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ABSTRACT 

The electrogenerated chemiluminescence (ECL) of octaethylporphyrin (OEP), 

tetraphenylporphyrin (TPP) and a series of metal-ligand porphyrin complexes (Zinc, 

Copper, Palladium, Platinum, Ruthenium, Vanadium, Cobalt and Nickel) in CH2Cl2 is 

reported. ECL was generated upon sweep to positive potentials using tri-n-propylamine 

(TPrA) as an oxidative-reductive coreactant. ECL efficiencies were between 0.010 and 

0.770 using Ru(bpy)3(PF6)2 (bpy = 2,2’-bpyridine) as a relative standard (ecl = 1). The 

ECL intensity peaks at a potential corresponding to oxidation of the complexes and 

TPrA, suggesting that the same excited states are formed in both photoluminescence and 

ECL. Although the ECL was weaker than corresponding PL efficiencies, similar trends 

were observed in both experiments, again suggesting identical excited states are formed.   
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CHAPTER 1: INTRODUCTION TO ELECTROGENERATED 

CHEMILUMINESCENCE 

 

Electrogenerated chemiluminescence (ECL) is a method to detect organic, 

inorganic and biochemical molecules. ECL, first discovered in the mid-1960s,
 1,2

 involves 

the formation of excited-state compounds at an electrode surface followed by 

chemiluminescence reactions.
3,4,5

 It provides a sensitive way of examining electron and 

energy-transfer processes at charged interfaces.
6
 Many reviews, some quite 

comprehensive, are available on ECL and its applications.
3,4,5,6

 

ECL has many advantages compared to fluorescence or photoluminescence (PL) 

methods. Unlike PL methods, ECL does not involve the use of an external light source so 

has fewer problems with scattered light. Also, fewer complexes undergo ECL leading to 

fewer luminescent impurities.  

The majority of tests use Ru(bpy)3
2+

 (bpy = 2,2’-bpyridine) derivatives as the 

ECL luminophore or label with TPrA (tri-n-propylamine) as the coreactant. The 

advantage to this is upon formation of the luminescent excited state, 
*
Ru(bpy)3

2+
, 

emission of a photon regenerates Ru(bpy)3
2+

 in its ground state near the electrode surface. 

This means that a single Ru(bpy)3
2+ 

complex can participate in many different ECL 

reaction cycles to produce multiple photons, increasing sensitivity and lowering detection 

limits. Ru(bpy)3
2+

 was the first metal complex studied via ECL.
7
  

There have been many fundamental and applied studies on organic, inorganic and 

biochemical systems. For example, the first species studied in ECL were polyaromatic 

hydrocarbons such as 9,10-diphenylanthracene.
8,9,10 

They undergo electrochemically 
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reversible oxidation and reduction reactions, and their excited states are accessible in the 

solvent window of most organic solvents (e.g., acetonitrile and methylene chloride). The 

solvent window is the oxidative and reductive potentials where the solvent itself does not 

undergo oxidation and reduction, typically between +2.5 V and -2.5 V vs SCE. These 

excited states were formed by annihilation ECL. Annihilation ECL is when the emitter 

(R) can electrochemically produce both a sufficiently stable radical cation (R˙⁺) and anion 

(R˙˙̄ ). Each radical ion is annihilated by the oppositely charged radical ion to generate 

the excited state (R*). 

 R – e-  R˙⁺ 

 R + e-  R˙  ̄

 R˙⁺ + R˙ ̄  R + R* 

 R*  R + hv 

hv is a photon of light. Another method of generating ECL is coreactant ECL 

where emission is generated in one potential sweep (either oxidative or reductive, not 

both) with the solution containing the luminophore species and the coreactant. For 

example, the proposed mechanism for Ru(bpy)3
2+

/TPrA is shown in Figure 1. Ru(bpy)3
2+

 

is oxidized to Ru(bpy)3
3+

 at the surface of an electrode upon application of an oxidizing 

(or anodic) potential. Similarly, TPrA is oxidized to TPrA
+

 upon loss of an alpha proton 

(a hydrogen nearest to the amine group). Upon proton loss a tripropylamine radical is 

formed, presumably TPrA

, that then reacts with Ru(bpy)3

3+
 to form the excited state, 

*
Ru(bpy)3

2+
, followed by emission.  
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Figure 1. Proposed mechanism for Ru(bpy)3
2+

/TPrA reaction sequence. 

 

ECL-active species have been used as biological tags for DNA analysis as well as 

many different forms of immunoassays.
5
 ECL has recently been incorporated into 

enzyme linked immunosorbent assays (ELISA) as electrochemical ELISA for a portable 

and direct way to perform at the point of care analysis in rural clinics as well as for the 

purpose for natural disaster aid. ECL has been proven to provide much lower limits of 

detection as opposed to traditional color spectroscopy for ELISA. 

     Many transition metal systems have been studied using ECL. Representative systems 

include main group metals (e.g., Si and Al)
11,12

 transition metal complexes incorporating 

Ru, Os and Pt
13-18     

as well as rare earth chelates.
14,15

 There has been particular emphasis 

on characterizing the nature of the excited state, discerning the mechanisms by which 

these states were formed and determining the efficiency of excited state formation.  

     Metal centered porphyrin complexes (Figure 2) display many of the chemical and 

spectroscopic qualities required of ECL-luminophores, such as stable oxidative and 

reductive electrochemistry and strong photoluminescence. As an added benefit, many are 

commercially available.  
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Figure 2. Structures of OEP (left) and TPP (right); M=metal center. 

 

Several porphyrins, including those containing metal ions, have been shown to act 

as ECL luminophores.
16-24    

For example, the ECL of Pt(TPP) was reported in 

nonaqueous solution using an annihilation mechanism
16 

(the formation of oxidized and 

reduced forms of the complex at an electrode that can then diffuse together and undergo 

energy or electron transfer to form the excited state).
 

 

Pt(TPP)
+
  +  Pt(TPP)

-
    Pt(TPP)

*
  +  Pt(TPP) 

 

 

Tetraphenylporphyrin itself has also been shown to generate ECL in the absence 

of a metal ion.
17

 Other studies include platinum octaethyl porphyrin using annihilation
18

  

and coreactant methods,
19

 the ECL of sterically hindered porphyrins in aqueous media,
20

 

the ECL of ruthenium TPP and OEP using TPrA as coreactant,
21

 and the ECL and PL of 

the porphyrin/ruthenium complex [H2(MPy3,4DMPP)Ru(bpy)2Cl](PF6), where 

H2MPy3,4DMPP = meso-tris-3,4-dimethoxyphenyl-mono-(4-pyridyl)porphyrin and bpy 

= 2,2’-bpyridine and its porphyrin analog.
22

 To our knowledge, however, a systematic 

study has not been reported. Such studies have been performed for the PL properties of 

metal porphyrin systems.
23

 In this work, transition metal porphyrin systems including 
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Zinc and Copper tetraphenylporphyrin, as well as Zinc, Copper, Palladium, Platinum, 

Ruthenium, Vanadium, Cobalt and Nickel octaethylporphyrin were used as a 

“luminophore” to convert electrical energy into radiative energy using TPrA. This light is 

then measured using a photomultiplier tube (PMT) so that comparison to 

photoluminescence (PL) data could be made. This thesis introduces multiple transition 

metal centered porphyrin compounds into the ECL library of luminophores. 
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CHAPTER 2: EXPERIMENTAL METHODS 

 

Materials 

All porphyrin complexes (Tetraphenyl-21H,23H-porphine copper(II); Octaethyl-

21H,23H-porphine copper (II); Tetraphenyl-21H,23H-porphine zinc (II); Octaethyl-

21H,23H-porphyrin zinc (II); Octaethyl-21H,23H-porphine ruthenium (II) carbonyl; 

Octaethyl-21H,23H-porphine cobalt (II); Octaethyl-21H,23H-porphine nickel (II); 

Octaethyl-21H,23H-porphine palladium (II); Octaethyl-21H,23H-porphine vanadium 

(IV) oxide; Octaethyl-21H,23H-porphine platinum (II); 5,10,15,20-Tetraphenyl-

21H,23H-porphine; 2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine) were 

commercially available (Sigma Aldrich) and used as received. The solvent methylene 

chloride (CH₂Cl₂) and the supporting electrolyte tetrabutylammonium 

hexafluorophosphate (Bu4NPF6, C₁₆H₃₆F₆NP) were also from Sigma Aldrich. 

Ru(bpy)₃(PF₆)₂ was from Strem Chemicals in Newburyport, Massachusetts.   Argon 

gas provided by the Chemistry Department at Missouri State University was used to 

deoxygenate solutions for electrochemical analyses.  

 

Methods 

Electrogenerated Chemiluminescence. ECL experiments used a conventional 

three-electrode system, a CH Instruments electrochemical analyzer and a Leader 718-5D 

Photomultiplier Tube (PMT) contained in a “light-tight” box. The working electrode was 

a platinum mesh electrode, with a platinum wire auxiliary electrode and a Ag/AgCl 

quasi-reference electrode. A 0.05M TPrA/CH₂Cl₂/Bu4NPF6 stock solution was prepared 

by adding approximately 10 g of Bu4NPF6 (0.05 M) and 4.76mL of TPrA (0.05M) to 



 

7 

500mL of CH₂Cl₂. This stock solution was used as a blank to test for background ECL, 

and in all dilutions to make working solutions containing luminophore.   

All ECL experiments utilized around 80 mL of solution, placed 15 cm from the 

PMT. ECL efficiencies (φecl = photons generated per redox event) were obtained by 

literature methods,
24,25

 using Ru(bpy)3
2+ 

(φecl = 1) as the standard. ECL efficiencies are 

based upon the mean of at least three runs with a relative standard deviation of ±5%. 

A 0.05M TPrA/CH₂Cl₂/Bu4NPF6 stock solution was prepared by adding 

approximately 10 g of Bu4NPF6 (0.05 M) and 4.76mL of TPrA (0.05M) to 500mL of 

CH₂Cl₂. A 10⁻⁴ M stock solution of porphyrins was initially prepared by placing the 

porphyrin in a 100mL volumetric flask and diluting to the mark with the stock solution of 

Bu4NPF6/CH₂Cl₂. The contents of the solution were then mixed by inversion as well as 

ultrasonication. The working solution of 10⁻⁷ M Ru(bpy)₃(PF₆)₂ was prepared by diluting 

a solution of 10⁻³ M Ru(bpy)₃(PF₆)₂.  The 10⁻³ M solution of Ru(bpy)₃(PF₆)₂ was prepared 

by placing 0.0078 g of Ru(bpy)₃(PF₆)₂ in a 10mL volumetric flask and diluted to the mark 

with the stock solution of TPrA/CH₂Cl₂. Then 0.01 mL was taken from this initial 10⁻³ M 

solution of Ru(bpy)₃(PF₆)₂ and placed in a 100mL volumetric flask and diluted to the 

mark with the stock solution of Bu4NPF6/TPrA/CH₂Cl₂. 

The working electrode was cleaned before each run by repeated cycling (+2.5 to -

2.5 V) in a 6.0 M solution of sulfuric acid followed by rinsing with doubly deionized 

water. ECL efficiencies (ecl=photons/redox event) were obtained by literature methods 

using Ru(bpy)3
2+

 as a standard (ecl = 1).
26

  

Electrochemistry (cyclic voltammetry and bulk electrolysis). A 0.05M 

TPrA/CH₂Cl₂/Bu4NPF6 stock solution was prepared by adding approximately 10 g of 
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Bu4NPF6 (0.05 M) to 500mL of CH₂Cl₂. All cyclic voltammograms were obtained using 

a glassy carbon working electrode that was cleaned using silica, then rinsed with doubly 

deionized water between each run. For bulk electrolysis the standard setup described 

above for ECL was used.  

A 10⁻⁴ M stock solution of porphyrins was initially prepared by placing the 

porphyrin in a 100mL volumetric flask and diluting to the mark with the stock solution of 

Bu4NPF6/CH₂Cl₂. The contents of the solution were then mixed by inversion as well as 

ultrasonication. The working solution of 10⁻⁷ M Ru(bpy)₃(PF₆)₂ was prepared by diluting 

a solution of 10⁻³ M Ru(bpy)₃(PF₆)₂.  The 10⁻³ M solution of Ru(bpy)₃(PF₆)₂ was prepared 

by placing 0.0078 g of Ru(bpy)₃(PF₆)₂ in a 10mL volumetric flask and diluted to the mark 

with the stock solution of TPrA/CH₂Cl₂. Then 0.01 mL was taken from this initial 10⁻³ M 

solution of Ru(bpy)₃(PF₆)₂ and placed in a 100mL volumetric flask and diluted to the 

mark with the stock solution of Bu4NPF6/CH₂Cl₂. 

Spectroscopy (UV/Vis and PL). UV-Vis and Photoluminescence spectra were 

obtained using a Cary-100 UV-Visible Spectrophotometer (Varian Inc., Palo Alto, CA) 

and Shimadzu RF-5301 Spectrofluorophotometer (Shimadzu Corporation, Japan), 

respectively. Excitation for photoluminescence was at the maximum absorbance intensity 

using slit widths of 3 nm and detection between 500 and 900 nm. Photoluminescence 

efficiencies (φem; photons emitted per photons absorbed) were obtained relative to 

Ru(bpy)3
2+

 (φem (CH3CN) = 0.042)
27

 and are the average of at least three scans with a 

standard deviation of ±5%. 

A stock solution was prepared by adding approximately 10g of electrolytes to 

500mL of CH2Cl2. Two solutions were prepared, the first stock solution of 10
-5 

M 
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Ru(bpy)₃(PF₆)₂ was prepared by placing 0.0078g of Ru(bpy)₃(PF₆)₂ in a 100 mL flask and 

diluting to the mark with the stock solution of CH2Cl2 and mixed initially by inversion 

and ultrasonification.  

Another stock solution of 10
-7

M was prepared by transferring 1mL of the 10
-5

 M 

Ru(bpy)₃(PF₆)₂ solution to a 100mL volumetric flask and diluting to the mark with the 

stock solution of CH2Cl2 and mixing by inversion and ultrasonification. A 10
-4

 M stock 

solution of porphyrins was prepared by placing the porphyrin in a 100mL volumetric 

flask and diluting to the mark with the stock solution of CH2Cl2. This solution was then 

mixed by inversion and ultrasonification.  
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CHAPTER 3: METAL CENTERED PORPHYRINS 

 

Results and Discussion 

Electrochemistry. The oxidative electrochemistry of the porphyrins and metal-

porphyrin complexes are presented in Table 1. Representative cyclic voltammograms 

(CVs) are presented in Figures 3-6, with the rest in the Appendix. Although a detailed 

study of the electrochemistry of these systems has been reported
18,19,20,21

 the experiments 

were repeated to make comparisons between electrochemical, spectroscopic and ECL 

data more valid. However, the results are extremely consistent with previous research. 

For example,
18

 Pt(OEP) undergoes a one electron oxidation to form Pt(OEP)
+
 at +0.97 V 

vs Ag/AgCl (+0.40 V vs Fc/Fc
+
) in CH2Cl2 (0.05 M TBAPF6). No other oxidative waves 

were observed under these conditions prior to oxidation of the solvent. The other metal 

complexes display between 1 and 2 oxidations, some electrochemically reversible 

(Figures 3-5, Appendix and Table 1). These are most likely ligand based oxidations by 

comparison to the ligands themselves (Table 1) and since most metal centers do not have 

oxidation potentials within the solvent window from 0.0 to +2.0 V vs Ag/AgCl.
17

 Also, 

the potentials for oxidation and re-reduction shifted slightly depending on the metal in the 

porphyrin cavity, showing that there are electronic interactions between the porphyrin 

and metal ions.   
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Table 1. Electrochemical oxidation (Ea) and re-reduction (Ec) potentials vs Ag/Ag
+
 

reference electrode. 0.1mM complex, 0.05 M Bu4NPF6 in CH₂Cl₂. 

 

Compound Ea1 (V) Ec1 (V) Ea2 (V) Ec2 (V) 

Cu(OEP) 0.892 0.281 1.60 1.01 

Cu(TPP) 1.07 0.772 1.48 1.18 

Zn(TPP) 0.913 0.648 1.24 0.977 

Zn(OEP) 0.398 0.085 0.990 1.212 

Ru(OEP) 0.903 0.238 1.55 0.876 

V(OEP) 1.07 0.712 1.60 1.25 

Co(OEP) 1.097 0.574 1.743 1.587 

Pd(OEP) 0.968 0.576 1.74 1.41 

Ni(OEP) 0.881 0.565 1.57 1.25 

Pt(OEP) 0.968 0.636   

H2OEP 0.417 0.445 1.568 1.590 

H2TPP 0.418 0.554 1.406 1.200 
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Figure 3. Cyclic Voltammetry of 0.1 mM  TPP and 0.05M Bu4NPF6 in CH₂Cl₂. 

 

Figure 4. Cyclic Voltammetry of 0.1 mM Cu(TPP), and 0.05M Bu4NPF6 in CH₂Cl₂. 

 

Figure 5. Cyclic Voltammetry of 0.1 mM OEP, and 0.05M Bu4NPF6 in CH₂Cl₂. 
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Figure 6. Cyclic Voltammetry of 0.1 mM V(OEP), and 0.05M Bu4NPF6 in CH₂Cl₂. 

 

Spectroscopy. Ultraviolet-Visible (UV-Vis) absorbance and photoluminescence 

data are presented in Table 2. Representative spectra are shown in Figures 7-14 with the 

rest in the appendix. The complexes display absorption features typical of heavy-metal 

porphyrin complexes with maximum absorbances around 390 and between 500 – 540 

nm, assigned to the Soret- and Q-bands, respectively.
28,29

 
  
  Excitation into these bands 

produces room temperature photoluminescence in CH2Cl2. The spectra are sensitive to 

the nature of the metal center suggesting an interaction between the metal center and 

porphyrin cavity. Also, the emission spectra are essentially the same regardless of the 

excitation wavelength.
30

 The narrow emission peak centered around 650 nm are 

characteristic of triplet excited states
28,29,

 with quantum efficiencies (em) reported in the 

table. The efficiencies were measured using Ru(bpy)3
2+

 (em = 0.042) as standard. Further 

discussion of the emission efficiencies will be done in the ECL section.  
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Table 2. PL Efficiencies of porphyrin complexes. 0.01mM compound in CH2Cl2. 

Efficiencies were obtained using Ru(bpy)3
2+

 (ᶲPL = 0.042) as a standard. 

 

Compound ᶲEM (au) 

Ru(bpy)3
2+ 

1.00 

TPP 2.11
 

Zn(TPP) 3.09 

Cu(TPP) 0.477
 

OEP 15.8
 

Zn(OEP) 6.38
 

Cu(OEP) 0
 

Ni(OEP) 0
 

V(OEP) 0.0867
 

Pd(OEP) 0.0632
 

Ru(OEP) 0.0343
 

Co(OEP) 0.0102
 

Pt(OEP) 0.0198
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Figure 7. UV-Vis of 0.01mM OEP in CH2Cl2.  

 

 

Figure 8. UV-Vis of 0.01mM TPP in CH2Cl2.  

 

 

Figure 9. UV-Vis of 0.01mM Cu(TPP) in CH2Cl2.  
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Figure 10. UV-Vis of 0.01mM V(OEP) in CH2Cl2.  

 

 

Figure 11. Photoluminescence of 0.01mM OEP in CH2Cl2.  
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Figure 12. Photoluminescence of 0.01mM TPP in CH2Cl2.  

 

 

Figure 13. Photoluminescence of 0.01mM Cu(TPP) in CH2Cl2.  
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Figure 14. Photoluminescence of 0.01mM V(OEP) in CH2Cl2.  

 

Electrogenerated Chemiluminescence: ECL versus potential. ECL was 

produced by sweeping to positive potentials using a platinum electrode in the presence of 

TPP, OEP or a metal complex, the electrolyte tetra-n-butylammonioum 

hexafluorophosphate (Bu4NPF6), and tri-n-propylamine (TPrA) as an “oxidative-

reductive” coreactant
,
 in methylene chloride. As seen in Figures 15 - 18 and the 

Appendix, the onset of ECL is at potentials corresponding to oxidation of TPrA and the 

porphryin or metal porphyrin complex.  

On the basis of photoluminescence emission wavelengths, the energy needed to 

generate the emission around 600 nm is approximately 1.89 eV. Therefore, for direct 

generation of the excited state the energy of the electron or energy-transfer events 

between the electrogenerated coreactant and luminophore molecules must exceed these 

values. Since studies on a series of polyaromatic hydrocarbons have indicated that TPrA

  

is sufficiently energetic to generate excited states below 2.32 eV,
31

 directly population of 

the excited state(s) in these systems is possible. 
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ECL efficiencies (photons emitted per redox event) were between 0.010 and 

0.770, respectively, lower than the Ru(bpy)3
2+

 standard (φecl = 1), Table 3.  This is not 

surprising, given the complex nature of their electrochemistry. With the exception of 

Cu(OEP), Pt(OEP) and Ni(OEP) the ECL efficiencies are higher for the metal complexes 

than the ligands themselves. Since the metal centers can bond via the lone pairs on ligand 

nitrogens, bonding may prevent non-radiative decay from solvent-solute interactions. 

Closed shell, diamagnetic, Zn(II) porphyrins are highly photoluminescent, and have the 

highest ECL efficiencies. While open-shelled, paramagnetic metal porphyrins (e.g., 

Cu(II), Ni(II), etc) have lower PL and ECL efficiencies. In PL, this is due to mixing of 

the spin multiplicity paramagnetic center and the porphyrin ring that lowers the PL 

intensity.
32

 However, open-shelled Cu(II) porphyrins do emit moderately strong 

phosphorescence in fluid solution at room temperature,
32

 as is also reflected in the ECL. 

This suggests that the same states formed in PL are being formed in ECL. Detailed 

discussion of the excited states in metal porphyrins, as well as excited state assignments, 

can be found in the literature
32,33

 and are beyond the scope of this work.  
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Figure 15. ECL intensity versus potential of 0.01mM OEP in CH2Cl2 (0.05M TPrA and 

0.05 M Bu4NPF6). 

 

 

Figure 16. ECL intensity versus potential of 0.01mM TPP in CH2Cl2 (0.05M TPrA and 

0.05 M Bu4NPF6). 
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Figure 17. ECL intensity versus potential of 0.01mM Cu(TPP) in CH2Cl2 (0.05M TPrA 

and 0.05 M Bu4NPF6). 

 

 

Figure 18. ECL intensity versus potential of 0.01mM V(OEP) in CH2Cl2 (0.05M TPrA 

and 0.05 M Bu4NPF6). 

 

 

 



 

22 

Table 3. ECL Efficiencies of porphyrin complexes. 0.01mM compound in CH2Cl2; 

0.05M TPrA; 0.05 M Bu4NPF6. Efficiencies were obtained using Ru(bpy)3
2+

 (ᶲECL = 1) as 

a standard. 

 

Compound ᶲECL 

Ru(bpy)3
2+ 

1.00 

TPP 9.66x10
-3 

Zn(TPP) 7.70x10
-1

 

Cu(TPP) 2.41x10
-1 

OEP 3.16x10
-2 

Zn(OEP) 2.11x10
-1 

Cu(OEP) 1.40x10
-1 

Ni(OEP) 4.57x10
-3 

V(OEP) 1.50x10
-2 

Pd(OEP) 4.23x10
-1 

Ru(OEP) 9.65x10
-2 

Co(OEP) 4.12x10
-3 

Pt(OEP) 2.97x10
-2 
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Electrogenerated Chemiluminescence: ECL versus time. ECL intensity versus 

time scans are in Figures 19 - 22 and in the Appendix.  The potential of the working 

electrode was cycled from 0 to +2.0 V and back to 0 over the course of several hundred 

seconds, and the ECL intensity was measured.  For Ru(bpy)3
2+

/TPrA there was a sharp 

decrease in light intensity over time due to lower concentrations of coreactant and 

luminophore near the electrode surface and fouling of the electrode surface.  This also 

indicates that the ECL is diffusion controlled. For the porphyrin complexes the ECL 

versus time spectra are much different. They do not reach peak intensity for several 

seconds and most do not achieve diffusion control within the time frame of the 

experiment. This could be due to many factors, including the production of luminescent 

species not observed in the PL experiments. For example, from interactions between the 

oxidized species, TPrA and/or solvent.  

 

 

Figure 19. ECL intensity versus time of 0.01mM OEP in CH2Cl2 (0.05M TPrA and 0.05 

M Bu4NPF6). 
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Figure 20. ECL intensity versus potential of 0.01mM TPP in CH2Cl2 (0.05M TPrA and 

0.05 M Bu4NPF6). 

 

 

Figure 21. ECL intensity versus potential of 0.01mM Cu(TPP) in CH2Cl2 (0.05M TPrA 

and 0.05 M Bu4NPF6). 
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Figure 22. ECL intensity versus potential of 0.01mM V(OEP) in CH2Cl2 (0.05M TPrA 

and 0.05 M Bu4NPF6). 

 

Conclusions 

ECL Spectra. To determine whether the same excited states are formed in ECL 

as PL the measurement of ECL spectra are planned. Due to time constraints it was not 

possible to complete them during the Spring 2018 semester, so they will be run in early 

Summer 2018. However, in other ECL/Porphryin studies
16, 17,21,22

 the same excited states 

were formed in both experiments, even those that did not obtain diffusion control (i.e., 

ECL versus time).  

Proposed Mechanism. Based on the electrochemical and ECL experiments 

presented above, and by analogy with the Ru(bpy)3
2+

/TPrA
26

 and other transition 

metal/TPrA systems,
5
 the generation of luminescence from the metal porphyrin systems 

(and the porphyrins themselves) in the presence of TPrA can be explained by the 

following reactions: 

MOEP    MOEP
+.

  +  e
- 
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TPrA  [TPrA
+.

] +  e
-
   TPrA

.  
+ H

+
  

MOEP
+.

  +  TPrA
.
    MOEP

*
 + products  

MOEP
*
    h  +  MOEP    

As discussed in the literature, these equations are most likely an 

oversimplification, as both TPrA
.
 and [TPrA

+.
] have been shown to transfer electrons in 

the ECL reaction sequence.
34

 It is also possible that the excited state may be formed in 

the following manner: 

MOEP +  TPrA
. 
   MOEP

-.
    

MOEP
-.
  +  MOEP

+.
    MOEP

*
  +  MOEP  
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CHAPTER 4: FUTURE WORK 

  

First is the measurement of ECL spectra to determine the probable identity of the 

excited states, followed by submission of a manuscript to a peer-reviewed journal. 

Second, it would be interesting to test other metal porphyrin systems to see whether the 

open-shelled versus closed-shell trends continue as seen in PL and this work. Next, this 

project be expanded to look at metal-porphyrins important in biological systems, such as 

hemoglobin and chlorophyll.   
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APPENDIX 

 

Electrochemistry 

 

 

A1. Cyclic Voltammetry of Ru(bpy)3
2+

 in a solution of TPrA/CH₂Cl₂. 

 

A2. Cyclic Voltammetry of Cu(OEP) in a solution of TPrA/CH₂Cl₂. 
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A3. Cyclic Voltammetry of Zn(TPP) in a solution of TPrA/CH₂Cl₂. 

 

A4. Cyclic Voltammetry of Zn(OEP) in a solution of TPrA/CH₂Cl₂. 
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A5. Cyclic Voltammetry of Ru(OEP) in a solution of TPrA/CH₂Cl₂. 

 

Figure A6. Cyclic Voltammetry of Pd(OEP) in a solution of TPrA/CH₂Cl₂. 
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A7. Cyclic Voltammetry of Ni(OEP) in a solution of TPrA/CH₂Cl₂. 

 

A8. Cyclic Voltammetry of Pt(OEP) in a solution of TPrA/CH₂Cl₂. 

 

A9. Cyclic Voltammetry of Co(OEP) in a solution of TPrA/CH₂Cl₂. 
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UV-Vis and PL Spectroscopy 

 

 

 

A10. UV-Vis of Zn(TPP) in a solution of CH₂Cl₂. 

 

A11. UV-Vis of Zn(OEP) in a solution of CH₂Cl₂. 

 

A12. UV-Vis of Pt(OEP) in a solution of CH₂Cl₂. 
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A13. UV-Vis of Ru(bpy)3
2+

 in a solution of CH₂Cl₂. 

 

A14. UV-Vis of Cu(OEP) in a solution of CH₂Cl₂. 
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A15. UV-Vis of Ni(OEP) in a solution of CH₂Cl₂. 

 

 

A16. UV-Vis of Ru(OEP) in a solution of CH₂Cl₂. 
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A17. UV-Vis of Pd(OEP) in a solution of CH₂Cl₂. 

 

A18. UV-Vis of Co(OEP) in a solution of CH₂Cl₂. 
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A19. Photoluminescence of Ru(bpy)3
2+

 in a solution of CH₂Cl₂. 

 

A20. Photoluminescence of Cu(OEP) in a solution of CH₂Cl₂. 
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A21. Photoluminescence of Zn(OEP) in a solution of CH₂Cl₂. 

 

A22. Photoluminescence of Zn(TPP) in a solution of CH₂Cl₂. 
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A23. Photoluminescence of Cu(TPP) in a solution of CH₂Cl₂. 

 

A24. Photoluminescence of Ni(OEP) in a solution of CH₂Cl₂. 

 

A25. Photoluminescence of Ru(OEP) in a solution of CH₂Cl₂. 
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A26. Photoluminescence of Pd(OEP) in a solution of CH₂Cl₂. 

 

A27. Photoluminescence of Pt(OEP) in a solution of CH₂Cl₂. 

 

A28. Photoluminescence of Co(OEP) in a solution of CH₂Cl₂. 
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ECL versus potential 

 

 

 

A29. ECL intensity versus potential for Ru(bpy) in a solution of TPrA/CH₂Cl₂. 

 

 

A30. ECL intensity versus potential for Cu(OEP) in a solution of TPrA/CH₂Cl₂. 
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A31. ECL intensity versus potential for Zn(OEP) in a solution of TPrA/CH₂Cl₂. 

 

A32. ECL intensity versus potential for Zn(TPP)  in a solution of TPrA/CH₂Cl₂. 
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A33. ECL intensity versus potential for Ru(OEP) in a solution of TPrA/CH₂Cl₂. 

 

A34. ECL intensity versus potential for No(OEP) in a solution of TPrA/CH₂Cl₂. 
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A35. ECL intensity versus potential for Pt(OEP) in a solution of TPrA/CH₂Cl₂. 

 

A36. ECL intensity versus potential for Pd(OEP) in a solution of TPrA/CH₂Cl₂. 
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A37. ECL intensity versus potential for Co(OEP) in a solution of TPrA/CH₂Cl₂. 

 

 

 

 

ECL versus time 

 

 

 

A38. ECL vs. time for Ru(bpy)3
2+

 in a solution of TPrA/CH₂Cl₂. 
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A39. ECL vs time of Zn (TPP) in a solution of TPrA/CH₂Cl₂. 

 

A40. ECL vs time of Zn (OEP) in a solution of TPrA/CH₂Cl₂. 
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A41. ECL vs time of Cu(OEP) in a solution of TPrA/CH₂Cl₂. 

 

A42. ECL vs. time for Pd(OEP) in a solution of TPrA/CH₂Cl₂. 
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A43. ECL vs. time for Ru(OEP) in a solution of TPrA/CH₂Cl₂. 

 

A44. ECL vs. time for Ni(OEP) in a solution of TPrA/CH₂Cl₂. 
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A45. ECL vs. time for Co(OEP) in a solution of TPrA/CH₂Cl₂. 

 

A46. ECL vs. time for Pt(OEP) in a solution of TPrA/CH₂Cl₂. 
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