PROPERTIES OF NGC 6791 

 

An Overview of NGC 6791, and the Subdwarf B Stars B3, B4, and B5 

NGC 6791 is one of the most metal-rich, oldest open clusters in our galaxy. 

Recent estimates of the cluster's age and metallicity have confirmed the cluster's old age 

(7 ± 1 Gyrs; Anthony-Twarog, Twarog, & Mayer, 2007) and high metallicity ([Fe/H]  

+0.40; Carraro et al., 2006). A photometric study of NGC 6791 (V < 21) was performed 

by Kałuźny and Udalski (1992) using a 0.9m telescope at Kitt Peak National Observatory 

(KPNO) which placed a lower mass limit on the cluster of ~4070 M⊙.  Due to its 

advanced age, the cluster has a well populated RGB, HB, and lower main sequence. The 

main sequence turn-off mass has been determined to be 1.15 M⊙ (Brogaard et al., 2011), 

the RGB mass range is 1.03 M⊙ to 1.47 M⊙ (Basu et al. 2011), and an average red clump 

(RC) star mass of 1.03 M⊙ (Miglio et al. 2012). A recent study by Corsaro et al. (2017) 

found a preferred stellar rotation inclination between 20° and 30°.  They relate this to a 

transfer of angular momentum from the progenitor molecular cloud.  

Kałuźny and Udalski (1992) also reported the discovery of a population of blue 

objects which were possible hot subdwarfs; labeling them B1 through B8. Four of these 

(B3, B4, B5, and B6) were confirmed to be sdB stars with effective temperatures ranging 

from 24,000 K to 32,000 K (Liebert et al., 1994). A follow-up photometric study was 

done using a 2.1m telescope at KPNO which discovered two new blue stars increasing 

the total number of hot subdwarfs to ten (Kałuźny & Rucinski, 1995). 

A variable star search of NGC 6791 was performed by de Marchi et al. (2007) 

which confirmed the work of Mochejska, Stanek, Sasselov, and Szentgyorgyi (2002) that 
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B4 is in a binary system with brightness modulations. Due to the need for high duty 

cycle, long duration observations, the three sdB stars focused on in this Master's research 

(B3, B4, and B5) were not discovered to be pulsators until the implementation the Kepler 

space telescope. Of the three sdB stars, B4 was the first to be discovered as a pulsator by 

Pablo, Kawaler, and Green (2011) who analyzed six months of Kepler SC data from 

quarters 6 (Q06) and Q07. Pablo et al. (2011) was able to perform an asteroseismological 

analysis of B4's frequency spectrum. They extracted 19 pulsations of which 17 appear to 

lie on the l = 1 asymptotic period sequence (Pablo et al., 2011). Shortly thereafter, Reed, 

Baran, Østensen, Telting, and O'Toole (2012) discovered B3 and B5 as pulsators from 

analyzing one month of SC data and three months of LC data from Q11. They extracted 

15 total pulsations (11 pulsations from B3 and 4 from B5), and were able to explicitly 

identify 87% of those with mode identifications of l = 1 using asymptotic period spacings 

(Reed et al., 2012).   

An asteroseismic study of 19 RC stars found them to exhibit asymptotic period 

spacings similar to that of sdB stars in the Kepler field (Bossini et al. 2017). The average 

period spacing for the l = 1 sequence in these RC stars was 268.5 ± 0.6 seconds, only 

slightly larger than that of most Kepler sdBs.    

 

Spectroscopy 

An atmospheric analyses of B3, B4, and B5 was originally performed by Liebert, 

Saffer, and Green (1994). They used observations obtained with the 4.5 m Smithsonian-

Arizona Multiple Mirror Telescope (MMT). The spectrograph configuration had a 6 Å 

spectral resolution across optical wavelengths from ~3650 Å to ~5225 Å of B1-B7, 
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which are shown in Figure 13, as well as two comparison sdO stars, Feige 67 and Feige 

110. Focusing on the spectra of our targets only (highlighted in blue in Figure 13), B3, 

B4, and B5 have very similar spectra, as expected. Most prominent in each spectrum is 

the Balmer series, whose lines become sequentially weaker at shorter wavelengths. There 

are also weak helium lines present in the spectra. 

Using a range of atmospheric local thermodynamic equilibrium (LTE) models 

with parameters of 20,000 K < Teff  < 40,000 K, 4.0 dex < log g < 6.0 dex, and 0.0 < 

N[He]/N[H] < 0.1, Liebert et al. (1994) generated synthetic spectra with corresponding 

step sizes of 5000 K, 0.5 dex, and 0.03 by number. The observed spectra were 

dereddened prior to analyses with values of E(B-V) = 0.12 and 0.22, and then fitted to the 

model spectra. The parameters from their fits are given in Table 1.  

 

Table 1: The atmospheric parameters from the fits of the spectra of B3, B4, and B5 with 

the errors given in parentheses. Column 1 gives the reddening value. Column 2 is the 

Kałuźny and Udalski (1992) designations. Columns 3-5 give the effective temperatures, 

surface gravities, and helium abundances. Credit Liebert et al., 1994 
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Figure 13: Smithsonian-Arizona Multiple Mirror Telescope spectra of B1-B7 in the open 

cluster NGC 6791 along with two comparison sdO stars, Feige 67 and Feige 110. From 

top to bottom, they are ordered by decreasing apparent magnitude where B3, B4, and B5 

are highlighted in blue. Note the similarity in B3, B4, B5, and B6. Credit: Liebert et al., 

1994    
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Using the atmospheric parameters and assuming values for stellar masses, for 

which radii were determined, Liebert et al. (1994) calculated the distances to B3, B4, and 

B5. Three sets of distances were calculated using various distance moduli, reddening 

values, and stellar masses to show how the variables affect the distance calculations. In 

all cases, B3, B4, and B5 were affirmed cluster members with average distances of ~ 4 

kpc, and the absolute magnitudes of the stars were determined to range from +4.3 ≤ Mv ≤ 

+4.5 (Liebert et al., 1994). 

The angular separation of B3, B4, and B5 are 199”, 236”, and 123” from the 

clusters center, outside the ~124” radius where the clusters density goes down by half 

(Liebert et al., 1994; Kałuźny & Udalski, 1992). Cluster density has been related to 

binarity (Moni Bidin, Moehler, Piotto, Momany, & Recio-Blanco, 2009). The distance to 

the cluster has since been determined using various techniques and observations 

including data from the Kepler space telescope (Basu et al., 2011), the Nordic Optical 

Telescope (NOT; Brogaard et al., 2011), the European Southern Observatory's Very Large 

Telescope (Brogaard et al., 2011), and the 2 Micron All-Sky Survey (An, Terndrup, 

Pinsonneault, & Lee, 2015). The distance moduli (distance) values are 13.11 ± 0.06 (4.19 

± 0.12 kpc), 13.51 ± 0.06 (5.18 ± 0.14 kpc), and 13.04 ± 0.08 (4.21 ± 0.15 kpc) for Basu 

et al. (2011), Brogaard et al. (2011), and An et al. (2015), respectively.   

In order to analyze the atmospheric properties of NGC 6791's sdBs using the 

same techniques and atmospheric models as the other Kepler sdB pulsators, spectra from 

the NOT were obtained using the Andalucía Faint Object Spectrograph and Camera in 

May 2012 (Reed et al., 2012). The spectra have a resolution of ~ 4 Å across optical 

wavelengths from 3530 to 5090 Å, and had dispersions of 0.76 Å pixel-1. They used the 
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reduction, fitting techniques, and LTE grid of model atmospheres from Heber, Reid and 

Warner (2000), and Ramspeck, Heber, and Edelmann (2001) to determine resultant 

effective temperatures, surface gravities, and helium abundances (Reed et al., 2012); the 

results are presented in Table 2. From Reed et al. (2012), B3, B4, and B5 have effective 

temperatures in the range from 23,000 K to 25,000 K; falling well within the g-mode 

pulsation region on the Teff-log g plot (refer to Figure 5). To compare these sibling sdBs 

with the other known Kepler sdBs, I created a Teff-log g plot of 35 known pulsating sdBs 

in the Kepler field along with B3, B4, and B5 in Figure 14. 

The next chapter describes our processing of the Kepler SC and LC data into light 

curves, and our methodology for determining pulsation frequencies, frequency errors, and 

amplitudes for our asteroseismic analyses. 

 

Table 2: Columns 1 and 2 are the target designations from Kałuźny and Udalski (1992) 

and the Kepler Input Catalog. Column 3 gives the Kepler magnitudes. Columns 4, 5, and 

6 are the effective temperature, surface gravities, and helium abundances with the errors 

given in parentheses. Credit: Reed et al., 2012 
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Figure 14: Teff-log g plot of known Kepler sdB pulsators including B3, B4, and B5. The 

black circles and squares are p-mode and g-mode pulsating sdB stars, respectively. The 

green, red, and blue triangles (and their associated error bars) are the NGC 6791 sdB stars 

B3, B4, B5, respectively.   
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DATA PROCESSING AND ANALYSES 

 

Short Cadence Data & Long Cadence Data: Super-Aperture Images 

I downloaded the Kepler short and long cadence data for B3, B4, and B5 from the 

Mikulski Archive for Space Telescopes (MAST). The data consists of a pixel file (image) 

for every integration. For B3 and B5, I obtained SC data for Q14 through Q17. For B4, I 

obtained SC data for Q6 through Q17. Preferably I would have the entire time-domain 

observed in SC because of the potential for p-mode pulsation frequencies. However, due 

to the lack of SC data for these targets (especially B3 and B5), I also download the LC 

data for Q01 through Q17 in an effort to observe the time evolution of the stellar 

pulsations. 

 

 
 

Figure 15: LC super-aperture pixel image of NGC 6791 from Q01 containing B3. The 

yellow dashed lines indicate the R. A. (downward sloping, left to right) and Dec. (upward 

sloping). The red outline indicates the pixels searched for optimum extraction, while the 

green box indicates the pixel containing B3.     

 

 

 

The LC data is archived as a super-aperture pixel image 100 x 20 pixels; an 

example is shown in Figure 15.  I extracted fluxes from the super-aperture pixel files to 

compile the light curves of each star. To determine precisely which pixels our target falls 
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on, I searched a 3 x 3 grid of pixels surrounding the listed R. A. and Dec. of our targets as 

designated from MAST. Since Kepler data are regularly sampled and it is known that our 

targets are pulsators, I extracted the fluxes from each pixel individually and took their 

Fourier transforms (FTs) in order to locate the pixels which have the highest amplitude 

pulsations. If these lie on the edge of our grid, I again searched a 3 x 3 grid (or larger) but 

centered on the pixel with the highest amplitude pulsations. The FTs of the 15 pixels used 

in the grid searches for B3 are shown in Figure 16. 

 

  

Figure 16: The FTs of the 15 pixels (outlined in red from Figure 15) used in the search for 

B3. Note the obvious pulsations in pixel 2, 2 which corresponds to physical pixel 95, 13 

(outlined in green from Figure 15). 

 

 

 

Using the pixels which contain signal from our targets, I created pixel masks of 

all the possible pixel combinations and took their FTs in order to determine which exhibit 
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the highest pulsation amplitudes, thus defining the optimum pixel mask. After 

determining the optimum pixel mask for rotation one, I repeated the process for the other 

three spacecraft rotations. This is necessary because, while CCD array is rotationally 

symmetric, the optical distortions and pixel sensitivity vary for the different orientations. 

I applied the masks for each rotation to the corresponding quarters of data (i.e. rotation 

one corresponds to Q01, Q05, Q09, Q13, and Q17, while rotation two corresponds to 

Q02, Q06, Q10, and Q14, etc.), and I extracted the LC fluxes from Q01 through Q13 for 

B3. I then repeated the entire process from grid searching to optimum LC light curve 

extraction for B4 from Q01 through Q05 and B5 from Q01 through Q13. 

All three stars were guest observer targets during the course of the K1 mission, 

which means the SC target pixel files for all three stars have been archived and selected 

out of the broader cluster field; an example is given in Figure 17. I processed the SC pixel 

files in the same way as I did the LC data. Briefly, I tested a large area of pixels 

surrounding the R. A. and Dec. of the targets in order to pinpoint which pixels contain 

pulsation data. I tested all possible combinations of pixels in order to optimize the final 

pixel mask. The optimum pixel mask for each rotation of the spacecraft was applied to 

their corresponding quarters. Finally, the fluxes from the SC data of B3 and B5 in Q14 

through Q17 were extracted as well as Q06 through Q17 for B4. 

 

Light Curves 

After extracting the fluxes from the available data, I combined the SC and LC 

data into a single light curve for each star that spans the entire 17 quarters of observation; 

shown in Figure 18. 
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Figure 17: SC target pixel image for B3 in Q14. The green outlined pixel contains the 

position of B3. The red outline indicates the pixels searched during the LC data 

processing (see Figure 15). 

 

 

Since with each rotation, the stars fall on different CCDs with different 

sensitivities, this creates variations in signal and noise, which offset each subset of data. I 

removed long-term trends using ancillary data which models the systematic trends in flux 

(Kepler basis vectors), and spline fit each quarter of data. Since the pulsation analyses are 

dependent upon deviations from the average, I scaled the normalized amplitudes of each 

quarter and removed data points exceeding a 5-sigma deviation from the average in order 

to eliminate superfluous data points and prevent artifacts from appearing in the FTs.  In 

total, I accrued ~460,000 observations each for B3 and B5, and ~1.44 million 

observations for B4. These span ~1,460 days with a duty cycle of 82.9%, 84.4%, and 

83.9% for B3, B4, and B5, respectively. 

 

Fourier Transform and Pulsation Frequencies 

In order to determine pulsation frequencies, I created FTs of the discrete light   
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Figure 18: The light curves of B3 (top panel), B4 (middle panel), and B5 (bottom panel). 

Notice the transition from LC to SC data for B3 and B5 at ~1,150 days whereas for B4 

the transition is at ~400 days. 

 

 

curves presented in Figure 19. Due to the combination of SC and LC data, the FTs of 

each star have two Nyquist frequencies, one for each cadence. I use a 1.5/T temporal 

resolution which is 0.012 μHz for the entire data set of all three stars. This temporal 

resolution and the combination Nyquist frequency LC and SC data of each star (7431 

μHz for B3,  7782 μHz for B4, and 7463 μHz for B5) allows us to determine false-alarm 

probabilities for peak detection in the FTs using a normal Gaussian distribution and the 

probability density function. I calculate significance levels of 0.99999841, 0.9999979, 

and 0.99999841 for B3, B4, and B5, respectively, which require detection thresholds of 

4.8σ (B3), 4.7σ (B4), and 4.8σ (B5).  I calculate these to be 0.332 ppt (B3), 0.291 ppt 

(B4), and 0.186 ppt (B5), respectively (Bevington & Robinson 2003). For smaller subsets 
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of data, the detection thresholds were calculated accordingly.  The FTs of the entire data 

set of B3, B4, and B5 are plotted in Figure 19 up to 1250 μHz corresponding to three 

reflections about the LC Nyquist (~283 μHz for all three stars) and its overtones. 

 

Figure 19: The FTs of B3 (top panel), B4 (middle panel), and B5 (bottom panel) plotted 

to 1250 μHz. Notice the g-mode pulsations between 0 and ~280 μHz, and their reflections 

about the three LC Nyquist overtones (denoted by the blue dashed lines). The magenta 

dashed line represents the detection thresholds of each star.  

 

 

I examined the time evolution of the stellar pulsations for B3, B4, and B5 by 

creating sliding Fourier transforms (SFTs). I create SFTs by first generating a single FT 

using a subset of data of a specified length starting at day zero. Since the longest rotation 

periods of Kepler sdB stars is roughly 100 days, I choose FTs of 200 day length in order 

to resolve the potential frequency multiplets of B3 and B5. I then step the process 
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forward by five days and create another 200 day long FT. I repeat this over the entirety of 

the ~1,400 days of observations in order to stack all of the  FTs into one final plot with 

frequency plotted on the x-axis, time on the y-axis, and the amplitude of the pulsations 

represented by the color scale; an example of a SFT for B3 is given in Figure 20. 

 

Figure 20: Top panel; FT of B3's frequency spectrum near the LC Nyquist frequency at 

283.25 μHz indicated by the blue dashed line. The red dashed lines correspond to an 

intrinsic pulsation (left) and its Nyquist reflection (right), while the magenta line 

indicates the detection threshold. Bottom panels; SFTs depicting the time evolution of the 

intrinsic pulsation at 221.2643 μHz (left) and its reflection at ~345 μHz (right). Notice the 

sinusoidal behavior of the reflection throughout observations as well as its non-detection 

in the SFT when BJD+2454964.5 > 965 days due to the transition to SC data only. The 

amplitudes in the SFTs are given in ppt in order to compare with the amplitudes in the 

overall FT in the top panel.    
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An oddity with having multiple cadences within a larger data set is the effect of 

multiple Nyquist reflection points (refer to Figure 19). Between the LC Nyquist and the 

SC Nyquist, pulsations can be reflected over 30 times which makes detecting pulsations 

past the first LC reflection difficult. While the LC data creates reflections throughout the 

frequency spectrum, these LC reflection amplitudes go to zero in the temporal spectrum 

of the SFT where the subsets are purely SC data as shown for days greater than 965 in the 

bottom-right panel of Figure 20.  However, if a pulsation is a LC Nyquist reflection, then 

the pulsation varies much more in frequency and amplitude than the intrinsic counterpart; 

an example for B3 is given in the bottom panel of Figure 20. Therefore, exploitation of 

the SC data in the SFTs can also be used to determine which pulsations are intrinsic to the 

star. 

Pulsations which are intrinsic to the star are extracted from the FT in one of two 

ways; prewhitening or Lorentzian fitting. Prewhitening is fitting a sinusoidal wave to the 

light curve and removing it, which should also remove the peak in the FT. Lorentzian 

fitting is just that, fitting a Lorentzian to the pulsation’s profile in the FT. If the amplitude 

of any pulsation is nearly constant throughout the entirety of observations, then I 

prewhiten the frequency. For the frequency at 198.4234 μHz (shown in Figure 21), the 

prewhitening technique reduced the peak to ~10% of its original amplitude which is 

nearly equal to our detection threshold. By extracting the pulsation to an amplitude very 

close to our detection threshold, this ensures that the entire pulsation has been removed 

including its reflected counterparts. This prewhitening result is indicative of the results 

for all prewhitened peaks, and determines the frequency and amplitude to a greater level 

of precision than Lorentzian fitting. If prewhitening fails, then the pulsation is fit using a 
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Lorentzian profile from which the full-width half-maximum is used as an estimate of the 

error in frequency. Using the prewhitening technique or Lorentzian fitting, I extracted a 

total of 30 pulsations for B3, 20 for B4, and 17 for B5. These pulsations are all driven in 

the g-mode region ( ≤ ~400 μHz) with only three potential p modes detected in B3, which 

themselves are very close to the detection threshold. 

 

 

Figure 21: The prewhitened frequency at 198.4234 μHz is shown in red with the original 

frequency peak plotted in black. The detection threshold is the dashed magenta line. 

 

 

  

The next chapters will present the results of our analyses of the entire Kepler data 

sets for B3, B4, and B5 from which I build on the asteroseismological results of Pablo et 

al. (2011) and Reed et al. (2012). I will analyze B3, B4, and B5's pulsations using the 

tools of asteroseismology in order to identify pulsation modes, and compare the 

similarities or differences in asymptotic period spacing values, frequency splittings, and 

other asteroseismic parameters. I will then discuss results and their insight into the 

internal structure and evolution of these stars. 
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ASTEROSEISMIC ANALYSES 

 

Using the entire Kepler data set, I extracted a total of 67 pulsations from B3, B4, 

and B5, expanding the list of known pulsations for these stars by ~200%. In the following 

sections, I present the detailed asteroseismic analyses of each star's pulsations, including 

the discovery of rotationally induced frequency splittings and the confirmation of 

asymptotic g-mode period sequences.    

 

B3: KIC 2569576 

For B3, I was able to expand the known pulsation list by 21 frequencies in 

addition to the recovery of all but two pulsations detected by Reed et al. (2012). Of the 

two pulsations that were not recovered from Reed et al. (2012), one was labeled tentative 

in their list due to its low S/N, which, in the full data set, did not exceed our detection 

threshold. The other, which was observed only in the LC data in the Reed et al. (2012) 

analysis, was the LC Nyquist reflection of the pulsation at 329.852 μHz. Therefore I 

excluded both f3 and f11 (as denoted in Reed et al., 2012) from our final list. 

Rotationally Induced Frequency Multiplets. From the analysis performed by 

Reed et al. (2012) on four months of B3 data, no frequency splittings were found for B3. 

Using the entire Kepler data set, I searched for rotationally induced frequency multiplets 

and detected nine frequency splittings of ~0.090 μHz and one splitting roughly twice that, 

all in the g-mode region. These splittings are found in the majority of the highest 

amplitude pulsations, so, with the knowledge of geometric cancellation effects (Pesnell 

1985), I expect these splittings to be attributed to l = 1 pulsation modes and tentatively 
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identify them as such. While five of B3's splittings appear as doublets (with all but one 

interpreted as Δm = 1), two multiplets resolve as triplets; an example of which is shown 

in Figure 22. The average amplitudes of all of B3's multiplets, each normalized to the m = 

0 component, is shown in Figure 23. In total, 17 l = 1 pulsations were detected with an 

average frequency splitting of 0.090 ± 0.013 μHz.   

 

Figure 22: The frequency multiplet of B3 at 198.4234 μHz. The dashed magenta line is 

the detection threshold. Note the splittings of ~0.090 μHz. 

 

 

Figure 23: The average normalized amplitudes for the azimuthal components of the  

l = 1 frequency splittings of B3 and their associated error bars. 
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Asymptotic Period Spacings. Asymptotic period spacings in the g modes of 

pulsating sdB stars is a phenomenon that has become a well-established indicator of 

pulsation modes, where l = 1 and 2 modes have spacings of roughly 250 and 145 seconds 

(Reed et al., 2011). Our method for determining mode identifications via period spacing 

relationships begins by determining the period spacing values present in our list using the 

KS test. The confidence intervals for this test were calculated from the KS-Test results of 

1000 random lists of periods on the same magnitude and range as the target list. The 

calculated KS test statistics for B3 and their confidence intervals are presented in Figure 

24.  There are three troughs which eclipse the 99.9% confidence level. Most notably, the 

largest trough at ~250 seconds indicating a strong l = 1 sequence. The second deepest 

trough at ~125 seconds (250 seconds divided by two) and the third deepest trough at ~80 

seconds (roughly 250 seconds divided by three) are both overtones of the l = 1 sequence.     

 

Figure 24: The KS test for B3 plotted with confidence intervals given in the legend. Note 

the large KS statistics for l = 1 period spacings at ~250 seconds and its overtones at ~125 

and ~80 seconds. 
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To determine which pulsations fall on sequences, I produced échelle diagrams 

folded over the period selected from the KS test. Periods which aligned vertically on the 

échelle diagram were selected as sequence member. I performed a linear regression of the 

pulsation periods and their tentative overtones. Similar to all other asteroseismic analyses 

of Kepler sdB stars, only pulsations that fell within 10% of the fit were identified as 

members of the sequence, which I consider a reasonable error. These were subsequently 

added to the sequence and used to update the fit.  

In B3, I was able to identify a total of 20 pulsations which lie on the l = 1 

sequence with an average spacing of 252.27 ± 0.66 seconds. Using the observed l = 1 

sequence, I calculated the l = 2 sequence using the explicit relationship between the l = 1 

and 2 sequences given by equation three on page 14. Four pulsations were found to lie on 

the l = 2 sequence, however, two of these overlap with the l = 1 sequence. 

From these I determined an average period spacing for the l = 2 sequence of 

145.55 ± 0.25 seconds. To confirm these sequences I calculated the period modulo for 

each sequence and visually inspected the échelle diagrams of both spacings which are 

shown in Figure 25. No obvious sequence is observed for the l = 2 period modulo. 

However, there is a nearly continuous sequence from n = 8 to 17 (only missing members 

n = 10 and 11) in the l = 1 period sequence. The échelle diagram is unremarkable in 

features such that the sequence shows no meaningful deviations. In total, I was able to 

identify 73% of B3's pulsations as l = 1 and/or 2 using asymptotic period spacings. 
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Figure 25: The echelle diagrams of B3 for the l = 1 g-mode pulsation sequence (right 

panel) and the l = 2 (left panel). The black dots are identified as l = 1, blue triangles are l 

= 2, black dots with blue circles are l = 1 and 2, and red asterisks are unknown. The solid 

lines indicate the calculated position of the m = ±1 components based on the frequency 

splitting of B3. The dashed lines correspond to the m = ±2 components.  

 

 

 

Mode Identification. In summary, I used rotationally induced frequency 

splittings and asymptotic period spacings to identify pulsation modes for 80% of the total 

pulsations of B3. B3 has ten multiplets, one of which does not fit the asymptotic period 

sequence. Therefore, 15 of the 24 identified modes are corroborated with evidence from 

both mode identification methods; the results are presented in Table 3. There are also 

three p modes detected. The predicted overtone spacing of p modes is roughly 1000 µHz. 

Pulsations f28 and f29 are spaced by ~1300 µHz, while f29 and f30 are spaced by ~1800 

µHz (twice 900 µHz), which are approximately the predicted overtone spacing.  
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Table 3: Pulsation frequencies of B3. Italicized frequencies were prewhitened. The first 

three columns give the pulsation ID's, frequency, and period with the errors given in 

parentheses. Columns 4 and 5 are the pulsation amplitudes in relation to detection 

thresholds (S/N) and in ppt. Columns 6 and 7 give the ratio (in percent) of the change in 

period to the period spacing for a given degree l to denote the deviations from asymptotic 

model sequences. Columns 8-10 give the mode identifications from our results. Column 

11 gives the frequency splittings.  
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B4: KIC 2438324 

For B4, I was able to recover 84% of the pulsations detected by Pablo et al. 

(2011) on top of which I detected two additional frequencies. The three pulsations that 

were not recovered from Pablo et al. (2011) were all low amplitude, and two of them they 

listed as tentative. All were observed at low amplitudes in early quarters, however, the 

pulsations are not observed in later quarters and do not rise above our detection threshold 

for the entire data set, so I do not include them in our final list. 

Rotationally Induced Frequency Multiplets.  Previously, Pablo et al. (2011) 

observed l = 1 multiplets with Δm = 1 frequency splittings of 0.620 μHz in B4's 

frequency spectrum. Using the entire Kepler data set of each star, I detected two 

frequency splittings of 0.611 and 0.596 μHz in a triplet and five with splittings roughly 

twice that in doublets. These splittings were observed in 75% of the highest amplitude 

pulsations, so similar to B3, I expect these splittings to be attributed to l = 1 pulsation 

modes. Given this, B4's triplets have splittings that are Δm = 2. An example of the l = 1 

triplet is shown in Figure 26 with the average normalized amplitudes of all of B4's 

multiplets shown in Figure 27. In total, 13 l = 1 pulsations were detected with an average 

frequency splitting of 0.629 ± 0.012 μHz.   

Asymptotic Period Spacings. I determined the period sequences of B4 in the 

same manner as described for B3. Of all three sdB stars analyzed in this research, B4 has 

the strongest l = 1 sequence; the l = 1 trough at ~240 seconds in the KS test of B4's 

pulsations is shown in Figure 28. Aside from the orbital frequency (29.0441 μHz) and its 

overtone (58.0894 μHz), the l = 1 period sequence encompasses 100% of the extracted 

pulsations. The average spacing from these 18 l = 1 pulsations is 236.2 ± 2.1 seconds.  



 

48 

 

Figure 26: The plot of a frequency multiplet of B4 at 216.893 μHz with frequency 

splittings of 0.611 (left splitting) and 0.596 μHz (right splitting). The dashed magenta line 

is the detection threshold. 

 

 

Figure 27: The average, normalized amplitudes for the azimuthal components of the  

l = 1 frequency splittings of B4 and their associated error bars. 
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Figure 28: The KS test for B4 plotted with confidence intervals as given in the legend. 

Note the KS statistic for the l = 1 period spacings at ~240 seconds. 

 

 

Figure 29: The echelle diagrams of B4 for the l = 1 g-mode pulsation sequence in the 

right panel, and the l = 2 sequence in the left panel. The black dots are identified as l = 1, 

blue triangles are l = 2, black dots with blue circles are l = 1 and 2, and red asterisks are 

unknown. The solid lines indicate the calculated position of the m = ±1 components 

based on the frequency splitting of B4. The dashed lines correspond to the m = ±2 

components. 
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Using these, I calculated the l = 2 sequence on which only three pulsations were found to 

lie, all overlap with the l = 1 sequence. The échelle diagrams of both sequences is shown 

in Figure 29. One of the three potential l = 2 pulsations is part of an identified l = 1 

triplet. Only the two pulsations (f17 and f18) remain potential l = 2 pulsation modes. 

Therefore, due to the lack of sequence members, no asymptotic period spacings could be 

calculated for the l = 2 sequence. 

Mode Identification.  In summary, I used rotationally induced frequency 

splittings and asymptotic period spacings to identify 100% of B4's pulsations. 

Corroboration from both methods of mode identification is observed in 75% of the 

pulsations; these results are presented in Table 4.   

 

B5: KIC 2437937 

For B5, I was able to extract 13 frequencies in addition to the recovery of 100% 

of the pulsations detected by Reed et al. (2012).     

Rotationally Induced Frequency Multiplets. Similar to B3, Reed et al. (2012) 

found no frequency splittings were found. Even using the entire Kepler data set of B5, the 

FT of B5 was particularly sparse of frequency splittings in comparison to our other two 

targets. I detected only three splittings (0.098, 0.096, and 0.077 μHz), one of which is 

presented in Figure 30 with the average normalized amplitudes of all three plotted in 

Figure 31. These frequency splittings all have components whose amplitudes are in the 

lowest 63% of pulsations. Mode identifications based on these frequency splittings would 

be tentative, and, as such, primary evidence through asymptotic period spacings is needed 

in order to properly identify pulsation modes. 
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Table 4: Pulsation frequencies of B4. Italicized frequencies were prewhitened. The first 

three columns give the pulsation ID's, frequency, and period with the errors given in 

parentheses. Columns 4 and 5 are the pulsation amplitude in ppt and in relation to 

detection thresholds (S/N). Columns 6 and 7 give the ratio (in percent) of the change in 

period to the period spacing for a given degree-l to denote the deviations from asymptotic 

model sequences. Columns 8-10 give the mode identifications from our results. Column 

11 gives the frequency splittings. 
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Figure 30: The plot of a frequency multiplet of B5 at 116.217 μHz with a splitting of 

0.098 μHz. The dashed magenta line is the detection threshold. 

 

  

Figure 31: The average, normalized amplitudes for the azimuthal components of the  

l = 1 (black circles) and l = 2 (blue triangles) frequency splittings of B5 and their 

associated error bars. 
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Asymptotic Period Spacings. Due to the lack of multiplets, identifying pulsation 

modes in B5 is greatly dependent upon the asymptotic period spacing results. The KS test 

of B5's pulsations is shown in Figure 32, and the first thing that is noticed is that none of 

the troughs reach below the 99.9% confidence interval. The deepest trough in the KS test 

is at ~250 seconds just eclipsing the 99% threshold. For B5, I was able to identify a total 

of 10 pulsations that lie on the l = 1 sequence which has an average period spacing of 

248.9 ± 1.3 seconds. This sequence encompasses B5's highest amplitude pulsations which 

have nearly consecutive radial overtones (n = 6, 8, 9, 10, 11, and 12). Similar to B3 and 

B4, I used the l = 1 sequence to calculate the l = 2 sequence and found five pulsations 

that lie on it; the échelle diagrams of both sequences are presented in Figure 33. The 

average spacing for the l = 2 sequence is 142.66 ± 0.53 seconds. In total, 13 of 17 

pulsations were given mode identifications of l = 1 and/or 2 using asymptotic period 

spacings. Similar to B3, there are no remarkable deviations from the asymptotic 

sequence.  

Figure 32: The KS test for B5 plotted with confidence intervals as given in the legend. 

Note the KS statistic for the l = 1 period spacings at just below 250 seconds. 
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Figure 33: The echelle diagrams of B5 for the l = 1 g-mode pulsation sequence in the 

right panel, and the l = 2 sequence in the left panel. The black dots identified as l = 1, 

blue triangles are l = 2, black dots with blue circles are l = 1 and 2, and red asterisks are 

unknown. The solid lines indicate the calculated position of the m = ±1 components 

based on the frequency splitting of B5. The dashed lines correspond to the m = ±2 

components. 

 

 

Mode Identification. In summary, I used rotationally induced frequency 

splittings and asymptotic period spacings to identify 15 pulsation modes of B5; the full 

list of which is given in Table 5. For B5, the mode identifications are reliant primarily on 

asymptotic period spacings with only three frequency splittings observed in the entire 

data set. Two of the multiplets found are on the asymptotic sequence appropriate for their 

splittings. The third multiplet does not lie on an asymptotic sequence, but has splittings 

appropriate for l = 2. Three periods are within 10% of the l,n = 1,6 node. There is no way 

to distinguish between them, so I associate all three frequencies (f15, f16, and f17) with 

that pulsation mode.  In total, I was able to identify a total of 88% of B5's pulsations as l 

= 1 and/or 2.  
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Table 5: Pulsation frequencies of B5. Italicized frequencies were prewhitened. The first 

three columns give the pulsation ID's, frequency, and period with the errors given in 

parentheses. Columns 4 and 5 are the pulsation amplitude in ppt and in relation to 

detection thresholds (S/N). Columns 6 and 7 give the ratio (in percent) of the change in 

period to the period spacing for a given degree-l to denote the deviations from asymptotic 

model sequences. Columns 8-10 give the mode identifications from our results. Column 

11 gives the frequency splittings. 
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RESULTS AND COMPARISONS 

 

From the full Kepler data sets, I more than doubled the total known pulsations of 

B3, B4, and B5. From this expanded list of pulsations I discovered rotationally induced 

frequency splittings in B3 and B5, mode trapping in B3, and other features which will be 

discussed in this and the following chapter. 

 

B3: KIC 2569576 

From the entire Kepler data set of B3 (78% LC data), I detected 30 pulsations in 

total. I was able to identify 24 out of 27 g-mode pulsations using asymptotic period 

spacings or frequency splittings. There were ten frequency splittings with an average 

splitting of 0.090 ± 0.013 μHz. Using the average splitting and equation four on page 17, 

I calculate the rotation period of B3 to be 64.5 ± 8.2 days, which is normal for a single g-

mode sdB star. There are no frequency splittings in the three p modes to determine if 

solid-body or radial differential rotation exists, however, they do fit predicted overtone 

spacings.  

The ratio of observed amplitudes in the azimuthal components of a given 

multiplet are affected by the inclination of the pulsation axis of a star (Pesnell 1985). I 

normalized the azimuthal components of the multiplets to the m = 0 component, and 

under the assumption of intrinsically similar amplitudes, I calculated constraints on the 

inclination axis. Our results indicate an inclination axis of i < 62° from the m = 0 

component with no constraint from the m = ±1 component (shown in Figure 34). 
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Figure 34: Inclination constraints for B3 are plotted on the Legendre polynomials of 

degree l = 1. The m = 0 component is given by the solid line with its constraint shaded in 

blue. The m = ± 1 component is given by the dashed line and the red shaded constraints. 

Note the overlap in constraints excludes nearly equator on inclinations.    

 

 

The asymptotic period spacings of the l = 1 sequence in B3 has more members 

than the l = 2, encompassing 65% of the total pulsations. The average spacings of the l = 

1 sequence is 252.27 seconds and is nearly continuous from n = 8 to 17. Above n = 17, 

the sequence is greatly disrupted and only includes two overtones at n = 22 and 27. 

However, evidence of mode trapping is observed at 138.862 μHz. From Table 3, the 

pulsations f5 and f6 are of relatively high amplitude (S/N ~9 and ~28, respectively), and 

exhibit a frequency splitting of 0.108 μHz. From the splitting I can identify it as an l = 1 

mode, however, it is trapped completely off of the l = 1 period sequence (shown in the 

right panel of Figure 25 close to n = 25). The sequence is discontinuous in this region 

though (as shown in the reduced period plot in Figure 35), and there is no pulsation 

detected where the corresponding trapped l, n = 2, 25 would be.   
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Figure 35: Reduce period plot of B3. Blue points and lines represent the l = 1 sequence 

while the red points and lines represent the l = 2 sequence. Solid lines indicate 

continuous radial overtones while dashed lines indicate missing sequence members. 

 

 

 

B4: KIC 2438324 

From B4's entire Kepler data set (73% SC data), I detected 20 pulsations in total 

including the orbital alias and its overtone (f1 and f2 from Table 4). Of the pulsations, 

100% were identified with low-degrees (l ≤ 2) using asymptotic period spacings and 

frequency splittings. There were seven frequency splittings with an average splitting of 

0.629 ± 0.012 μHz from which I calculate the rotation period to be 9.21 ± 0.18 days. This 

is slightly short, but not unusual for an sdB + M-dwarf system. Like B3, I can determine 

the inclination constraints from the l = 1 Legendre polynomials and the relative 

amplitudes of the components of B4's multiplets shown in Figure 27. The constraints of 

each azimuthal component overlap at high inclination angles (shown in Figure 36) which 
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provide a lower bound (i > 76°) for the inclination axis. An upper bound can be 

determined from the geometric arrangement of potential binary companions, which 

exclude eclipses. Using Kepler's 3rd law and the known sdB radius of 0.2 R⊙, I determine 

that the upper bound is 83.5° for the edge of the companion’s stellar surface to eclipse the 

sdB. The true inclination will depend upon the radius of the companion. 

Every one of the frequency splittings used to constrain the pulsation axis occur on 

the l = 1 period sequence. There is a nearly continuous portion of the sequence which is 

only missing one member (n = 12) from n = 6 to 15, and it also has the characteristic 

hook feature seen in many other sdB period sequences (shown in Figure 29). However, 

B4's hook feature meanders left at low radial orders, which is opposite what is normally 

observed (Baran & Winans, 2012). In congruence with the continuity in overtones on the 

sequence, no trapped modes are found.  

 

Figure 36: Inclination constraints for B4 are plotted on the Legendre polynomials of 

degree-l = 1. The m = 0 component is given by the solid line with its constraint shaded in 

blue. The m = ± 1 component is given by the dashed line and the red shaded constraints. 

Note the overlapping region constrains the inclination to be nearly equator on. 
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B5: KIC 2437937 

From the entire Kepler data set of B5 (78% LC data), I detected 17 pulsations in 

total. I used asymptotic period spacings and frequency splittings to identify 88% of these 

with low-degree (l ≤ 2) modes.  The only l = 1 splitting of 0.077 ± 0.004 μHz gives a 

rotation period of 75.2 ± 3.7 days. The l = 2 multiplets have an average splitting of 0.097 

± 0.016 μHz from which I derive a rotation period of 99.4 ± 14.0 days. While these are 

not the same, at the 1σ level, they both indicate a long rotation, which is normal for a 

single g-mode pulsator. I simply average them together for a rotation period of 91.3 ± 

14.1 days.   

 

Figure 37: Inclination constraints for B5 are plotted on the Legendre polynomials of 

degree l = 2. The m = 0 and ±2 components are given by the solid line with the m = 0 

constraint shaded in blue. The m = ±1 component is given by the dashed line and the red 

shaded constraints. 

 

I determined inclination constraints using the l = 2 multiplets. The result is an 

inclination between 8° and 30° (Figure 37). The l = 1 multiplet did not constrain the 

inclination as it had excessive amplitude variations. With such few splittings, asymptotic 
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period spacings were necessary for mode identifications. From our linear regression fits I 

determined period spacings of 248.9 and 142.66 seconds for the l = 1 and 2 sequences, 

respectively. The single l = 1 frequency splitting fell on the l = 1 sequence at n = 6. 

Coincidentally this doublet is the start of a nearly continuous sequence from n = 6 to 12 

which is missing only n = 7. The sequence is primarily concentrated at low radial orders 

and shows no significant deviations from the asymptote.  

 

 

Comparisons 

To determine any similarities or differences between B3, B4, and B5, I analyze 

the atmospheric and asteroseismic properties determined for each. Comparing the total 

number of pulsations with the atmospheric parameters, I see that there are no clear trends 

in either effective temperature or surface gravity (shown in Figures 38 and 39, 

respectively). Low and high temperature stars can have single digit quantities to multiple 

hundreds of pulsations. Perhaps I see an effect with the higher surface gravity sdBs 

having fewer pulsations, however, this trend should be compared with model instability 

predictions. 

The faintness of the objects lowers the amplitude of the pulsations in the FT, and 

could affect the quantity of pulsations I detect; a plot of total pulsations with Kepler 

magnitudes is shown in Figure 40. Most of the pulsators have quantities from single 

digits to 70 pulsations with magnitudes from Kp =18 to 13.5. If the magnitude affected the 

quantities of detected pulsations, then I would expect there to be some decrease in the 

total number of pulsations as the stars become fainter. I do not see this trend, however, 

there are no pulsators over 17th magnitude with hundreds of pulsations. Some Kepler 
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targets from the main mission have not had analyses of their entire data sets, after which 

more appropriate comparisons can be made.  

 

Figure 38: The total pulsations plotted against the effective temperature of known Kepler 

sdB pulsators including B3 (green), B4 (red), and B5 (blue) with their associated error 

bars. 

 

Figure 39: The total pulsations plotted against the surface gravity of known Kepler sdB 

pulsators including B3 (green), B4 (red), and B5 (blue) with their associated error bars. 
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Figure 40: The total pulsations plotted against the Kepler magnitude of known Kepler 

sdB pulsators including B3 (green), B4 (red), and B5 (blue). 

 

In sdB evolution, their rotation periods can be perturbed by interactions with 

binary companions. There seems to be a trend in B3, B4, and B5 such that as the effective 

temperature increases, the rotation period decreases (shown in Figure 41) even though the 

rotation period of B4 is likely affected by its M-dwarf counterpart. Perhaps the common 

envelope phase of B4 and its companion allowed for more of B4's hydrogen envelope to 

be stripped, creating a slightly hotter sdB with a faster rotation period. In general, the 

trend is also seen with all of the Kepler sdBs (Reed et al., 2014). The hotter, p-mode 

pulsators all have faster rotation periods of less than 30 days, while the cooler, g-mode 

pulsators can have rotation periods upwards of 100 days. The trend is seen slightly with 

rotation period compared to the surface gravity of known Kepler sdBs which is shown in 
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Figure 42. As the surface gravity increases, the rotation period decreases, however, at low 

surface gravities there are sdBs with rotation periods less than 10 days and close to 100 

days.   

 

Figure 41: Rotation period plotted against the effective temperature of known Kepler sdB 

pulsators including B3 (green), B4 (red), and B5 (blue) with their associated error bars.  

 

Figure 42: Rotation period plotted against the surface gravity of known Kepler sdB 

pulsators including B3 (green), B4 (red), and B5 (blue) with their associated error bars.  
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Period spacings were compared with effective temperature and surface gravity 

(shown in Figure 43 and 44). There are no trends with surface gravity, however, they 

seem to be two diagonal groupings with effective temperature. These groupings should be 

explored when analysis of all Kepler sdBV stars is complete. In general, the period 

spacings group together around a weighted average value of 251.22 ± 0.08 seconds. 

 

 

Figure 43:  Period spacings plotted against the effective temperature of known Kepler 

sdB pulsators including B3 (green), B4 (red), and B5 (blue) with their associated error 

bars. 
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Figure 44: Period spacings plotted against the surface gravity of known Kepler sdB 

pulsators including B3 (green), B4 (red), and B5 (blue) with their associated error bars. 



 

67 

DISCUSSION 

 

NGC 6791 is a unique open cluster. Its high metallicity ([Fe/H] ≈ +0.40; Carraro 

et al., 2006) and old age (7 Gyr; Anthony-Twarog et al., 2007) put the cluster on the 

upper limits of age and metallicity for open clusters. The most recent photometric study 

performed by Anthony-Twarog, Twarog and Mayer in 2007 resulted in an updated 

detailed analysis of the color-magnitude diagram (CMD) of NGC 6791. From the CMD, 

all of the stars fall on a smooth evolutionary track with a turnoff at roughly B-V ≈ 0.68 as 

shown in Figure 45. 

 

 

Figure 45: CMD for NGC 6791 with isochrones for Fe/H = 0.0 (dotted line) and 0.3 

(solid line) of Girardi et al. (2002). Credit: Stetson et al., 2003; Anthony-Twarog et al., 

2007. 
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If multiple star formation epochs occur within the same cluster, then stars formed 

in separate epochs would form independent sequences on the CMD. This is not seen in 

the CMD of NGC 6791. The smooth distribution of stars on the CMD implies that all of 

the stars were born in a single formation epoch, which is important in the determination 

of turn-off masses and can affect the interpretation of the asteroseismic and atmospheric 

properties of B3, B4, and B5. Stars that are in the same stage of evolution and are part of 

the same cluster (like B3, B4, and B5) have the same age, progenitor mass, initial 

metallicity, and preferred inclination within the cluster. Since they have such similar 

beginnings, any differences in their current states are due to their unique formation 

scenarios. 

The Teff-log g plot in Figure 14 shows that B3, B4, and B5 all fall within the range 

of g-mode pulsators, and all of the pulsations in all three stars are g-mode pulsations 

except for three p modes in B3. The total number of pulsations for each star were low 

compared to other Kepler sdBs. In particular, B4 had the most SC data (Q06 through 

Q17), which I expected to have the most pulsations but ended up not being the case. The 

amount of SC data I obtained for B4 was roughly equal to that of KIC 2697388 and KIC 

11558725, which both had roughly 250 pulsations each; ten times the amount I detected 

in B4. However, both KIC 2697388 and KIC 11558725 are nearly three magnitudes 

brighter (15.39 and 14.95, respectively) than B4, so, the small amount of pulsations from 

the full Kepler data sets of all three stars could be an effect of their faint magnitudes (see 

Figure 40).   

I was able to discover rotation periods for B3 (64.5 ± 8.2 days) and B5 (91.3 ± 

14.1 days), as well as confirm the rotation period of B4 (9.21 ± 0.18 days). B4 is in a 
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short-period reflection-effect binary (Porb ≈ 0.398 days; Pablo et al., 2011), and is rotating 

slower than its companion orbits. Short-period binaries go through a common envelope 

phase where angular momentum in the system is transferred to the common, filled Roche 

lobe in order to heat and eject it. For B4, this resulted in a slightly hotter sdB than B3 and 

B5, and a much faster rotator. So, B3 and B5’s long rotation periods suggests that they 

can be excluded from being in a short-period binary. 

The rotation period of B4 is likely spun-up by its binary companion, and it is no 

considerable surprise that B3 and B5's rotation periods are much longer due to their lack 

of apparent binarity. This could be a product of their closer proximity to the cluster's 

center (B3, 199” and B5, 123” compared to B4, 236”) and the tidal disruptions that are 

experienced there. The binary companion of B4 has also perturbed the inclination of B4 

(76° < i < 84°) from the preferred inclination (20° < i < 30°) of the other cluster 

members who have had their angular momentum exchanged with only the progenitor 

molecular cloud (Corsaro et al., 2017). This is not the case for B3 and B5. The inclination 

of B3 is constrained to less than 62° and B5's is constrained from 8° to 30°, both 

overlapping the preferred inclination of solar-like oscillators which is 20° to 30° (Corsaro 

et al., 2017). This is more evidence that these stars truly do not have binary partners, 

because they are not perturbed from their original inclinations as RG stars. Their long 

rotation periods also suggest that they can be excluded from being in a short-period 

binary. 

One unique feature of B3 is that it shows signs of mode trapping. These trapped 

modes are thought to be caused by pulsations which pass over the sharp C-O/He 

boundary in the core. More specifically, convective overshoot at this transition layer has 
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been shown to result in trapped modes (Constantino et al., 2015; Ghasemi et al., 2017). 

The fact that B3 exhibits mode trapping where B4 and B5 do not may indicate that there 

is increased diffusion which smoothed this boundary in B4 and B5 (Constantino et al., 

2015; Ghasemi et al., 2017).  

There are other similarities between B3 and B5, though. They are both long-

period rotators and have l = 1 period spacings close to 250 seconds. Comparing the 

period spacings of B3, B4, B5 and the other Kepler sdBs (251.22 seconds) to that of the 

RC stars (268.5 seconds) in NGC 6791, I see that as surface gravity decreases the period 

spacing values increase, but only by 6.8%. Since RC stars are HB stars, they have begun 

fusing helium, so their core masses must have been similar to that of the sdB progenitor's 

near the tip of the RGB considering the helium flash occurs at the same core mass (0.47 

M⊙). Although RC stars and sdB stars have the same progenitor mass, one major 

difference between RC stars and sdB stars is the thickness of the hydrogen envelope, and 

is a consequence of the overall mass loss in the system. This can affect the resultant star's 

rotation period and inclination, but apparently does little to affect period spacing values. 

This implies that period spacings are more strongly dictated by core mass than overall 

mass.   

Future work could be done to confirm the inclination of the B4 binary system 

which will give insight into how the angular momentum from the cluster preferred 

inclinations was transferred throughout its mass loss on the RGB. A high resolution 

spectroscopic analysis of B4 could be performed in order to produce radial velocity 

curves from which the inclination of the binary partner can be calculated, although this is 

difficult due to how faint the star is. For B3 and B5, detailed asteroseismic models could 
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be developed to replicate their sequences, especially the mode trapping in B3. 

Also, because the distance to the clusters is known through various methods, the 

radii and masses of B3, B4, and B5 can be calculated if a precise absolute luminosity 

could be determined using surveys with small flat-field uncertainties and accurate color-

based flux calibrations like SDSS. The lifetimes of solar-mass stars in general are on the 

order of ~1010 years, and their lives on the HB are ~108 years. Since there was only one 

star formation epoch in NGC 6791 and such a short amount of time is spent on the HB, 

this implies that the sdB progenitors had to have had identical masses, which can be 

roughly estimated from the masses of turn-off stars (1.15 M⊙; Brogaard et al., 2011). If 

the mass and radii of B3, B4, and B5 could be calculated, this would give insight into the 

progenitor's mass loss after the main sequence.   
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