Electrogenerated Chemiluminescence of Transition Metal Octaethylporphyrin and Tetraphenylporphyrin/Tri-n-Propylamine System

Jamie Lee Gray
Missouri State University, Jamie4504@live.missouristate.edu

As with any intellectual project, the content and views expressed in this thesis may be considered objectionable by some readers. However, this student-scholar’s work has been judged to have academic value by the student’s thesis committee members trained in the discipline. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees.

Follow this and additional works at: https://bearworks.missouristate.edu/theses

Part of the Chemicals and Drugs Commons, and the Chemistry Commons

Recommended Citation
https://bearworks.missouristate.edu/theses/3280

This article or document was made available through BearWorks, the institutional repository of Missouri State University. The work contained in it may be protected by copyright and require permission of the copyright holder for reuse or redistribution.

For more information, please contact BearWorks@library.missouristate.edu.
ELECTROGENERATED CHEMILUMINESCENCE OF TRANSITION METAL OCTAETHYLPORPHYRIN AND TETRAPHENYLPORPHYRIN/TRI-N-PROPYLAMINE SYSTEMS

A Masters Thesis
Presented to
The Graduate College of
Missouri State University

In Partial Fulfillment
Of the Requirements for the Degree
Master of Science, Chemistry

By
Jamie Lee Gray
August 2018
ELECTROGENERATED CHEMILUMINESCENCE OF TRANSITION METAL
OCTAETHYLPORPHYRIN AND TETRA PHENYL PORPHYRIN/TRI-N-
PROPYLAMINE SYSTEM

Chemistry
Missouri State University, August 2018
Master of Science
Jamie Lee Gray

ABSTRACT

The electrogenerated chemiluminescence (ECL) of octaethylporphyrin (OEP),
tetraphenylporphyrin (TPP) and a series of metal-ligand porphyrin complexes (Zinc,
Copper, Palladium, Platinum, Ruthenium, Vanadium, Cobalt and Nickel) in CH₂Cl₂ is
reported. ECL was generated upon sweep to positive potentials using tri-n-propylamine
(TPrA) as an oxidative-reductive coreactant. ECL efficiencies were between 0.010 and
0.770 using Ru(bpy)₃(PF₆)₂ (bpy = 2,2’-bpyridine) as a relative standard (φₑcl = 1). The
ECL intensity peaks at a potential corresponding to oxidation of the complexes and
TPrA, suggesting that the same excited states are formed in both photoluminescence and
ECL. Although the ECL was weaker than corresponding PL efficiencies, similar trends
were observed in both experiments, again suggesting identical excited states are formed.

KEYWORDS: electrogenerated chemiluminescence, ECL, metalloporphyrins,
coreactants, porphyrin

This abstract is approved as to form and content

Mark M. Richter, Ph.D.
Chairperson, Advisory Committee
Missouri State University
ELECTROGENERATED CHEMILUMINESCENCE OF TRANSITION METAL OCTAETHYLPORPHYRIN AND TETRAPHENYLPORPHYRIN/TRI-N-PROPYLAMINE SYSTEM

By

Jamie Lee Gray

A Masters Thesis
Submitted to the Graduate College
Of Missouri State University
In Partial Fulfillment of the Requirements
Master of Science, Chemistry

August 2018

Approved:

Mark Richter, PhD

Kevin Evans, PhD

Erich Steinle, PhD

Gautam Bhattacharyya, PhD

Julie Masterson, PhD: Dean, Graduate College

In the interest of academic freedom and the principle of free speech, approval of this thesis indicates the format is acceptable and meets the academic criteria for the discipline as determined by the faculty that constitute the thesis committee. The content and views expressed in this thesis are those of the student-scholar and are not endorsed by Missouri State University, its Graduate College, or its employees.
ACKNOWLEDGEMENTS

I would like to thank the following people for their help and support during the course of my undergraduate and graduate studies. Thanks to the Missouri State University Department of Chemistry for being my home for the past 5 years, as well as the Graduate College for assisting in the funding of my research and education. Thank you to Dr. Gautam Bhattacharyya, Dr. Katye Fichter, Dr. Kevin Evans and Dr. Erich Steinle for being on my graduate committee, and for their advice and guidance.

Thank you to my advisor and mentor, Dr. Mark Richter. He was the person who helped guide me through my undergraduate and graduate coursework, as well as his unending patience with me during the years of research we have had together.

My sincere appreciation goes out to all of the friends I have made during the past 5 years I have spent at Missouri State University, to the countless hours spent on homework, studying and procrastination, I truly love all of you.

Finally to my husband, to whom I owe everything.
TABLE OF CONTENTS

Chapter 1: Introduction to Electrogeneated Chemiluminescence 1

Chapter 2: Experimental Methods .. 6
 Materials .. 6
 Methods .. 6

Chapter 3: Metal Centered Porphyrins ... 10
 Results and Discussion .. 10
 Conclusions .. 25

Chapter 4: Future Work ... 27

References ... 28

Appendix ... 30
LIST OF TABLES

Table 1. Electrochemical oxidation (E_a) and re-reduction (E_c) potentials vs Ag/Ag^+ reference electrode. 0.1mM complex, 0.05 M Bu_4NPF_6 in CH_2Cl_2. ..11

Table 2. PL Efficiencies of porphyrin complexes. 0.01mM compound in CH_2Cl_2. Efficiencies were obtained using Ru(bpy)_3^{2+} (νPL = 0.042) as a standard...............................14

Table 3. ECL Efficiencies of porphyrin complexes. 0.01mM compound in CH_2Cl_2; 0.05M TPrA; 0.05 M Bu_4NPF_6. Efficiencies were obtained using Ru(bpy)_3^{2+} (νECL = 1) as a standard. ..22
LIST OF FIGURES

Figure 1. Proposed mechanism for Ru(bpy)$_3^{2+}$/TPrA reaction sequence ..3
Figure 2. Structures of OEP (left) and TPP (right); M=metal center ...4
Figure 3. Cyclic Voltammetry of 0.1 mM TPP and 0.05M Bu$_4$NPF$_6$ in CH$_2$Cl$_2$...........................12
Figure 4. Cyclic Voltammetry of 0.1 mM Cu(TPP), and 0.05M Bu$_4$NPF$_6$ in CH$_2$Cl$_2$12
Figure 5. Cyclic Voltammetry of 0.1 mM OEP, and 0.05M Bu$_4$NPF$_6$ in CH$_2$Cl$_2$12
Figure 6. Cyclic Voltammetry of 0.1 mM V(OEP), and 0.05M Bu$_4$NPF$_6$ in CH$_2$Cl$_2$13
Figure 7. UV-Vis of 0.01mM OEP in CH$_2$Cl$_2$..15
Figure 8. UV-Vis of 0.01mM TPP in CH$_2$Cl$_2$...15
Figure 9. UV-Vis of 0.01mM Cu(TPP) in CH$_2$Cl$_2$. ...15
Figure 10. UV-Vis of 0.01mM V(OEP) in CH$_2$Cl$_2$. ..16
Figure 11. Photoluminescence of 0.01mM OEP in CH$_2$Cl$_2$...16
Figure 12. Photoluminescence of 0.01mM TPP in CH$_2$Cl$_2$. ...17
Figure 13. Photoluminescence of 0.01mM Cu(TPP) in CH$_2$Cl$_2$. ...17
Figure 14. Photoluminescence of 0.01mM V(OEP) in CH$_2$Cl$_2$..18
Figure 15. ECL intensity versus potential of 0.01mM OEP in CH$_2$Cl$_2$ (0.05M TPrA and 0.05 M Bu$_4$NPF$_6$). ..20
Figure 16. ECL intensity versus potential of 0.01mM TPP in CH$_2$Cl$_2$ (0.05M TPrA and 0.05 M Bu$_4$NPF$_6$). ..20
Figure 17. ECL intensity versus potential of 0.01mM Cu(TPP) in CH$_2$Cl$_2$ (0.05M TPrA and 0.05 M Bu$_4$NPF$_6$). ..21
Figure 18. ECL intensity versus potential of 0.01mM V(OEP) in CH$_2$Cl$_2$ (0.05M TPrA and 0.05 M Bu$_4$NPF$_6$). ..21
Figure 19. ECL intensity versus time of 0.01mM OEP in CH$_2$Cl$_2$ (0.05M TPrA and 0.05 M Bu$_4$NPF$_6$). ..23
Figure 20. ECL intensity versus potential of 0.01mM TPP in CH₂Cl₂ (0.05M TPrA and 0.05 M Bu₄NPF₆). ...24

Figure 21. ECL intensity versus potential of 0.01mM Cu(TPP) in CH₂Cl₂ (0.05M TPrA and 0.05 M Bu₄NPF₆). ...24

Figure 22. ECL intensity versus potential of 0.01mM V(OEP) in CH₂Cl₂ (0.05M TPrA and 0.05 M Bu₄NPF₆). ...25
CHAPTER 1: INTRODUCTION TO ELECTROGENERATED CHEMILUMINESCENCE

Electrogenerated chemiluminescence (ECL) is a method to detect organic, inorganic and biochemical molecules. ECL, first discovered in the mid-1960s, involves the formation of excited-state compounds at an electrode surface followed by chemiluminescence reactions. It provides a sensitive way of examining electron and energy-transfer processes at charged interfaces. Many reviews, some quite comprehensive, are available on ECL and its applications.

ECL has many advantages compared to fluorescence or photoluminescence (PL) methods. Unlike PL methods, ECL does not involve the use of an external light source so has fewer problems with scattered light. Also, fewer complexes undergo ECL leading to fewer luminescent impurities.

The majority of tests use Ru(bpy)₃²⁺ (bpy = 2,2'-bpyridine) derivatives as the ECL luminophore or label with TPrA (tri-n-propylamine) as the coreactant. The advantage to this is upon formation of the luminescent excited state, *Ru(bpy)₃²⁺, emission of a photon regenerates Ru(bpy)₃²⁺ in its ground state near the electrode surface. This means that a single Ru(bpy)₃²⁺ complex can participate in many different ECL reaction cycles to produce multiple photons, increasing sensitivity and lowering detection limits. Ru(bpy)₃²⁺ was the first metal complex studied via ECL.

There have been many fundamental and applied studies on organic, inorganic and biochemical systems. For example, the first species studied in ECL were polyaromatic hydrocarbons such as 9,10-diphenylnanthracene. They undergo electrochemically
reversible oxidation and reduction reactions, and their excited states are accessible in the solvent window of most organic solvents (e.g., acetonitrile and methylene chloride). The solvent window is the oxidative and reductive potentials where the solvent itself does not undergo oxidation and reduction, typically between +2.5 V and -2.5 V vs SCE. These excited states were formed by annihilation ECL. Annihilation ECL is when the emitter (R) can electrochemically produce both a sufficiently stable radical cation (R˙⁺) and anion (R˙⁻). Each radical ion is annihilated by the oppositely charged radical ion to generate the excited state (R*).

\[
\begin{align*}
R - e^- & \rightarrow R^+ \\
R + e^- & \rightarrow R^- \\
R^+ + R^- & \rightarrow R + R^* \\
R^* & \rightarrow R + \hbar \nu
\end{align*}
\]

\(\hbar \nu\) is a photon of light. Another method of generating ECL is coreactant ECL where emission is generated in one potential sweep (either oxidative or reductive, not both) with the solution containing the luminophore species and the coreactant. For example, the proposed mechanism for Ru(bpy)\(_3\)^{2+}/TPrA is shown in Figure 1. Ru(bpy)\(_3\)^{2+} is oxidized to Ru(bpy)\(_3\)^{3+} at the surface of an electrode upon application of an oxidizing (or anodic) potential. Similarly, TPrA is oxidized to TPrA^•+ upon loss of an alpha proton (a hydrogen nearest to the amine group). Upon proton loss a tripropylamine radical is formed, presumably TPrA^•, that then reacts with Ru(bpy)\(_3\)^{3+} to form the excited state, *Ru(bpy)\(_3\)^{2+}, followed by emission.
ECL-active species have been used as biological tags for DNA analysis as well as many different forms of immunoassays. ECL has recently been incorporated into enzyme linked immunosorbent assays (ELISA) as electrochemical ELISA for a portable and direct way to perform at the point of care analysis in rural clinics as well as for the purpose for natural disaster aid. ECL has been proven to provide much lower limits of detection as opposed to traditional color spectroscopy for ELISA.

Many transition metal systems have been studied using ECL. Representative systems include main group metals (e.g., Si and Al) transition metal complexes incorporating Ru, Os and Pt as well as rare earth chelates. There has been particular emphasis on characterizing the nature of the excited state, discerning the mechanisms by which these states were formed and determining the efficiency of excited state formation.

Metal centered porphyrin complexes (Figure 2) display many of the chemical and spectroscopic qualities required of ECL-luminophores, such as stable oxidative and reductive electrochemistry and strong photoluminescence. As an added benefit, many are commercially available.
Several porphyrins, including those containing metal ions, have been shown to act as ECL luminophores.16-24 For example, the ECL of Pt(TPP) was reported in nonaqueous solution using an annihilation mechanism16 (the formation of oxidized and reduced forms of the complex at an electrode that can then diffuse together and undergo energy or electron transfer to form the excited state).

\[\text{Pt(TPP)}^+ + \text{Pt(TPP)}^- \rightarrow \text{Pt(TPP)}^* + \text{Pt(TPP)} \]

Tetraphenylporphyrin itself has also been shown to generate ECL in the absence of a metal ion.17 Other studies include platinum octaethyl porphyrin using annihilation18 and coreactant methods,19 the ECL of sterically hindered porphyrins in aqueous media,20 the ECL of ruthenium TPP and OEP using TPrA as coreactant,21 and the ECL and PL of the porphyrin/ruthenium complex $[\text{H}_2\text{(MPy3,4DMPP)}\text{Ru(bpy)}_2\text{Cl}]\text{(PF}_6\text{)}$, where $\text{H}_2\text{MPy3,4DMPP} = meso$-tris-3,4-dimethoxyphenyl-mono-(4-pyridyl)porphyrin and \text{bpy} = 2,2’-bpyridine and its porphyrin analog.22 To our knowledge, however, a systematic study has not been reported. Such studies have been performed for the PL properties of metal porphyrin systems.23 In this work, transition metal porphyrin systems including

\[
\text{Figure 2. Structures of OEP (left) and TPP (right); M=metal center.}
\]
Zinc and Copper tetraphenylporphyrin, as well as Zinc, Copper, Palladium, Platinum, Ruthenium, Vanadium, Cobalt and Nickel octaethylporphyrin were used as a “luminophore” to convert electrical energy into radiative energy using TPrA. This light is then measured using a photomultiplier tube (PMT) so that comparison to photoluminescence (PL) data could be made. This thesis introduces multiple transition metal centered porphyrin compounds into the ECL library of luminophores.
CHAPTER 2: EXPERIMENTAL METHODS

Materials

All porphyrin complexes (Tetraphenyl-21H,23H-porphine copper(II); Octaethyl-21H,23H-porphine copper (II); Tetraphenyl-21H,23H-porphine zinc (II); Octaethyl-21H,23H-porphyrin zinc (II); Octaethyl-21H,23H-porphine ruthenium (II) carbonyl; Octaethyl-21H,23H-porphine cobalt (II); Octaethyl-21H,23H-porphine nickel (II); Octaethyl-21H,23H-porphine palladium (II); Octaethyl-21H,23H-porphine vanadium (IV) oxide; Octaethyl-21H,23H-porphine platinum (II); 5,10,15,20-Tetraphenyl-21H,23H-porphine; 2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine) were commercially available (Sigma Aldrich) and used as received. The solvent methylene chloride (CH₂Cl₂) and the supporting electrolyte tetrabutylammonium hexafluorophosphate (Bu₄NPF₆, C₁₆H₃₆F₆NP) were also from Sigma Aldrich. Ru(bpy)₃(PF₆)₂ was from Strem Chemicals in Newburyport, Massachusetts. Argon gas provided by the Chemistry Department at Missouri State University was used to deoxygenate solutions for electrochemical analyses.

Methods

Electrogenerated Chemiluminescence. ECL experiments used a conventional three-electrode system, a CH Instruments electrochemical analyzer and a Leader 718-5D Photomultiplier Tube (PMT) contained in a “light-tight” box. The working electrode was a platinum mesh electrode, with a platinum wire auxiliary electrode and a Ag/AgCl quasi-reference electrode. A 0.05M TPrA/CH₂Cl₂/Bu₄NPF₆ stock solution was prepared by adding approximately 10 g of Bu₄NPF₆ (0.05 M) and 4.76mL of TPrA (0.05M) to
500mL of CH₂Cl₂. This stock solution was used as a blank to test for background ECL, and in all dilutions to make working solutions containing luminophore.

All ECL experiments utilized around 80 mL of solution, placed 15 cm from the PMT. ECL efficiencies ($\phi_{\text{ecl}} =$ photons generated per redox event) were obtained by literature methods,24,25 using Ru(bpy)$_3^{2+}$ ($\phi_{\text{ecl}} = 1$) as the standard. ECL efficiencies are based upon the mean of at least three runs with a relative standard deviation of ±5%.

A 0.05M TPrA/CH₂Cl₂/Bu₄NPF$_6$ stock solution was prepared by adding approximately 10 g of Bu₄NPF$_6$ (0.05 M) and 4.76mL of TPrA (0.05M) to 500mL of CH₂Cl₂. A 10⁻⁴ M stock solution of porphyrins was initially prepared by placing the porphyrin in a 100mL volumetric flask and diluting to the mark with the stock solution of Bu₄NPF$_6$/CH₂Cl₂. The contents of the solution were then mixed by inversion as well as ultrasonication. The working solution of 10⁻⁷ M Ru(bpy)$_3$(PF$_6$)$_2$ was prepared by diluting a solution of 10⁻³ M Ru(bpy)$_3$(PF$_6$)$_2$. The 10⁻³ M solution of Ru(bpy)$_3$(PF$_6$)$_2$ was prepared by placing 0.0078 g of Ru(bpy)$_3$(PF$_6$)$_2$ in a 10mL volumetric flask and diluted to the mark with the stock solution of TPrA/CH₂Cl₂. Then 0.01 mL was taken from this initial 10⁻³ M solution of Ru(bpy)$_3$(PF$_6$)$_2$ and placed in a 100mL volumetric flask and diluted to the mark with the stock solution of Bu₄NPF$_6$/TPrA/CH₂Cl₂.

The working electrode was cleaned before each run by repeated cycling (+2.5 to -2.5 V) in a 6.0 M solution of sulfuric acid followed by rinsing with doubly deionized water. ECL efficiencies ($\phi_{\text{ecl}} =$ photons/redox event) were obtained by literature methods using Ru(bpy)$_3^{2+}$ as a standard ($\phi_{\text{ecl}} = 1$).26

Electrochemistry (cyclic voltammetry and bulk electrolysis). A 0.05M TPrA/CH₂Cl₂/Bu₄NPF$_6$ stock solution was prepared by adding approximately 10 g of
Bu₄NPF₆ (0.05 M) to 500mL of CH₂Cl₂. All cyclic voltammograms were obtained using a glassy carbon working electrode that was cleaned using silica, then rinsed with doubly deionized water between each run. For bulk electrolysis the standard setup described above for ECL was used.

A 10⁻⁴ M stock solution of porphyrins was initially prepared by placing the porphyrin in a 100mL volumetric flask and diluting to the mark with the stock solution of Bu₄NPF₆/CH₂Cl₂. The contents of the solution were then mixed by inversion as well as ultrasonication. The working solution of 10⁻⁷ M Ru(bpy)$_3$(PF₆)$_2$ was prepared by diluting a solution of 10⁻³ M Ru(bpy)$_3$(PF₆)$_2$. The 10⁻³ M solution of Ru(bpy)$_3$(PF₆)$_2$ was prepared by placing 0.0078 g of Ru(bpy)$_3$(PF₆)$_2$ in a 10mL volumetric flask and diluted to the mark with the stock solution of TPrA/CH₂Cl₂. Then 0.01 mL was taken from this initial 10⁻³ M solution of Ru(bpy)$_3$(PF₆)$_2$ and placed in a 100mL volumetric flask and diluted to the mark with the stock solution of Bu₄NPF₆/CH₂Cl₂.

Spectroscopy (UV/Vis and PL). UV-Vis and Photoluminescence spectra were obtained using a Cary-100 UV-Visible Spectrophotometer (Varian Inc., Palo Alto, CA) and Shimadzu RF-5301 Spectrofluorophotometer (Shimadzu Corporation, Japan), respectively. Excitation for photoluminescence was at the maximum absorbance intensity using slit widths of 3 nm and detection between 500 and 900 nm. Photoluminescence efficiencies (ϕ_{em}; photons emitted per photons absorbed) were obtained relative to Ru(bpy)$_3^{2+}$ (ϕ_{em} (CH₃CN) = 0.042)27 and are the average of at least three scans with a standard deviation of ±5%.

A stock solution was prepared by adding approximately 10g of electrolytes to 500mL of CH₂Cl₂. Two solutions were prepared, the first stock solution of 10⁻⁵ M
Ru(bpy)$_3$(PF$_6$)$_2$ was prepared by placing 0.0078g of Ru(bpy)$_3$(PF$_6$)$_2$ in a 100 mL flask and diluting to the mark with the stock solution of CH$_2$Cl$_2$ and mixed initially by inversion and ultrasonification.

Another stock solution of 10$^{-7}$ M was prepared by transferring 1mL of the 10$^{-5}$ M Ru(bpy)$_3$(PF$_6$)$_2$ solution to a 100mL volumetric flask and diluting to the mark with the stock solution of CH$_2$Cl$_2$ and mixing by inversion and ultrasonification. A 10$^{-4}$ M stock solution of porphyrins was prepared by placing the porphyrin in a 100mL volumetric flask and diluting to the mark with the stock solution of CH$_2$Cl$_2$. This solution was then mixed by inversion and ultrasonification.
CHAPTER 3: METAL CENTERED PORPHYRINS

Results and Discussion

Electrochemistry. The oxidative electrochemistry of the porphyrins and metal-porphyrin complexes are presented in Table 1. Representative cyclic voltammograms (CVs) are presented in Figures 3-6, with the rest in the Appendix. Although a detailed study of the electrochemistry of these systems has been reported18,19,20,21 the experiments were repeated to make comparisons between electrochemical, spectroscopic and ECL data more valid. However, the results are extremely consistent with previous research. For example,18 Pt(OEP) undergoes a one electron oxidation to form Pt(OEP)$^+$ at +0.97 V vs Ag/AgCl (+0.40 V vs Fc/Fc$^+$) in CH$_2$Cl$_2$ (0.05 M TBAPF$_6$). No other oxidative waves were observed under these conditions prior to oxidation of the solvent. The other metal complexes display between 1 and 2 oxidations, some electrochemically reversible (Figures 3-5, Appendix and Table 1). These are most likely ligand based oxidations by comparison to the ligands themselves (Table 1) and since most metal centers do not have oxidation potentials within the solvent window from 0.0 to +2.0 V vs Ag/AgCl.17 Also, the potentials for oxidation and re-reduction shifted slightly depending on the metal in the porphyrin cavity, showing that there are electronic interactions between the porphyrin and metal ions.
Table 1. Electrochemical oxidation (E_a) and re-reduction (E_c) potentials vs Ag/Ag$^+$ reference electrode. 0.1mM complex, 0.05 M Bu$_4$NPF$_6$ in CH$_2$Cl$_2$.

<table>
<thead>
<tr>
<th>Compound</th>
<th>E_{a1} (V)</th>
<th>E_{c1} (V)</th>
<th>E_{a2} (V)</th>
<th>E_{c2} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(OEP)</td>
<td>0.892</td>
<td>0.281</td>
<td>1.60</td>
<td>1.01</td>
</tr>
<tr>
<td>Cu(TPP)</td>
<td>1.07</td>
<td>0.772</td>
<td>1.48</td>
<td>1.18</td>
</tr>
<tr>
<td>Zn(TPP)</td>
<td>0.913</td>
<td>0.648</td>
<td>1.24</td>
<td>0.977</td>
</tr>
<tr>
<td>Zn(OEP)</td>
<td>0.398</td>
<td>0.085</td>
<td>0.990</td>
<td>1.212</td>
</tr>
<tr>
<td>Ru(OEP)</td>
<td>0.903</td>
<td>0.238</td>
<td>1.55</td>
<td>0.876</td>
</tr>
<tr>
<td>V(OEP)</td>
<td>1.07</td>
<td>0.712</td>
<td>1.60</td>
<td>1.25</td>
</tr>
<tr>
<td>Co(OEP)</td>
<td>1.097</td>
<td>0.574</td>
<td>1.743</td>
<td>1.587</td>
</tr>
<tr>
<td>Pd(OEP)</td>
<td>0.968</td>
<td>0.576</td>
<td>1.74</td>
<td>1.41</td>
</tr>
<tr>
<td>Ni(OEP)</td>
<td>0.881</td>
<td>0.565</td>
<td>1.57</td>
<td>1.25</td>
</tr>
<tr>
<td>Pt(OEP)</td>
<td>0.968</td>
<td>0.636</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H$_2$OEP</td>
<td>0.417</td>
<td>0.445</td>
<td>1.568</td>
<td>1.590</td>
</tr>
<tr>
<td>H$_2$TPP</td>
<td>0.418</td>
<td>0.554</td>
<td>1.406</td>
<td>1.200</td>
</tr>
</tbody>
</table>
Figure 3. Cyclic Voltammetry of 0.1 mM TPP and 0.05M Bu4NPF6 in CH2Cl2.

Figure 4. Cyclic Voltammetry of 0.1 mM Cu(TPP), and 0.05M Bu4NPF6 in CH2Cl2.

Figure 5. Cyclic Voltammetry of 0.1 mM OEP, and 0.05M Bu4NPF6 in CH2Cl2.
Figure 6. Cyclic Voltammetry of 0.1 mM V(OEP), and 0.05M Bu₄NPF₆ in CH₂Cl₂.

Spectroscopy. Ultraviolet-Visible (UV-Vis) absorbance and photoluminescence data are presented in Table 2. Representative spectra are shown in Figures 7-14 with the rest in the appendix. The complexes display absorption features typical of heavy-metal porphyrin complexes with maximum absorbances around 390 and between 500 – 540 nm, assigned to the Soret- and Q-bands, respectively.²⁸,²⁹ Excitation into these bands produces room temperature photoluminescence in CH₂Cl₂. The spectra are sensitive to the nature of the metal center suggesting an interaction between the metal center and porphyrin cavity. Also, the emission spectra are essentially the same regardless of the excitation wavelength.³⁰ The narrow emission peak centered around 650 nm are characteristic of triplet excited states²⁸,²⁹, with quantum efficiencies (φₑᵐ) reported in the table. The efficiencies were measured using Ru(bpy)₃²⁺ (φₑᵐ = 0.042) as standard. Further discussion of the emission efficiencies will be done in the ECL section.
Table 2. PL Efficiencies of porphyrin complexes. 0.01mM compound in CH$_2$Cl$_2$. Efficiencies were obtained using Ru(bpy)$_3^{2+}$ ($\Phi_{PL} = 0.042$) as a standard.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Φ_{EM} (au)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(bpy)$_3^{2+}$</td>
<td>1.00</td>
</tr>
<tr>
<td>TPP</td>
<td>2.11</td>
</tr>
<tr>
<td>Zn(TPP)</td>
<td>3.09</td>
</tr>
<tr>
<td>Cu(TPP)</td>
<td>0.477</td>
</tr>
<tr>
<td>OEP</td>
<td>15.8</td>
</tr>
<tr>
<td>Zn(OEP)</td>
<td>6.38</td>
</tr>
<tr>
<td>Cu(OEP)</td>
<td>0</td>
</tr>
<tr>
<td>Ni(OEP)</td>
<td>0</td>
</tr>
<tr>
<td>V(OEP)</td>
<td>0.0867</td>
</tr>
<tr>
<td>Pd(OEP)</td>
<td>0.0632</td>
</tr>
<tr>
<td>Ru(OEP)</td>
<td>0.0343</td>
</tr>
<tr>
<td>Co(OEP)</td>
<td>0.0102</td>
</tr>
<tr>
<td>Pt(OEP)</td>
<td>0.0198</td>
</tr>
</tbody>
</table>
Figure 7. UV-Vis of 0.01mM OEP in CH$_2$Cl$_2$.

Figure 8. UV-Vis of 0.01mM TPP in CH$_2$Cl$_2$.

Figure 9. UV-Vis of 0.01mM Cu(TPP) in CH$_2$Cl$_2$.
Figure 10. UV-Vis of 0.01mM V(OEP) in CH$_2$Cl$_2$.

Figure 11. Photoluminescence of 0.01mM OEP in CH$_2$Cl$_2$.
Figure 12. Photoluminescence of 0.01mM TPP in CH₂Cl₂.

Figure 13. Photoluminescence of 0.01mM Cu(TPP) in CH₂Cl₂.
Electrogenerated Chemiluminescence: ECL versus potential. ECL was produced by sweeping to positive potentials using a platinum electrode in the presence of TPP, OEP or a metal complex, the electrolyte tetra-n-butylammonium hexafluorophosphate (Bu_4NPF_6), and tri-n-propylamine (TPrA) as an “oxidative-reductive” coreactant in methylene chloride. As seen in Figures 15 - 18 and the Appendix, the onset of ECL is at potentials corresponding to oxidation of TPrA and the porphyrin or metal porphyrin complex.

On the basis of photoluminescence emission wavelengths, the energy needed to generate the emission around 600 nm is approximately 1.89 eV. Therefore, for direct generation of the excited state the energy of the electron or energy-transfer events between the electrogenerated coreactant and luminophore molecules must exceed these values. Since studies on a series of polyaromatic hydrocarbons have indicated that TPrA$^+$ is sufficiently energetic to generate excited states below 2.32 eV,31 directly population of the excited state(s) in these systems is possible.
ECL efficiencies (photons emitted per redox event) were between 0.010 and 0.770, respectively, lower than the Ru(bpy)$_3^{2+}$ standard ($\Phi_{\text{ecl}} = 1$), Table 3. This is not surprising, given the complex nature of their electrochemistry. With the exception of Cu(OEP), Pt(OEP) and Ni(OEP) the ECL efficiencies are higher for the metal complexes than the ligands themselves. Since the metal centers can bond via the lone pairs on ligand nitrogens, bonding may prevent non-radiative decay from solvent-solute interactions.

Closed shell, diamagnetic, Zn(II) porphyrins are highly photoluminescent, and have the highest ECL efficiencies. While open-shelled, paramagnetic metal porphyrins (e.g., Cu(II), Ni(II), etc) have lower PL and ECL efficiencies. In PL, this is due to mixing of the spin multiplicity paramagnetic center and the porphyrin ring that lowers the PL intensity. However, open-shelled Cu(II) porphyrins do emit moderately strong phosphorescence in fluid solution at room temperature, as is also reflected in the ECL. This suggests that the same states formed in PL are being formed in ECL. Detailed discussion of the excited states in metal porphyrins, as well as excited state assignments, can be found in the literature and are beyond the scope of this work.
Figure 15. ECL intensity versus potential of 0.01mM OEP in CH$_2$Cl$_2$ (0.05M TPrA and 0.05 M Bu$_4$NPF$_6$).

Figure 16. ECL intensity versus potential of 0.01mM TPP in CH$_2$Cl$_2$ (0.05M TPrA and 0.05 M Bu$_4$NPF$_6$).
Figure 17. ECL intensity versus potential of 0.01mM Cu(TPP) in CH₂Cl₂ (0.05M TPrA and 0.05 M Bu₄NPF₆).

Figure 18. ECL intensity versus potential of 0.01mM V(OEP) in CH₂Cl₂ (0.05M TPrA and 0.05 M Bu₄NPF₆).
Table 3. ECL Efficiencies of porphyrin complexes. 0.01mM compound in CH$_2$Cl$_2$; 0.05M TPrA; 0.05 M Bu$_4$NPF_6. Efficiencies were obtained using Ru(bpy)$_3^{2+}$ ($\Phi_{ECL} = 1$) as a standard.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Φ_{ECL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ru(bpy)$_3^{2+}$</td>
<td>1.00</td>
</tr>
<tr>
<td>TPP</td>
<td>9.66x10$^{-3}$</td>
</tr>
<tr>
<td>Zn(TPP)</td>
<td>7.70x10$^{-1}$</td>
</tr>
<tr>
<td>Cu(TPP)</td>
<td>2.41x10$^{-1}$</td>
</tr>
<tr>
<td>OEP</td>
<td>3.16x10$^{-2}$</td>
</tr>
<tr>
<td>Zn(OEP)</td>
<td>2.11x10$^{-1}$</td>
</tr>
<tr>
<td>Cu(OEP)</td>
<td>1.40x10$^{-1}$</td>
</tr>
<tr>
<td>Ni(OEP)</td>
<td>4.57x10$^{-3}$</td>
</tr>
<tr>
<td>V(OEP)</td>
<td>1.50x10$^{-2}$</td>
</tr>
<tr>
<td>Pd(OEP)</td>
<td>4.23x10$^{-1}$</td>
</tr>
<tr>
<td>Ru(OEP)</td>
<td>9.65x10$^{-2}$</td>
</tr>
<tr>
<td>Co(OEP)</td>
<td>4.12x10$^{-3}$</td>
</tr>
<tr>
<td>Pt(OEP)</td>
<td>2.97x10$^{-2}$</td>
</tr>
</tbody>
</table>
Electrogenerated Chemiluminescence: ECL versus time. ECL intensity versus time scans are in Figures 19 - 22 and in the Appendix. The potential of the working electrode was cycled from 0 to +2.0 V and back to 0 over the course of several hundred seconds, and the ECL intensity was measured. For Ru(bpy)$_3^{2+}$/TPrA there was a sharp decrease in light intensity over time due to lower concentrations of coreactant and luminophore near the electrode surface and fouling of the electrode surface. This also indicates that the ECL is diffusion controlled. For the porphyrin complexes the ECL versus time spectra are much different. They do not reach peak intensity for several seconds and most do not achieve diffusion control within the time frame of the experiment. This could be due to many factors, including the production of luminescent species not observed in the PL experiments. For example, from interactions between the oxidized species, TPrA and/or solvent.

![Graph](image.png)

Figure 19. ECL intensity versus time of 0.01mM OEP in CH$_2$Cl$_2$ (0.05M TPrA and 0.05 M Bu$_4$NPF$_6$).
Figure 20. ECL intensity versus potential of 0.01mM TPP in CH₂Cl₂ (0.05M TPrA and 0.05 M Bu₄NPF₆).

Figure 21. ECL intensity versus potential of 0.01mM Cu(TPP) in CH₂Cl₂ (0.05M TPrA and 0.05 M Bu₄NPF₆).
Conclusions

ECL Spectra. To determine whether the same excited states are formed in ECL as PL the measurement of ECL spectra are planned. Due to time constraints it was not possible to complete them during the Spring 2018 semester, so they will be run in early Summer 2018. However, in other ECL/Porphyrin studies16,17,21,22 the same excited states were formed in both experiments, even those that did not obtain diffusion control (i.e., ECL versus time).

Proposed Mechanism. Based on the electrochemical and ECL experiments presented above, and by analogy with the Ru(bpy)\textsubscript{3}2+/TPrA26 and other transition metal/TPrA systems,5 the generation of luminescence from the metal porphyrin systems (and the porphyrins themselves) in the presence of TPrA can be explained by the following reactions:

\[\text{MOEP} \rightarrow \text{MOEP}^+ + e^- \]
TPrA → [TPrA\(^+\)] + \(e^-\) → TPrA\(^-\) + H\(^+\)

\[\text{MOEP}^+ + \text{TPrA}^- → \text{MOEP}^* + \text{products}\]

\[\text{MOEP}^* → \text{hv} + \text{MOEP}\]

As discussed in the literature, these equations are most likely an oversimplification, as both TPrA\(^-\) and [TPrA\(^+\)] have been shown to transfer electrons in the ECL reaction sequence.\(^{34}\) It is also possible that the excited state may be formed in the following manner:

\[\text{MOEP} + \text{TPrA}^- → \text{MOEP}^*\]

\[\text{MOEP}^- + \text{MOEP}^+ → \text{MOEP}^* + \text{MOEP}\]
CHAPTER 4: FUTURE WORK

First is the measurement of ECL spectra to determine the probable identity of the excited states, followed by submission of a manuscript to a peer-reviewed journal. Second, it would be interesting to test other metal porphyrin systems to see whether the open-shelled versus closed-shell trends continue as seen in PL and this work. Next, this project be expanded to look at metal-porphyrins important in biological systems, such as hemoglobin and chlorophyll.
REFERENCES

1 D.M. Hercules, Science 143 (1964) 808.
APPENDIX

Electrochemistry

A1. Cyclic Voltammetry of Ru(bpy)$_3^{2+}$ in a solution of TPrA/CH$_2$Cl$_2$.

A2. Cyclic Voltammetry of Cu(OEP) in a solution of TPrA/CH$_2$Cl$_2$.
A3. Cyclic Voltammetry of Zn(TPP) in a solution of TPrA/CH₂Cl₂.

A4. Cyclic Voltammetry of Zn(OEP) in a solution of TPrA/CH₂Cl₂.
A5. Cyclic Voltammetry of Ru(OEP) in a solution of TPrA/CH₂Cl₂.

Figure A6. Cyclic Voltammetry of Pd(OEP) in a solution of TPrA/CH₂Cl₂.
A7. Cyclic Voltammetry of Ni(OEP) in a solution of TPrA/CH₂Cl₂.

A8. Cyclic Voltammetry of Pt(OEP) in a solution of TPrA/CH₂Cl₂.

A9. Cyclic Voltammetry of Co(OEP) in a solution of TPrA/CH₂Cl₂.
UV-Vis and PL Spectroscopy

A10. UV-Vis of Zn(TPP) in a solution of CH₂Cl₂.

A11. UV-Vis of Zn(OEP) in a solution of CH₂Cl₂.

A12. UV-Vis of Pt(OEP) in a solution of CH₂Cl₂.
A13. UV-Vis of Ru(bpy)$_3^{2+}$ in a solution of CH$_2$Cl$_2$.

A14. UV-Vis of Cu(OEP) in a solution of CH$_2$Cl$_2$.
A15. UV-Vis of Ni(OEP) in a solution of CH₂Cl₂.

A16. UV-Vis of Ru(OEP) in a solution of CH₂Cl₂.
A17. UV-Vis of Pd(OEP) in a solution of CH₂Cl₂.

A18. UV-Vis of Co(OEP) in a solution of CH₂Cl₂.
A19. Photoluminescence of Ru(bpy)$_3^{2+}$ in a solution of CH$_2$Cl$_2$.

A20. Photoluminescence of Cu(OEP) in a solution of CH$_2$Cl$_2$.
A21. Photoluminescence of Zn(OEP) in a solution of CH₂Cl₂.

A22. Photoluminescence of Zn(TPP) in a solution of CH₂Cl₂.
A23. Photoluminescence of Cu(TPP) in a solution of CH₂Cl₂.

![Graph of Cu(TPP) photoluminescence](image)

A24. Photoluminescence of Ni(OEP) in a solution of CH₂Cl₂.

![Graph of Ni(OEP) photoluminescence](image)

A25. Photoluminescence of Ru(OEP) in a solution of CH₂Cl₂.

![Graph of Ru(OEP) photoluminescence](image)
A26. Photoluminescence of Pd(OEP) in a solution of CH₂Cl₂.

A27. Photoluminescence of Pt(OEP) in a solution of CH₂Cl₂.

A28. Photoluminescence of Co(OEP) in a solution of CH₂Cl₂.
A29. ECL intensity versus potential for Ru(bpy) in a solution of TPrA/CH₂Cl₂.

A30. ECL intensity versus potential for Cu(OEP) in a solution of TPrA/CH₂Cl₂.
A31. ECL intensity versus potential for Zn(OEP) in a solution of TPrA/CH₂Cl₂.

A32. ECL intensity versus potential for Zn(TPP) in a solution of TPrA/CH₂Cl₂.
A33. ECL intensity versus potential for Ru(OEP) in a solution of TPrA/CH₂Cl₂.

A34. ECL intensity versus potential for No(OEP) in a solution of TPrA/CH₂Cl₂.
A35. ECL intensity versus potential for Pt(OEP) in a solution of TPrA/CH₂Cl₂.

A36. ECL intensity versus potential for Pd(OEP) in a solution of TPrA/CH₂Cl₂.
A37. ECL intensity versus potential for Co(OEP) in a solution of TPrA/CH₂Cl₂.

ECL versus time

A38. ECL vs. time for Ru(bpy)₃²⁺ in a solution of TPrA/CH₂Cl₂.
A39. ECL vs time of Zn (TPP) in a solution of TPrA/CH₂Cl₂.

A40. ECL vs time of Zn (OEP) in a solution of TPrA/CH₂Cl₂.
A41. ECL vs time of Cu(OEP) in a solution of TPrA/CH₂Cl₂.

A42. ECL vs. time for Pd(OEP) in a solution of TPrA/CH₂Cl₂.
A43. ECL vs. time for Ru(OEP) in a solution of TPrA/CH₂Cl₂.

A44. ECL vs. time for Ni(OEP) in a solution of TPrA/CH₂Cl₂.
A45. ECL vs. time for Co(OEP) in a solution of TPrA/CH₂Cl₂.

A46. ECL vs. time for Pt(OEP) in a solution of TPrA/CH₂Cl₂.