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ABSTRACT 

The Freshwater Drum, Aplodinotus grunniens, serves as fish host to multiple mussel 

species.  Some mussel species are “drum specialists” in the sense that Freshwater Drum 

is apparently the only host that they utilize. Freshwater Drum diet consists partly of 

mussels, which it crushes with specially adapted pharyngeal teeth.  The Freshwater 

Drum’s habit of feeding on mussels should favor adaptations to use the species as a host.  

Mussels that use Freshwater Drum as host could adapt to attract the fish. I predicted that 

many other species will have some ability to use Freshwater Drum as host because of its 

habit of seeking bivalve prey.  I also predicted that species that use Freshwater Drum as 

their sole host should 1) have high metamorphosis success (%M) and 2) exhibit 

adaptations to avoid predation while attracting a predaceous host. I investigated the host 

potential between nine species of freshwater mussel and Freshwater Drum with 

laboratory host tests. These tests quantified the %M of two mussel species (T. truncata 

and L. fragilis) that are known to use Freshwater Drum as a host and quantified the %M 

of two new mussel-host relationships (O. reflexa and L. abrupta). The results show that 

Freshwater Drum exhibit a very high %M when hosting “drum specialist” mussels with 

little variability between individual fish; however, when Freshwater Drum host mussels 

that are not “drum specialists” the %M is much lower and more variable between 

individual fish. 
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OVERVIEW 

 

Life-Cycle of Unionoidea        

 Freshwater mussels in the family Unionidae have a complex mode of 

reproduction that is unique among bivalves (Howard and Anson 1922).  Female mussels 

brood eggs in hollow gill chambers called marsupia (singular marsupium). Males release 

spermatozeugmata (packets of sperm) into the water column (Bauer 1987). Water 

containing spermatozeugmata fertilizes the eggs in the mussel’s dorsal passages. After 

fertilization, eggs develop into a microscopic larval stage known as the glochidium 

(plural glochidia). Glochidia are obligate parasites on a vertebrate host, usually a fish 

(Kat 1984).  Glochidia develop in the marsupium and are held there for weeks to months 

before being released by the female mussel.      

 Mussels use a variety of methods for releasing the glochidia from the marsupium. 

Some species expel conglutinates (packets of eggs containing glochidia) into the water, 

while others inflate extensions of their mantle flaps surrounding the gills, producing a 

“lure” which imitates the intended host fishes’ natural prey (Kraemer 1970; Barnhart et 

al. 2008). The intended host fish identifies the conglutinate or mantle flap as a possible 

item of prey and the fish attempts to ingest the imitation. When the fish strikes at the 

conglutinate or mantle flap, the gill and the eggs containing the larval mussels break open 

and the fish is infected with glochidia (Watters 1999). Attachment occurs as a glochidium 

closes its valves on fish tissue, usually gills. If a glochidium attaches to the correct 

species, it becomes encapsulated by the fish’s epithelial cells for a period of days to 

weeks. While encapsulated the glochidium metamorphoses into a juvenile mussel. When 
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the metamorphosis is complete, the capsule breaks down and the metamorphosed juvenile 

is released from the fish and drops to the sediment as a free-living juvenile mussel. 

 

Host Specificity 

 Mussel hosts encompass a taxonomically and ecologically wide range of fishes 

from drift-feeding minnows to large top predators. One mussel species is a specialist on 

the mudpuppy, an aquatic salamander (Howard 1915). Host use varies widely among 

mussel species from specialists that use only one fish species as host, to generalists that 

are able to parasitize nearly any fish species (Haag 2012).  Generalists typically have 

only a small fraction of the larvae metamorphose, whereas, specialists that use only one 

host fish or a few close relatives usually have high success on those hosts (Watters 1996; 

Crownhart 2009). The attachment of glochidia to a potential host is indiscriminate, as 

glochidia will attach to any fish that are encountered; however, when glochidia attach to a 

non-compatible host, the larvae either fail to be encapsulated, or the capsule is shed 

(sloughed) from the gills within 2-7 days (Kat 1984). In some cases the shed larvae are 

alive, and in others they are killed within the capsule before being shed.  This host 

specificity is the result of innate immunity of fishes to certain parasites (Reuling 1919; 

Dodd et al. 2005, 2006; Bowers 2006).  

 The standard measure of the compatibility between mussel and fish species is a 

quantification of the metamorphosis success (%M) of the glochidia that attach to the fish. 

%M is calculated as the total number of recovered juveniles divided by the sum of total 

recovered juveniles and sloughed glochidia. A high %M indicates a greater level of 

mussel-host compatibility, whereas a low %M indicates a low level of mussel-host 
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compatibility (Crownhart 2009; Douda et al. 2016). Mussels coevolve with their fish 

hosts, gaining adaptations that allow bypass of the fish’s innate immune system. 

Logically, adaptations to particular fish species can only evolve if the glochidia of the 

mussel commonly encounter that host. Freshwater Drum are a predatory fish species that 

are known to eat bivalves. Some mussels are known as “drum specialists” because 

Freshwater Drum is the only species that the mussel uses as a host. Drum specialists have 

a high %M that may be a result of the close interaction of the two in the mussel/predator 

relationship. 

 

Thesis Objectives 

 Life history studies have been identified as a critical mussel conservation need 

(Neves 1993; Haag 2012). One of the key aspects of mussel life history is the 

identification of the mussel species’ vertebrate host. Currently, suitable hosts for 

approximately half of North American mussel species remain unknown, and many of the 

reported mussel-host relationships require further investigation (Williams et al. 2008).  

Identification of fish hosts is the highest priority listed under the basic biology research 

goals of the National Strategy of Freshwater Mussel Conservation (NNMCC 1998; 

FMCS 2016). Research in this area of life history is needed for the conservation and 

management of mussels, as well as for the management of the host fishes. Information 

concerning mussel-host compatibility is also essential in the expanding field of mussel 

propagation. Artificial propagation of mussels on host fish is becoming one of the 

primary tools used in efforts to restock rare mussels to their native ranges, from which 

many have been extirpated. Of the approximately 297 mussel species living in North 
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America, 213 are listed as either endangered, threatened, or a species of conservation 

concern (Hove et al. 1998). The results of this project could expand the known spectrum 

of mussel-host relationships, as well as providing information that may influence the 

management of Freshwater Drum and their role as a host for mussels. 

 The first component of this study was host testing to determine compatibility 

between Freshwater Drum and nine species of Unionid mussels. Additionally, a feeding 

experiment was conducted on Freshwater Drum of different sizes to determine if there is 

a correlation between Freshwater Drum size and the size of mussels they are capable of 

consuming (Chapter 1).  The second chapter of this study investigated the fish hosts of a 

particular mussel, the Threehorn Wartyback (Obliquaria reflexa).  I tested compatibility 

between nine potential fish species and Threehorn Wartyback, whose primary fish host is 

currently unknown (Chapter 2). 
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CHAPTER 1: HOST TESTS WITH FRESHWATER DRUM 

 

Introduction 

 Freshwater Drum (Aplodinotus grunniens) is the only known fish host for several 

North American mussel genera, including Potamilus, Leptodea, Truncilla, and Ellipsaria 

(Barnhart et al. 2008). Freshwater Drum belongs to the fish family Sciaenidae, which 

includes: Croakers, Sea Trout, Corbina, Red Drum and Black Drum. It is the only 

member of Sciaenidae to inhabit freshwater for the entirety of its life. This is a 

taxonomically unique species, being the only member of its genus. Like many fishes, 

drum can also be known by multiple common names such as: Sheepshead, Shepherd’s 

Pie, Gray Bass, Grunter, Bubbler, Croaker, and Wuss Fish. Freshwater Drum is one of 

the most widespread native fish species in North America. The species native range spans 

from the western border of the Appalachian Mountains to the eastern edge of the Rocky 

Mountains and from Hudson Bay to the Rio Usumacinta Basin of Guatemala (Trautman 

1981; Ross 2001).  This species typically lives in medium to large rivers and 

impoundments. Adults can be found in the larger pools of streams and in depths 

exceeding ten meters in reservoirs. It is a benthic species that populates a variety of 

habitats. Large numbers of Freshwater Drum can be found in backwaters and areas of 

slack current with silty to rocky substrate (Barney 1926; Pfleiger 1975).  

 Freshwater Drum breed seasonally in open water. Spawning occurs from late May 

to July and is triggered by an increase in water temperature to approximately 20o C 

(Swedberg and Walburg 1970).  Females produce 40,000 to 60,000 eggs that are released 

into the water column, where they are fertilized by the males. There is no parental 

involvement after spawning (Etnier and Starnes 1993). The pelagic eggs float to the 
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surface and are carried by the current until they hatch 48 to 96 hours later (Daiber 1953). 

Larvae are about 3mm at hatching and adhere to surface film for approximately 3 days 

until they are capable of swimming freely. Surviving larvae are considered juveniles at 

15mm. Freshwater Drum can reach a total length of 85mm in their first year and up to 

150mm by the end of their second year. On average, males reach sexual maturity at age 

5, whereas, females reach sexual maturity at age 6 (Butler and Smith 1950; Priegel 1969). 

The largest Freshwater Drum ever recorded was caught in 1972 at Nickajack Lake, 

Tennessee, USA and weighed 24.9KG (IGFA 1985). 

 The diet of the Freshwater Drum is generally benthic and becomes more diverse 

as the fish grows into sexual maturity. Freshwater Drum in Harlan County Reservoir, 

Nebraska, USA were reported to be strict zooplanktivores during the larval (<19 mm in 

length) stage (Sullivan et al. 2012). This study corroborates the findings of Swedberg and 

Walburg (1970) at Lewis and Clark Lake, South Dakota, USA. After the fish reach 

approximately 12mm, zooplankton constitutes the majority of the diet (Sullivan et al. 

2012). Larger juveniles feed largely on the larval stages of aquatic insects (Daiber 1952). 

The diet of adults can be very diverse, encompassing four main categories: fish, insects, 

crayfish, and mollusks (Shields and Beckman 2015). Adults are equipped with heavy 

pharyngeal teeth that aid in the consumption of mollusks such as snails and freshwater 

mussels. The proportion of these food categories varies with seasonal changes and food 

availability (Griswold and Tubb 1977; Schael et al. 1991).  

 The introduction of Zebra mussel (Dreissena polymorpha) in North America has 

impacted the diet of Freshwater Drum, with dreissenids forming as much as 60% of their 

diet in some situations (Watzin et al. 2008). A 2007 sampling study in Lake Winnebago, 
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Wisconsin, USA revealed that most of the larger Freshwater Drum sampled were found 

to have Zebra mussels in their gut content, with larger Freshwater Drum often having 

their digestive tract completely engorged with crushed Zebra mussel shells (Davis-Foust 

2012). The arrival of dreissenids in Lake Winnebago resulted in a major dietary shift for 

the Freshwater Drum population from fish and insects to mollusks, given that the native 

mussel population of the lake was historically low. Similar dietary shifts in Freshwater 

Drum were previously reported upon the invasion of Asiatic clams (Corbicula fluminea) 

into impoundments, where the diet of larger fish had shifted from predominantly dipteran 

larvae and copepods to being almost exclusively composed of Asiatic clams (Wrenn and 

Shoals 1968). Food resource utilization in fish tends to relate to body size and fish near 

the transitional stage from small to large, or at about 9-12 inches; often display the 

greatest diet diversity (Werner and Gilliam 1984).  

 Freshwater Drum serve as exclusive host to mussel species in several genera in 

the family Unionidae. This relationship can only be possible as the result of many 

generations of close interaction and coevolution between Freshwater Drum and the 

mussel species that they host. Malacologists have established that Freshwater Drum 

potentially host at least 15 freshwater mussel species in North America (Sietman et al. 

2018). These mussel-host relationships have been established by both observing natural 

infections and through laboratory infections of freshwater mussels on fish. Known mussel 

species that use Freshwater Drum as a host include: Pink Papershell (Potamilus ohiensis), 

Giant Floater (Pyganodon grandis), Fawnsfoot (Truncilla donaciformis), Threeridge 

(Amblema plicata), Butterfly (Ellipsaria lineolata), Fragile Papershell (Leptodea 

fragilis), Scaleshell (Leptodea leptodon), Washboard (Megalonaias nervosa), Pink 
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Heelsplitter (Potamilus alatus), Bleufer (Potamilus purpuratus), Rock Pocketbook 

(Arcidens confragosus) , Deertoe (Truncilla truncata), Fat Pocketbook (Potamilus 

capax), Inflated Heelsplitter (Potamilus inflatus), and Higgins Eye (Lampsilis higginsii). 

Many of these mussels are considered to be “drum specialists” because Freshwater Drum 

is the only known fish species that the mussel uses as host. Drum specialists typically 

have unusually small glochidia and high fecundity (Barnhart et al. 2008; Sietman et al. 

2018). 

 I hypothesize that if Freshwater Drum frequently attempt to prey on many species 

of freshwater mussels, it is possible that the glochidia of many species regularly 

encounter drum and may have adapted to use it as a host. I tested this hypothesis with 

laboratory host tests.  Seven freshwater mussel species not previously tested with drum, 

as well as two species considered to be drum specialists, were tested in host trials on 

Freshwater Drum. The mussel species I tested were: Fatmucket (Lampsilis siliquoidea), 

Pink Mucket (Lampsilis abrupta), Black Sandshell (Ligumia recta), Neosho Mucket 

(Lampsilis rafinesqueana), Round Pigtoe (Pleurobema sintoxia), Threehorn Wartyback 

(Obliquaria reflexa), Fragile Papershell (Leptodea fragilis), Deertoe (Truncilla truncata), 

and Plain Pocketbook (Lampsilis cardium).  The tests quantified host suitability as 

percent of attached glochidia that metamorphosed to juveniles (%M).  

 Feeding trials were also conducted on four Freshwater Drum using live Fatmucket 

to establish if small size-class fish will feed on live mussels and also to determine the role 

of gape limitation of Freshwater Drum (Schael et al. 1991) when feeding on freshwater 

mussels.  Gape limitation refers to fact that dimensions of the gape of a predator’s mouth 

limit the maximum size of the prey item that the predator is capable of ingesting.  
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Methods 

 Freshwater Drum were obtained from the aquaculture facility at Langston 

University, Langston, Oklahoma USA. They were maintained at Neosho National Fish 

Hatchery, Neosho, Missouri USA, until needed for testing. Upon arrival for testing, the 

fish were held in recirculating aquaria at ambient laboratory temperatures (20o-23oC) in 

moderately hard synthetic fresh water (USEPA 2002) for a period ranging from days to 

weeks prior to infection. During this time the fish were fed approximately 1-2% of their 

body weight in blood worms (chironimid larvae, Hikari Bio-Pure Brand) daily. Fish were 

starved from 2 days prior to the host testing until the testing was considered complete. 

Upon completion of each experiment, the length (mm) and mass (g) of each fish was 

recorded. The size of fish varied from 132mm – 228mm.The drum were used for a single 

host test and then anesthetized and terminated by spinal cord severance.  

 All glochidia used in these studies were obtained from MSU mussel lab brood 

stock, Kansas City Zoo aquaculture facility, or by collecting brooding females from the 

wild (Table 1). Brood stock mussels were maintained at 10o C in river water (RW), 

collected from the James River, Greene County, Missouri, USA. The RW had an average 

hardness of 140 -160 mg/L CaCO3. The wild caught mussels were maintained in SFW at 

ambient laboratory temperatures. The mussels were held unfed for a period of days to 

months before testing. One to three brooding female mussels were used for each 

experiment. Both fish and mussels were held on a 12:12 hour light/dark photoperiod. 

 A host study was conducted between 2013 and 2015 at Missouri State University, 

Springfield, Missouri, USA involving 9 species of freshwater mussel and Freshwater 

Drum. Fatmucket, Pinkmucket, Black Sandshell, Neosho Mucket, Fragile Papershell, 
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Deertoe, and Plain Pocketbook glochidia were obtained by using a needle and syringe to 

perforate the marsupial gill and glochidia were flushed with RW into a beaker.  

Conglutinates of Round Pigtoe were collected after they were released by the mussel.  

The glochidia were freed from the conglutinate by spraying them with RW through a 400 

µm nylon screen. Threehorn Wartyback conglutinates were manipulated from the 

marsupium by using a dental pick to perforate and lift conglutinates from the gill. The 

glochidia were freed from conglutinates by pressing them through a 400 µm screen with 

a small paintbrush, while spraying them with RW.   

 Glochidia were then suspended in a known volume of RW which was subsampled 

for counting. Uniform suspension was achieved through agitation by a large rubber-bulb 

pipette. Each 200 µm sample was placed as a drop on a plastic Petri plate. The glochidia 

in each drop were counted and classified as either open or closed using a 

stereomicroscope at 10.5X or 40X. Viability was tested by the closing response to salt.  

One drop of saturated salt solution (NaCl + SFW) was added to each 200 µm sample to 

induce closing of the glochidia valves (LeFevre and Curtis 1912). Glochidia that were 

open initially and that closed in response to the addition of the salt were considered 

viable. These sample counts were used to estimate the total number of viable glochidia. 

The mussels used in this experiment had a glochidia viability that ranged from 55-97% 

viable. 

 Fish were infected with glochidia by placing them collectively in a bath 

containing 1L of RW per fish. Glochidia were added for a total concentration of 4000 

viable glochidia per liter RW. Homogeneity of the suspension was achieved by stirring 

and vigorous agitation with a large rubber-bulb pipette.  After 15 minutes, fish were 
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netted out and placed into a rinse bath to allow any unattached glochidia to drop from the 

fish. After rinsing for 10 minutes, fish were netted and placed into individual tanks. 

 Inoculated fish were housed in individual 9L tanks in an AHAB recirculating 

aquarium system (Aquatic Habitats, Inc. Apopka, FL). The water was conditioned by 

mechanical, biological, and carbon filtration and sterilized by ultraviolet radiation before 

recirculation. Water temperature was monitored daily and averaged 23oC. Each 9L tank 

received water continuously from a manifold and the overflow was passed through a 

filter cup with a nylon mesh screen, containing a mesh size that corresponded to the size 

of the glochidia being tested. The water flow rate through each tank was approximately 

0.5L/min. The first day after an inoculation and every other day thereafter (unless 

otherwise noted), the rate of water flow through the tank was increased to 2L/min for 10 

minutes to flush any particles into the filter cup. Afterwards, the screen was rinsed into a 

glass dish and examined with a stereomicroscope at 10.5X or 40X to distinguish 

glochidia from juvenile mussels. Collections with large amounts of glochidia and 

juveniles were transferred to a Bogorov plankton counting tray. Juveniles were 

distinguished from glochidia by foot movement. Glochidia and juveniles from each 

collection were counted to determine the number recovered from each fish. Infections 

were considered to be over after two consecutive counts with no juveniles and no 

glochidia present. At that time the fish were sedated and terminated by spinal cord 

transection. Their gills were dissected to examine for any remaining encystment.  

 The number of glochidia that attached to each fish was approximated as the sum 

of the sloughed glochidia and metamorphosed juveniles that were recovered. The percent 

metamorphosis (%M) for each fish was calculated by dividing the number of juveniles by 
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the sum of glochidia and juveniles recovered from that fish. A fish was considered a 

possible host if larval metamorphosis to the juvenile stage was observed; however for a 

fish to be confirmed as a true ecological host for a mussel species, there should also be 

observed glochidial infestation of that fish species under natural conditions (Neves 1990).  

 Eight individual Freshwater Drum from Langston University that ranged in size 

from a total length of 122mm – 390 mm were offered juvenile Fatmucket of various sizes 

in an attempt to determine size limitation of ingestion in two separate trials. In the first 

set of trials, five fish were held individually in 9L tanks in an AHAB aquarium system at 

23o C. The fish that were selected for the experiment had been previously starved for a 

period of 3 – 7 weeks during host trials, and subsequently fed bloodworms for 1-2 weeks 

prior to the feeding experiment. The feeding of bloodworms was discontinued and the 

fish were then offered de-shelled Asiatic Clam (Corbicula fluminea) and de-shelled 

Fatmucket (Lampsilis siliquoidea) as a primer for feeding on bivalves for a period of one 

week before being offered live bivalves. Three fish that refused de-shelled bivalves were 

not tested further.  The remaining five fish were tested with live Fatmucket. Two of these 

fish refused to eat live Fatmucket and were not tested further. Mussel valve length, height 

and width were recorded before being offered to the fish. One live mussel was introduced 

per fish each day during the light portion of the 12:12 light cycle, and not removed for at 

least 24 hours, ensuring that the fish would have an opportunity to feed during the dark 

portion of the 12:12 cycle. The size of mussel offered to each fish was between 4.4mm – 

9.0mm in valve length. Mussel introductions were done each day for the duration of the 

experiment. A second set of trials with three Freshwater Drum was conducted at Neosho 

National Fish Hatchery in a flow through circular tank with spring-fed hatchery discharge 
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water at ambient temperature. The fish were initially fed live fingerling Rainbow Trout 

(Oncorhynchus mykiss) for approximately 3 weeks and then starved for 1 week prior to 

the feeding experiment. After the starvation period, each fish was offered a primer of 

deshelled Fatmucket for one week and then offered one live Fatmucket per event during 

the course of the feeding experiment. The size of mussel offered to each fish was between 

4.5mm – 12.5mm valve length.  If not eaten after 48 hours, mussels were removed and 

replaced as described above. This test group was also on 12:12 light cycle. The size of the 

mussel offered to each fish was randomly selected and initially varied from day to day. 

 Towards the end of each experiment the size of mussels offered was focused on 

establishing what size of mussel was too large for individual fish to ingest. Mussels were 

offered to the fish for up to 48 hours, immediately followed by the introduction of a 

different sized mussel.  

 Prior approval for this project was obtained from the Missouri State University 

IACUC (February 14, 2011; approval #10025). 

 

Results 

 The results of the host tests indicated that Freshwater Drum was not a suitable 

host for 5 of the nine species tested.  Fatmucket, Neosho Mucket, Black Sandshell, 

Round Pigtoe, and Plain Pocketbook produced no juveniles, and only showed slight 

differences in the length of the time of encystment before sloughing. The results are 

summarized as follows: six Freshwater Drum were inoculated with 70% viable 

Fatmucket glochidia. Sloughing of Fatmucket glochidia was observed for 16 days with 

50% of sloughs recovered by the second day and 90% recovered by day four (Figure 1). 
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Six Freshwater Drum were inoculated with 85% viable Black Sandshell glochidia. 

Sloughing of Black Sandshell glochidia was observed for 16 days with 50% of sloughs 

recovered on the first day and 90% recovered by day three (Figure 2).  Nine Freshwater 

Drum were inoculated with 90% viable Neosho Mucket glochidia. Sloughing of Neosho 

Mucket glochidia was observed for 10 days with 90% recovery by day two (Figure 3).  

Two Freshwater Drum were inoculated with 73% viable Round Pigtoe glochidia. 

Sloughing of Round Pigtoe glochidia was observed for 15 days with 50% of sloughs 

collected on day one and 90% by day two (Figure 4).  Six Freshwater Drum were 

inoculated with 97% viable Plain Pocketbook glochidia. Sloughing of Plain Pocketbook 

glochidia was observed for 15 days with 50% of sloughs collected by the second day and 

90% by day four (Figure 5).  

 The host tests resulted in successful juvenile transformation for four of the nine 

mussel species tested.  These were Pink Mucket, Threehorn Wartyback, Fragile 

Papershell, and Deertoe. The latter two are considered to be drum specialists (Barnhart et 

al., 2008; Sietman et al., 2018). Six Freshwater Drum were inoculated with 78% viable 

Pink Mucket glochidia. Five of the six fish produced viable juveniles. Sloughing of 

glochidia and juvenile mussels was observed for 19 days with 50% of sloughs collected 

by day 2 of the trial and 90% collected by day six (Figure 6).  The length of juvenile 

sloughing was observed for 9 days. The %M for the six fish was collectively 6.5%. 

Individual fish had a %M ranging from 0% to 47.3% (Figure 7).    

 Six Freshwater Drum were inoculated with 55% viable Threehorn Wartyback 

glochidia. Three of the six fish produced viable juveniles. Sloughing of glochidia and 

juvenile mussels was observed for 25 days with 50% of sloughs collected by day 7 of the 
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trial and 90% by day 14 (Figure 8).  The length of juvenile sloughing was observed for 14 

days. The %M for the six fish was collectively 11.7%. Individual fish had a %M ranging 

from 0% to 46.1% (Figure 9).   

 Six Freshwater Drum were inoculated with 93% viable Fragile Papershell 

glochidia. All of the six fish produced viable juveniles. Sloughing of glochidia and 

juvenile mussels was observed for 44 days with 50% of sloughs collected by day 33 of 

the trial and 90% by day 37 (Figure 10). The length of juvenile sloughing was observed 

for 16 days. The %M for the six fish was collectively 98.1%. Individual fish had a %M 

ranging from 95.3% to 98.8% (Figure 11).   

 Six Freshwater Drum were inoculated with 55% viable Deertoe glochidia. All of 

the six fish produced viable juveniles. Sloughing of glochidia and juvenile mussels was 

observed for 30 days with 50% of sloughs collected by day 19 and 90% by day 21 of the 

trial (Figure 12). The length of juvenile sloughing was observed for 14 days. The %M for 

the six fish was collectively 88.9%. Individual fish had a %M ranging from 78.2% to 

97.3% (Figure 13).  

 The experiment started with eight Freshwater Drum of two size classes. Three 

fish refused to eat the de-shelled mussels and were dismissed from the experiment.  Two 

of the fish that ate de-shelled mussel would not eat live mussels and were also dismissed 

from the experiment. The other three fish ate live Fatmucket of varying sizes. Fish that 

did not eat mussels were only measured for length. Fish that ate mussels were measured 

for length and mouth gape. The size of the mussel at each feeding event was recorded for 

the length of the study, as well as whether the mussel was ingested or refused. A 

summary of the length and gape measurements of fish and the spectrum of shell sizes 
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ingested is provided (Table 2). The feeding events were only witnessed by researchers on 

three occasions, as most of these events happened during the dark portion of the 12:12 

light cycle. On all three occasions the fish ingested the live mussel whole. On one 

occasion the fish attempted to ingest the mussel several times before successfully eating 

the live mussel whole. No fresh fragmented shell material was found in the tank or in the 

filter, except for particulate valve material intermixed with fish feces that was 

occasionally found in the filter.  Each fish that ate mussels accepted mussels only below a 

certain size.  

 

Discussion 

 Host trials for Fatmucket, Neosho Mucket, Plain Pocketbook Black Sandshell, 

and Round Pigtoe, were unsuccessful in producing juvenile mussels. The majority of the 

glochidia of these mussels were sloughed within the first three days of the trials. These 

drum were reared in captivity, excluding the possibility of acquired immunity and 

indicating that the fish were innately immune to the glochidia of those species.   

Fatmucket, Neosho Mucket, Plain Pocketbook and Black Sandshell, all have mantle lures 

that are used to attract their piscivorous fish hosts, and they utilize primarily predatory 

host fish in the families Centrarchidae and Percidae. Previous laboratory trials have 

indicated potential hosts of  Fatmucket including 8 species of Centrarchidae, 2 species of 

Cyprinidae, 3 species of Percidae, and 1 species of Moronidae (Watters 1994).  Reported 

hosts for Black Sandshell include 10 species of Centrarchidae, 3 species of Cyprinidae, 3 

species of Percidae, and 1 species of Moronidae (Steg and Neves 1997; Watters 1999; 

Khym and Layzer 2000). Hosts for Neosho Mucket include three species of Micropterus 
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(Centrarchidae) (Barnhart and Roberts 1997).  Plain Pocketbook hosts include 5 species 

of Centrarchidae, three species of Percidae, and the Banded Killifish (Fundulus 

diaphanous) (Watters 1997).  Unlike the Lampsilis and Ligumia mussel species, Round 

Pigtoe utilizes small conglutinates that attract non-predatory hosts and lack a mantle lure.  

Reported potential hosts of Round Pigtoe include six species of Cyprinidae and one 

species of Centrarchidae (Hove et al. 1995).   

 Host trials for Pink Mucket, Threehorn Wartyback, Fragile Papershell, and 

Deertoe produced significant numbers of metamorphosed juveniles. The host trials for 

Threehorn Wartyback resulted in the successful transformation of 121 juvenile mussels 

on three of the six Freshwater Drum that were tested. The %M of the three fish that 

produced juvenile mussels ranged from 46% to less than 1% with one fish producing 

93% of the total juveniles transformed. The primary host for Threehorn Wartyback is 

unknown, so this mussel was explored further by testing with other fish species (See 

Chapter 2).   

 The success of Pink Mucket (Lampsilis abrupta) on drum was a surprising result, 

because the other 3 Lampsilis species tested did not produce juveniles.  Pink Mucket 

trials resulted in 442 juvenile mussels from five of the six fish that were tested.  However, 

%M varied greatly among individual fish, with 95% of juveniles produced by a single 

fish. Four other fish had a much lower %M with each fish producing less than 10 juvenile 

mussels and one fish not producing any juveniles. The host trial for Pink Mucket was 

noticeably different from drum specialists by having a shorter encystment period of 

eighteen days and a shorter juvenile drop window of nine days. Previously known hosts 

of Pink Mucket include four species of Centrarchidae and two species of Percidae as 
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potential hosts.  These are Smallmouth Bass (Micropterus dolomieu), Spotted Bass 

(Micropterus punctulatus), Largemouth Bass (Micropterus salmoides), White Crappie 

(Pomoxis annularis), Sauger (Sander canadensis), and Walleye (Sander vitreus) 

(Barnhart et al. 1997). Like the other Lampsilis species and Ligumia recta, Pink Mucket 

has a prominent mantle lure that attracts these predatory hosts.   

 Freshwater Drum is the primary host of Fragile Papershell and Deertoe 

(Cummings 1993; Barnhart et al. 2008; Sietman et al. 2018).  Wilson (1916) recorded the 

Sauger (Stizostedion canadense) and Freshwater Drum as known hosts for Deertoe, but 

did not report if they were observed in natural infection or in lab trials (Fuller 1974).  

These species, and the majority of mussel species that have an established relationship 

with Freshwater Drum do not have obvious mantle lures but may use a visual display that 

involves ‘flashing’ the marsupia by abruptly retracting the mantle margin (Sietman et al. 

2018). These displays and associated behaviors may function as host-attracting lures 

similar to other species of Lampsilini. 

 The Fragile Papershell mussel has been reported to utilize Freshwater Drum since 

malacologists first began the investigation of the host-parasite relationship between fish 

and mussels a century ago. Wilson first observed natural infestation of Fragile Papershell 

on Freshwater Drum in 1916. Research on Fragile Papershell has not been successful in 

establishing a host other than Freshwater Drum (Howard and Anson 1922; Fuller 1974; 

Barnhart et al. 1998; Sietman et al. 2018). The results of this study are typical of the drum 

specialist relationship, which exhibits two basic characteristics. The first characteristic is 

that the %M was very high. %M for each individual fish was over 95% in a cohort that 

produced 8097 juvenile mussels with only 155 non-transformed sloughed glochidia. The 
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second characteristic is a long length of encystment. The mean length of encystment in 

this experiment was 44 days with the first appearance of juveniles on day 27. The time of 

encystment on Freshwater Drum varied greatly for mussel species that produced juvenile 

mussels, with drum specialist species having a much longer encystment time than species 

that use Freshwater Drum as an intermediate host. This may be due to the fact that drum 

specialists often have glochidia that grow while encysted on the host, whereas the 

glochidia of generalist species typically do not noticeably grow during encystment 

(Barnhart et al. 1998). 

 Deertoe also have the characteristics of a drum specialist. This study produced 

15,388 juvenile mussels with 1,913 non-transformed sloughed glochidia for a %M of 

88.94% for the cohort. The length of encystment for this cohort was 30 days with the first 

juveniles appearing on day 16. Deertoe glochidia is also relatively small, from 60-75 

microns in length (Lefevre and Curtis 1910) and grow during encapsulation (Barnhart et 

al. 2008). The valve is solid at adulthood, but remains small with an overall length of 

83mm (Williams et al. 2008). The glochidia for Fragile Papershell also notably grew in 

size throughout the course of the experiment (Barnhart et al. 2008), although no 

measurements were taken.   

 Scaleshell (Leptodea leptodon) is a close relative of Fragile Papershell and is also 

considered to be a drum specialist. Freshwater Drum is the only known host of 

Scaleshell, which is classified by the U.S. Fish and Wildlife Service as federally 

endangered. Scaleshell also demonstrates the characteristics of high %M and long length 

of encystment with glochidial growth associated with Fragile Papershell (Barnhart et al. 

1998; 2008). Although Fragile Papershell and Scaleshell have an overall length that can 
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exceed 120mm at adulthood, they have thin and brittle valves and small glochidia 

(Williams et al. 2008). These characteristics can be considered conducive for a self-

sacrifice technique used to introduce their glochidia to the Freshwater Drum. Upon 

consuming mussels from the genus Leptodea, Freshwater Drum pharyngeal teeth could 

easily masticate valve material and rupture the marsupial gills, exposing the fish to the 

mussel’s glochidia. The small size of the mussel’s glochidia could serve as an adaptation 

to maximize infestation of fish gills and to increase the amount of glochidia a gravid 

female is capable of brooding. 

 Further investigation into the potential of Freshwater Drum to serve as a host to 

native mussels is needed to fully realize the role of this species in the natural life cycle of 

mussels and to be able to fully utilize the species in laboratory propagation techniques. 

Further laboratory host trials are needed to determine the frequency and specificity of 

host-parasite relationships between Freshwater Drum and other mussel species. The need 

to identify natural infestations of larval mussels on Freshwater Drum is also very 

important in determining if the host-parasite relationship is natural or only exists under 

laboratory conditions. 

 In the feeding experiment, small Freshwater Drum exhibited a varied interest 

level in freshwater mussels as a food source. Three of the eight fish tested ingested whole 

mussels of different sizes on multiple occasions. Feeding Freshwater Drum in captivity 

can be challenging, depending on the disposition of the fish (personal observation). Some 

fish refused to eat any food item offered to them from chironomid larvae to annelid 

worms to de-shelled Asiatic Clam, while other fish would eat virtually any food item that 

was introduced. Live mussels were offered to the fish during the light portion of the 
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12:12 light cycle; but were not removed for at least 24 hours, ensuring that the fish would 

have an opportunity to feed during the dark portion of the 12:12 cycle.  

 The small number and size range of fish tested in the present study does not 

provide much basis for inferring the role of gape limitation in drum feeding on native 

mussels.  However, it is interesting that the smallest fish that ate mussels ingested smaller 

mussels than the larger fish.  In each case, the largest mussel ingested had a shell height 

of approximately ½ of the maximum horizontal gape (Table 2).  Schael et al. (1991) 

documented that Freshwater Drum have one of the largest gapes found among larval fish 

and showed a positive correlation between gape and prey length. Gape limitation of 

Freshwater Drum would not be a factor for the five fish that did not eat mussels, 

considering they were offered a variety of mussel sizes with some being too small for 

gape limitation to affect.   

 The behavior of eating bivalves may develop as fish become larger, and involve 

both morphological and learning components.  There are suggestions that the diet of 

Freshwater Drum does not shift from arthropods to mollusks until around a total length of 

384mm (Davis-Faust 2012). This could reflect the development of the fish’s pharyngeal 

teeth. I observed that the drum apparently ingested the mussels whole, or at least did not 

egest broken shell fragments.  The pharyngeal teeth of small drum may not be adapted for 

crushing. The pharyngeal teeth, which are located in the throat, are continually being 

replaced and go through several stages of development as the fish ages. The first 

pharyngeal teeth of young Freshwater Drum are referred to as cardiform teeth and are 

small, close set, and pointed. The cardiform teeth are replaced as the fish ages by more 

elongate, pointed villiform teeth. The blunt adult pharyngeal teeth are referred to as 
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molariform teeth and are the largest and most durable of the developmental stages. Most 

Freshwater Drum larger than 265mm in total length exhibit molariform teeth (French and 

Bur 1992).  
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TABLES 

 

Table 1. Chapter 1 Mussel Origin Data. 

________________________________________________________________________ 

Mussel Origin 

_____________________________________________________________________ 

Location of Collection Genus/species            Date  n 

________________________________________________________________________ 

Silver Fork River, Callaway Co., MO Lampsilis siliquoidea    12-8-2012 3 

 

Kansas City Zoo, Kansas City, KS Lampsilis abrupta     6-10-2013 1 

 

Kansas City Zoo, Kansas City, KS Ligumia recta  6-10-2013 3 

 

Spring River, Cherokee Co., KS Lampsilis rafinesqueana   7-11-2013 3 

 

Spring River, Cherokee Co., KS Pleurobema sintoxia  7-11-2013 1 

 

Meramec River, St. Louis Co., MO Obliquaria reflexa  8-1-2013 3 

 

Sac River, Cedar Co., MO Leptodea fragilis  2-5-2014 1 

 

Sac River, Cedar Co., MO Lampsilis cardium  3-20-2014 1 

 

Sac River, Cedar County, MO Obliquaria reflexa  7-23-2014 3 

 

Genoa National Fish Hatchery Truncilla truncata  6-10-2014 3 

________________________________________________________________________ 
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Table 2. Fish Feeding Summary. 

  

Feeding Data 

 
Fish # Total 

Length 

(mm) 

Standard 

Length 

(mm) 

Mouth Gape 

vertical x 

horizontal 

(mm) 

Largest Mussel 

Consumed length 

x height x width 

(mm) 

Smallest Mussel 

Consumed length 

x height x width 

(mm) 

1 362 318 30.2 x 22.0 30.9 x 11.3 x 10.0 12.9 x 7.4 x 4.1 

2 390 332 32.5 x 22.7 29.9 x 11.0 x 9.7 10.2 x 6.2 x 2.9 

3 190 141 13.3 x 11.5 9.0 x 5.9 x 3.0 4.4 x 2.8 x 1.7 

4* 208 161 N/A N/A N/A 

5** 177 131 N/A N/A N/A 

6* 352 313 N/A N/A N/A 

7* 165 118 N/A N/A N/A 

8** 161 123 N/A N/A N/A 

*ate primer, did not eat live mussels **did not eat primer or live mussels 
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FIGURES 

 

 

 

 
 

Figure 1. Recovery of Fat Mucket sloughs. Mean and standard deviation, n=6 fish.   
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Figure 2. Recovery of Black Sandshell sloughs. Mean and standard deviation, n=6 fish. 

 

 

Figure 3. Recovery of Neosho Mucket sloughs. Mean and standard deviation, n=9 fish 
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.  

Figure 4. Recovery of Round Pigtoe sloughs. Mean and standard deviation, n=2 fish. 

 

 
 

Figure 5. Recovery of Plain Pocketbook sloughs. Mean and standard deviation, n=6 fish. 
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Figure 6. Recovery of Pink Mucket sloughs and metamorphosed juveniles. Mean and 

standard deviation, n=6 fish. 

 

 
 

Figure 7. Pink Mucket percent metamorphosis on individual Freshwater Drum.  
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Figure 8. Recovery of Threehorn Wartyback sloughs and juveniles. Mean and standard 

deviation, n=6 fish. 

 

 

 
 

Figure 9. Threehorn Wartyback percent metamorphosis on individual Freshwater Drum. 



 

36 

 

Figure 10. Recovery of Fragile Papershell sloughs and juveniles. Mean and standard 

deviation, n=6 fish. 

 

 

 
Figure 11. Fragile Papershell percent metamorphosis on individual Freshwater Drum. 
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Figure 12. Recovery of Deertoe sloughs and juveniles. Mean and standard deviation, n=6 

fish. 

 

 

 
 

Figure 13. Deertoe percent metamorphosis on individual Freshwater Drum. 
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CHAPTER 2: HOST TESTS WITH OBLIQUARIA REFLEXA 

 

Introduction 

 Threehorn Wartyback (Obliquaria reflexa) is a member of the freshwater bivalve 

Order Unionida, Family Unionidae, and Tribe Lampsilini (Campbell et al. 2005; Lopez-

Lima et al. 2016).  Among the species in this tribe, Threehorn Wartyback is relatively 

medium sized (to 80mm), slow growing, moderately inflated in shape, and very thick-

shelled.  All specimens have a single medial row of knobs radiating from the umbo to the 

ventral margin. The knobs alternate in position from left to right valve (Figure 14).  Shell 

sculpture and color vary greatly, even within a population.  The mussel is dioecious, but 

the shell lacks sexual dimorphism (Watters et al. 2009).  

 Threehorn Wartyback is geographically widespread and common throughout the 

large rivers of the Midwestern U.S. Its range includes most of the Mississippi River 

drainage from Western Pennsylvania to Eastern Kansas and from Lake Erie to the Mobile 

Basin on the Gulf Coast (Cummings and Mayer 1992). Threehorn Wartyback can be 

considered somewhat of a habitat generalist, occupying a wide range of depths in a 

variety of habitats. They can be found at depths of less than 1 meter to over 7 meters, in 

substrate ranging from sand and mud to cobble. They are known to tolerate slack water or 

swift currents (Parmalee and Bogan 1998). This species can be locally abundant in 

reservoirs and is sometimes known to quickly populate newly-formed impoundments 

(Parmalee and Hughes 1993).  From a conservation standpoint, the species is currently 

considered stable throughout most of its range (NatureServe 2015). Female mussels 

brood their young in specialized regions of their gills known as marsupia. Unlike most 
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Lampsilini, Threehorn Wartyback broods from June to August.  Most other Lampsilini 

spawn in the late summer or fall and brood their larvae until the following spring or 

summer (Barnhart et al. 2008). In Threehorn Wartyback the marsupia are made up of two 

to nine water tubes in the middle of each of the outer demibranchs (Haag and Staton 

2003) (Figure 15).    

 The glochidia of Threehorn Wartyback are subrotund and symmetrical with a 

dorsal margin that is slightly curved outward. The lateral dimensions are approximately 

211 x 218 microns (length x height) (Barnhart et al. 2008). Glochidia are released in 

well-formed, solid, club-shaped conglutinates that are white in color and sink in water 

(Culp et al. 2011). Conglutinates are aggregates of eggs, formed as molds in the water 

tubes of the female demibranch (Lefevre and Curtis 1912). Threehorn Wartyback releases 

a small number of very large, compact, and unusually solid conglutinates (Figure 16) 

(Barnhart and Baird 2000; Barnhart et al. 2008). The conglutinate is composed 

completely of glochidia enclosed in cohesive egg membranes and are bound by a 

membrane that encases the glochidia in somewhat of an elastic matrix (Williams et al. 

2008). The female mussel releases these conglutinates into the water column to elicit a 

predatory response in the host fish. When the host fish ingests and masticates the 

conglutinate it causes the rupture of the conglutinate and the release of the individual 

glochidia, which snap shut on fish gills. 

 The primary host or hosts for Threehorn Wartyback remain unknown.  Previous 

laboratory trials suggested that potential hosts include: Silverjaw Minnow (Notropis 

buccatus), Common Shiner (Luxilus cornutus), and Longnose Dace (Rhinichthys 

cataractae) (Watters et al. 1998).  A small number of naturally encysted glochidia of 
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Obliquaria were observed on Goldeye (Hiodon alosoides) (Barnhart and Baird 2000).  

Definitive determination of a fish host entails both glochidial transformation on the 

suspected host fish, as well as observed glochidial infestation of the same species of fish 

under natural conditions. Suggestions that Threehorn Wartyback may not require a fish 

host (Utterback 1916) have not been substantiated.  In the present study, I used laboratory 

host trials to further investigate the host relationships of Threehorn Wartyback. 

 

Methods 

 The fish used in this host trial comprise nine species from four fish families, 

including: one member of the family Sciaenidae, Freshwater Drum (Aplodinotus 

grunniens); two members of the family Ictaluridae, Channel Catfish (Ictalurus punctatus) 

and Blue Catfish (Ictalurus furcatus); one member of the family Centrarchidae,  Bluegill 

(Lepomis macrochirus); and five members of the family Cyprinidae, Cardinal Shiner 

(Luxilus cardinalis), Whitetail Shiner (Cyprinella galactura), Striped Shiner (Luxilus 

chrysocephalus), Common Carp (Cyprinus carpio), and Bighead Carp 

(Hypophthalmichtys nobilis). The fish species tested were locally abundant and native 

except for the Common and Bighead Carp, which are invasive species.  Each species is 

likely to co-occur with Threehorn Wartyback, although they have varied probabilities of 

naturally encountering conglutinates in the wild because of differences in feeding habits. 

 Fish species were obtained from the wild, as well as from aquaculture facilities 

(Table 3). Upon arrival at MSU Freshwater Mussel Lab for testing, fish were held in 

recirculating aquaria at ambient laboratory temperatures (20oC – 23C) in moderately hard 

synthetic freshwater (USEPA, 2002) for a period ranging from days to weeks prior to 
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infection. During this time the fish were fed approximately 1-2% of their body weight in 

blood worms (chironomid larvae, Hikari Bio-Pure Brand) daily. Fish were starved from 2 

days prior to testing until the testing was considered complete.  

  All Threehorn Wartyback glochidia used in these studies were obtained by 

collecting brooding females from the wild (Table 4). The wild caught mussels were 

maintained in SFW at ambient laboratory temperatures. The mussels were held unfed for 

a period of days to weeks before testing. One to three brooding female mussels were used 

for each experiment. Both fish and mussels were controlled on a 12:12 hour light/dark 

photoperiod. 

  Threehorn Wartyback conglutinates were manipulated from the marsupium by 

using a dental pick to perforate the marsupium and lift conglutinates from the water tube. 

The glochidia were freed from conglutinates by pressing them through a 400 µm screen 

with a small paintbrush, while spraying them with river water obtained from James River 

in Greene County, Missouri USA (RW).  River water was used because SFW sometimes 

caused glochidia to close prematurely.  Freed glochidia were suspended in a known 

volume of RW which was subsampled for counting. Uniform suspension was achieved 

through agitation by a large rubber-bulb pipette. Ten 200 µm sub-samples of the 

suspension were placed as drops on a plastic Petri plate. The glochidia in each drop were 

counted and classified as either open or closed using a stereomicroscope at 10.5X. One 

drop of saturated salt solution salt (NaCl + SFW) was added to each 200 µm sample to 

induce a closing effect of the glochidia valves (Lefevre and Curtis 1912). Glochidia that 

were open initially and closed in response to the addition of the salt were considered 

viable. These sample counts were used to estimate the total number of viable glochidia. 
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The mussels use in this experiment showed a significant range of viable glochidia with 

levels that varied from 44%-92% viable. This varying level of viability could possibly be 

due in part to the methods of freeing the glochidia from conglutinates or due to the 

varying maturity of conglutinates. 

 Fish were infected with glochidia by placing them collectively in a bath 

containing 1L RW/ fish. Glochidia were added for a total concentration of 4000 viable 

glochidia/liter RW. Homogeneity of the suspension was achieved by stirring and 

vigorous agitation with a large rubber-bulb pipette.  After 15 minutes, fish were netted 

out and placed into a rinse bath to allow any unattached glochidia to drop from the fish. 

After rinsing for 10 minutes, fish were netted and placed into individual tanks. 

 Inoculated fish were housed in individual 9L tanks in an AHAB recirculating 

aquarium system (Aquatic Habitats, Inc. Apopka, FL). The water was conditioned by 

mechanical, biological, and carbon filtration and sterilized by ultraviolet radiation before 

recirculation. Water temperature was monitored daily and averaged 23oC. Each tank 

received water continuously from a manifold and the overflow was passed through a 

filter cup with a nylon mesh screen, containing a mesh size that corresponded to the size 

of the glochidia being tested. The water flow rate through each tank was 0.5L/min. The 

first and second day after an inoculation and every other day thereafter (unless otherwise 

noted), the rate of water flow through the tank was increased to 2L/min for ten minutes to 

flush any particles into the filter cup. Afterwards, the screen was rinsed into a glass dish 

and examined with a stereomicroscope at 10.5X or 40X to distinguish glochidia from 

juvenile mussels. Collections with large amounts of glochidia and juveniles were 

transferred to a Bogorov plankton counting tray. Juveniles were distinguished from 
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glochidia by foot movement. Glochidia and juveniles from each collection were counted 

to determine the number recovered from each fish. Infections were considered to be over 

after two consecutive counts with no juveniles and no glochidia present. At that time the 

fish were sedated and terminated by spinal cord severance and their gills were dissected 

to examine for any remaining encystment.   The number of glochidia that attached to each 

fish was approximated as the sum of the sloughed glochidia and metamorphosed 

juveniles that were recovered. The percent metamorphosis (%M) for each fish was 

calculated by dividing the number of juveniles by the sum of glochidia and juveniles 

recovered from that fish. 

 A 37.9L gallon aquarium filled with SFW was used to house an individual 

Freshwater Drum for observation of interactions with Threehorn Wartyback 

conglutinates. Conglutinates were obtained from gravid mussels in the manner described 

above and introduced into the tank by pipette from the surface of the tank. Conglutinates 

were presented to a single fish during three separate trials by pipette, letting the 

conglutinate sink from the top of the tank in an attempt to be visually conspicuous to the 

fish. These trials were conducted approximately 20 minutes apart on an individual fish on 

the same day. Freshwater Drum feeding behavior was observed and recorded using a 

video camera. After the conclusion of the experiment, the water from the tank was 

filtered through a 100 micron screen to determine if any glochidia were freed from 

conglutinates during feeding. The Freshwater Drum that was used in this experiment was 

selected because of its history of feeding on multiple types of food items such as annelid 

worms, small insects, and mussels that had been introduced in the lab. 
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 Prior approval for this project was obtained from the Missouri State University 

IACUC (February 14, 2011; approval #10025). 

 

Results 

 The only metamorphosis of Threehorn Wartyback glochidia that was observed 

occurred in the host trial with Freshwater Drum, Three of the six Freshwater Drum that 

were investigated produced juvenile mussels (Figure 17).  The Freshwater Drum were 

inoculated with 55% viable glochidia with a collective %M of 8.5%, sloughing 

glochidia/juveniles for 24 days (Figure 8).  Individual fish had %M varying from 0% to 

44.61% (Figure 9). In trials with all other fish species, glochidia attached initially but 

were unsuccessful in metamorphosis. There was little difference in the length of time for 

sloughing, with all non-host fish species sloughing 50% of glochidia within the first two 

days post-inoculation (Figures 18 – 25). A summary of sloughs/glochidia/trials is 

available in Table 5. 

 The first attempt at feeding conglutinate to Freshwater Drum was unsuccessful 

due to the apparent failure of the fish to notice the conglutinate. On the second feeding 

attempt the fish ingested and masticated the conglutinate for approximately 6 seconds 

before rejecting it as a food item and expelling it back into the tank. The conglutinate 

appeared to fragment slightly at one end upon being expelled from the fish, but retained 

its overall structural integrity and shape. The third feeding attempt resulted in the fish 

ingesting and masticating 2 different conglutinates at separate times, each for 

approximately two seconds before rejecting them as food items and expelling them back 

into the tank. After the experiment, the water was strained through a 100 micron screen to 

determine if individual glochidia were freed from the conglutinate during the feeding 
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attempt. Approximately thirteen glochidia were found free from conglutinate. The Drum 

was later sedated and terminated by spinal cord transection and its gills showed no sign 

of glochidial infestation. 

 

Discussion 

 Only a few other studies have reported host tests for Threehorn Wartyback.  

Watters et al. (1998) recorded metamorphosis on Silverjaw Minnow (Ericymba buccata), 

Common Shiner (Luxilus chrysocephalus), and Longnose Dace (Rhynichthys cataractae).  

However, the tests recovered only 1-3 juveniles from each species, so that their status as 

significant hosts remains questionable.  Barnhart and Baird (2000) collected 690 fish of 

32 species from the Gasconade and Meramec Rivers in Missouri on June 9-10 1999.  The 

fish were sacrificed and the gill examined for attached glochidia.  One individual 

Goldeneye (Hiodon alosoides) was carrying 69 attached glochidia that were reported as 

Threehorn Wartyback.  However the dimensions that were reported for these glochidia 

(134 x 91 microns) are not consistent with that identification.  

 These host trials confirm that Freshwater Drum can host Threehorn Wartyback, 

but making an allowance for the high degree of variation in %M between individual drum 

they are not likely the primary host. The variation in %M between fish may be some 

underlying genetic factor or immunological susceptibility within certain individuals but 

would have nothing to do with an acquired immunity to the glochidia of Threehorn 

Wartyback, considering these were not wild-caught fish. Besides Freshwater Drum, all of 

the other fish species tested showed a similar pattern of producing no juvenile mussels 
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and sloughing at least half of the glochidia in the first two days post-inoculation, which is 

an expected pattern for attachment of glochidia to non-host species. 

 The conglutinate of Threehorn Wartyback has been described as a remarkably 

tough and cohesive conglutinate from which the glochidia can be dislodged only with 

difficulty (Lefevre and Curtis 1912). The structure of conglutinate is composed almost 

exclusively of membrane and glochidia and contains no structural eggs. Both the 

persistence of the egg membranes and the degree of contact among eggs affect the 

durability of the conglutinate (Barnhart et al. 2008). To free the glochidia from 

conglutinate, the conglutinate had to be broken up manually by pressing through a screen. 

This undoubtedly reduced the viability of the glochidia by triggering the closing of valves 

in some larvae and also by damaging some larvae to the degree that they become non-

viable.  

 Conglutinate structure in Threehorn Wartyback may act as a mechanism for the 

infection of multiple fish by a single conglutinate. In the conglutinate feeding experiment 

with Freshwater Drum a single conglutinate was masticated and partially ruptured; 

however, the overall integrity of the conglutinate remained intact. This observation leads 

to the assumption that it could be masticated by an additional fish or even multiple fish, 

ultimately acting as a tool to infest more than one fish with larvae. The purpose and 

functionality of Threehorn Wartyback conglutinate may remain unknown until a primary 

host is determined.  

 The dates of observation of gravid Threehorn Wartyback varied from year to year. 

In 2013 and 2014, mussels were monitored in Sac River, Cedar County, Missouri USA 

from early June until Late August with gravid mussels found only in late July and early 
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August. In 2016, mussels were monitored from early June until late August with gravid 

mussels found from late June to mid-July. No gravid mussels were found after mid-July. 

Finding gravid mussels was a challenge in itself, with approximately less than 10% of 

Threehorn Wartyback found during the monitoring period being visibly gravid. Due to 

the lack of sexual dimorphism of this species, it was impossible to determine sex of the 

individuals in the field.  

 The problematic nature of working with Threehorn Wartyback in the laboratory 

likely contributes to its unknown host status. The challenge of locating gravid mussels 

that have a high level of viable glochidia, even in areas of local abundance; as well as the 

task of separating glochidia from conglutinate matrix were two aspects of this host trial 

that were much more difficult than would be expected of most species of freshwater 

mussel. Multiple mussels that appeared to be gravid were collected only to find that their 

glochidia were unresponsive or unable to attach to fish. This difficulty was also noted by 

Barnhart and Baird (2000) during their work with Threehorn Wartyback. Continued host 

trials are needed for this species, as well as surveys of reproductive timing and methods 

for a more successful mechanism for separating glochidia from conglutinate matrix. 

  



 

48 

REFERENCES 

 

Barnhart MC, Haag WR, Roston WN. 2008. Adaptations to host infection and larval 

parasitism in Unionoida. Journal of North American Benthological Society 27: 

370-394. 

 

Barnhart MC, Baird MS. 2000. Fish Hosts and Culture of Mussel Species of Special 

Concern. Annual Report for 1999.  Report to Missouri Department of 

Conservation. 

 

Campbell, DC, Serb JM, Buhay JE, Roe KJ, Minton RL, Lydeard C. 2005.). Phylogeny 

of North American amblemines (Bivalvia, Unionoida): prodigious polyphyly 

proves pervasive across genera. Invertebrate Biology 124: 131-164. 

 

Culp JJ, Haag WR, Arrington DA, Kennedy TB. 2011. Seasonal and species-specific 

patterns in abundance of freshwater mussel glochidia in stream drift. Journal of 

the North American Benthological Society 30: 436-445. 

Cummings KS, Mayer CA. 1992. Field Guide to Freshwater Mussels of the Midwest. 

Illinois Natural History Survey Champaign, Illinois. 

 

Haag WR, Staton LJ. 2003. Variation in fecundity and other reproductive traits in 

freshwater mussels. Freshwater Biology 48: 2118-2130. 

 

Lefevre G, Curtis WC. 1912. Studies on the reproduction and artificial propagation of 

fresh-water mussels. Bulletin of the Bureau of Fisheries 30:105-201. 

 

Lopes-Lima M, Froufe E, Do VT, Ghamizi M, Mock KE, Kebapçı Ü, Klishko O, 

Kovitvadhi S, Kovitvadhi U, Paulo OS, Pfeiffer JM 3rd, Raley M, Riccardi N, 

Şereflişan H, Sousa R, Teixeira A, Varandas S, Wu X, Zanatta DT, Zieritz A, 

Bogan AE. 2017. Phylogeny of the most species-rich freshwater bivalve family 

(Bivalvia: Unionida: Unionidae): Defining modern subfamilies and 

tribes. Molecular Phylogenetics and Evolution 106: 174-191. 

 

NatureServe. 2015. NatureServe Explorer: An online encyclopedia of life [web 

application]. Version 7.1. NatureServe, Arlington, Virginia. Available 

http://explorer.natureserve.org. (Accessed: February 8, 2017). 

 

Parmalee PW, Bogan AE. 1998. Freshwater mussels of Tennessee. University of 

Tennessee Press. 

 

Parmalee PW, Hughes MH. 1993. Freshwater mussels (Mollusca: Pelecypoda: 

Unionidae) of Tellico Lake: Twelve years after impoundment of the Little 

Tennessee River. Annals of the Carnegie Museum 62: 81-93. 

 



 

49 

United States Environmental Protection Agency. 2002. Methods for measuring the acute 

toxicity of effluents and receiving waters to freshwater and marine organisms. 

Fifth edition.  U.S. Environmental Protection Agency Office of Water. 

 

Utterback WI. 1916. Parasitism among Missouri naiades. American Midland 

Naturalist 4: 518-521. 

 

Watters GT, O’Dee SH, Chordas S, Reiger J. 1998. Potential hosts for Lampsilis 

reeveiana brevicula, Obliquaria reflexa. Triannual Unionid Report 16: 21-22. 

Watters GT 1999. Morphology of the conglutinate of the kidneyshell freshwater mussel, 

Ptychobranchus fasciolaris. Invertebrate Biology 118: 289-295. 

 

Watters GT, Hoggarth MA, Stansbery DH. 2009. The freshwater mussels of Ohio. The 

Ohio State University Press. 

 

Williams JD, Bogan AE, Garner JT. 2008. Freshwater mussels of Alabama and the 

Mobile basin in Georgia, Mississippi, and Tennessee. University of Alabama 

Press. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

50 

TABLES 

 

Table 3. Fish Origin Data.   

________________________________________________________________________ 

Fish Origin  

________________________________________________________________________ 

Location of Collection Fish Species Collection Date     n 

________________________________________________________________________ 

Langston University, Langston, OK        A. grunniens  6-1-2013 58 

 

Langston University, Langston, OK      A. grunniens  6-5-2014 12 

 

Osage Catfisheries, Osage Beach, MO    I. punctatus  7-17-2014 8 

 

Osage Catfisheries, Osage Beach, MO     L. macrochirus  7-17-2014 10 

 

Osage Catfisheries, Osage Beach, MO     C. carpio  7-17-2014 9 

 

Osage Catfisheries, Osage Beach, MO    H. nobilis    7-17-2014 13 

 

Osage Catfisheries, Osage Beach, MO I. furcatus  7-17-2014 10 

 

James River, Greene County, MO  L. chrysocephalus 7-31-2014 2 

 

James River, Greene County, MO  C. galactura  7-31-2014 1 

 

Spring River, Lawrence County, MO  L. cardinalis  8-4-2014 10 

________________________________________________________________________ 
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 Table 4. Chapter 2 Mussel Origin Data. 

________________________________________________________________________ 

Mussel Origin  

________________________________________________________________________ 

Location of Collection    Mussel Species      Collection Date n 

________________________________________________________________________ 

Sac River, Cedar Co., MO     Obliquaria reflexa 7-23-2014 3 

 

Meramec River, St. Louis Co., MO    Obliquaria reflexa 8-1-2013 3 

 

Pomme de Terre River, Hickory Co., MO   Obliquaria reflexa 7-9-2014 3 

 

Meramec River, St. Louis Co., MO    Obliquaria reflexa 7-28-2014 2 

________________________________________________________________________ 

 

  

 

 

Table 5. Summary of Chapter 2 Host Tests. 

________________________________________________________________________ 

Chapter 2 Host Test Summary 

________________________________________________________________________ 

Fish Species   Trials Recovered Glochidia Recovered Juveniles %M  

________________________________________________________________________ 

Ictalurus furcatus  6  1589           0  0 

 

Ictalurus punctatus  5  637   0  0 

 

Lepomis macrochirus  5  268   0  0 

 

Hypophthalmichthys nobilis 2  27   0  0 

 

Cyprinus carpio  5  225   0  0 

 

Luxilus chrysocephalus 2  226   0  0 

 

Cyprinella galactura  1  103   0  0 

 

Luxilus cardinalis  8  791   0  0 

 

Aplodinotus grunniens 6  1034   121  11.7 

________________________________________________________________________ 
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FIGURES 

 

 

 

 

          Figure 14. Adult Threehorn Wartyback, Obliquaria reflexa. 
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Figure 15. Right marsupial demibranch of Threehorn Wartyback. In this specimen, four 

water tubes contain conglutinates.  M. C. Barnhart photograph. 
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Figure 16. Conglutinates of Threehorn Wartyback.  M. C. Barnhart photograph. 
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Figure 17. Newly metamorphosed Threehorn Wartyback juvenile mussels.   
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Figure 18. Recovery of Channel Catfish sloughs. Mean and standard deviation, n=5 fish. 

 

 

 
 

Figure 19. Recovery of Blue Catfish sloughs. Mean and standard deviation, n=5 fish. 
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Figure 20. Recovery of Bluegill sloughs. Mean and standard deviation, n=5 fish. 

 

 

 

 
 

Figure 21. Recovery of Bighead Carp sloughs. Mean and standard deviation, n=2 fish. 
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Figure 22. Recovery of Common Carp sloughs. Mean and standard deviation, n=2 fish. 

 

 

 
 

Figure 23. Recovery of Striped Shiner sloughs. Mean and standard deviation, n=2 fish. 
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Figure 24. Recovery of Whitetail Shiner sloughs. n=1 fish. 

 

 

 
 

Figure 25. Recovery of Cardinal Shiner sloughs. Mean and standard deviation, n=9 fish. 
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